KR960007398B1 - Preparation of zno thin film by spraying vapor - Google Patents

Preparation of zno thin film by spraying vapor Download PDF

Info

Publication number
KR960007398B1
KR960007398B1 KR1019930018348A KR930018348A KR960007398B1 KR 960007398 B1 KR960007398 B1 KR 960007398B1 KR 1019930018348 A KR1019930018348 A KR 1019930018348A KR 930018348 A KR930018348 A KR 930018348A KR 960007398 B1 KR960007398 B1 KR 960007398B1
Authority
KR
South Korea
Prior art keywords
thin film
zinc
zno thin
vapor
substrate
Prior art date
Application number
KR1019930018348A
Other languages
Korean (ko)
Other versions
KR950008731A (en
Inventor
주승기
이환수
Original Assignee
서울대학교공과대학교육연구재단
이기준
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교공과대학교육연구재단, 이기준 filed Critical 서울대학교공과대학교육연구재단
Priority to KR1019930018348A priority Critical patent/KR960007398B1/en
Publication of KR950008731A publication Critical patent/KR950008731A/en
Application granted granted Critical
Publication of KR960007398B1 publication Critical patent/KR960007398B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth

Abstract

The method for zinc oxide thin film comprises of (A) maintaining the inert atmosphere of a chamber using an air curtain, (B) maintaining the temperature of a substrate to 200-400 deg.C, (C) transporting zinc vapor by inert gas(N2 gas) as carrier gas from a zinc bath at 800-900 deg.C to the chamber, and (D) spraying the zinc vapor through a nozzle. This method is useful for enlarging the deposited region and controlling the structural, electrical and optical properties of the ZnO thin film by changing the temperature of the substrate without any impurities.

Description

상압증기 분사방식에 의한 산화아연 박막형성방법Zinc oxide thin film formation method by atmospheric steam injection method

제 1 도는 ZnO박막형성용 증착장치의 개략도.1 is a schematic view of a deposition apparatus for forming a ZnO thin film.

제 2 도는 기판온도에 따른 C축(002)의 우선배양 정도를 도시한 그래프.2 is a graph showing the degree of preferential culture of the C-axis 002 according to the substrate temperature.

제 3 도는 기판온도에 따른 광투과율의 변화를 도시한 그래프.3 is a graph showing the change of light transmittance with substrate temperature.

제 4 도는 기판온도와 기판의 전기적성질 중 비정항과의 관계를 도시한 그래프.4 is a graph showing a relationship between a substrate temperature and an amorphous term in electrical properties of the substrate.

제 5 도는 기판온도에 따른 결정립의 변화를 보여주는 사진, 그리고5 is a photograph showing the change of grain according to the substrate temperature, and

제 6 도는 표면 거칠기를 관찰하기 위한 기판온도에 따른 박막표시의 SEM사진이다.6 is an SEM photograph of a thin film display according to a substrate temperature for observing surface roughness.

[발명의 분야][Field of Invention]

ZnO박막은 광전속자의 투면전도막 또는 압전소자로 사용되어 진다. 그외에도 가스감지소자나 박막형 가변저항으로 사용되어 진다. 그러나 이들 압전소자에 사용하기 위해서는 압전성이 우수하여야하기 때문에 C축으로 우선 배양된 ZnO박막이 필요하다(A.R. HUSTON Phys. Rev. Lett. 4(1960)505) 그리고 이를 투명전도막으로 사용하기 위해서는 높은 투과율과 낮은 전기저항이 필수적이다.The ZnO thin film is used as a transmissive conductive film or piezoelectric element of a photoelectron. In addition, it is used as a gas sensing element or a thin film type variable resistor. However, in order to use these piezoelectric elements, ZnO thin films first cultured on the C-axis are required because of their excellent piezoelectricity (AR HUSTON Phys. Rev. Lett. 4 (1960) 505), and in order to use them as transparent conductive films, Transmittance and low electrical resistance are essential.

본 발명은 광전소자의 투명전도막 및 압전소자로 사용가능한 증기 분사방식에 의한 ZnO투명박막 형성방법에 관한 것이다.The present invention relates to a transparent conductive film of a photoelectric device and a ZnO transparent thin film formation method by a vapor injection method that can be used as a piezoelectric device.

[발명의 배경][Background of invention]

태양전지나 평판표시소자등과 같은 광전소자의 개발동향은 발전단가의 절감과 열화억제에 의한 신뢰성 개선 그리고 효율증대로 압축될 수 있다. 이런 가능성을 실현하는데는 원자재로서 투명전도성 기판의 개발이 선행되어야함은 물론 더욱 진보된 상태의 투명전도성 매질의 개발이 절실히 요구된다. 현재 투명전도막으로는 ITP(iNdium Tin Oxide)박막이 상용화되고 있으나 고가의 인듐원때문에 생산단가가 높고 플라즈마 처리시 투명성이 나빠진다는 단점이 있어 이 때문에 ZnO박막을 중심으로한 텍스쳐(Texture)형 투명전도막에 대한 연구가 진행되고 있다. 이에 새롭게 고안된 분사증기 산화방식을 이용함으로써 생산비용이 절감, 대면 적화등을 용이하게 이룰 수 있어 소자의 특성을 향상시키고 안전성을 증대시킬 수 있다.Development trends of photovoltaic devices such as solar cells and flat panel display devices can be compressed to reduce power generation costs, improve reliability by suppressing degradation, and increase efficiency. In order to realize this possibility, development of a transparent conductive substrate as a raw material must be preceded, and development of a transparent conductive medium in a more advanced state is urgently required. Currently, ITP (iNdium Tin Oxide) thin film is commercially available as a transparent conductive film. However, due to the expensive indium source, the production cost is high and the transparency becomes poor during plasma treatment. Research on conductive films is underway. By using the newly designed injection steam oxidation method, the production cost can be easily reduced and the surface area can be easily achieved, thereby improving the characteristics of the device and increasing safety.

일반적으로 ZnO투명전도막을 형성하는 방법으로는 화학증기증착(CVD), 스퍼터링의 방법을 사용한다. 스퍼터링의 경우 Zn나 ZnO을 타게트로 Ar+O2혹은 O2분위기에서 증착하는 rf 스퍼터링이 주류를 이루고 있다. 이 방법은 저온공정이기 때문에 낮은 용융점을 갖는 기판도 사용할 수 있다는 장점이 있지만 화학증기증착에 비해 증착속도가 느린 단점이 있다. 화학증기증착은 화학반응을 통하여 막을 형성하는 방법으로 금속유기물 또는 비유기물을 아연원으로 사용하여 이를 열분해 시킴으로써 증착하는 것이다.Generally, as a method of forming a ZnO transparent conductive film, chemical vapor deposition (CVD) and sputtering are used. In the case of sputtering, rf sputtering, which deposits Zn or ZnO in an Ar + O 2 or O 2 atmosphere, is the mainstream. This method has the advantage of being able to use a substrate having a low melting point because of the low temperature process, but has a disadvantage that the deposition rate is slow compared to chemical vapor deposition. Chemical vapor deposition is a method of forming a film through chemical reaction and depositing it by pyrolyzing it using metal or inorganic matter as a zinc source.

또 ZnO박막을 태양전자나 평판표시소자에 쓰이는 투명전도막으로 응용하기 위해서는 효율을 높인다는 측면에서 증착면적을 크게할 필요가 있는데 스퍼터링의 경우 증착을 위해 높은 진공이 필요하다.In addition, in order to apply ZnO thin film as a transparent conductive film used in solar electronics or flat panel display devices, it is necessary to increase the deposition area in terms of increasing the efficiency.

그래서 화학증기증착의 방법이 시도되고 있으나 아연원으로 고가의 금속유기물을 사용해야 되고 증착된 박막내에 잔류 불순물의 농도가 높으며 증착시 기판온도가 높기때문에 기판에 대한 제한이 많다는 단점이 있다.Therefore, the method of chemical vapor deposition has been attempted, but there are disadvantages in that there are many limitations on the substrate because an expensive metal organic material must be used as a zinc source, and the concentration of residual impurities in the deposited thin film is high and the substrate temperature is high during deposition.

[발명의 요약][Summary of invention]

본 발명의 목적은 태양전지, 평판표시소자 및 압전소자로써 사용가능한 ZnO투명박막을 증기분사방식으로 형성하는 방법을 제공하는 것이다.An object of the present invention is to provide a method for forming a ZnO transparent thin film which can be used as a solar cell, a flat panel display device and a piezoelectric device by a vapor spray method.

본 발명에서 아연은 증기의 형태로 반송기체를 이용하여 챔버내에 분사되고 노즐을 통해 수증기를 분무시킴으로써 ZnO박막이 형성된다.In the present invention, zinc is injected into the chamber using a carrier gas in the form of steam, and a ZnO thin film is formed by spraying water vapor through a nozzle.

이때 ZnO박막특성은 기판온도를 변화시킴으로 변화시킬 수 있다.At this time, the ZnO thin film characteristics can be changed by changing the substrate temperature.

[바람직한 실시예의 설명][Description of Preferred Embodiment]

챔버내를 비활성 분위기로 유지한 후 아연조의 온도를 아연의 끓는점보다 다소 낮은 온도인 800 내지 900℃로 유지한 후, 아연증기의 냉각방지를 위해 반송기체로써 N2를 충분히 예열시킨 후 아연내로 불어넣었다. 이때 아연조와 기판과의 거리는 대략 2.5cm로 유지되었다. 이 아연증기에 노즐을 통해 수증기를 분무시켜 ZnO박막을 형성하였다. 이때 수증기 공급원으로 버블러를 55 내지 90℃로 유지하였으며 수증기 반송기체로써 500cc/분의 N2를 사용하였다. ZnO박막의 증착은 화학적인 증착으로 증착시 기판의 온도를 변화함에 따라 박막의 특징을 조절할 수 있으므로 이때 기판의 온도를 200-400℃ 범위로 변화시켰다.After maintaining the inside of the chamber in an inert atmosphere, the temperature of the zinc bath is maintained at 800 to 900 ° C, which is somewhat lower than the boiling point of zinc, and then sufficiently preheated with N 2 as a carrier gas to prevent cooling of the zinc vapor, followed by blowing into the zinc. Put in. At this time, the distance between the zinc bath and the substrate was maintained at approximately 2.5cm. This zinc vapor was sprayed with water vapor through a nozzle to form a ZnO thin film. At this time, the bubbler was maintained at 55 to 90 ° C. as a steam source, and N 2 at 500 cc / min was used as the vapor carrier gas. The deposition of the ZnO thin film is chemical vapor deposition, so the characteristics of the thin film can be controlled by changing the temperature of the substrate during deposition.

이하에 증착된 ZnO박막의 구조적, 전기적, 광학적 특성을 도면을 참조하여 설명한다.The structural, electrical, and optical properties of the ZnO thin film deposited below will be described with reference to the drawings.

제 2 도에서 볼 수 있는 것처럼 기판온도 280℃ 및 320℃일때에는 뚜렷한 C축(002) 우선 방위를 나타냄을 알 수 있다. 따라서, 본 발명의 ZnO박막을 압전성이 우수하여 압전소자로써 사용가능하다.As can be seen in FIG. 2, it can be seen that when the substrate temperatures are 280 ° C and 320 ° C, a clear C-axis 002 preferred orientation is shown. Therefore, the ZnO thin film of the present invention is excellent in piezoelectricity and can be used as a piezoelectric element.

제 3 도에서 300~800nm의 파장에서 투과율을 나타낸다. 기판온도가 280℃ 및 320℃일때에는 가시광선 영역에서 85% 이상의 투과율을 나타내었다.In FIG. 3, the transmittance is shown at a wavelength of 300 to 800 nm. When the substrate temperature was 280 ° C and 320 ° C, the transmittance was over 85% in the visible region.

제 4 도는 기판온도에 따라 전기적 성질이 어떻게 변화하는지를 나타내는 것으로 기판온도가 증가할수록 전기적 성질이 나빠짐을 알 수 있다.4 shows how the electrical properties change with the substrate temperature. As the substrate temperature increases, the electrical properties deteriorate.

제 5 도는 기판온도가 증가함에 따라 점차 작은 결정립들(1000-1500Å) 이 불규칙한 모양을 갖는 대한 경정립들로 변화됨을 나타낸다.5 shows that as the substrate temperature increases, the smaller grains (1000-1500Å) change into hard grains with irregular shapes.

제 6 도는 기판온도가 280℃일때의 390℃일때의 박막의 표면을 SEM으로 관찰한 것으로서 기판온도가 커짐에 따라 표면이 거칠어지는 것을 알 수 있다. 이 때문에 기판온도가 높은 경우에는 투과율이 급격히 감소하는 것이다.6 illustrates the SEM observation of the surface of the thin film at 390 ° C. when the substrate temperature is 280 ° C. and shows that the surface becomes rough as the substrate temperature increases. For this reason, when the substrate temperature is high, the transmittance decreases rapidly.

[발명의 효과][Effects of the Invention]

이렇게 형성된 ZnO박막은 다음과 같은 장점이 있다.The ZnO thin film thus formed has the following advantages.

(1) 금속유기물 또는 비유기물을 아연원으로 사용하지 않으므로 잔류불순물에 의한 오염이 없다.(1) Since no metal or inorganic matter is used as a zinc source, there is no contamination by residual impurities.

(2) 300℃에서 증착되므로 기판재질에 대한 제한이 적다.(2) Since it is deposited at 300 ° C, there is little restriction on substrate material.

(3) 대기압하에서 증착하기 때문에 대면적화가 용이하다.(3) Since it is deposited under atmospheric pressure, large area is easy.

(4) 증착장비와 증착과정이 간단하여 대량생산에 적합하다(제 1 도 참조).(4) The deposition equipment and the deposition process are simple and suitable for mass production (see Fig. 1).

(5) 기판온도를 변화시켜 증착시킨 ZnO박막의 구조적, 전기적, 광학적 특성을 조절가능하다,(5) The structural, electrical and optical properties of ZnO thin films deposited by varying the substrate temperature can be controlled.

Claims (3)

챔버를 대기압의 비활성 분위기로 유지하고, 기판의 온도를 200 내지 400℃로 유지하고, 아연의 끓는 점보다 낮은 온도로서 800 내지 900℃로 유지된 아연조로부터 챔버내로 아연증기를 반송하고, 그리고 수증기를 노즐을 통해 아연증기에 분사하는 것을 특징으로 하는 ZnO박막형성방법.The chamber is kept in an inert atmosphere at atmospheric pressure, the temperature of the substrate is maintained at 200 to 400 ° C., zinc vapor is returned into the chamber from a zinc bath kept at 800 to 900 ° C. as a temperature lower than the boiling point of zinc, and steam ZnO thin film formation method, characterized in that for spraying zinc vapor through a nozzle. 제 1 항에 있어서, 비활성 분위기를 유지하기 위해 에어커튼을 이용하는 것을 특징으로 하는 ZnO박막형성방법.The ZnO thin film formation method according to claim 1, wherein an air curtain is used to maintain an inert atmosphere. 제 1 항에 있어서, 아연증기 및 수증기의 반송을 위해 반송가스로서 ZnO와 반응하지 않는 N2와 같은 불활성가스를 사용하며, 아연증기용 반송가스로서의 상기 N2와 같은 불활성가스는 아연증기의 냉각방지를 위해 예열되는 것을 특징으로 하는 ZnO박막형성방법.The method of claim 1, wherein an inert gas such as N 2 that does not react with ZnO is used as a carrier gas for conveying zinc vapor and water vapor, and the inert gas such as N 2 as a carrier gas for zinc vapor is cooled by zinc vapor. ZnO thin film formation method characterized in that the preheating for prevention.
KR1019930018348A 1993-09-13 1993-09-13 Preparation of zno thin film by spraying vapor KR960007398B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019930018348A KR960007398B1 (en) 1993-09-13 1993-09-13 Preparation of zno thin film by spraying vapor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019930018348A KR960007398B1 (en) 1993-09-13 1993-09-13 Preparation of zno thin film by spraying vapor

Publications (2)

Publication Number Publication Date
KR950008731A KR950008731A (en) 1995-04-19
KR960007398B1 true KR960007398B1 (en) 1996-05-31

Family

ID=19363415

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019930018348A KR960007398B1 (en) 1993-09-13 1993-09-13 Preparation of zno thin film by spraying vapor

Country Status (1)

Country Link
KR (1) KR960007398B1 (en)

Also Published As

Publication number Publication date
KR950008731A (en) 1995-04-19

Similar Documents

Publication Publication Date Title
US4939043A (en) Optically transparent electrically conductive semiconductor windows
US5173443A (en) Method of manufacture of optically transparent electrically conductive semiconductor windows
JP5148864B2 (en) Method for depositing zinc oxide at low temperatures and products formed thereby
US10311992B2 (en) Transparent conducting films including complex oxides
US8176653B2 (en) Method for removing moisture from substrate coated with transparent electrode
US8932495B1 (en) Transparent conductor materials and processes for forming such materials
KR20070089963A (en) Mothod for producing zno-based transparent electroconductive film by mocvd(metal organic chemical vapor deposition) method
Marouf et al. Low-temperature spray-coating of high-performing ZnO: Al films for transparent electronics
JP4622075B2 (en) Transparent conductive material and method for producing the same
AU2010306798B2 (en) Deposition of doped ZnO films on polymer substrates by UV-assisted chemical vapor deposition
Weng et al. Structure, optical and electrical properties of ZnO thin films on the flexible substrate by cathodic vacuum arc technology with different arc currents
Gan et al. High carrier mobility tungsten-doped indium oxide films prepared by reactive plasma deposition in pure argon and post annealing
Girtan et al. Preparation and properties of SnO~ 2: F thin films
KR960007398B1 (en) Preparation of zno thin film by spraying vapor
Malik et al. Sputtered indium tin oxide films for optoelectronic applications
EP0438398B1 (en) Optically transparent electrically conductive semiconductor windows and methods of manufacture
JPH06150723A (en) Transparent conductive film
Chen et al. Microstructure and optoelectronic properties of galliumtitanium-zinc oxide thin films deposited by magnetron sputtering
JP2014111832A (en) Method of fabricating zinc oxide thin film
Lin et al. Study of AZO thin films under different annealing atmosphere on structural, optical and electrical properties by rf magnetron sputtering
US20150140321A1 (en) Methodology for improved adhesion for deposited fluorinated transparent conducting oxide films on a substrate
Abdullahi RF Sputtered Zinc Oxide (ZnO) Thin Films: A Review
Chung et al. Investigation on the interface of GZO/ITO double-layered transparent conducting oxide films for solar cells
Yeh et al. Deposition of homo-multilayer indium tin oxide films on PET substrates by roll-to-roll sputtering
Allabergenova et al. ENHANCED IR SWITCH TRANSMITTANCE REALIZED BY INDIUM DIFFUSION DOPING OF VANADIUM DIOXIDE THIN FILMS

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130508

Year of fee payment: 18

EXPY Expiration of term