KR960001910B1 - Preparation of 1,1-dichloro-1-fluoroethane - Google Patents

Preparation of 1,1-dichloro-1-fluoroethane Download PDF

Info

Publication number
KR960001910B1
KR960001910B1 KR1019920024479A KR920024479A KR960001910B1 KR 960001910 B1 KR960001910 B1 KR 960001910B1 KR 1019920024479 A KR1019920024479 A KR 1019920024479A KR 920024479 A KR920024479 A KR 920024479A KR 960001910 B1 KR960001910 B1 KR 960001910B1
Authority
KR
South Korea
Prior art keywords
tce
reactor
reaction
temperature
dichloro
Prior art date
Application number
KR1019920024479A
Other languages
Korean (ko)
Other versions
KR940014274A (en
Inventor
남경희
나두찬
김대수
Original Assignee
주식회사한국신화
권순영
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사한국신화, 권순영 filed Critical 주식회사한국신화
Priority to KR1019920024479A priority Critical patent/KR960001910B1/en
Publication of KR940014274A publication Critical patent/KR940014274A/en
Application granted granted Critical
Publication of KR960001910B1 publication Critical patent/KR960001910B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

1,1-Dichloro-1-fluoroethane is continuously prepared by : feeding and reacting the raw mixture contg. 1.1-1.5/1 mole of fluoric acid anhydride (HF) with 1,1,1-trichloroethane (1,1,1-TCE) then make to 5-10/1 mole of HF/1,1,1-TCE, at 80-100 deg.C under 10.5-12 Kg/cm2G; then recovering the obtd. products from a top of the reactor. The obtd. compsn. is useful as a substitute to chlorofluorocarbon(CFC)

Description

1,1-디클로로-1-플르오로 에탄의 제조방법Method for producing 1,1-dichloro-1-fluoro ethane

제1도 : 본 발명에 따른 HCFC-141b의 제조공정을 나타낸 것이다.1 shows a manufacturing process of HCFC-141b according to the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

R-1 : 반응기 V-1 : 염화수소저장조R-1: Reactor V-1: Hydrogen Chloride Storage Tank

P-1 : 펌프 R-2,3,4 : 리보일러P-1: Pump R-2,3,4: Reboiler

E-1,2,3,4 : 응축기 C-1,2,3,4,5 : 패키드 컬럼E-1,2,3,4: condenser C-1,2,3,4,5: packed column

본 발명은 1,1,1-트리클로로에탄(1,1,1-trichloroethane-이하 1,1,1-TCE라 한다)과 무수불산(이하 HF라 한다)을 반응시켜 1,1-디크로로-1-폴로로에탄을 제조하기 위한 개선된 방법에 관한 것이다.In the present invention, 1,1,1-trichloroethane (1,1,1-trichloroethane-hereinafter referred to as 1,1,1-TCE) and hydrofluoric anhydride (hereinafter referred to as HF) are reacted with 1,1-dichloro An improved method for preparing ro-1-poloroethane.

1,1-디클로로-1-플르오로에탄은 할로카본 분야에서는 전문용어로서 HCFC-141b로 잘 알려져 있다. 이 물질의 비점은 32℃로 상온에서 액체이며, 오존파괴지수가 기존의 클로로플르오로카본(CFC)에 비하여 10분 1정도이기 때문에 기존 CFC 대체품으로 평가받고 있다.1,1-Dichloro-1-fluoroethane is a terminology well known in the field of halocarbons as HCFC-141b. The boiling point of this substance is 32 ℃, and it is a liquid at room temperature. The ozone depletion index is estimated to be a replacement for CFCs because it is about 10 minutes 1 compared to conventional chlorofluorocarbons (CFCs).

HCFC-141b의 물성으로 보아 트리클로로플르오로메탄(CFC-11)의 대체제인 경질 우레탄폼(Urthane Foam) 발포제, 트리클로로트리플르오로에탄(CFC-113)의 대체적인 전자부품의 세정제 등으로 사용될 전망이다.Due to the properties of HCFC-141b, it can be used as a cleaning agent for rigid electronic foam blowing agent, which is an alternative to trichlorofluoromethane (CFC-11), and an alternative electronic component of trichlorotrifluoroethane (CFC-113). It is a prospect.

HCFC-141b의 제조방법은 출발원료인 염화 비닐리덴(Vinylidene Chloride) 또는 1,1,1,-트리클로로에탄(1,1,1-TCE)과 HF와의 반응을 들 수 있으며, 이 반응들은 할로겐 촉매를 사용하는 방법과 촉매를 사용하지 않는 방법, 즉 무촉매에 의한 방법으로 나눌 수 있다.HCFC-141b may be prepared by reacting a starting material of vinylidene chloride (Vinylidene Chloride) or 1,1,1, -trichloroethane (1,1,1-TCE) with HF, which are halogens. The method can be divided into a method using a catalyst and a method using no catalyst, that is, a method using no catalyst.

이들 제법의 반응식은 다음과 같다.The reaction scheme of these production methods is as follows.

………………………… (I) … … … … … … … … … … (I)

CH3CCl3+HFCH3CFCl2+HCL ……………………………… (II)CH 3 CCl 3 + HF CH 3 CFCl 2 + HCL... … … … … … … … … … … … (II)

상기 방법(Ⅰ)은 염화비닐리덴과 HF와의 부가 반응에 의해서 부산물인 염화수소의 생성없이 141b를 얻을 수 있는 이점이 있으나 염화비닐리덴의 전환율을 높이 유지하여야 하는 문제점이 있다.The method (I) has the advantage that 141b can be obtained without the production of hydrogen chloride as a by-product by the addition reaction of vinylidene chloride and HF, but there is a problem of maintaining a high conversion rate of vinylidene chloride.

또한 미반응 염화비닐리덴과 141b가 혼재시 각각의 비점이 32℃ 부근이므로 분리에 어려움이 있다.In addition, when unreacted vinylidene chloride and 141b are mixed, their boiling points are around 32 ° C., which makes it difficult to separate them.

대한민국 공개특허공보 제90-17969호에는 불화알루미늄 촉매(AlF3)를 사용하여 염화비닐리덴에 HF를 반응시켜서 141b를 제조하는 방법이 제안된 바 있다.Korean Unexamined Patent Publication No. 90-17969 has proposed a method of preparing 141b by reacting HF with vinylidene chloride using an aluminum fluoride catalyst (AlF 3 ).

그러나, 이 방법에서는 염화비닐리덴의 전환율을 높이기 위하여 3단계 공정에 걸쳐서 반응을 진행시키고 있다.However, in this method, the reaction is carried out in a three step process to increase the conversion rate of vinylidene chloride.

1단계 공정에서는 온도 25∼150℃, 압력 대기압∼160psig에서 염화비닐리덴과 HF를 기상으로 반응시킨다.In the first step, vinylidene chloride and HF are reacted in the gas phase at a temperature of 25 to 150 ° C. and a pressure of atmospheric pressure to 160 psig.

2단계 공정에서는 1단계 공정에서 생성된 생성물중에 함유되어 있는 미반응 염화비닐리덴을 줄이기 위하여 온도 5∼75℃, 압력 대기압∼80psig에서 HF를 공급하여 다시 반응시킨다.In the two-stage process, HF is supplied and reacted again at a temperature of 5 to 75 ° C. and a pressure of atmospheric pressure to 80 psig in order to reduce unreacted vinylidene chloride contained in the product produced in the first step.

그리고 3단계 공정에서는 수성 과망간산염 용액을 가하여 산화시키거나 브롬으로 브롬화시켜서 남아 있는 미량의 염화비닐리덴을 제거한다.In a three-step process, an aqueous permanganate solution is added to oxidize or bromine with bromine to remove the remaining traces of vinylidene chloride.

이러한 조작을 거쳐서 원료인 염화비닐리덴의 전환율은 다소 높일 수 있으나, 공정이 복잡하여 운전조작이 어렵고 장치비가 많이 들게 되므로 공업화 하기에는 부적합하다.Through this operation, the conversion rate of the raw material vinylidene chloride can be somewhat increased, but it is not suitable for industrialization because the operation is complicated and the operation cost is high and the equipment cost is high.

대한민국 공개 특허공보 제90-1629호에서는 불화알루미늄 촉매(AlF3)를 사용하여 염화비닐리덴에 HF를 가하여 기상반응에 의해서 HCFC-141b를 제조하는 방법에 대하여 기재하고 있다.Korean Patent Publication No. 90-1629 discloses a method for producing HCFC-141b by gas phase reaction by adding HF to vinylidene chloride using an aluminum fluoride catalyst (AlF 3 ).

반응조건을 보면, 온도 120℃ 이하, 반응몰비는 염화비닐리덴 1mole에 대하여 HF는 1.5∼10mole로 공급하고 압력은 대기압에서 반응을 실시한다.In terms of the reaction conditions, the temperature is 120 DEG C or less, the reaction molar ratio is supplied to 1 mole of vinylidene chloride, HF is 1.5 to 10 mole, and the pressure is carried out at atmospheric pressure.

그러나 이 방법은 HF가 다량으로 투입됨에 따라 미반응 HF가 많이 발생되나, 이를 5% 수산화칼륨(KOH) 용액으로 세척시켰다.However, this method generates a lot of unreacted HF as a large amount of HF is added, but it is washed with 5% potassium hydroxide (KOH) solution.

따라서, HF의 회수 재사용이 안되므로 원료 HF의 전환율이 낮을 뿐만 아니라 HCFC-141b의 수율도 89.6%로 낮은 결점이 있다.Therefore, since the recovery reuse of HF is not possible, not only the conversion rate of the raw material HF is low but also the yield of HCFC-141b is low as 89.6%.

상기 방법(Ⅱ)에서는, 1,1,1-트리클로로에탄에 HF를 반응시켜 HCFC-141b를 제조하는 방법으로서 촉매를 사용할 경우에는 반응속도에 영향을 주어 HCFC-142b, HCFC-143a의 생성과 촉매 사용에 따른 트라(Tar) 생성과 고비점 물질이 생성될 수 있으므로 이들의 정체, 분리에 어려움이 따른다.In the above method (II), HFC is reacted with 1,1,1-trichloroethane to produce HCFC-141b. When a catalyst is used, the reaction rate is influenced to produce HCFC-142b and HCFC-143a. Because of the use of catalysts (Tar) and high-boiling materials can be produced, there is a difficulty in their stagnation, separation.

한편, 무촉매 반응시엔 부산물 생성은 적으나 1,1,1-TCE의 전환율이 나빠지는 등의 문제가 있다.On the other hand, in the non-catalytic reaction, there are problems such as the generation of by-products but a low conversion rate of 1,1,1-TCE.

미국특허 제2,894,044호를 보면, 불화알루미늄(AlF3), 불화주석(SnF4)을 촉매로 사용하여 1,1,1-TCE를 기상에서 불화(fluorination)시켜 HCFC-141b를 제조하는데 대해 기술하고 있다.US Pat. No. 2,894,044 describes the preparation of HCFC-141b by fluorination of 1,1,1-TCE in the gas phase using aluminum fluoride (AlF 3 ) and tin fluoride (SnF 4 ) as catalysts. have.

이 방법의 특징은 HF와 1,1,1-TCE를 예열시켜서 증기상으로 만든 후 촉매를 포함한 반응기에 보내서 반응시킨다.This method is characterized by preheating HF and 1,1,1-TCE to make it vapor phase and sending it to the reactor containing the catalyst for reaction.

반응조건을 보면, 예열기의 예열온도는 115∼170℃이며, 반응기 온도는 60∼125℃이며, 더 좋게는 90∼125℃로서 원료공급 몰비는 1,1,1-TCE 1몰당 1∼2몰의 HF를 공급한다.In the reaction conditions, the preheating temperature of the preheater is 115-170 ° C, the reactor temperature is 60-125 ° C, more preferably 90-125 ° C, and the molar ratio of the feedstock is 1-2 moles per 1 mole of 1,1,1-TCE. Supply HF.

그러나 이 방법은 기상으로 반응을 시킴에 따라 액상 반응보다 반응조건 조절이 어려울 뿐만 아니라 HCFC-141b의 수율이 11.2∼80.4%로 낮은 결점이 있다.However, this method is difficult to control the reaction conditions than the liquid phase reaction as the reaction in the gas phase, and has the disadvantage that the yield of HCFC-141b is 11.2-80.4%.

일본 특허공보 소 50-5681호에서는 무촉매 상태에서 HF와 1,1,1-TCE를 반응시켜 HCFC-141b, HCFC-142b를 제조하는 방법에 대해 기술하고 있다.Japanese Patent Publication No. 50-5681 describes a method for producing HCFC-141b and HCFC-142b by reacting HF with 1,1,1-TCE in the absence of a catalyst.

반응조건을 보면, 반응온도는 70∼140℃, 원료공급 몰비는 1,1,1-TCE 1몰당 4∼30몰의 HF를 공급한다.In terms of the reaction conditions, the reaction temperature is 70 to 140 ° C., and the molar ratio of the feedstock is 4 to 30 mol of HF per 1 mol of 1,1,1-TCE.

그러나 이 방법은 HF가 과량으로 공급됨에도 불구하고 전환율이 낮고(72%), 141b/142b 생성비가 68.06/31.94∼2.35/97.64(mole%)로서 142b의 선택성이 높기 때문에 141b의 제조방법으로는 부적합하다.However, this method is not suitable for the manufacturing method of 141b because the conversion rate is low (72%) and the production ratio of 141b / 142b is 68.06 / 31.94 to 2.35 / 97.64 (mole%) despite the excessive supply of HF, and the selectivity of 142b is high. Do.

일본특허 공개공보 평 2-152935호에서는 반응온도 40∼110℃, 반응압력 8∼10Kg/㎠·G에서 1mole의 1,1,1-TCE에 1∼4mole의 HF를 무촉매상태에서 액상 반응시키는 방법에 대해서 기술하고 있다.In Japanese Patent Laid-Open No. 2-152935, liquid phase reaction of 1 mole of HF with 1 mole of 1,1,1-TCE at 1 mole of 1,1,1-TCE at a reaction temperature of 40 to 110 ° C. and a reaction pressure of 8 to 10 Kg / cm 2 · G is carried out in the absence of a catalyst. The method is described.

그러나 이 방법에서는 반응 생성물을 반응기 하부로부터 액상으로 회수하는 액상 유출방법을 사용하며, 미반응 1,1,1-TCE가 많이 발생되어 원료 1,1,1-TCE의 전환율이 72∼79% 정도로 낮다. 따라서 반응성을 증대시키기 위하여 반응시간을 길게(2∼20시간)하고 있으나, 반응시간이 길어짐에 따라 일정량의 제품을 얻기 위해서는 반응기 용량이 커져야 하고 접촉시간이 길어짐에 따라서 부반응 물질이 생성되기 쉽고 에너지 소모량이 증대되어 경제적으로 불리하다.However, this method uses a liquid phase effluent method for recovering the reaction product from the bottom of the reactor to the liquid phase, and a lot of unreacted 1,1,1-TCE is generated so that the conversion rate of raw material 1,1,1-TCE is about 72 to 79%. low. Therefore, the reaction time is long (2 to 20 hours) in order to increase the reactivity, but as the reaction time increases, the reactor capacity needs to be increased to obtain a certain amount of product, and as the contact time increases, side reaction materials are easily generated and energy consumption is increased. This is increased and economically disadvantageous.

그리고 상기 특허에서는 연속식 보다는 회분식에 의하여 실험적으로 반응실험을 실시한 것으로 나타나있고 원료의 전환율과 141b의 선택성이 낮아 산업화에 적용하기에는 어려움이 있다.In the patent, it was shown that the reaction experiment was conducted experimentally by batch rather than continuous, and the conversion rate of raw materials and the selectivity of 141b are low, making it difficult to apply to industrialization.

본 발명은 상기 특허에서 열거된 문제점을 개선하기 위하여 파이롯트 프렌트(Pilot plant)에서 원료의 투입몰비와 원료의 반응액과의 접촉 방법을 변화시켜가면서 수차례의 반복 실험을 통하여 무촉매 상태에서 반응기 상부로부터 반응생성물을 기상으로 유출하는 기상유출법에 의하여 142b 및 143a등 부산물 생성을 최소화하면서 141b를 선택적으로 높은 수율로 제조할 수 있는 경제적으로 가장 유리한 제조방법을 제공하게 되었다.The present invention is a reactor in a non-catalytic state through a number of repeated experiments while changing the contact method of the feed molar ratio of the raw material and the reaction solution of the raw material in a pilot plant to improve the problems listed in the patent The gas phase effluent, which flows the reaction product from the top to the gaseous phase, provides the most economically advantageous method of producing 141b in a selective high yield while minimizing the production of by-products such as 142b and 143a.

본 발명에서의 상세한 반응 조건은 다음과 같다.Detailed reaction conditions in the present invention are as follows.

1) 무촉매 하에서 HF와 1,1,1-TCE를 액상반응시켜서 반응기 상부로부터 제품을 회수하는 기상유출법 사용1) Using gaseous effluent method to recover product from the top of reactor by liquid phase reaction of HF and 1,1,1-TCE under no catalyst

2) 반응계의 압력은 10.5∼12Kg/㎠·G에서 선택된다.2) The pressure of the reaction system is selected from 10.5 to 12 Kg / cm 2 · G.

3) 반응 온도는 80∼100℃에서 선택된다.3) The reaction temperature is selected at 80 to 100 ° C.

4) 반응기내에 존재하는 HF/1,1,1-TCE는 5∼10mole이 되도록 유지하면서 HF/1,1,1-TCE의 공급비를 1,1∼1.5/1몰로 조절한다.4) The feed ratio of HF / 1,1,1-TCE is controlled to 1,1 to 1.5 / 1 mol while maintaining HF / 1,1,1-TCE in the reactor to be 5-10 mole.

5) 원료투입 방법은 1,1,1-TCE는 반응기 상부로 HF는 반응기액 속으로 공급된다.5) In the raw material input method, 1,1,1-TCE is supplied to the top of the reactor, and HF is supplied into the reactor liquid.

6) 반응기 상부로부터 제품을 회수하고 회수한 제품중 미반응 HF와 1,1,1-TCE는 각각 HF 분리탑과 고비점 분리탑에서 분리회수하여 반응기에 되돌린다.6) Recover the product from the top of the reactor, and recover the unreacted HF and 1,1,1-TCE from the HF separation tower and the high boiling point separation tower and return them to the reactor.

7) 상기 제조방법은 연속식으로 실시한다.7) The manufacturing method is carried out continuously.

상기 조건에서 특징은 반응기내에 존재하는 HF/1,1,1-TCE를 5∼10mole로 유지하면서 생성된 제품을 반응기 상부로부터 기상으로 유출하는 기상 유출법을 사용하므로 일본특허 공개공보 평2-152935호와 같이 생성된 제품을 반응기 하부에서 액상으로 유출하는 액상유출법에 비하여 반응속도가 현저히 빠르므로 반응시간은 0.5∼1시간으로 충분하다.Under the above conditions, the feature is that it uses a gas phase outflow method to discharge the generated product from the top of the reactor to the gas phase while maintaining the HF / 1,1,1-TCE in the reactor to 5-10mole. The reaction time is considerably faster than the liquid phase outflow method in which the product produced as in the arc flows out from the bottom of the reactor to the liquid phase, so that the reaction time is 0.5 to 1 hour.

따라서 미반응 1,1,1-TCE가 적고 142b 및 143a와 같은 부산물 생성을 최소화할 수 있다. 또한, 본 발명의 방법은 연속식 공정이므로 미반응 HF와 1,1,1-TCE를 분리탑에서 분리회수하여 반응기에 재순환시켜 사용할 수 있으므로 원료의 높은 전환율과(HF : 90% 이상, 1,1,1-TCE 92%이상) 141b를 높은 선택율(97.7% 이상)로 제조할 수 있는 제조방법을 제공하고 있다.Therefore, less unreacted 1,1,1-TCE can be minimized and by-products such as 142b and 143a can be minimized. In addition, since the method of the present invention is a continuous process, the unreacted HF and 1,1,1-TCE can be separated and recovered in a separation column and recycled to the reactor, so that the high conversion rate of the raw material (HF: 90% or more, 1, 1,1-TCE 92% or more) to provide a manufacturing method capable of manufacturing 141b with a high selectivity (97.7% or more).

본 발명은 도면에 도시한 바와같은 통상적인 장비를 사용하여 행하여진다.The invention is accomplished using conventional equipment as shown in the figures.

온도를 조절할 수 있는 반응기(R-1)에 원료(HF, 1,1,1-TCE)를 공급한다. 이 반응기는 환류 컬럼 및 환류 응축기를 갖춰 반응기로부터 생기는 기류중의 미반응 원료(HF와 1,1,1-TCE) 물질을 환류시켜서 원료의 전환율을 높여준다. 반응생성물은 응축기(E-1)를 통하여 기체상태로 염화수소분리탑(C-2)으로 도입된다. 분리탑에 도입된 기체는 탑정에서 환류되어 액체와 정류되어 염화수소를 제외한 나머지 물질은 액화된다. 비응축 염화수소가스는 응축기(E-2)를 통하여 염화수소 흡수탑(C-3)의 하부로 도입되어 물에 의해 흡수되어 35% 염화수소 수용액으로 되어 염화수소 저장조(V-1)에 저장된다.The raw material (HF, 1,1,1-TCE) is supplied to the reactor (R-1) which can adjust the temperature. The reactor is equipped with a reflux column and a reflux condenser to reflux unreacted raw materials (HF and 1,1,1-TCE) in the air stream from the reactor to increase the conversion of the raw materials. The reaction product is introduced into the hydrogen chloride separation column (C-2) in a gaseous state through the condenser (E-1). The gas introduced into the separation column is refluxed in the column and rectified with the liquid to liquefy the rest of the material except hydrogen chloride. The non-condensed hydrogen chloride gas is introduced into the lower portion of the hydrogen chloride absorption tower (C-3) through the condenser (E-2), is absorbed by the water to form a 35% aqueous hydrogen chloride solution and stored in the hydrogen chloride storage tank (V-1).

이때 리보일러(R-2)에서 유출된 유기물은 불화수소 분리탑(C-4)로 이송되어 탑상부로부터 미반응 HF는 회수하여 반응기(R-1)에 재반응시켜서 원료의 전환율을 높여준다. 그리고 리보일러(R-3)로부터 유출된 미정제 제품은 고비물 분리탑(C-5)으로 이송되어 미반응 1,1,1-TCE는 리보일러(R-4)에서 유출되어 반응기(R-1)에 재순환 시키고 탑상부로부터 유출된 유기물은 제품 분리탑과 알칼리세정 및 건조 공정을 거쳐 제품 저장조로 보내어진다.At this time, the organic matter flowing out of the reboiler (R-2) is transferred to the hydrogen fluoride separation tower (C-4) to recover the unreacted HF from the top of the column and re-reacted in the reactor (R-1) to increase the conversion rate of the raw material. . The crude product leaked from the reboiler (R-3) is transferred to the fertilizer separation tower (C-5) and the unreacted 1,1,1-TCE is discharged from the reboiler (R-4) to the reactor (R). The organic matter recycled to -1) and discharged from the top of the tower are sent to the product storage tank through the product separation tower, alkali washing and drying process.

이때 환류 응축기(E-1)에는 냉각수 온도가 60℃가 되도록 유지시키고 염화수소 응축기(E-2)에는 -30∼-32℃의 저온냉매를 그리고 고비물 응축기(E-3)에는 -15∼-20℃의 냉매를 통과시켜 준다.At this time, the refrigeration condenser (E-1) is maintained at a cooling water temperature of 60 ℃, hydrogen chloride condenser (E-2) is a low-temperature refrigerant of -30 ~ -32 ℃, and the heavy water condenser (E-3) -15 ~- Pass the refrigerant at 20 ℃.

이하 본 발명의 내용은 구체적인 실시예를 들어 설명한다.Hereinafter, the content of the present invention will be described with reference to specific examples.

그리고 본 발명의 내용이 실시예에만 국한되는 것은 아니다.And the content of the present invention is not limited only to the Examples.

[실시예 1]Example 1

반응기(R-1)에 HF 7.5Kg, 1,1,1-TCE 10Kg을 초기 공급한다. 여기에 서서히 열을 가하여 반응기 온도는 80℃, 반응압력을 10.5Kg/㎠·G 정도로 유지시키면서 HF와 1,1,1,-TCE를 동시에 연속적으로 공급한다.The reactor R-1 is initially fed with 7.5 Kg of HF and 10 Kg of 1,1,1-TCE. Heat was gradually added thereto, and HF and 1,1,1, -TCE were continuously supplied simultaneously while maintaining the reactor temperature at 80 ° C. and the reaction pressure at about 10.5 Kg / cm 2 · G.

이때, HF/1,1,1-TCE의 공급 몰비는 반응기내에 존재하는 HF/1,1,1-TCE가 5/1mole이 유지되도록 조절한다. 반응기(R-1)의 내부온도는 80℃, 환류컬럼(C-1)의 탑정온도는 60℃로 유지시켰다. 생성된 가스는 환류 응축기(E-1) 상부로부터 계내의 압력을 유지시키면서 염화수소 분리탑(C-2)로 도입된다.At this time, the feed molar ratio of HF / 1,1,1-TCE is adjusted to maintain 5 / 1mole of HF / 1,1,1-TCE present in the reactor. The internal temperature of the reactor (R-1) was maintained at 80 ° C and the top temperature of the reflux column (C-1) at 60 ° C. The produced gas is introduced into the hydrogen chloride separation tower C-2 while maintaining the pressure in the system from the top of the reflux condenser E-1.

이때 염화수소 분리탑의 하부 온도는 75∼80℃, 상부온도 -15∼-30℃로 유지시킨다. 응축기(C-2)를 통하여 염화수소가스는 염화수소 흡수탑(C-3)으로 도입되어 흡수되어 35% 염화수소 수용액으로 저장된다.At this time, the lower temperature of the hydrogen chloride separation tower is maintained at 75 ~ 80 ℃, the upper temperature -15 ~ -30 ℃. Hydrogen chloride gas is introduced into the hydrogen chloride absorption tower (C-3) through the condenser (C-2) to be absorbed and stored in 35% aqueous hydrogen chloride solution.

그리고 리보일러(R-2)에서 유출된 유기물은 불화수소산분리탑(C-4)과 고비물 분리탑(C-5)을 거쳐서 미반응 HF와 1,1,1-TCE는 회수되어 반응기(R-1)에 재반응시켜서 원료의 전환율을 높여준다.In addition, the organics leaked from the reboiler (R-2) are recovered through the hydrofluoric acid separation tower (C-4) and the high-fertilizer separation tower (C-5), and unreacted HF and 1,1,1-TCE are recovered and the reactor ( Re-react to R-1) to increase the conversion of raw materials.

그리고 유출된 미정제 제품은 제품분리탑과 알카리세정 공정 및 건조 공정을 거쳐서 제품저장조로 보내어진다. 위 조건하에서 실시한 결과는 아래와 같다.The crude product that is leaked is sent to the product storage tank through the product separation tower, alkali cleaning process and drying process. The results under the above conditions are as follows.

[실시예 2]Example 2

실시예 1과 동일장치에서 실시되며 반응온도, 반응압력, 반응기내의 몰비를 제외한 반응조건은 실시예 1과 동일하다. 여기서 반응온도 100℃, 반응압력 12Kg/㎠·G, 반응기내 몰비는 HF/1,1,1-TCE=7/1몰로 유지한다.It is carried out in the same apparatus as in Example 1 and the reaction conditions except for the reaction temperature, the reaction pressure, the molar ratio in the reactor is the same as in Example 1. Here, the reaction temperature is 100 ° C., the reaction pressure is 12 Kg / cm 2 · G, and the molar ratio in the reactor is maintained at HF / 1,1,1-TCE = 7/1 mol.

위 조건하에서 실시한 결과는 아래와 같다.The results under the above conditions are as follows.

[실시예 3]Example 3

실시예 1과 동일장치 동일조건에서 실시하며, 반응기내 몰비는 HF/1,1,1-TCE=10/1몰이 되게 조절한다.The same apparatus as in Example 1 was carried out under the same conditions, and the molar ratio in the reactor was adjusted to be HF / 1,1,1-TCE = 10/1 mol.

위 조건하에서 실시한 결과는 아래와 같다.The results under the above conditions are as follows.

Claims (1)

1,1,1-트리클로로에탄과 무수불산을 무촉매하에서 액상 반응시켜서 1,1-디클로로-1-플르오로에탄을 연속적으로 제조하는 방법에 있어서, 반응기내로의 원료공급비율(HF/1,1,1-TCE의 몰비)을 1,1∼1.5/1mole로 유지시켜 반응시의 무수불산/1,1,1-트리클로로에탄의 몰비가 5∼10/1이 되도록 하고, 10.5∼12Kg/㎠·G의 압력과 80∼100℃의 온도에서 반응시키고 반응생성물을 반응기 상단으로부터 회수하는 연속적인 공정(Contineous process)으로 1,1-디클로로-1-플르오로에탄을 제조하는 방법.In the method for continuously producing 1,1-dichloro-1-fluoroethane by liquid-reacting 1,1,1-trichloroethane and hydrofluoric anhydride in the absence of a catalyst, the feed ratio of the raw materials into the reactor (HF / 1, Molar ratio of 1,1-TCE) is maintained at 1,1 to 1.5 / 1 mole so that the molar ratio of hydrofluoric anhydride / 1,1,1-trichloroethane in the reaction is 5 to 10/1, and 10.5 to 12 Kg / A process for producing 1,1-dichloro-1-fluoroethane by a continuous process of reacting at a pressure of cm 2 · G at a temperature of 80 to 100 ° C. and recovering the reaction product from the top of the reactor.
KR1019920024479A 1992-12-16 1992-12-16 Preparation of 1,1-dichloro-1-fluoroethane KR960001910B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019920024479A KR960001910B1 (en) 1992-12-16 1992-12-16 Preparation of 1,1-dichloro-1-fluoroethane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019920024479A KR960001910B1 (en) 1992-12-16 1992-12-16 Preparation of 1,1-dichloro-1-fluoroethane

Publications (2)

Publication Number Publication Date
KR940014274A KR940014274A (en) 1994-07-18
KR960001910B1 true KR960001910B1 (en) 1996-02-06

Family

ID=19345765

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019920024479A KR960001910B1 (en) 1992-12-16 1992-12-16 Preparation of 1,1-dichloro-1-fluoroethane

Country Status (1)

Country Link
KR (1) KR960001910B1 (en)

Also Published As

Publication number Publication date
KR940014274A (en) 1994-07-18

Similar Documents

Publication Publication Date Title
EP0919527B1 (en) Gas phase fluorination of 1,1,3,3-tetrachloro-2-propene
US3947558A (en) Method of recovering HF from mixtures containing C1 -C3 halocarbon compounds
KR0156256B1 (en) Process for the preparation of 1,1,1,2-tetra-fluoroethane
EP0734366B1 (en) Production of pentafluoroethane
US20050004408A1 (en) Process for the production of difluoromethane
WO1998000378A1 (en) Process for the manufacture of 1,1,1,3,3-pentafluoropropane and 1,1,1,3,3,3-hexafluoropropane
EP0754170B1 (en) Production of pentafluoroethane
EP0760808B1 (en) Single stage process for producing hydrofluorocarbons from perchloroethylene
WO2000024696A1 (en) Method of producing hydrofluorocarbons
EP1024125B1 (en) Process for producing 1,1,1,2,2-pentafluoroethane
US7786335B2 (en) Method for preparing 1,1,1,3,3-pentafluoropropane
EP0919528B1 (en) Process for preparing 1,1,1,3,3-pentafluoropropane
EP0973689B1 (en) Hydrogen fluoride recovery process
RU2024474C1 (en) Method of synthesis of 1,1-dichloro-1-fluoroethane and a method of 1,1-dichloroethylene content decrease
KR960001910B1 (en) Preparation of 1,1-dichloro-1-fluoroethane
KR101024100B1 (en) Process for the production of dichlorotrifluoroethane
EP0853605B1 (en) Process for the manufacture of 1,1,1,2-tetrafluoroethane
US5959166A (en) Method for concurrently producing different hydrofluoro carbons
WO1998006685A1 (en) Removal of water from process streams
JP3801241B2 (en) Process for producing 1,1,1-trihaloethane
US5559276A (en) Process for the manufacture of 1,1,1,2-tetrafluoroethane
KR100361585B1 (en) Preparation of Hexafluoropropylene(HFP) by the pyrolysis of trifluoromethane(R23) and tetrafluoroethylene(TFE)
US20060129005A1 (en) Method of producing hydrofluorocarbons
KR100569245B1 (en) Preparation method of pentafluoroethyliodide over fluorinated metal catalysts
KR950011102B1 (en) Co-producing mehtod of 1,1-dichloro-1-fluoroethane and 1-chloro-1,1-difluoro ethane

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120131

Year of fee payment: 17

EXPY Expiration of term