KR960008569B1 - Anodizing method of titanium-oxide film - Google Patents

Anodizing method of titanium-oxide film Download PDF

Info

Publication number
KR960008569B1
KR960008569B1 KR1019920025149A KR920025149A KR960008569B1 KR 960008569 B1 KR960008569 B1 KR 960008569B1 KR 1019920025149 A KR1019920025149 A KR 1019920025149A KR 920025149 A KR920025149 A KR 920025149A KR 960008569 B1 KR960008569 B1 KR 960008569B1
Authority
KR
South Korea
Prior art keywords
oxide film
titanium oxide
film
voltage
treatment
Prior art date
Application number
KR1019920025149A
Other languages
Korean (ko)
Other versions
KR940016623A (en
Inventor
김창하
Original Assignee
한국전기통신공사
이해욱
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기통신공사, 이해욱 filed Critical 한국전기통신공사
Priority to KR1019920025149A priority Critical patent/KR960008569B1/en
Publication of KR940016623A publication Critical patent/KR940016623A/en
Application granted granted Critical
Publication of KR960008569B1 publication Critical patent/KR960008569B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

forming a titanium oxide film by applying 3-5 mA/cm2 and a film forming voltage of 5 V-10 V to the electrolyte of sulfuric solution of 3-5 %; applying voltage at 1/2-1/3 times as much as the film forming voltage to the solution of NaOH during 2-3 hours after dipping the titanium oxide film into the solution of NaOH.

Description

티타늄 산화필름 양극처리 방법Titanium Oxide Film Anodization Method

본 발명은 티타늄 산화필름의 양극처리 방법에 관한것이며, 특히, 양극 산화처리 방법으로 반도체성 티타늄 산화필름을 제조할때. 전기적 성질을 향상시킬 수 있도록 일정시간동안 정전압을 인가하여, 티타늄 산화필름을 안정화시키는 방법에 관한 것이다.The present invention relates to a method of anodizing a titanium oxide film, in particular, when manufacturing a semiconducting titanium oxide film by an anodizing method. The present invention relates to a method of stabilizing a titanium oxide film by applying a constant voltage for a predetermined time to improve electrical properties.

일반적으로 밸브금속(Valve Metal) 계열에 속하는 티타늄을 양극산화처리하게 되면 그 두께가 상당히 두꺼우면 (대략 10-3까지 가능)내부구조가 치밀한 산화 필름을 얻을수 있다. 더우기 상기 산화 필름은 n-형 반도체성질을 띠고 있으므로 레이저 발생 집적 광학계의 수동재료, 전자표시판(Electrochromic Display), 반도체 전극등으로 광범위 하게 사용되고 있다. 또한 양극산화 처리방법으로 티타늄 산화필름을 만들게 되면 음극스퍼터링 방법이나 화학증착법에 비해, 더욱 간편하게 경제적으로 산화필름을 제조할 수 있기 때문에 양극산화처리된 산화필름에 대한 응용범위는 계속하여 증가하고 있다.In general, when anodizing titanium, which belongs to the Valve Metal series, a thick oxide film (up to about 10 -3 ) can be obtained with a dense oxide film. Furthermore, since the oxide film has an n-type semiconductor property, it is widely used as a passive material, an electrochromic display, a semiconductor electrode, or the like of a laser-generated integrated optical system. In addition, when the titanium oxide film is made by the anodizing method, the range of application for the anodized oxide film is continuously increasing because the oxide film can be manufactured more easily and economically than the cathode sputtering method or the chemical vapor deposition method.

그러나 양극산화처리된 티타늄 산화필름은 음극스퍼터링방법 등에 의하여 제조된 필름에 비하여 전기적성질이 떨어지는 결점도 있고 또한 같은 조건에서 양극산화처리된 산화필름을 조차도 전기적 성질이 상당히 차이가 나는 문제점이 있었다.However, the anodized titanium oxide film has a drawback in that its electrical properties are inferior to that of a film produced by a cathode sputtering method, etc. Also, even in an anodized oxide film under the same conditions, the electrical properties are significantly different.

따라서, 본 발명은 상기와 같은 문제점을 해결하기 위하여 양극산화처리방법으로 형성된 티타늄 산화필름을 수산화나트륨 용액 내에서 수시간동안 일정한 전압을 가하는 방식으로 안정화처리하여 티타늄 산화필름의 전기적성질을 향상시키는 방법을 제공함에 그 목적이 있다.Therefore, the present invention is to stabilize the titanium oxide film formed by the anodizing method in order to solve the above problems by applying a constant voltage for several hours in a sodium hydroxide solution to improve the electrical properties of the titanium oxide film. The purpose is to provide.

상기 목적을 달성하기 위해, 본 발명은 3 내지 5중량%의 황산용액에 3 내지 5mA/cm2전류밀도와 5 내지 10V의 필름형성전압으로 티타늄 산화필름을 형성시킨 후, 0.4 내지 0.6중량%(이하 중량%를 %로 표시함) 수산화 나트륨 용액에 필름 형성전압의 1/2내지 2/3에 해당하는 정전압을 2 내지 3시간 동안 상기 산화필름에 인가하는 것을 특징으로 한다.In order to achieve the above object, the present invention after forming a titanium oxide film at a film density of 5 to 10V and a current density of 3 to 5mA / cm 2 in a sulfuric acid solution of 3 to 5% by weight, 0.4 to 0.6% by weight ( It is characterized by applying a constant voltage corresponding to 1/2 to 2/3 of the film formation voltage to the oxide film for 2 to 3 hours to the sodium hydroxide solution.

이하, 본 발명에 의한 티타늄 산화필름형성 방법을 순서적으로 설명하기로 한다.Hereinafter, the titanium oxide film forming method according to the present invention will be described in order.

먼저, 산화필름 형성 단계에 관하여 설명하면, 본 발명에서는 3 내지 5중량%(이하 중량%를 %로 표시함) 황산용액의 전해질에 3 내지 5mA/cm2의 전류밀도와 5 내지 10V영역의 필름형성전압을 인가하여 티타늄 산화필름을 형성한다.First, the oxide film forming step will be described. In the present invention, the film has a current density of 3 to 5 mA / cm 2 and a film of 5 to 10 V in an electrolyte of 3 to 5 wt% (hereinafter, expressed as% by weight) sulfuric acid solution. The formation voltage is applied to form a titanium oxide film.

여기서, 전해질로 사용된 황산용액의 경우 농도가 너무 낮으면 산화필름 형성속도가 너무 느리고 황산용액의 농도가 너무 높게 되면 생성되는 상당량의 산화필름이 도리어 녹아되게 되므로 3 내지 5%가 바람직하며, 산화필름 형성시 가해지는 전류밀도가 3mA/cm2이하에서는 산화필름이 생성되는데 너무 많은 시간이 소요되고 5mA/cm2이상에서는 필름형성이 너무 빨리 이루어져 균일한 필름형성이 어렵다. 이러한 이유로 3 내지 5mA/cm2의 전류밀도가 산화필름 형성에 가장 바람직한 것이 된다.Here, in the case of sulfuric acid solution used as an electrolyte, if the concentration is too low, the oxide film formation rate is too slow, and if the concentration of the sulfuric acid solution is too high, a considerable amount of the oxide film is dissolved, so 3 to 5% is preferable. When the current density applied during film formation is 3mA / cm 2 or less, it takes too much time to produce an oxide film, and when 5mA / cm 2 or more, film formation is too fast, making uniform film formation difficult. For this reason, a current density of 3 to 5 mA / cm 2 is most preferable for forming an oxide film.

여기서 3 내지 5mA/cm2의 전류밀도를 가하여 티타늄 산화필름을 형성하게 되는 경우, 이 정도의 전류밀도를 가하여 안정영역에 도달하게되는 필름형성전압은 5 내지 10V 영역이 가장 적절한 것으로 나타났다.In the case where the titanium oxide film was formed by applying a current density of 3 to 5 mA / cm 2 , the film forming voltage reaching the stable region by applying this current density was found to be 5 to 10 V region.

다음에, 상술한 바와같이 양극으로 산화처리된 티타늄 산화필름을 정전압처리하는 방법에 대하여 설명하기로 한다.Next, a method of constant voltage treatment of the titanium oxide film oxidized with the anode as described above will be described.

정전압 처리용액Constant Voltage Treatment Solution

티타늄 산화필름을 정전압처리 하기 위해서는 적절한 처리용액을 선정하는 것이 무엇보다도 중요하다. 산성용액을 처리용액으로 사용하게 되면 장시간 사용시 산화필름이 녹아나게 되는 단점이 있고, 염기성용액의 경우는 농도가 낮게 되면 필름표면을 통한 화학반응이 어려워 정전압처리 효과가 거의 나타나지 않고 농도가 높게 되면 필름의 표면이 환원되는 경우가 종종 발생한다. 이러한 이유로 티타늄 산화필름의 정전압처리용액으로서 0.4 내지 0.6% 수산화나트륨용액이 가장 적절한 것으로 나타난다.In order to treat the titanium oxide film with a constant voltage, it is important to select an appropriate treatment solution. If an acid solution is used as a treatment solution, there is a disadvantage in that the oxide film melts when used for a long time. In the case of a basic solution, when the concentration is low, the chemical reaction through the surface of the film is difficult, so that the effect of constant voltage treatment is hardly observed and the film is high. Often the surface of is reduced. For this reason, 0.4-0.6% sodium hydroxide solution is most suitable as the constant voltage treatment solution of titanium oxide film.

처리전압과 처리시간 정전압처리시, 가해지는 전압과 처리시간은 본 발명에서 가장 중요한 조성인자 중에 하나인데, 티타늄 산화필름의 정전압처리를 위하여 필름에 가해지는 전압이 형성전압이 1/2보다 낮을때는 필름 피막내에서 이온들이 재배열하는데 필요한 에너지를 제대로 공급받지 못하여 정전압처리효과가 거의 나타나지 않아서 필름의 전기전도도가 거의 증가하지 않으며, 필름에 가해지는 전압이 너무 높으면 필름에 가해지는 에너지가 필름 내에 존재하는 격자결함의 재열에 사용되는 것이 아니라 피막두께를 증가시키는데 사용되어 정전압처리 효과가 제대로 나타나지 않게 된다. 또한 적절한 전압을 가해주더라도 처리시간이 어느이상이 되면, 격자재 배열이 완료되어 필름의 전기전도도가 계속하여 증가하는 것이 아니라 어느 시간 이후에는 일정하게 된다.Treatment Voltage and Treatment Time During constant voltage treatment, the applied voltage and treatment time are one of the most important composition factors in the present invention. When the voltage applied to the film for the constant voltage treatment of the titanium oxide film is lower than half the formation voltage, Since the ions do not receive the energy necessary for rearrangement in the film film, there is almost no constant voltage treatment effect, so the electrical conductivity of the film hardly increases. If the voltage applied to the film is too high, the energy applied to the film is present in the film. It is not used to reheat lattice defects, but to increase the film thickness, so that the effect of constant voltage treatment does not appear properly. In addition, even if a proper voltage is applied, when the processing time is longer than a certain time, the lattice material arrangement is completed and the electrical conductivity of the film is not continuously increased, but becomes constant after a certain time.

이러한 이유로 정전압처리는 필름형성전압의 1/2 내지 2/3에 해당하는 전압에서 2 내지 3시간 처리하는 것이 가장 타당한 것으로 나타났다.For this reason, it was found that the constant voltage treatment is most appropriate for 2 to 3 hours at a voltage corresponding to 1/2 to 2/3 of the film formation voltage.

이하, 실시예를 통하여 정전압처리효과를 상세히 설명하기로 한다.Hereinafter, the constant voltage processing effect will be described in detail with reference to Examples.

하기의 표 1은 티타늄 산화필름을 형성시킨 후에 처리전압과 처리시간와 변화에 따른 산화필름의 전기전도도를 나타낸 것이다. 그 결과를 보면 처리전압과 처리시간을 적절하게 변화시킴에 따라 전기전도도가 향상된 산화필름을 얻을 수 있었다. 즉, 표 1에 나타난 바와 같이 필름형성전압 5V의 1/2 내지 2/3에 해당하는 전압인 3V를 2 내지 3시간 동안 인가할때 전기전도도가 1.6×10-6내지 2.2×10-6으로 가장 향상되었음을 알수있으며, 더이상의 시간이 인가되었을때는 필름이 환원 될수도 있으며, 또한 변색 될수도 있는 문제점이 있다.Table 1 below shows the electrical conductivity of the oxide film according to the treatment voltage and treatment time and change after forming the titanium oxide film. As a result, an oxide film with improved electrical conductivity was obtained as the treatment voltage and treatment time were changed appropriately. That is, as shown in Table 1, the electrical conductivity is 1.6 × 10 −6 to 2.2 × 10 −6 when 3V, which is a voltage corresponding to 1/2 to 2/3 of the film forming voltage 5V, is applied for 2 to 3 hours. It can be seen that the most improved, when the time is no longer applied, the film may be reduced, there is also a problem that can be discolored.

이상에서 살펴본 바와같이, 티타늄 산화필름을 형성한후 0.4 내지 0.6%의 수산화나트륨용액에. 티타늄산화필름형성전압의 1/2 내지 2/3에 해당하는 전압을 2 내지 3시간 동안 인가함으로써 전기적 성질이 뛰어난 산화필름을 제조할수 있다.As described above, after forming the titanium oxide film in sodium hydroxide solution of 0.4 to 0.6%. An oxide film having excellent electrical properties can be manufactured by applying a voltage corresponding to 1/2 to 2/3 of the titanium oxide film forming voltage for 2 to 3 hours.

Claims (1)

티타늄 산화필름을 양극으로 산화처리하는 방법에 있어서, 3 내지 5중량%의 황산 용액의 전해질에 3 내지 5mA/cm2전류밀도와 5 내지 10V의 필름형성전압을 인가하여 티타늄 산화필름을 형성하는 단계와, 상기 티타늄 산화필름을 0.4 내지 0.6중량%의 수산화 나트륨용액에 침지시켜, 상기 티타늄 산화필름형성전압의 1/2 내지 2/3에 해당하는 전압을 2 내지 3시간동안 인가하는 단계를 포함하는 것을 특징으로 하는 티타늄 산화필름 양극처리 방법.In the method of oxidizing the titanium oxide film with an anode, forming a titanium oxide film by applying a film forming voltage of 3 to 5mA / cm 2 current density and 5 to 10V to an electrolyte of 3 to 5% by weight sulfuric acid solution And immersing the titanium oxide film in 0.4 to 0.6% by weight of sodium hydroxide solution to apply a voltage corresponding to 1/2 to 2/3 of the titanium oxide film forming voltage for 2 to 3 hours. Titanium oxide film anodizing method, characterized in that.
KR1019920025149A 1992-12-23 1992-12-23 Anodizing method of titanium-oxide film KR960008569B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019920025149A KR960008569B1 (en) 1992-12-23 1992-12-23 Anodizing method of titanium-oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019920025149A KR960008569B1 (en) 1992-12-23 1992-12-23 Anodizing method of titanium-oxide film

Publications (2)

Publication Number Publication Date
KR940016623A KR940016623A (en) 1994-07-23
KR960008569B1 true KR960008569B1 (en) 1996-06-28

Family

ID=19346327

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019920025149A KR960008569B1 (en) 1992-12-23 1992-12-23 Anodizing method of titanium-oxide film

Country Status (1)

Country Link
KR (1) KR960008569B1 (en)

Also Published As

Publication number Publication date
KR940016623A (en) 1994-07-23

Similar Documents

Publication Publication Date Title
CA1151102A (en) Electrochemical removal of surface copper from aluminum foil
US4481084A (en) Anodization of aluminum electrolyte capacitor foil
US4481083A (en) Process for anodizing aluminum foil
DE2259829C3 (en) Process for the anodic formation of an oxide layer on compound semiconductors containing at least 5% gallium, in particular GaP1GaAs, AlGaP, InGaP and InGaAs in an aqueous electrolyte
US4131520A (en) Two-stage anodization of capacitor electrodes
KR20140001991A (en) Manufacturing method for anode foil of aluminum electrolytic capacitor
US3943041A (en) Method of producing tantalum capacitors
US4253919A (en) Electrodeposition of cadmium-selenium semiconducting photoelectrodes from an acid citrate bath
KR960008569B1 (en) Anodizing method of titanium-oxide film
US2798037A (en) Aluminum oxide films
US4437945A (en) Process for anodizing aluminum foil
KR940011667A (en) Metal foil manufacturing method by electrolysis
US4536260A (en) Thin film cadmium selenide electrodeposited from selenosulphite solution
DE1901645A1 (en) Semiconductor component with aluminum coatings
US3321389A (en) Method of anodically etching aluminum foils at elevated temperatures in an electrolyte including chloride and sulfate ions
Hornkjøl et al. Anodic growth of passive films on zirconium and hafnium
KR860004172A (en) How to color anodized aluminum base metal material
DE2412965A1 (en) METHOD OF ANODIC OXIDATION
US2572079A (en) Radiation-sensitive cells and method of making same
KR890001604B1 (en) Aluminum diaphragm manufacture method of electrolytic capacitor
US3751349A (en) Method for electrolytically forming a coating of titanium-alkaline earth metal compound oxide
US3852171A (en) Process for manufacturing tantalum-oxide semiconductor capacitors
US2715096A (en) Antimony plating
JPH0722078B2 (en) Manufacturing method of solid electrolytic capacitor
JPH02194195A (en) Anodic oxidation of titanium and titanium alloy

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19981231

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee