KR960003300B1 - Metal powder producing method for high-density recording medium - Google Patents

Metal powder producing method for high-density recording medium Download PDF

Info

Publication number
KR960003300B1
KR960003300B1 KR1019920018900A KR920018900A KR960003300B1 KR 960003300 B1 KR960003300 B1 KR 960003300B1 KR 1019920018900 A KR1019920018900 A KR 1019920018900A KR 920018900 A KR920018900 A KR 920018900A KR 960003300 B1 KR960003300 B1 KR 960003300B1
Authority
KR
South Korea
Prior art keywords
particle size
metal powder
reaction
concentration
goetite
Prior art date
Application number
KR1019920018900A
Other languages
Korean (ko)
Other versions
KR940009964A (en
Inventor
김주호
Original Assignee
엘지전자주식회사
이헌조
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자주식회사, 이헌조 filed Critical 엘지전자주식회사
Priority to KR1019920018900A priority Critical patent/KR960003300B1/en
Publication of KR940009964A publication Critical patent/KR940009964A/en
Application granted granted Critical
Publication of KR960003300B1 publication Critical patent/KR960003300B1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/714Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the dimension of the magnetic particles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • G11B5/70626Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances
    • G11B5/70642Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances iron oxides

Abstract

preparing goetite of small grain size by lowering the goetite forming temperature and NaOH concentration; transferring the formed goetite solution to the reaction bath of 10-20 deg.C; and adding Zn2- to it until the concentration of goetite(α-FeOOH) reaches 0.1-0.3mM and reacting them. The method produces goetite with small grain size and large diameter.

Description

고 기록밀도용 금속분말의 제조방법Manufacturing method of metal powder for high recording density

본 발명은 고 기록밀도용 금속분말의 제조방법에 관한 것으로, 특히 입자의 비표면적은 그대로 유지하면서 침상비를 낮추어 고타이트밀의 기록 재생특성을 향상시킬 수 있도록 다단식 반응단계 및 금속이온의 첨가 방법에 의하여 고타이트를 제조하는 고기록밀도용 금속분말의 제조방법에 관한 것이다.The present invention relates to a method for producing a metal powder for high recording density, and in particular, to a multi-stage reaction step and a method for adding metal ions to improve the recording and reproducing characteristics of a high-tight mill while maintaining the specific surface area of the particles as they are. The present invention relates to a method for producing a high recording density metal powder for producing high tite.

일반적으로 자성체의 제조방법은 FeSO4ㆍ7H2O 또는 FeCl2, FeCl3를 출발물질로 알칼리를 첨가하여 고타이트(goethite ; FeOㆍOH)를 제조하고, 고타이트를 탈수, 환원, 재산화하는 등의 방법으로 현재 오디오테이프(audio tape), 비디오 테이프(video tape) 등에 사용되는 자성체를 제조한다.In general, a method for preparing a magnetic material is to prepare goethite (FeO · OH) by adding alkali as a starting material of FeSO 4 · 7H 2 O or FeCl 2 , FeCl 3 , and dehydrate, reduce and reoxidize the gotite. Magnetic materials used in audio tapes, video tapes, and the like are manufactured by the method of the present invention.

상기한 바와같이 제조된 자성체는 처음 고타이트 생성 반응시 침상형(針狀形)의 고타이트 형상을 그대로 유지하게 된다. 그러므로 초기에 생성된 고타이트의 형상은 최종 자성입자의 형상에 결정적 영향을 미치게 된다.The magnetic material prepared as described above maintains a needle-shaped high-tight shape during the first high-tight formation reaction. Therefore, the shape of the initially produced hightite has a decisive influence on the shape of the final magnetic particles.

또, 초기 생성된 고타이트의 형상은 공기 유량, 산하 온도, 첨가알칼리, 초기 FeSO4의 농도 등의 반응조건에 의해 영향을 받게 된다.In addition, the shape of the initially produced hightite is affected by reaction conditions such as air flow rate, acid temperature, added alkali, initial FeSO 4 concentration, and the like.

그리고, 일반적으로 고주파(고기록 밀도)신호의 기록 재생특성을 향상시키기 위해서는 고타이트의 길이방향 입자 싸이즈(L)를 작게 하고, 같은 입자 싸이즈에서 세로방향의 입자경(D)을 높여야 되며(즉, 자성체를 바늘 모양이라 할 때 바늘의 길이를 낮추고 바늘의 두께를 높이는 것과 같이 하여야 되며), 입자 싸이즈(L)를 작게 함으로써 입자 노이즈를 감소시키고 유효 기록면적을 늘리며, 입자경(D)을 높임으로써 포화자화(saturation magnetization ; σs)를 높이고 분산성을 올릴 수 있기 때문에 고주파 기록 재생특성을 향상할 수 있게 된다.In general, in order to improve the recording and reproduction characteristics of the high frequency (high recording density) signal, the longitudinal particle size (L) of the hightight should be made small, and the longitudinal particle diameter (D) should be increased at the same particle size (ie, When magnetic material is called needle shape, it is necessary to reduce the length of needle and increase the thickness of needle), and reduce particle size (L) to reduce particle noise, increase effective recording area, and increase particle size (D). Saturation magnetization (σ s ) can be increased and dispersibility can be improved, so that high frequency recording and reproduction characteristics can be improved.

반대로 입자경(D)이 작아지면 비표면적이 증가하여 분산성이 떨어지며 또한 입자경(D)이 작아지면 자성입자의 포화자화가 저하되어 자기특성이 떨어지게 된다.On the contrary, when the particle diameter (D) decreases, the specific surface area increases, so that dispersibility decreases. In addition, when the particle size (D) decreases, the saturation magnetization of the magnetic particles decreases, thereby degrading the magnetic properties.

상기한 결과로부터 자성체 제조시 고주파 자기특성을 올리려면 입자 싸이즈(L)를 작게 하고, 같은 입자싸이즈(L)에서 입자경(D)을 높여야 함을 알 수 있다.It can be seen from the above results that the particle size (L) should be made small and the particle size (D) should be increased at the same particle size (L) in order to increase the high frequency magnetic properties when producing the magnetic material.

그러나, 실제 자성체 제조 공정에서는 자성체의 입자 형성을 결정하는 고타이트의 반응 생성단계에서 일반적 방법. 즉 일정온도, 일정 산소유량, 일정 농도의 FeSO4또는 NaOH를 사용하여 침상 고타이트를 제조하며, 이 고타이트의 형상이 그대로 자성입자의 형상으로 되었다. 그리고, 상기한 일반적 제조방법으로 고타이트를 제조시 입자 싸이즈(L)는 온도, 유량, 농도 등의 조건 변화에 의해 조절 가능하나 동일 입자싸이즈(L)에서의 입자경(D) 또는 침상비의 조절은 불가능한 것이었다.However, in the actual magnetic body manufacturing process, a general method in the reaction generation step of gotite which determines the particle formation of the magnetic body. That is, needle-like hightite was produced using a constant temperature, a constant oxygen flow rate, and a constant concentration of FeSO 4 or NaOH, and the shape of the hightite was changed to the shape of magnetic particles as it is. In addition, the particle size (L) can be controlled by changing the conditions such as temperature, flow rate, concentration, etc., when manufacturing the gotite using the above-described general manufacturing method, but controlling the particle diameter (D) or the acicular ratio at the same particle size (L). Was impossible.

본 발명의 목적은 입자의 비표면적은 그대로 유지하면서 침상비를 낮추어 고타이트밀의 기록 재생특성을 향상시킬 수 있도록 다단식 반응단계 및 금속이온의 첨가 방법에 의하여 고타이트를 제조하는 고 기록밀도용 금속분말의 제조방법을 제공함에 있다.An object of the present invention is to prepare a high recording density metal powder by the multi-stage reaction step and the addition method of metal ions so that the specific surface area of the particles can be maintained while lowering the needle ratio to improve the recording and reproducing characteristics of the high-tight mill. To provide a method of manufacturing.

상기한 본 발명의 목적을 달성하기 위하여, 고타이트 생성온도 및 NaOH의 농도를 낮추어 저 입자 싸이즈(L)의 고타이트를 얻고, 생성된 고타이트 수용액을 10℃~20℃의 반응조로 옮겨 Zn++를 고타이트(α-FeOㆍOH)의 0.1~0.3mM까지 첨가하여 반응시킴으로써 입자 싸이즈(L)가 적고 입자경(D)이 큰 고타이트를 제조함을 특징으로 하는 고 기록밀도용 금속분말의 제조방법이 제공된다.In order to achieve the above object of the present invention, the high-tight formation temperature and the concentration of NaOH are lowered to obtain high-tight particles of low particle size (L), and the resulting high-tight aqueous solution is transferred to a reaction tank of 10 ° C. to 20 ° C. to Zn +. + Is added to 0.1-0.3 mM of high-tight (α-FeO.OH) and reacted to produce high-tightness metal powder with low particle size (L) and high particle size (D). A manufacturing method is provided.

이하, 본 발명을 보다 상세하게 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail.

본 발명은 저 입자 싸이즈(L), 고 입자경(D)의 고타이트를 생성하기 위하여, 고타이트 생성온도 및 NaOH의 농도를 낮추어 저 입자 싸이즈(L)의 고타이트를 얻고, 생성된 고타이트 콜로이드(collid) 수용액을 10℃~20℃의 반응조로 옮겨 Zn++를 고타이트(α-FeOㆍOH)의 0.1~0.3mM까지 변화시켜 첨가함으로써 고입자경(D)의 고타이트를 얻는 것으로 되어 있으며, 이에 대한 구체적인 실험 조건들은 다음의 <표 1>과 같다.In the present invention, in order to produce high particle of low particle size (L) and high particle diameter (D), the high-tight formation temperature and NaOH concentration are lowered to obtain high particle of low particle size (L), and the high-tight colloid produced (collid) Aqueous solution was transferred to a reactor at 10 ° C to 20 ° C, and Zn ++ was added to 0.1 to 0.3 mM of hightite (α-FeO.OH) to obtain high particle diameter (D). , And specific experimental conditions are as shown in Table 1 below.

[표 1]TABLE 1

각 실험의 조건Conditions of each experiment

*1 ; 초기 FeSO4#의 농도*One ; Initial FeSO 4 # Concentration

*2 ; 알카리 농도 R, R ; 2Na+/Fe++의 농도비*2 ; Alkali concentration R, R; 2Na + / Fe ++ concentration ratio

그리고, 다음의 <표 2>는 상기 본 발명에 따른 여러가지 실시예에 대한 입자길이, 입자경 및 침상비를 측정하여 비교한 표이다.Table 2 below is a table comparing particle lengths, particle diameters, and needle ratios of various examples according to the present invention.

[표 2]TABLE 2

측정 결과 표Measurement result table

상기한 실험 결과를 보면, 실험 1이 조건에서 실험 2의 조건으로 변경됨에 따라 입자 싸이즈는 50% 감소함을 알 수 있으나, 침상비는 없는 것을 알 수 있다.Looking at the above experimental results, it can be seen that the particle size is reduced by 50% as the experiment 1 changed from the conditions to the conditions of the experiment 2, but there is no needle bed ratio.

실험 2 조건시 좀더 저온 및 좀더 저 알칼리농도 R로 산화시키면 입자 싸이즈를 0.15㎛까지 감소시킬 수 있으나, 반응시간이 8시간 이상으로 길어지며, 경우에 따라서는 고타이트(α-FeOㆍOH)와 입자 형태가 구형인 마그네타이트(Fe3O4)가 동시에 석출되어 실험에 실패하게 된다.Experiment 2 Under the conditions, the lower temperature and lower alkali concentration R can reduce the particle size to 0.15㎛, but the reaction time is longer than 8 hours, and in some cases, hightite (α-FeO.OH) and Magnetite (Fe 3 O 4 ) of spherical particle shape is precipitated at the same time and the experiment fails.

또 실험 3 및 실험 7과 같이, Zn++를 첨가하지 않고 다단식 반응으로 2차의 반응을 시킬 경우 석출반응이 억제되어 입자길이가 감소됨에 의해 침상비가 낮아져 입자경(D) 값이 상대적으로 커짐을 알 수 있다.In addition, as in Experiment 3 and Experiment 7, when the secondary reaction is carried out in a multistage reaction without adding Zn ++ , precipitation reaction is suppressed, and the needle length is decreased by decreasing the particle length. Able to know.

또한, 실험 4 내지 실험 6과 같이 10℃에서, 그리고 시험 8 내지 실험 10과 같이 20℃에서, 2차의 고타이트 반응을 시킨 경우에 Zn++를 첨가시키면 공히 침상비는 급격히 떨어지며, 이로서 상대적 입자경(D) 값이 급격히 증가함을 알 수 있다.In addition, in the case of the second high-tight reaction at 10 ° C. as in Experiment 4 to Experiment 6 and at 20 ° C. as in Test 8 to Experiment 10, the addition of Zn ++ drastically lowered the bed ratio. It can be seen that the particle diameter (D) value increases rapidly.

이와같이 Zn++의 첨가에 의해 상대적 입자경(D) 값이 증가하는 경항은 20℃의 경우 보다 10℃의 경우가 큼을 알 수 있다. 즉, 20℃의 경우는 Zn++의 농도를 2mM 이상 첨가시 침상비가 6.5/1로 되나 10℃로 2차 반응을 시킨 경우는 1mM의 Zn++첨가로서도 6.0/1의 침상비를 얻을 수 있으며, 이로서 급격한 상대적 입자경(D) 증가 효과를 얻을 수 있다.As such, it can be seen that the case where the relative particle diameter (D) value is increased by the addition of Zn ++ is greater at 10 ° C than at 20 ° C. In other words, in the case of 20 ° C, when the concentration of Zn ++ is added 2mM or more, the bedding ratio becomes 6.5 / 1, but in the case of the secondary reaction at 10 ° C, the bed ratio of 6.0 / 1 can be obtained even by adding 1mM of Zn ++. In this way, a rapid relative particle diameter (D) increase effect can be obtained.

상기와 같이 Zn++를 첨가함에 의해 결정 성장이 억제되고, 그에 따라 침상비가 감소하여 결국은 상대적 입자경(D)의 증가 효과가 일어나는 이유는 Zn++의 이온화 경향이 Fe보다 크기 때문에 고타이트 생성시 에피텍셜(epitaxial) 성장(2차원적 길이방향 성장)에 필요한 반응, 즉 다음의 화학 반응 기구에서 Fe+3를 재환원시키는 효과에 의한 것으로 고려된다.The crystal growth by the addition of Zn ++ as described above is suppressed, and finally by reducing acicular ratio is therefore the reason that occurs is increased effect of the relative particle size (D) is tight and generated because the ionization tendency of the Zn ++ greater than the Fe It is considered that the reaction required for epitaxial growth (two-dimensional longitudinal growth), ie, the effect of re-reducing Fe +3 in the following chemical reaction mechanism.

Fe+2→Fe+3→α-FeOㆍOHFe +2 → Fe +3 → α-FeO

상기와 같은 금속이온의 첨가 효과는 입자 싸이즈(L)의 감소 반응에도 이용되는데, 예를 들어 초기 반응시 Cu++의 첨가에 의해 반응 반응과 같이 되고, 초기 반응시 급격하게 고타이트(α-FeOㆍOH) 핵생성이 되며, 이로서 남은 용액의 초기 FeSO4농도가 낮아지는 효과에 의해 입자 싸이즈(L)가 적어지는 효과가 있다.The effect of the addition of metal ions as described above is also used for the reduction reaction of the particle size (L), for example, by the addition of Cu ++ during the initial reaction, becomes the reaction reaction, and rapidly high initial (α- FeO.OH) nucleation, thereby reducing the particle size (L) by the effect of lowering the initial FeSO 4 concentration of the remaining solution.

Fe+2+Cu++→Fe+3+Cu+ Fe +2 + Cu ++ → Fe +3 + Cu +

이것은 Fe의 이온화 경향이 Cu보다 큰 것을 이용하는 것이다.This is to use the Fe tends to ionize larger than Cu.

이상에서와 같은 본 발명은 실험 2와 같이, 적절한 반응조건에 의해 적은 입자 싸이즈(L)를 얻고, 실험 3 내지 실험 10과 같이, 2차 저온 반응 및 금속이온의 첨가에 의해 입자 싸이즈 및 입자경을 증가시키며, 이와같이 하여 생성된 고타이트를 탈수, 환원반응하여 금속 분말을 제조함으로써 고밀도(고주파) 기록, 재생 특성이 향상된 우수한 자성매체를 얻게 되었다.As described above, the present invention obtains a small particle size (L) by appropriate reaction conditions, and as shown in Experiment 3 to Experiment 10, the particle size and particle diameter are reduced by the secondary low temperature reaction and the addition of metal ions. In addition, by producing a metal powder by dehydration and reduction of the resulting hightite, a high-density (high-frequency) recording and reproducing characteristics were obtained, and an excellent magnetic medium was improved.

상기한 바와같은 본 발명은 입자 싸이즈가 적고 입자경이 큰 금속분말을 제조하기 위하여 금속 분말의 형상에 직접적인 영향을 미치는 고타이트의 생성방법을 변경하고, 또한 금속 첨가물을 첨가함으로써 원하는 형상을 얻을 수 있었으며, 본 발명에 의해 제조가 가능하게 된 입자 싸이즈가 적고 입자경이 큰 금속 분말은 자기특성(σS) 값이 크고 노이즈가 적으며 비표면적이 같은 입자 싸이즈이고 입자경이 작은 경우 보다 상대적으로 적어져 분산성이 뛰어난 등 고기록 밀도(고주파)의 기록 재생 특성을 향상시키는데 결정적 역할을 할 것으로 기대된다.The present invention as described above was able to obtain the desired shape by changing the production method of high-tight, which directly affects the shape of the metal powder in order to produce a metal powder having a small particle size and a large particle size, and by adding a metal additive. In the present invention, the metal powder having a small particle size and large particle diameter, which can be produced by the present invention, has a large magnetic characteristic (σ S ) value, a low noise, a particle size having the same specific surface area, and a relatively small particle size. It is expected to play a decisive role in improving the recording and reproducing characteristics of high recording density (high frequency) such as excellent acidity.

Claims (1)

고타이트 생성온도 및 NaOH의 농도를 낮추어 저 입자 싸이즈(L)의 고타이트를 얻고, 생성된 고타이트 수용액을 10℃~20℃의 반응조로 옮겨 Zn--를 고타이트(α-FeOㆍOH)의 0.1~0.3mM까지 첨가하여 반응시킴으로써 입자 싸이즈(L)가 적고 입자경(D)이 큰 고타이트를 제조함을 특징으로 하는 고 기록밀도용 금속분말의 제조방법.Gotite formation temperature and the concentration of NaOH were lowered to obtain hightite of low particle size (L), and the resulting aqueous solution of gotite was transferred to a reaction vessel of 10 ° C to 20 ° C, and Zn-- was added to hightite (α-FeO.OH). A method of producing a metal powder for high recording density, characterized by producing a high tite having a small particle size (L) and a large particle diameter (D) by adding to and reacting with 0.1 to 0.3 mM.
KR1019920018900A 1992-10-14 1992-10-14 Metal powder producing method for high-density recording medium KR960003300B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019920018900A KR960003300B1 (en) 1992-10-14 1992-10-14 Metal powder producing method for high-density recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019920018900A KR960003300B1 (en) 1992-10-14 1992-10-14 Metal powder producing method for high-density recording medium

Publications (2)

Publication Number Publication Date
KR940009964A KR940009964A (en) 1994-05-24
KR960003300B1 true KR960003300B1 (en) 1996-03-08

Family

ID=19341164

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019920018900A KR960003300B1 (en) 1992-10-14 1992-10-14 Metal powder producing method for high-density recording medium

Country Status (1)

Country Link
KR (1) KR960003300B1 (en)

Also Published As

Publication number Publication date
KR940009964A (en) 1994-05-24

Similar Documents

Publication Publication Date Title
US4729846A (en) Method for manufacturing lepidocrocite
US3843773A (en) Process for producing fine acicular gamma ferric oxide crystals
US4597958A (en) Method of producing hydrated iron oxide
JPS6311763B2 (en)
KR960003300B1 (en) Metal powder producing method for high-density recording medium
US4920010A (en) Ferromagnetic metal powder
US5641470A (en) Process for making goethite
US4086174A (en) Cobalt modified acicular γ ferric oxide and process for preparing the same
US5399278A (en) Process for producing acicular goethite particles and acicular magnetic iron oxide particles
KR100270077B1 (en) A method of preparing repidocrocite
US4748017A (en) Method for manufacturing lepidocrocite
EP0371384B1 (en) Process for producing magnetic iron oxide particles for magnetic recording
JPS6135135B2 (en)
JP2885253B2 (en) Method of producing spindle-shaped goethite particles
US4401462A (en) Process for producing metallic magnetic powder
KR0136152B1 (en) Manufacturing method of hematite powder
KR920004184B1 (en) Process for production of lepidocrosite
JPH0692641A (en) Production of needle gamma-feooh
KR910009210B1 (en) Method for manufacturing lepidocrocite
US4255409A (en) Process for producing acicular goethite
JP3166780B2 (en) Method for producing spindle-shaped goethite particles
JP3011221B2 (en) Method for producing acicular goethite particle powder
JPS58192308A (en) Manufacture of acicular alpha-feooh for magnetic recording material
JPS61141627A (en) Production of alpha-feooh needles
JPS6021818A (en) Preparation of acicular crystal of alphaoxy iron hydroxide

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee