KR960003464B1 - Raw material for producing perrite dust for friction elements and the method of reduction thereof - Google Patents

Raw material for producing perrite dust for friction elements and the method of reduction thereof Download PDF

Info

Publication number
KR960003464B1
KR960003464B1 KR1019920013678A KR920013678A KR960003464B1 KR 960003464 B1 KR960003464 B1 KR 960003464B1 KR 1019920013678 A KR1019920013678 A KR 1019920013678A KR 920013678 A KR920013678 A KR 920013678A KR 960003464 B1 KR960003464 B1 KR 960003464B1
Authority
KR
South Korea
Prior art keywords
oxide
dust
iron
specific gravity
less
Prior art date
Application number
KR1019920013678A
Other languages
Korean (ko)
Other versions
KR940002336A (en
Inventor
안기주
반봉찬
Original Assignee
주식회사금산소재
최진만
반봉찬
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사금산소재, 최진만, 반봉찬 filed Critical 주식회사금산소재
Priority to KR1019920013678A priority Critical patent/KR960003464B1/en
Priority to JP18290993A priority patent/JP2540281B2/en
Priority to CN93108490A priority patent/CN1087299A/en
Priority to US08/099,222 priority patent/US5486229A/en
Priority to DE19934325531 priority patent/DE4325531C2/en
Publication of KR940002336A publication Critical patent/KR940002336A/en
Application granted granted Critical
Publication of KR960003464B1 publication Critical patent/KR960003464B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives

Abstract

The iron powder for friction element is produced by reducing dust generated in iron and steel making process. The dust comprises (in wt.) 50-85% total Fe, 20-55 FeO, 30-55% Fe3O4, 2-12% CaO, 1-5% SiO2, 1-3% MgO, 1-3% MnO, and below 1% C, and has particle size of 40-250 mesh, apparent density of 1.5-2.2g/cc, intrinsic density of 4.0-5.0g/cc and porosity ratio of 45-65%. The dust is reduced at 1000-1200 deg.C for 20-60 mins., and annealed at 65-800 deg.C.

Description

집진더스트를 원료로 하는 마찰재용 환원 분철 조성물 및 그 제조방법Reduced iron powder composition for friction materials using dust collecting dust as a raw material, and a manufacturing method thereof

제1도는 종래기술의 환원분철 제조공정도.1 is a reduced iron manufacturing process of the prior art.

제2도는 본 발명의 환원분철 제조공정도.2 is a reduced iron manufacturing process of the present invention.

본 발명은 자동차, 농기계, 중기 및 일자 등 각종 기계류에 적용되는 것으로써 인체에 해로운 유독성 공해를 전혀 발생시키지 않고 사용수명을 오래 연장시킬 수 있는 마찰재용 분철 조성물에 관한 것으로 특히, 철강제조 공정의 집진더스트를 원료로 하는 마찰재용 환원 분철조성물 및 그 제조방법에 관한 것이다.The present invention is applied to a variety of machinery, such as automobiles, agricultural machinery, heavy machinery, and date, and relates to a powdered iron composition for friction materials, which can prolong the service life without generating any toxic pollution harmful to the human body. The present invention relates to a reduced powdered iron composition for friction materials using dust as a raw material, and a method of manufacturing the same.

일반적으로 각종 기계류에 필수적으로 사용되는 마찰재는 주로 석면을 주원료로 하여 제조되기 때문에 원료 처리과정에서 부터 기계류에 조립사용시 까지 인체에 극히 해로운 유독성 공해를 유발시키는 문제점을 갖고 있다.In general, friction materials, which are essentially used in various machinery, are mainly manufactured from asbestos, and thus have a problem of causing toxic pollution, which is extremely harmful to the human body from raw material processing to assembly and use in machinery.

따라서, 미국, 일본 등지에서는 이와같은 심각한 공해문제와 마찰재의 성능, 수명등을 고려하여 환원분철을 사용해 오고 있다.Therefore, in the United States and Japan, reducing iron has been used in consideration of such a serious pollution problem and performance and life of the friction material.

그러나 환원분철은 환원시키고자 하는 원료의 성상, 화학적 성분, 결합구조등에 따라서 환원처리방법과 환원분철의 물리적 특성에 심한 변동을 가져오기 때문에 환원분철의 제조방법으로는 먼저 최적 원료선택이 중요하며, 부수적으로는 분철에 추가로 첨가하는 각종 산화물, 즉 산화칼슘(CaO), 산화규소(SiO2), 알루미나(Al2O3)등이 적당량 함유되어 있는 원료일 수록 유리하다.However, reducing iron has severe fluctuations in the reduction treatment method and the physical properties of the reduced iron depending on the properties, chemical composition, and bonding structure of the raw material to be reduced. Incidentally, it is more advantageous for a raw material containing an appropriate amount of various oxides added to the iron, namely calcium oxide (CaO), silicon oxide (SiO 2 ), alumina (Al 2 O 3 ), and the like.

따라서 마찰재용 분철조성물의 조건으로써는 겉보기 비중이 낮고 기공율이 높을수록 좋으며, 입자형상은 각형이고, 기공은 불균일 분포일수록 가압성형시에 충전율이 향상되고 입자의 비표면적이 증가되어 마찰계수를 높여주면서도 마찰면의 마모손상이 없는 분철조성물이 요구된다.Therefore, the lower the specific specific gravity and the higher the porosity, the better. There is a need for a powdered iron composition without abrasion damage of the friction surface.

이와같은 환원분철의 종래 제조방법으로는 미국의 파이론사와 일본의 가와사끼 제철에서 산화제일철(FeO)이 80%이상인 밀스케일(Mill scale)을 원료로 하여 먼저 조환원을 거쳐 해면철을 만들고 다시 환원시켜 필요한 후처리공정을 거쳐 분쇄한 후 환원분철을 얻는 방법을 사용하고 있다.Conventional manufacturing method of such reduced iron is made of mill scale with iron oxide (FeO) of 80% or more from Pyron Co., Ltd. and Kawasaki Steel Co., Ltd. in Japan. After the necessary post-treatment process, the grinding method is used to obtain reduced iron.

이들 환원분철의 제조방법으로써 먼저 열간압연시 발생하는 고순도 밀스케일을 원료로 하는 공정[제1a도]은 미국의 파이론사와 일본의 가와사끼 제철의 제조방법이며, 환원제로써 고체 분코크스(탈황용석회 포함)를 사용하고 조환원 공정에서는 밀스케일의 환원, 입자의 소결, 분코크스에 의한 침탄이 행해지고, 다음의 환원공정에서는 100메쉬(mesh)이하로 분쇄한 후 탈탄과 소둔처리를 하고 다시 분쇄하여 환원분철을 얻게 되는 것이다.As a manufacturing method of these reduced iron, the process of using high-purity mill scale generated during hot rolling as a raw material [Fig. 1a] is a manufacturing method of pylon company in USA and Kawasaki ironworks in Japan, and solid powder coke (including desulfurized lime) as a reducing agent. In the crude reduction process, mill scale reduction, particle sintering, and carburization by powdered coke are carried out, and in the following reduction process, it is pulverized to 100 mesh or less, decarburized and annealed, and then pulverized again. You will get iron.

그러나 밀스케일을 원료로 하는 환원분철 제조방법은 분쇄공정을 3회 이상 거쳐야 되고, 환원로에서의 반응 완료시간이 오래 걸리며 다시 탈탄과 소둔열처리를 하여야 하고, 특히 밀스케일에 철분을 다시 첨가하여 반응시간 단축을 꾀하는 비경제적이고 복잡한 작업공정을 거쳐야 하며 생산성이 떨어지는 문제점을 안고 있다.However, the method of manufacturing reduced iron using mill scale as raw material has to go through three or more grinding processes, takes a long time to complete the reaction in the reduction furnace, and needs to be subjected to decarburization and annealing heat treatment, in particular, by adding iron to mill scale again. It has to go through an uneconomical and complicated work process that seeks to reduce time and has a problem of low productivity.

또한 스웨덴의 회가네스(Hoeganeaes)사에서는 전철분(T.Fe) 함량이 70%이상이고, 마그네타이트(Magnetite ; Fe3O4) 함량이 95%이상인 고순도 철광석을 원료로 하여 미국의 파이론사 및 일본의 가와사끼 제철의 환원제조방법과 동일하게 하여 분철을 얻고 있다[제1b도].In addition, Hoeganeaes, Sweden, has a high purity iron ore containing more than 70% of iron (T.Fe) and more than 95% of magnetite (Fe 3 O 4 ). Powdered iron is obtained in the same manner as in the reduction production method of steelmaking in Japan (Fig. 1b).

그러나, 우리나라는 스웨덴과 같은 고순도 철광석이 없을 뿐만 아니라 호주, 브라질 등지에서 수입하는 철광석은 헤마타이트(Hematite ; Fe2O3)로써 전철분 함량이 60%범위이며 과상이어서 다시 파쇄, 분쇄하는 공정과 Fe2O3→Fe3O4→FeO→Fe변화과정을 거쳐야 하기 때문에 환원처리비용이 많이 들고 오랜시간이 소요되어 비경제적이고, 제조공정이 복잡하며 생산성이 떨어지는 결점이 있다.However, Korea has no high-purity iron ore like Sweden, and iron ore imported from Australia and Brazil is hematite (Fe 2 O 3 ), which has 60% of its iron content and is overly crushed and crushed. Fe 2 O 3 → Fe 3 O 4 → FeO → Fe It is necessary to go through the process of the reduction process is expensive and takes a long time, it is uneconomical, the manufacturing process is complicated and the productivity is low.

이와같이 환원분철 제조방법들을 살펴보면, 경제성, 작업성, 생산성 및 환경오염(파쇄, 분쇄공정상 발생)등의 수준을 결정하는 절대적 요소가 원료의 선택이라는 점과 여기에 따른 환원처리조건이 추가적으로 부합되어야 함을 알 수 있다.As described above, the method for manufacturing reduced ferrous iron shows that the selection of raw materials and the conditions for reducing treatment according to the above factors must be additionally determined to determine the level of economic efficiency, workability, productivity, and environmental pollution (occurring during crushing and grinding process). It can be seen.

따라서, 본 발명의 목적은 국내의 철강회사에서 발생되는 집진더스트를 주원료로 하여 경제성과 작업의 단순화, 높은 생산성등을 확보함과 아울러, 집진더스트를 재활용함에 따라 부가가치를 높이고 환경오염을 해소시키며, 국내에서 원료수입 대체효과까지 겸비한 마찰재용 환원분철조성물 및 그 제조방법을 제공하는데 있다.Therefore, the object of the present invention is to ensure the economic performance, simplify the work, high productivity, etc., as the main raw material dust collection dust generated in domestic steel companies, and to increase the added value and reduce the environmental pollution by recycling dust collection dust, It is to provide a reduced iron composition for friction materials and a method of manufacturing the same, which combines the effect of importing raw materials in Korea.

본 발명의 구성은 철강회사에서 발생되는 집진더스트를 원료로 사용하는 것과 이를 기재 환원제로 환원처리하는 조건을 구성으로 한다.The constitution of the present invention is to use the dust collecting dust generated in the steel company as a raw material and the conditions for reducing it with a base reducing agent.

집진더스트는 표 1에 나타낸 바와같이 화학적 성분이 중량퍼센트(wt%)로 전철분(T.Fe)이 50∼85%, 산화제일철(FeO) 20∼55%, 산화제3철(Fe3O4), 30∼55%, 산화칼슘(CaO)2∼12% 산화규소(SiO2)1∼5%, 산화마그네슘(MgO)1∼3%, 산화망간(MnO)1∼3%, 고정탄소(Fixed Carbon)1%이하의 조성을 가지며, 그 입자크기가 40∼250메쉬이고, 겉보기 비중 1.5∼2.2g/cc, 진비중 4.0∼5.0g/cc이며 가공율이 45∼65%이다As shown in Table 1, dust collection dust has a chemical composition of weight percent (wt%), 50 to 85% of iron (T.Fe), 20 to 55% of ferrous oxide (FeO), and ferric oxide (Fe 3 O 4). ), 30 to 55%, calcium oxide (CaO) 2 to 12% silicon oxide (SiO 2 ) 1 to 5%, magnesium oxide (MgO) 1 to 3%, manganese oxide (MnO) 1 to 3%, fixed carbon ( Fixed Carbon) It has a composition of 1% or less, its particle size is 40-250 mesh, its apparent specific gravity is 1.5-2.2g / cc, its true specific gravity is 4.0-5.0g / cc and its processing rate is 45-65%.

[표 1]TABLE 1

집진더스트의 화학적 성분 및 물리적 특성Chemical Composition and Physical Properties of Dust Collecting Dust

이와같은 화학적 성분과 물리적 특성을 갖는 집진더스트를 터널식 환원로에서 기체 환원체의 취입에 의해 직접 환원시켜 서냉한 후 가벼운 분쇄공정을 거쳐서 환원분철을 얻는다.Dust collection dust having such chemical components and physical properties is directly reduced by blowing gas reducing bodies in a tunnel-type reduction furnace, followed by slow cooling to obtain reduced iron through a light grinding process.

여기에서 얻어진 환원분철에 펄라이트 분말(Pealite Powder), 고무분말, 종이분말, 브라스칩, 카슈분진, 황산바류 및 인상흑연과 결합제로써 페놀수지를 배합하여 180∼250℃로 가열하여 프레스한 후 열처리하면 마찰계수 0.15∼0.4, 내열온도 350∼950℃까지의 우수한 마찰제 제품을 얻을 수 있다.When the phenol resin is mixed with pearlite powder, rubber powder, paper powder, brass chips, cashew powder, bar sulfate and impression graphite, and the binder is heated and heated to 180-250 ° C. Excellent friction products with friction coefficients of 0.15 to 0.4 and heat resistance of 350 to 950 ° C can be obtained.

이하 실시예를 들어 상세히 설명하면 다음과 같다.When described in detail with reference to the following examples.

철강 제조공정에서 발생된 집진더스트를 환원처리하면 겉보기 비중이 0.02∼0.07g/cc로 증가되고, 전비중은 1.0∼1.5g/cc까지 증가되며, 기공율은 8∼12%까지 증가하게 되고, 입자의 모양은 불균일 각형이 대부분이며, 파쇄후의 입자크기는 대부분 150메쉬 이하가 된다.Reduction of dust collection in the steel manufacturing process increases the apparent specific gravity to 0.02 to 0.07 g / cc, the total specific gravity to 1.0 to 1.5 g / cc, and the porosity to 8 to 12%. The shape of is mostly non-uniform, and the particle size after crushing is mostly less than 150 mesh.

집진더스트는 건조와 조환원공정 필요없이 제2도에서와 같이 한번의 환원공정후 서냉시키는 도중 일정한 온도(650∼800℃)에 도달했을 때 20여분 유지시켜 소둔처리하여 입자의 경화성을 제거시킨 다음, 분쇄기에서 분쇄하여 스크린에서 150메쉬 이하로 분급하여 분철을 얻는다.Dust collection dust is maintained for 20 minutes when it reaches a certain temperature (650 ~ 800 ℃) during slow cooling after one reduction process as in Figure 2 without the need for drying and coordination reduction process. It is pulverized in a pulverizer and classified to 150 mesh or less on a screen to obtain powdered iron.

먼저 기체환원제는 분당 10∼50Nl을 취입시키고, 이때의 환원처리온도는 1000∼1200℃로 유지시켜 주며, 환원처리 시간은 최소 20분으로 부터 80분 까지로 하고 이때 집진더스트 1Kg당 취입하는 기체환원제(Nl)비를 0.4∼2.0까지로 하였다. 환원처리후 환원된 분철양상은 입자표면이 소결상 형태로 되고 그 과정에서 입자경화가 되기 때문에 마찰제 조건을 갖추기 위해서는 경화된 입자들을 다시 이완시켜 주는 소둔공정이 필요하다. 소둔공정은 별도의 공정이나 수단을 쓰지않고 냉각과정에서 650∼800℃범위로 20여분 유지시켜 주면 충분한 소둔처리가 완료된다.First, the gas reducing agent is blown 10 ~ 50Nl per minute, the reduction treatment temperature is maintained at 1000 ~ 1200 ℃, the reduction treatment time is at least 20 minutes to 80 minutes and at this time the gas reducing agent blown per 1Kg of dust collecting dust (Nl) ratio was made into 0.4-2.0. Since the surface of the reduced iron powder after reduction treatment is in the form of sintered phase and the particles are hardened in the process, the annealing process that relaxes the hardened particles is necessary to satisfy the friction condition. The annealing process does not use a separate process or means, if it is maintained for 20 minutes in the range of 650 ~ 800 ℃ during the cooling process, sufficient annealing treatment is completed.

실시예에서 먼저 기체환원제 투입량(N1/분)은 15∼40이 적당하며 15이하에서는 미환원된 산화제3철(Fe3O4), 또는 산화제일철(FeO)이 상당량 존재하며, 40이상은 환원에 필요한 기체 요구량을 초과하기 때문에 비경제적이다. 환원처리온도는 1000∼1200℃가 적당하고 1000℃이하에서는 미환원 철분이 다량 존재하고, 1200℃이상에서는 입자표층간 소결형성이 너무 강해져서 분쇄비용이 더들며, 소결에 의한 기공율이 떨어져서 물리적 특성을 저해하게 되는 문제가 있다.In the first embodiment, the gas reducing agent (N1 / min) is suitably 15 to 40, and below 15, unreduced ferric oxide (Fe 3 O 4 ) or ferrous oxide (FeO) is present in a considerable amount, and 40 or more is reduced. It is uneconomical because it exceeds the gas requirement. Reduction treatment temperature is suitable for 1000 ~ 1200 ℃, and below 1000 ℃, a large amount of unreduced iron is present. Above 1200 ℃, sintering formation between particles is so strong that grinding cost is higher, and the porosity by sintering decreases physical properties. There is a problem that inhibits.

또한 환원처리시간은 20∼60분이 적당하며 20분 이하에서는 산화철의 환원이 부족하여 산화철양이 상당량 존재하고, 60분 이상은 비경제적이고 소결이 일부 진행되게 된다.In addition, the reduction treatment time is suitable for 20 to 60 minutes, and less than 20 minutes, the reduction of iron oxide is insufficient, there is a considerable amount of iron oxide, more than 60 minutes is uneconomical and sintering will proceed in part.

기체와 고체비 즉, 기체환원제 투입량(N1)과 집진더스트양(Kg)의 비는 0.8∼2.0이 적당하고, 0.8이하에서는 환원반응에 필요한 기체양이 부족하여 미환원철분이 남게되며, 2.0이상은 필요이상의 양으로써 비경제적이다. 환원된 집진더스트는 입자들의 경화를 제거시키기 위해서 냉각 과정중 650∼800℃에 도달했을 때 20분간 유지시키는 것이 적당하며, 650℃이하 또는 800℃이상에서는 입자들의 경화성질이 일부 남게 되어 마찰제로 사용시 마찰면을 마모시키는 현상이 발생하게 된다.Gas and solid ratio, that is, ratio of gas reducing agent input (N1) and dust collection amount (Kg) is appropriately 0.8 to 2.0, and below 0.8, unreduced iron remains due to insufficient amount of gas required for reduction reaction, and more than 2.0 Is more economic than necessary. The reduced dust collection dust is suitable to be kept for 20 minutes when it reaches 650 ~ 800 ℃ during the cooling process in order to remove the hardening of the particles. Wear of the friction surface occurs.

실시예에서와 같이 집진더스트를 환원처리한 분철의 화학적 성분과 물리적 특성은 표 2에서와 같이 전철분(T.Fe)이 거의 금속철분(M.Fe)이 되고 특히 금속철분은 산소가 모두 환원되어 빠져나간 자리가 기공으로 남게 되어 가비중과 전비중이 증가되고 기공율이 10%정도 더 향상된다.As in the examples, the chemical composition and physical properties of the reduced iron dust collected by dust collection are as shown in Table 2, in which iron (T.Fe) is almost metal iron (M.Fe), and in particular, all iron is reduced in oxygen. As the exits remain as pores, the weight and total weight are increased, and the porosity is increased by 10%.

[표 2]TABLE 2

집진더스트의 환원처리후의 화학 성분 및 물리적 특성Chemical Composition and Physical Properties of Dust Collecting after Reduction

따라서, 환원분철에서 중요한 기공율은 55∼75%까지 되어 마찰재로써 우수한 특성을 갖게 되며 마찰면을 전혀 마모시키지 않고 오랫동안 마찰력을 유지할 수 있다.Therefore, the important porosity in the reduced iron is up to 55 to 75% to have excellent characteristics as a friction material and can maintain the frictional force for a long time without abrasion of the friction surface at all.

또한 환원분철내에 함유되어 있는 각종 산화물들은 별도의 점가 없이도 가능하며 집진더스트 자재입자크기가 40∼250메쉬이기 때문에 조환원공정과 파쇄작업이 필요없고, 처리시간은 극히 짧으며, 쉬입하는 기체환원제도 매우 적은 양으로 환경오염 없이 환원분철을 얻을 수 있다.In addition, the various oxides contained in the reduced iron can be used without any additional point, and since the particle size of the dust collecting dust is 40 to 250 mesh, no need for coordination reduction process and crushing operation is required, and the processing time is extremely short, and the gas reducing agent can be easily injected. In very small amounts, reduced iron can be obtained without environmental pollution.

따라서, 철강회사(전로, 전기로)에서 발생하는 집진더스트를 폐기시키지 않고 환원분철로 제조할 수 있게 됨에 따라서 얻어지는 효과는 첫째, 폐기물의 재활용에 의한 고부가가치화와 환경오염의 방지, 그리고 원료(철광석)의 수입대체효과가 았으며, 집진더스트 입자가 미세하기 때문에 파쇄, 분쇄에 의한 작업성과 오염, 경비 및 처리시간을 대폭 줄일 수 있게 되고, 분철에 별도로 첨가해야 하는 각종 산화물이 집진더스트에 함유되어 있고, 환원전에도 기공율이 매우 높아서 환원후의 물리적 특성을 더욱 유리하게 해주는 제반 특ㆍ장점이 있다.As a result, it is possible to manufacture reduced iron without collecting dust dust generated from steel companies (electric furnaces and electric furnaces). Firstly, the advantages obtained are as follows: First, high value added by recycling wastes, prevention of environmental pollution, and raw materials (iron ore). ), And the dust collection dust particles are fine, which greatly reduces the workability, contamination, expense, and processing time due to crushing and pulverization. In addition, the porosity is very high even before reduction, which has advantages and advantages that make the physical properties after reduction more advantageous.

Claims (2)

각종 기계류의 마찰재 원료로 사용되는 분철에 있어서, 화학적 성분이 중량(wt)으로 전철(T.Fe)50∼85%, 산화제일철(FeO)20∼55%, 산화제3철(Fe3O4)30∼55%, 산화칼슘(CaO)2∼12%, 산화규소(SiO2)1∼5%, 산화마그네슘(MgO)1∼3%, 산화망간(MnO)1∼3%, 고정탄소 1%이하의 조성을 가지며, 물리적 특성으로는 입자크기가 40∼250 메쉬이고, 겉보기 비중이 1.5∼2.2g/cc, 진비중 4.0∼5.0g/cc이며, 수은 포토시베터법에서의 기공율이 45∼65%인 철강제조 공정의 집진더스트를 환원처리하여 제조한 화학적 성분이 중량(wt)으로 전철분(T.Fe)55∼92%, 금속철분(M.Fe)53∼90%, 산화제일철(FeO)2%이하, 산화칼슘(CaO)2∼12%, 산화규소(SiO2)1∼5%, 산화마그네슘(MgO)1∼3%, 고정탄소(C) 0.5%이하, 오산화인(P2O5)1%이하, 황(S)0.5%이하, 산화아연(ZnO) 0.7이하의 조성을 가지며, 물리적특성이 겉보기 비중 1.55∼2.25g/cc, 진비중 5.0∼6.0g/cc, 기공율50∼75%, 입자형상이 각형이고, 기공분포상태가 불균일한 집진더스트를 원료로 하는 마찰재용 환원분철조성물.In powdered iron used as a raw material of friction materials for various machinery, the chemical composition is 50 to 85% by weight (T.Fe), 20 to 55% ferrous oxide (FeO), and ferric oxide (Fe 3 O 4 ). 30 to 55%, calcium oxide (CaO) 2 to 12%, silicon oxide (SiO 2 ) 1 to 5%, magnesium oxide (MgO) 1 to 3%, manganese oxide (MnO) 1 to 3%, fixed carbon 1% It has the following composition, its physical properties are particle size 40-250 mesh, apparent specific gravity 1.5-2.2g / cc, true specific gravity 4.0-5.0g / cc, porosity 45-65 in mercury photosieve method The chemical composition produced by reducing dust collection dust of% steel manufacturing process by weight (wt) was 55 to 92% of iron powder (T.Fe), 53 to 90% of metal iron powder (M.Fe) and ferrous oxide (FeO). 2% or less, calcium oxide (CaO) 2-12%, silicon oxide (SiO 2 ) 1-5%, magnesium oxide (MgO) 1-3%, fixed carbon (C) 0.5% or less, phosphorus pentoxide (P 2) O 5 ) 1% or less, sulfur (S) 0.5% or less, zinc oxide (ZnO) 0.7 or less, physical properties are apparent specific gravity 1.55 ~ 2.25g / c c, A reduced iron composition for friction materials, which is composed of dust collecting dust having a specific gravity of 5.0 to 6.0 g / cc, a porosity of 50 to 75%, a particle shape, and a pore distribution in a uniform state. 마찰재 원료로 사용되는 분철의 화학적 성분이 중량(wt)으로 전철분(T.Fe)50∼85%, 산화제일철(FeO)20∼55%, 산화제3철(Fe3O4)30∼55%, 산화칼슘(CaO)2∼12%, 산화규소(SiO2)1∼5%, 산화마그네슘(MgO)1∼3%, 산화망간(MnO)1∼3%, 고정탄소(C)1%이하의 조성을 가지며, 입자크기가 40∼250 메쉬이고, 겉보기 비중이 1.5∼2.2g/cc, 진비중 4.0∼5.0g/cc이며, 수은 포토시메터법에서의 기공율이 45∼65%인 물리적 특성을 갖는 집진더스트를 기체환원제 투입량 15∼40Nl/분, 환원처리온도 1000∼1200℃, 처리시간 20∼60분, 기체/고체비 0.8∼2.0 및 환원후 소둔온도를 650∼800℃의 조건으로 환원처리하는 것을 특징으로 하는 집진더스트를 원료로 하는 마찰재용 환원분철조성물 제조방법.The chemical composition of the powdered iron used as a friction material is by weight (wt) 50 to 85% of iron powder (T.Fe), 20 to 55% of ferrous oxide (FeO), and 30 to 55% of ferric oxide (Fe 3 O 4 ). , Calcium oxide (CaO) 2-12%, silicon oxide (SiO 2 ) 1-5%, magnesium oxide (MgO) 1-3%, manganese oxide (MnO) 1-3%, fixed carbon (C) 1% or less It has a physical composition of 40-250 mesh, an apparent specific gravity of 1.5-2.2g / cc, a specific gravity of 4.0-5.0g / cc, and a porosity of 45-65% in the mercury photometer method. Reduction treatment of the dust collection dust having a gas reducing agent 15 to 40Nl / min, reducing treatment temperature 1000 ~ 1200 ℃, treatment time 20 ~ 60 minutes, gas / solid ratio 0.8 ~ 2.0 and annealing temperature after reduction 650 ~ 800 ℃ A method for producing a reduced iron composition for friction materials comprising dust collecting dust as a raw material.
KR1019920013678A 1992-07-29 1992-07-30 Raw material for producing perrite dust for friction elements and the method of reduction thereof KR960003464B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1019920013678A KR960003464B1 (en) 1992-07-30 1992-07-30 Raw material for producing perrite dust for friction elements and the method of reduction thereof
JP18290993A JP2540281B2 (en) 1992-07-29 1993-07-23 Raw material of powdered iron for friction material and reduction method
CN93108490A CN1087299A (en) 1992-07-29 1993-07-28 Production be used for friction element ferrite dust raw material and reduce its method
US08/099,222 US5486229A (en) 1992-07-29 1993-07-29 Raw material for producing ferrite dust for friction elements and method of reducing the same
DE19934325531 DE4325531C2 (en) 1992-07-29 1993-07-29 Raw material for the production of reduced iron dust, process for the production of reduced iron dust and its use for the production of friction elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019920013678A KR960003464B1 (en) 1992-07-30 1992-07-30 Raw material for producing perrite dust for friction elements and the method of reduction thereof

Publications (2)

Publication Number Publication Date
KR940002336A KR940002336A (en) 1994-02-17
KR960003464B1 true KR960003464B1 (en) 1996-03-14

Family

ID=19337242

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019920013678A KR960003464B1 (en) 1992-07-29 1992-07-30 Raw material for producing perrite dust for friction elements and the method of reduction thereof

Country Status (1)

Country Link
KR (1) KR960003464B1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020021698A (en) * 2000-09-16 2002-03-22 김기범 Dehumidifying composition and method for producing the same
KR102465913B1 (en) 2020-09-09 2022-11-10 한국기술교육대학교 산학협력단 Hygroscopic agent composition and manufacturing method for the same
CN115916394A (en) 2020-09-02 2023-04-04 韩国技术教育大学校产学协力团 High-performance moisture absorbent composition for preventing liquid leakage and preparation method thereof
KR102412970B1 (en) 2020-09-02 2022-06-24 한국기술교육대학교 산학협력단 Hygroscopic agent composition and manufacturing method for the same
KR102422971B1 (en) 2020-09-16 2022-07-20 한국기술교육대학교 산학협력단 Hygroscopic agent composition and manufacturing method for the same
KR20220036533A (en) 2020-09-16 2022-03-23 한국기술교육대학교 산학협력단 Manufacturing method for hygroscopic agent composition

Also Published As

Publication number Publication date
KR940002336A (en) 1994-02-17

Similar Documents

Publication Publication Date Title
CN101705333B (en) Reduction and utilization method of dedusting ash of stainless steel
CN100503852C (en) Steelsmelting dust-mud pelletizing slag-melting agent compounding method
KR960003464B1 (en) Raw material for producing perrite dust for friction elements and the method of reduction thereof
JP2540281B2 (en) Raw material of powdered iron for friction material and reduction method
KR100675348B1 (en) Two type binder and method for preparing briquette of the used steel using the same
KR100834548B1 (en) Manufacturing method of briquette containing mill scale
CN110643830B (en) Method for producing zinc oxide and ferrosilicon alloy by using copper slag
RU2352648C2 (en) Charge for manufacturing of bricks for metallurgical production
RU2241771C1 (en) Briquette for cast iron smelting
Chen et al. Carburization behavior of siderite pellets in CO–CO2–H2 mixtures
KR960003463B1 (en) Raw material for producing perrite dust for friction elements and the method of reduction thereof
KR101320083B1 (en) Binder for manufacturing Fe-containing briquettes using electric furnace reduction slag and manufacturing method thereof
KR910006014B1 (en) Pellet of high chrome ore
KR100295990B1 (en) High Carbon Briquettes
CN108642231B (en) Converter slag modifier and method for preparing low-alkalinity slag system by using same
CN108118111A (en) The technique that a kind of silicomangan dedusting ash prepares composite slag agent
KR950006268B1 (en) Making method of powder metal
KR910010056B1 (en) Making process for the pellet of cr ore
JPH09143578A (en) Briquetting method for reduced iron pellet
CA2100442C (en) Process for the production of vanadium containing steel alloys
CN1199100A (en) Pellet producing method using ferrous oxide steel slag
KR102482284B1 (en) Processing method of Fe containing byproducts generated in the iron making process
EA036538B1 (en) Process for manufacturing chromium and iron bearing agglomerates with different addition of manganese, nickel and molybdenum bearing materials
US3682620A (en) Process for the manufacture of pellets of high compressive strength and abrasion resistance
CN113736991A (en) Self-fluxing cold-pressing composite furnace charge for blast furnace ironmaking and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20050314

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee