KR960007802B1 - Process for the preparation of organic isocyanate with dihalotripheny phospholan - Google Patents

Process for the preparation of organic isocyanate with dihalotripheny phospholan Download PDF

Info

Publication number
KR960007802B1
KR960007802B1 KR1019920027507A KR920027507A KR960007802B1 KR 960007802 B1 KR960007802 B1 KR 960007802B1 KR 1019920027507 A KR1019920027507 A KR 1019920027507A KR 920027507 A KR920027507 A KR 920027507A KR 960007802 B1 KR960007802 B1 KR 960007802B1
Authority
KR
South Korea
Prior art keywords
isocyanate
phospholan
reaction
grams
dibromotriphenyl
Prior art date
Application number
KR1019920027507A
Other languages
Korean (ko)
Other versions
KR940014314A (en
Inventor
김삼민
김성주
Original Assignee
금호석유화학 주식회사
김홍기
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금호석유화학 주식회사, 김홍기 filed Critical 금호석유화학 주식회사
Priority to KR1019920027507A priority Critical patent/KR960007802B1/en
Publication of KR940014314A publication Critical patent/KR940014314A/en
Application granted granted Critical
Publication of KR960007802B1 publication Critical patent/KR960007802B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C263/00Preparation of derivatives of isocyanic acid
    • C07C263/02Preparation of derivatives of isocyanic acid by reaction of halides with isocyanic acid or its derivatives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The diphenylmethane diisocyanate(MDI), i.e. the intermediate of polyurethane or isocyanate manufacturing, is prepared by the method which does not use the phosgen gas. The preparation method is that dibromotriphenyl phospholan or dichlorotriphenyl phospholan is reacted with aliphatic or aromatic hydroxamic acid at the presence of tertiary amine at minus 40-150 deg. C. The benzohydroxamic acid 13.6 gram and dibromotriphenyl phospholan 42.2 gram is dissolved in a dichloromethane anhydride solvent, agitated and 20 ml of triethylamine is added slowly. After agitating for 30 Min., the solvent is removed by distillation and 9.3 gram of phenyl isocyanate is obtained.

Description

디할로트리페닐포스포란을 이용한 유기 이소시아네이트 제조방법Process for preparing organic isocyanate using dihalotriphenylphosphorane

본 발명은 폴리우레탄 제조시의 중간체인 디페닐메탄 디이소시아네이트(Diphenylmethane diisocyanate : 이하 MDI라 한다.) 제조 등 생리적으로 활성이 있는 물질이 안기닌(Anguinine)을 합성하는데 사용되는 이소시아네이트(Isocyanate)의 제조방법으로 독성이 강하고 부식성이 강한 포스겐 가스를 사용하지 않고 디브로모트리페닐 포스포란(Dibromotriphenyl Phospholan)또는 디클로로트리페닐 포스포란(Dichlorotriphenyl Phospholan)을 3차 아민의 조재하에서 지방족 또는 방향족 하이드록사믹산과 반응시켜 유기 이소시아네이트를 제조하는 방법에 관한 것이다.The present invention is to prepare isocyanate used to synthesize anguinine, which is a physiologically active substance such as diphenylmethane diisocyanate (hereinafter referred to as MDI), which is an intermediate in the manufacture of polyurethanes. Reaction of Dibromotriphenyl Phospholan or Dichlorotriphenyl Phospholan with aliphatic or aromatic hydroxamic acid in the presence of tertiary amines without the use of highly toxic and corrosive phosgene gases To produce an organic isocyanate.

지금까지 이소시아네이트는 다양한 반응 경로를 거쳐 합성됨이 알려져 있다. 예를 들면 첫째, 할로알킬과 실버시아네이트의 치환 반응(Arch. Pharmacol., 302, 617(1969))으로 부터 이소시아네이트를 합성하는 방법이다. 이 경우 할로알킬로부터는 이소시아네이트를 합성할 수 있지만, 할로아릴부터는 이소시아네이트를 합성할 수 없다는 단점을 가지고 있다.To date, it is known that isocyanates are synthesized via various reaction routes. For example, first, a method of synthesizing isocyanates from substitution reaction of haloalkyl and silvercyanate (Arch. Pharmacol., 302, 617 (1969)). In this case, an isocyanate can be synthesized from haloalkyl, but has the disadvantage that an isocyanate cannot be synthesized from haloaryl.

둘째, 니트로알킬의 카르보닐화에 의한 이소시아네이트의 제조방법(미국특허 제3,461,149호, 제3,673,827호)는 100∼200℃의 높은 온도와 100∼250atm.의 높은 압력을 요구한다.Second, the preparation of isocyanates by carbonylation of nitroalkyl (US Pat. Nos. 3,461,149, 3,673,827) requires high temperatures of 100-200 ° C. and high pressures of 100-250 atm.

셋째, 아민의 포스겐 가스에 의한 이소시아네이트의 고전적인 제조방법(영국특허 제1,086,782호)은 부식성이 강하고 독성이 클 뿐만 아니라 높은 반응 온도를 필요로 한다.Third, the classical process for preparing isocyanates by phosgene gas of amines (British patent 1,086,782) is not only highly corrosive and toxic but also requires high reaction temperatures.

넷째, 커티우스 방법(Curtius Rearrangement)에 의한 이소시아네이트의 제조방법(J. Org. Chem., 38, 2982(1973)은 카르보닐 클로라이드(Carbonyl Choloride)와 아지드(azide)의 반응으로부터 만들어진 카르보닐 아지드를 가열하거나 빛을 가하여 이소시아네이트를 제조하는 방법으로 유기 또는 무기 아지드의 가열에 따른 폭발의 위험성을 가지고 있다.Fourth, the preparation method of isocyanate by Curtius Rearrangement (J. Org. Chem., 38, 2982 (1973)) is a carbonyl alumina made from the reaction of carbonyl chloride and azide. The method of preparing isocyanate by heating or applying light to the jide has the risk of explosion due to the heating of organic or inorganic azide.

다섯째, 카르바믹산(Carbamic acid)의 에스테르의 열분해에 의한 이소시아네이트의 제조방법(미국특허 제3,465,024호)은 100∼500℃의 높은 온도를 요구하고 수득률이 낮다는 단점을 가지고 있다.Fifth, the method for preparing isocyanate by thermal decomposition of ester of carbamic acid (US Pat. No. 3,465,024) has a disadvantage of requiring a high temperature of 100 to 500 ° C. and low yield.

여섯째, 로센 전위 반응(Rossen rearrangement)에 의한 이소시아네이트의 제조 방법이 있다. 이 방법은 반응중 거의가 이소시아네이트 단계에서 멈추지 않고 아민으로 쉽게 바뀐다. 이러한 이유 때문에 많은 이소시아네이트가 로센 전위 반응에 의헤 제조되지 못하거나 제조된다고 할지라도 상당히 낮은 수득률을 나타낸다. 이러한 로센 전위 반응에 의한 이소시아네이트 제조상의 문제점을 개선하기 위한 방법들이 강구되어 왔다. 예를 들면 첫째, 하이드록사믹산(Hydroxamic acid)과 금속염에 포스겐이나 티오닐클로라이드(thionylchloride)를 첨가하는 방법(미국특허 제2,394,597호)이 있다. 그러나 이 방법 역시 낮은 수득률을 나타내며 부식성과 유독성 때문에 실용적인 기술이라고 보기 어렵다. 둘셉, 하이드록사믹산과 디케텐(diketene)에 의한 반응(J. Org. Chem., 26, 782(1961)은 생성된 아세토아세테이트를 열분해에 의해 이소시아네티으트를 제조하는 방법으로 수득률이 좋고 부식성이 없지만 약 400℃라는 높은 반은 온도가 요구된다.Sixth, there is a method for producing isocyanate by Rosen rearrangement. This method easily converts into amines, with little of the reaction stopping at the isocyanate stage. For this reason, many isocyanates show considerably lower yields even if they are not or are produced by the Rosene potential reaction. Methods have been devised to improve the problem of isocyanate production by such Rosene potential reaction. For example, first, there is a method of adding phosgene or thionylchloride to hydroxamic acid and a metal salt (US Pat. No. 2,394,597). However, this method also shows low yields and is not a practical technique because of its corrosiveness and toxicity. Reaction by dulceb, hydroxyxamic acid and diketene (J. Org. Chem., 26, 782 (1961)) is a high yield and corrosive method for producing isocyanate by pyrolysis of the resulting acetoacetate. There is no, but the high half of about 400 ℃ temperature is required.

본 발명은 3차 아민의 존재하에서 디브로모트리페닐 포스포란 또는 디클로로트리페닐 포스포란과 하이드록사믹산을 -40℃∼150℃의 비교적 낮은 온도에서 반응시켜 높은 수득률의 지방족 또는 방향족 이소시아네이트를 제조할 수 있음을 특징으로 하는 것이다.The present invention provides a high yield of aliphatic or aromatic isocyanates by reacting dibromotriphenyl phosphoran or dichlorotriphenyl phosphoran and hydroxamic acid in the presence of tertiary amines at relatively low temperatures of -40 ° C to 150 ° C. Can be characterized.

본 발명의 반응식(1)및 반응 메카니즘(2)은 나타낸 바와 같으며 니트렌(Nitrene)중간체를 거쳐 전위 반응을 통해 이소시아네이트가 생성된다.Scheme (1) and reaction mechanism (2) of the present invention are as shown and isocyanate is produced through a potential reaction via a nitrene intermediate.

구체적으로 설명하면, 하이드록사믹산과 디브로모트리페닐 포스포란 또는 디클로로트리페닐 포스포란를 무수 반응 용매에 녹이고 트리에틸아민을 가하고 반응을 시킨후 용매를 제거하고 감압 증류하여 이소시아네이트를 얻는다. 이러한 이소시아네이트는 반응이 크기때문에 아민과 반응시켜 안정한 형태의 우레아(urea)물질로 하여 분석하였다.Specifically, hydroxamic acid and dibromotriphenyl phosphoran or dichlorotriphenyl phosphoran are dissolved in anhydrous reaction solvent, triethylamine is added, the reaction is carried out, the solvent is removed and distillation under reduced pressure is performed to obtain isocyanate. This isocyanate was analyzed as a stable urea substance by reacting with an amine because the reaction is large.

본 반응에 사용되는 3차 아민은 어느것이라도 사용 가능하다. 트리에틸 아민, 피리딘(Pyridine), 퀴놀린(quinoline) 및 퀴녹살린(Quinoxaline), 헥사 메틸렌 테트라민(Hexamethylenetetramine), 1, 4-디아자바이시클로[2. 2. 2.]옥탄(1. 4]Diazabicyclo [2. 2. 2] Octane), 1, 5-디아자바이시클로[4. 3. 0]논-5-엔(1, 5-Diazabicyclo[4. 3. 0]non-5-ene), 1, 8-디아자바이시클로[5. 4. 0]운덱-7-엔(1, 8-Diazabicyclo[5. 4. 0]undec-7-ene)등이 특히 효과적이다. 본 반응은 벌크(bulk) 또는 용액 반응중 어느쪽도 가능하나, 용액 상태로 반응할 경우 용매로서는 프로틱 용매(Protic Solvent)를 제외한 모든 용매가 사용 가능하며 디클로로메탄(dichloromethane), 클로로포름(Chloroform), 아세토니트릴(acetonitrile), 디에틸에테르 등이 유용하다. 이때 반응온도는 -40℃에서 150℃사이의 온도 범위에서 반응한, 특히 0℃에서 100℃사이의 온도 범위가 바람직하다.Any tertiary amine used in this reaction can be used. Triethyl amine, pyridine, quinoline and quinoxaline, hexamethylenetetramine, 1,4-diazabicyclo [2. 2. 2.] octane (1. 4) Diazabicyclo [2. 2. 2] Octane), 1, 5- diazabicyclo [4. 3. 0] non-5-ene (1, 5-Diazabicyclo [3. 0] non-5-ene), 1,8-diazabicyclo [5. 4. 0] undec-7-ene (1,8-Diazabicyclo [5.4.0] undec-7-ene) is particularly effective. This reaction can be either bulk or solution reaction, but any solvent except protic solvent can be used as a solvent. Dichloromethane, chloroform , Acetonitrile, diethyl ether and the like are useful. At this time, the reaction temperature is preferably reacted in the temperature range of -40 ℃ to 150 ℃, especially the temperature range of 0 ℃ to 100 ℃.

본 발명을 실시예로서 상세히 설명하면 다음과 같다. 그러나 본 발명이 이 실시예에 국한되는 것은 아니다.The present invention will be described in detail as examples. However, the present invention is not limited to this embodiment.

실시예 1Example 1

벤조하이드록사믹산(benzohydroxamic acid) 13.6그램과 디브로모트리페닐 포스포란 42.2그램을 200ml의 무수 디클로로메탄이 들어 있는 500밀리리터의 3구 둥근 플라스크에 넣고 교반하며 20ml의 트리에틸아민을 천천히 가하였다. 30분간 교반한 후 용매를 증류한 후 감압 증류하여 얻은 페닐이소시아네이트(Phenylisocyanate)를 9.3그램이 아닐린과 반응시켜 1, 3-디페닐우레아(1, 3-Diphenylurea) 16.4그램을 얻었다. 반응 수득율은 77.4%이었다.13.6 grams of benzohydroxamic acid and 42.2 grams of dibromotriphenyl phosphoran were added to a 500 milliliter three-necked flask containing 200 ml of anhydrous dichloromethane, and 20 ml of triethylamine was slowly added. After stirring for 30 minutes, the solvent was distilled off, and distillation under reduced pressure was carried out to react phenylisocyanate (Phenylisocyanate) with 9.3 grams of aniline to obtain 16.4 grams of 1,3-diphenylurea. The yield of the reaction was 77.4%.

실시예 2Example 2

벤조하이드록사믹산 13.6그램과 디브로모트리페닐 포스포란 32.3그램을 200ml의 무수 디클로로메탄이 들어 있는 500밀리리터의 3구 둥근 플라스크에 넣고 교반하면서 20ml의 트리에틸아민을 천천히 가하였다. 30분간 교반한 후 용매를 증류한 후 감압 증류하여 얻은 페닐이소시아네이트를 9.3그램이 아닐린과 반응시켜 1, 3-디페닐우레아 16.4그램을 얻었다. 반응 수득율은 75.5%이었다.13.6 grams of benzohydroxamic acid and 32.3 grams of dibromotriphenyl phosphoran were placed in a 500 milliliter three-necked flask containing 200 ml of anhydrous dichloromethane and 20 ml of triethylamine was added slowly with stirring. After stirring for 30 minutes, the solvent was distilled off, and the phenyl isocyanate obtained by distillation under reduced pressure was reacted with 9.3 g of aniline to obtain 16.4 g of 1,3-diphenylurea. The yield of the reaction was 75.5%.

실시예 3Example 3

아세토하이드록사믹산(acetohydroxamic acid) 7.5그램과 디브로모트리페닐 포스포란 42.2그램을 200ml의 무수 디클로로메탄이 들어 있는 500밀리리터의 3구 둥근 플라스크에 넣고 교반하면서 20ml의 트리에틸아민을 천천히 가하였다. 30분간 교반한 후 감압 증류하여 아세틸이소시아네이트(acetylisocyanate)를 9.3그램이 아닐린과 반응시켜 1-메틸-3-페닐우레아 (1-methyl-3-phenylurea) 11.7그램을 얻었다. 반응 수득율은 78.0%이었다.7.5 grams of acetohydroxamic acid and 42.2 grams of dibromotriphenyl phospholane were placed in a 500 milliliter three-necked flask containing 200 ml of anhydrous dichloromethane and 20 ml of triethylamine was added slowly with stirring. After stirring for 30 minutes, distillation under reduced pressure was carried out to react acetylisocyanate with 9.3 grams of aniline to obtain 11.7 grams of 1-methyl-3-phenylurea (1-methyl-3-phenylurea). The yield of the reaction was 78.0%.

실시예 4Example 4

아세토하이드록사믹산 7.5그램과 디브로모트리페닐 포스포란 32.3그램을 200ml의 무수 디클로로메탄이 들어 있는 500밀리리터의 3구 둥근 플라스크에 넣고 교반하면서 20ml의 트리에틸아민을 천천히 가하였다. 30분간 교반한 후 감압 증류하여 얻은 아세틸이소시아네이트를 9.3그램의 아닐린과 반응시켜 1-메틸-3-페닐우레아 12.0그램을 얻었다. 반응 수득율은 80.0%이었다.7.5 grams of acetohydroxamic acid and 32.3 grams of dibromotriphenyl phosphoran were added to a 500 ml three-necked round flask containing 200 ml of anhydrous dichloromethane and 20 ml of triethylamine was slowly added with stirring. After stirring for 30 minutes, acetyl isocyanate obtained by distillation under reduced pressure was reacted with 9.3 grams of aniline to obtain 12.0 grams of 1-methyl-3-phenylurea. The reaction yield was 80.0%.

실시예 5Example 5

아세토하이드록사믹산 7.5그램과 디브로모트리페닐 포스포란 32.3그램을 200ml의 무수 디클로로메탄이 들어 있는 500밀리리터의 3구 둥근 플라스크에 넣고 교반하면서 20ml의 트리에틸아민을 천천히 가하였다. 30분간 교반한 후 감압 증류하여 얻은 아세틸이소시아네이트를 5.3그램의 n-프로필아민과 반응시켜 1-메틸-3-페닐우레아 9.2그램을 얻었다. 반응 수득율은 79.3%이었다.7.5 grams of acetohydroxamic acid and 32.3 grams of dibromotriphenyl phosphoran were added to a 500 ml three-necked round flask containing 200 ml of anhydrous dichloromethane and 20 ml of triethylamine was slowly added with stirring. After stirring for 30 minutes, acetyl isocyanate obtained by distillation under reduced pressure was reacted with 5.3 grams of n-propylamine to obtain 9.2 grams of 1-methyl-3-phenylurea. The yield of the reaction was 79.3%.

실시예 6Example 6

벤조하이드록사믹산 13.6그램과 디브로모트리페닐 포스포란 32.3그램을 200ml의 무수 디클로로메탄이 들어 있는 500밀리리터의 3구 둥근 플라스크에 넣고 교반하면서 20ml의 트리에틸아민을 천천히 가하였다. 30분간 교반한 후 용매를 증류한 후 감압 증류하여 얻은 페닐이소시아네이트를 5.3그램의 n-프로필아민과 반응시켜 1-페닐3-프로필우레아(1-phenyl-3-propylurea) 13.8그램을 얻었다. 반응 수득율은 77.5%이었다.13.6 grams of benzohydroxamic acid and 32.3 grams of dibromotriphenyl phosphoran were placed in a 500 milliliter three-necked flask containing 200 ml of anhydrous dichloromethane and 20 ml of triethylamine was added slowly with stirring. After stirring for 30 minutes, the solvent was distilled off, and the phenyl isocyanate obtained by distillation under reduced pressure was reacted with 5.3 grams of n-propylamine to obtain 13.8 grams of 1-phenyl3-propylurea (1-phenyl-3-propylurea). The yield of the reaction was 77.5%.

Claims (3)

유기 이소시아네이트를 제조하는 방법에 있어서, 할로페닐포스포란과 하이드록사믹산을 3차 아민의 존재하에서 -400∼150℃로 반응시키는 유기 이소시아네이트의 제조방법.A method for producing organic isocyanate, wherein halophenylphosphoran and hydroxamic acid are reacted at -400 to 150 ° C in the presence of a tertiary amine. 제1항에 있어서, 할로페닐포스포란이 디브로모트리페닐포스포란 또는 디로로트리페닐포스포란인 유기 이소시아네이트의 제조방법.The method for producing an organic isocyanate according to claim 1, wherein the halophenylphosphorane is dibromotriphenylphosphoran or dirorotriphenylphosphoran. 제1항에 있어서, 3차 아민이 트리에틸아민, 피리딘, 퀴놀린 및 퀴녹살린, 헥사메틸렌테트라민 1, 4-디아자바이시클로[2. 2. 2] 옥탄, 1, 5-디아자비이시클로[4. 3. 0]논-5-엔, 1, 8-디아자바이시클로[5. 4. 0]운덱-7-엔인 유기 이소시아네이트의 제조방법.The compound of claim 1, wherein the tertiary amine is triethylamine, pyridine, quinoline and quinoxaline, hexamethylenetetramine 1, 4-diazabicyclo [2. 2. 2] octane, 1, 5-diazabicyclo [4. 3. 0] non-5-ene, 1,8-diazabicyclo [5. 4. A process for the preparation of organic isocyanates which are undec-7-ene.
KR1019920027507A 1992-12-31 1992-12-31 Process for the preparation of organic isocyanate with dihalotripheny phospholan KR960007802B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019920027507A KR960007802B1 (en) 1992-12-31 1992-12-31 Process for the preparation of organic isocyanate with dihalotripheny phospholan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019920027507A KR960007802B1 (en) 1992-12-31 1992-12-31 Process for the preparation of organic isocyanate with dihalotripheny phospholan

Publications (2)

Publication Number Publication Date
KR940014314A KR940014314A (en) 1994-07-18
KR960007802B1 true KR960007802B1 (en) 1996-06-12

Family

ID=19348704

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019920027507A KR960007802B1 (en) 1992-12-31 1992-12-31 Process for the preparation of organic isocyanate with dihalotripheny phospholan

Country Status (1)

Country Link
KR (1) KR960007802B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10526438B2 (en) 2016-12-29 2020-01-07 Great Eastern Resins Industrial Co., Ltd. Multi-functional carbamate having soft-segments, polyisocyanate obtained via subsequent non-phosgene synthesis methods, urethane prepolymer and elastomeric urethane having soft-segments derived therefrom, and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10526438B2 (en) 2016-12-29 2020-01-07 Great Eastern Resins Industrial Co., Ltd. Multi-functional carbamate having soft-segments, polyisocyanate obtained via subsequent non-phosgene synthesis methods, urethane prepolymer and elastomeric urethane having soft-segments derived therefrom, and preparation method thereof

Also Published As

Publication number Publication date
KR940014314A (en) 1994-07-18

Similar Documents

Publication Publication Date Title
Chong et al. Multilevel selectivity in the mild and high-yielding chlorosilane-induced cleavage of carbamates to isocyanates
KR960007802B1 (en) Process for the preparation of organic isocyanate with dihalotripheny phospholan
Cooper et al. A simple one-pot procedure for preparing symmetrical diarylureas from carbon dioxide and aromatic amines
KR970004412B1 (en) Process for the preparation of organic isocyanate using 2-halopyridium and methylthiocarbamate
US4163019A (en) Production of 4,4'-alkylidene diphenyl diisocyanate
US3699163A (en) N-substituted carbamoyl chlorides and method of preparation
KR970004411B1 (en) Process for the preparation of organic isocyanate using triphenylphosphonium bromide
KR0124948B1 (en) Process for organo isocyanate using 2-chlorobenzoxazolium salt
US3694428A (en) Streptozotocin and derivatives
US4153624A (en) Preparation of organic isocyanates
US4668806A (en) Process for preparing methylcarbamate insecticides
US4490551A (en) Process for the production of urethanes
US9567308B1 (en) Process for the synthesis of chlorzoxazone
Benfodda et al. New synthesis of polyfluoroalkanesulfonylureas
US5162575A (en) Preparation of isocyanates using a silver salt promoted rearrangement
RU2711231C1 (en) Method of producing a plant growth regulator of n-(isopropoxycarbonyl)-o-(4-chlorophenylcarbamoyl)ethanolamine
JPS6391355A (en) Diisocyanate, manufacture and use
NOGUCHI et al. Convenient One-pot Syntheses of Sulfinates, Sulfinamides, and Thiosulfinates by Sulfinylation with p-Toluenesulfinic Acid and Activating Reagents
US4267353A (en) Preparation of aromatic urethanes
Kholikulov et al. SYNTHESES AND TECHNOLOGY OF 2-BROMO-SUBSTITUTED BIS-CARBAMATE DERIVATIVES, PROPERTIES AND THEIR APPLICATION
KR930009041B1 (en) Process for the preparation of 3,3,4-trichloro carbanylride
RU2641109C1 (en) Method for producing 1-phenyl-3-(4h-1,2,4-triazol-4-yl) urea
US20110178316A1 (en) Novel fullerene cyclopropanation reaction
Lemport et al. First examples of 1, 1-diazido-2-sulfonylalkenes
SU285638A1 (en)

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20020426

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee