KR960000083B1 - Method for manufacturing of polyester fiber - Google Patents

Method for manufacturing of polyester fiber Download PDF

Info

Publication number
KR960000083B1
KR960000083B1 KR1019930023980A KR930023980A KR960000083B1 KR 960000083 B1 KR960000083 B1 KR 960000083B1 KR 1019930023980 A KR1019930023980 A KR 1019930023980A KR 930023980 A KR930023980 A KR 930023980A KR 960000083 B1 KR960000083 B1 KR 960000083B1
Authority
KR
South Korea
Prior art keywords
polyester
weight
parts
compound
polyester fiber
Prior art date
Application number
KR1019930023980A
Other languages
Korean (ko)
Other versions
KR950014387A (en
Inventor
임대우
윤성로
Original Assignee
제일합섬주식회사
박홍기
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일합섬주식회사, 박홍기 filed Critical 제일합섬주식회사
Priority to KR1019930023980A priority Critical patent/KR960000083B1/en
Publication of KR950014387A publication Critical patent/KR950014387A/en
Application granted granted Critical
Publication of KR960000083B1 publication Critical patent/KR960000083B1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • D01F1/106Radiation shielding agents, e.g. absorbing, reflecting agents
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/441Yarns or threads with antistatic, conductive or radiation-shielding properties
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/14Dyeability
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/22Physical properties protective against sunlight or UV radiation

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Artificial Filaments (AREA)

Abstract

The polyester fiber is produced by reacting a diol with dicarboxylic acid(or its ester deriv.) to obtain polyester, reacting the polyester with 2.0˜6.0parts colloidal silica sol prepared by dispersing 50˜100nm spherical silica in ethylene glycol and 1.0˜3.0parts slurry prepared by dispersing 0.1˜0.3 micron titanium oxide into ethylene glycol to obtain a polyester chip, mixing the polyester chip with a ultraviolet absorbing agent of formula (I), (II) and (III) and a thermal stabilizer, and spinning the mixture. In the formulas, R1 and R2 are each H, OH, methoxy or ethoxy; A1 is C1-5 alkyl; A2 is C1-3 aliphatic hydrocarbon. The polyester fiber has a good UV shieldability and bathochromic affect.

Description

폴리에스터 섬유의 제조방법Method for producing polyester fiber

본 발명은 자외선 차단성능 및 심색성이 우수한 폴리에스터 섬유의 제조방법에 관한 것으로, 좀더 구체적으로는 디올과 디카르본산 또는 이들의 에스테르 형성성 유도체의 반응으로 생성되는 폴리에스터를 제조함에 있어서, 에스테르 교환반응중에 에틸렌글리콜에 분산된 실리카졸을 투입하여 반응시킨 중합체와 하기 일반식(I), (II) 및 (III)으로 표현되는 화합물을 혼련 방사하여 자외선 차단성능 및 심색성을 향상시키는 것을 특징으로 하는 폴리에스터 섬유의 제조방법에 관한 것이다.The present invention relates to a method for producing a polyester fiber having excellent UV protection and deep colorability, and more particularly, in preparing a polyester produced by the reaction of a diol and dicarboxylic acid or an ester-forming derivative thereof. It is characterized by improving the UV blocking performance and deep color by kneading and spinning the polymer reacted by adding silica sol dispersed in ethylene glycol during the exchange reaction and the compound represented by the following general formulas (I), (II) and (III): It relates to a method for producing a polyester fiber.

여기서, R1과 R2는 수소, 하이드록시, 메톡시 또는 에톡시기에서 각각 선택된 것이고, A1은 탄소수 1~5의 알킬기를 포함하는 화합물이며, A2는 탄소수 1~3의 지방족 탄화수소기를 포함하는 화합물이다.Wherein R 1 and R 2 are each selected from hydrogen, hydroxy, methoxy or ethoxy groups, A 1 is a compound containing an alkyl group of 1 to 5 carbon atoms, and A 2 contains an aliphatic hydrocarbon group of 1 to 3 carbon atoms. It is a compound.

폴리에스터 섬유 자체는 기계적 강도 및 제반물리, 화학적 특성이 우수한 반면에 섬유표면의 빛반사량이 커서 심색성이 저하되는 문제점이 있으므로 이를 개선하기 위한 연구가 활발히 진행되어 왔다. 예를들어, 심색성을 부여하기 위한 대표적인 방법으로는 폴리에스터 섬유표면에 저굴절 수지를 코팅하는 방법과 섬유표면을 플라즈마 가공처리하여 표면에 요철을 부여하는 방법 및 중합공정시 첨가제를 투입하여 중합체를 얻고 방사 이후에 알카리 감량처리를 행하여 표면요철 효과에 의한 심색성 부여방법이 공지되어 왔다. 그러나, 섬유의 제반특성과 경제적인 면을 고려할 때 중합개질 및 알카리 감량법을 이용한 심색성 부여법이 실용화되고 있으며, 이와 같은 제조방법은 일본 특개소 56-45922, 56-47428-, 58-13717, 60-59171, 61-258018호 등에 공지되어 있지만, 심색성 및 방사성이 만족할만한 효과를 얻을 수 없었다.The polyester fiber itself has excellent mechanical strength, various physical properties, and chemical properties, but has a problem that the light reflection amount of the fiber surface is large and the color depth is degraded. For example, a representative method for imparting color depth is a method of coating a low refractive resin on the surface of polyester fiber, a method of imparting irregularities on the surface by plasma processing the fiber surface, and adding an additive during the polymerization process The method of imparting color depth due to surface irregularities by performing alkali reduction treatment after spinning is known. However, considering the general characteristics and economic aspects of the fiber, the method of imparting color depth using polymerization modification and alkali reduction method has been put into practical use, and such a manufacturing method is disclosed in Japanese Patent Laid-Open Nos. 56-45922, 56-47428-, 58-13717, 60-59171, 61-258018 and the like, but satisfactory color depth and radioactivity could not be obtained.

한편, 전세계적으로 프레온의 다량 사용에 의하여 오존층이 파괴되고 있고, 이로인해 지구에 도달하는 자외선량이 증가하고 있으므로 자외선으로부터 피부를 보호해야할 필요가 커지고 있다. 태양광선중 180nm에서 400nm의 파장영역을 갖는 자외선은 파장영역에 따라 UV-A,B 및 C파등으로 분류되는데 이중 중파장에서 장파장 영역인 290nm에서 400nm의 UV파는 멜라닌의 증가, 콜라겐 및 다당류 등을 감소시킴으로써 피부암이나 피부노화 등의 원인이 된다. 특히 인체에 가장 유해한 자외선은 피부암을 일으킬 수 있는 UV B파로서, 290~320nm 범위인 UV B파를 중심으로 최대한 넓은 자외선 영역에 걸쳐 차단성을 갖는 섬유가 요구되고 있다.On the other hand, the ozone layer is destroyed by the use of Freon around the world, and because of this, the amount of ultraviolet rays reaching the earth is increasing. Therefore, there is an increasing need to protect the skin from ultraviolet rays. Ultraviolet rays with a wavelength range of 180nm to 400nm in the sunlight are classified into UV-A, B and C waves according to the wavelength range. Among them, UV waves of 290nm to 400nm, which are long-wavelength regions, increase melanin, collagen and polysaccharides, etc. Reduction may cause skin cancer or skin aging. In particular, the ultraviolet rays most harmful to the human body is a UV B wave that can cause skin cancer, and a fiber having a blocking property over a wide range of ultraviolet rays is required, centering on the UV B wave in the range of 290 to 320 nm.

폴리에스터 섬유제품에 자외선 차단기능을 부여하는 방법으로는 후가공 방식에 의해 자외선 차단물질을 섬유표면에 부착시키는 방법이 주로 사용되어 왔으며, 기술적인 수단으로서는 흡진법과 패딩법이 이용되고 있으나 분자구조나 분자량적으로 보아 섬유에 고용화되기 쉽고, 자외선 차단기능 물질은 융점이 높아서 승화성이 낮고 독성등 피부자극성이 낮아야만 하며, 자외선 차단효과가 있는 물질의 안정된 고착이 곤란하다. 또한, 자외선 차단가공이 되어 있다하더라도 실과 실의 극간, 섬유와 섬유의 극간은 가공제가 제대로 침투할 수 없으므로 차단효과에 한계가 있다. 또 다른 후가공법으로는 직물코팅 또는 라미네이팅 방법등이 있으나 자외선 차단효과가 우수하고, 가공제의 내구성, 섬유와의 접착을 고려할 때 비교적 용이한 방법이나, 촉감을 크게 저하시키는 문제점이 있어 자외선 차단성이 특히 요구되는 의류용도로는 실제로 적용이 불가능하다. 따라서, 자외선 차단물질을 섬유내부에 직접 혼입시키는 방법으로 연구개발이 주로 진행되고 있다. 섬유내부에 직접 호입하는 방법은 후가공법에 비해 내구성이 우수하고, 섬유제품의 촉감을 저해하지 않는등 많은 장점을 갖고 있으나 제조방법상 고도의 기술을 필요로 하기 때문에 실용화하기 위해서는 중합, 방사, 제직, 고차가공 등의 핵심기술 확보를 요하고 있다. 섬유내부에 직접 혼입할 때 사용되는 자외선 차단제는 무기계 자외선 차단물질과 유기계 자외선 차단물질로 구분되는데 무기계 자외선 차단물질로는 주로 산화아연, 산화티탄등이 이용되며, 섬유고분자내에 혼입하기 위해서는 입자를 균일분산시키는 기술 및 입도관리등이 후가공성 및 품질에 지대한 영향을 미치게 된다. 유기계 자외선 차단물질의 사용에 있어서는 열안정성 및 인체안정성들을 우선적으로 교려해야 한다.As a method of imparting ultraviolet ray blocking function to polyester fiber products, a method of attaching an ultraviolet ray blocking material to the fiber surface by a post-processing method has been mainly used. As a technical means, a dust reduction method and a padding method are used, In terms of molecular weight, it is easy to be solubilized in the fiber, and the UV-blocking material should have low melting point due to its high melting point and low skin irritation such as toxicity, and it is difficult to stably fix the UV-blocking material. In addition, even if the UV protection processing, the gap between the yarn and the yarn, between the fiber and the fiber between the fibers can not penetrate properly, there is a limit to the blocking effect. Another post-processing method is fabric coating or laminating method, but it has excellent UV blocking effect, and is relatively easy in consideration of durability of processing agent and adhesion to fiber, but it has a problem of greatly deteriorating touch. This particularly required apparel use is not practically applicable. Therefore, research and development is mainly progressed by incorporating a sunscreen material directly into the fiber. The direct method of incorporation into the fiber has many advantages, such as superior durability and post-processing, which does not impair the feel of the textile product.However, since the manufacturing method requires high technology, polymerization, spinning, It is necessary to secure core technologies such as weaving and high-order processing. The sunscreen used for direct incorporation into the fiber is classified into an inorganic sunscreen material and an organic sunscreen material. As the inorganic sunscreen material, mainly zinc oxide and titanium oxide are used. Dispersion technology and particle size control have a great influence on post-processability and quality. In the use of organic sunscreen materials, thermal stability and human stability should be considered first.

예를들어, 일본 특개평 5-323218호에는 중합시 산화티탄, 산화아연, 규소계 등의 무기계 자외선 차단물질 및 자외선 흡수특성을 갖는 유기계 차단물질을 투입하여 방사하는 방법이 소개되고 있으나, 무기계 입자를 투입시 슬러리화에 따른 분산성 조절의 문제점, 중합공정중 장기간에 걸친 발열반응에 따른 무기입자간의 2차적 응집으로 방사시 사절 발생 및 과량의 입자로 인한 제직성 불량, 염색가공 공정중 염색불량 등의 문제점을 안고 있다.For example, Japanese Patent Laid-Open No. 5-323218 discloses a method of injecting and emitting inorganic UV-blocking materials such as titanium oxide, zinc oxide, silicon-based and organic-blocking materials having ultraviolet absorption characteristics during polymerization. Problem of controlling dispersibility due to slurrying during the injection process, trimming occurs during spinning due to secondary aggregation between inorganic particles due to exothermic reaction during a long time during polymerization process, weaving defect due to excessive particles, and dyeing defect during dyeing process Has problems such as;

따라서, 본 발명의 목적은 중합시 무기계 무립자의 과량투입에 따른 문제점과 자외선 흡수제를 중합시 투입함에 따른 자외선 흡수제의 열안정성 저하로 인한 칩의 색조악화, 자외선 차단성능의 문제점을 개선하여 심색성 및 자외선 차단성능이 우수한 폴리에스터 섬유의 제조방법을 제공하는데 있다.Accordingly, an object of the present invention is to improve the color degradation and UV blocking performance due to the problem of excessive input of inorganic particles in the polymerization and the degradation of the thermal stability of the ultraviolet absorber due to the addition of the ultraviolet absorber during polymerization, the problem of deep colorability and It is to provide a method for producing a polyester fiber excellent in UV protection performance.

상기 목적 뿐만 아니라 용이하게 표출될 수 있는 또 다른 목적을 달성하기 위하여 본 발명에서는 디올과 디카르본산 또는 이들의 에스테르 형성성 유도체를 반응시키되 에스테르 교환반응시키되 에스테르 교환반응중에 에틸렌글리콜에 분산된 실리카졸을 투입하여 반응시키고 중축합 반응시켜 중합체를 얻고, 이 중합체와 상기 일반식(I),(II) 및 (III)으로 표현되는 화합물을 혼련, 방사하므로서 심색성 및 자외선 차단성능이 우수한 폴리에스터 섬유를 얻을 수 있다.In order to achieve the above object as well as another object that can be easily expressed in the present invention, the diol and dicarboxylic acid or ester-forming derivatives thereof are reacted, but transesterified, silica sol dispersed in ethylene glycol during the transesterification reaction. Was added to react and polycondensation to obtain a polymer, and the polyester fiber excellent in deep color and UV blocking performance by kneading and spinning the polymer and the compounds represented by the general formulas (I), (II) and (III). Can be obtained.

본 발명을 좀더 구체적으로 설명하면 다음과 같다.The present invention will be described in more detail as follows.

디올과 디카르본산 또는 이들의 에스테르 형성성 유도체를 반응시켜 폴리에스터를 제조함에 있어서 에스테르 교환반응중에 평균입자 직경이 50~100nm인 구상실리카를 에틸렌글리콜에 분산시킨 콜로이드형 실리카졸을 생성 폴리에스터에 대한 실리카 기준으로 2.0~6.0중량부와 평균입자 직경이 0.1~0.31인 산화티탄을 에틸렌글리콜에 분산시킨 슬러리를 생성 폴리에스터에 대한 산화티탄 기준으로 1.0~3.0중량부 투입하여 반응시켜 심색성이 우수한 폴리에스터 칩을 제조한 후, 심색성 폴리에스터 칩과 유기계 차단제 및 특수 열안정제를 혼련시켜 방사하여 방사성 및 사물성이 안정되고 열안정성 및 고도의 자외선 차단기능을 갖고 가시광선 차단효과로 인한 쿨링(cooling)성 부여, 심색효과를 동시에 갖는 폴리에스터 섬유를 제조하였다.In preparing polyester by reacting diol with dicarboxylic acid or ester forming derivatives thereof, a colloidal silica sol in which spherical silica having an average particle diameter of 50 to 100 nm is dispersed in ethylene glycol is produced during a transesterification reaction. Produced a slurry obtained by dispersing 2.0 to 6.0 parts by weight of titanium oxide and an average particle diameter of 0.1 to 0.31 titanium oxide in ethylene glycol, and reacted by adding 1.0 to 3.0 parts by weight based on titanium oxide to polyester to react. After manufacturing the polyester chip, the deep color polyester chip, organic blocker and special thermal stabilizer are kneaded and radiated to stabilize the radioactivity and object property, have thermal stability and high UV protection, and cool due to visible light blocking effect. A polyester fiber having both cooling and deep color effects was prepared.

본 발명에서 사용되는 구상실리카의 평균입자 직경과 투입함량은 방사성, 심색성, 자외선 차단성에 대한 상호관계를 결정짓는 중요한 기준으로서 평균입자 직경이 50nm 미만이거나 투입량이 2.0중량부 이하일 경우에는 알칼리 감량시 심색성을 좌우하는 요철의 깊이가 저하되거나 요철의 수가 적어 심색성능이 저하되고 광산란 효율의 저하로 자외선 차단성이 저하되며, 평균입자 직경이 100nm이상이거나 투입량이 6.0중량부 이상일 경우에는 입자의 2차 응집 및 조대화로 인한 방사성 불량문제가 야기된다. 또한, 병행하여 투입되는 이산화티탄의 경우도 자외선 차단성, 방사성, 심색성의 상호관계를 고려하면 평균입경은 0.1~0.31, 투입량은 1.0~3.0중량부로 하는 것이 효과적이다.The average particle diameter and the input content of the spherical silica used in the present invention are important criteria for determining the interrelationship between radioactivity, color depth, and UV blocking property. When the average particle diameter is less than 50 nm or the input amount is 2.0 parts by weight or less, alkali reduction is performed. Depth of concave-convexity which affects color depth is decreased, or the number of concave-convexities is decreased, so deep color performance is deteriorated and UV-blocking property is deteriorated due to light scattering efficiency deterioration. The problem of poor radioactivity due to coagulation and coarsening is caused. In addition, in the case of titanium dioxide introduced in parallel, the average particle size is 0.1 to 0.31 and the dose is 1.0 to 3.0 parts by weight in consideration of the interrelationship between ultraviolet ray shielding, radioactivity and color depth.

고굴절율제나 자외선 흡수제가 존재하는 고분자 물질에 광이 조사될 때 자외선 영역인 180~400nm에서는 고굴절율제나 자외선 흡수제 모두가 흡수에 의한 자외선 차단이 일어나며, 가시광 영역에서는 고굴절율제의 경우 산란 혹은 반사에 의한 가시광선 차단이, 자외선 흡수제의 경우는 투과가 주체가 되어 열선을 차단하는 것으로 알려져 있다. 특히, 자외선 흡수제의 경우 첨가되는 흡수제의 선택이 자외선 차단효과 부여에 중요한 요인이 된다. 일반적으로 자외선 흡수제는 하기 일반식(I), (II) 또는 (IV)로 표현되는 화합물이 주로 사용된다.When light is irradiated on a polymer material having a high refractive index agent or a UV absorber, UV blocking by both the high refractive index agent and the ultraviolet absorber occurs in the ultraviolet region of 180 to 400 nm, and in the visible region, scattering or reflection is caused by the high refractive index agent. In the case of the ultraviolet absorber, the visible light is blocked, and transmission is mainly known to block the hot wire. In particular, in the case of the ultraviolet absorber, the selection of the absorbent added is an important factor in providing the UV blocking effect. Generally, the ultraviolet absorber is mainly a compound represented by the following general formula (I), (II) or (IV).

여기서, R1과 R2는 수소, 하이드록시, 메톡시 또는 에톡시기에서 각각 선택한 것이고, A1은 탄소수 1~5의 알킬기를 포함하는 화합물이며, R3는 수소 또는 C1~C10의 알킬기이다.Wherein, R 1 and R 2 is hydrogen, hydroxy, methoxy or will each selected from an ethoxy group, A 1 is a compound containing an alkyl group of a carbon number of 1 ~ 5, R 3 is an alkyl group of hydrogen or C 1 ~ C 10 to be.

일반식(I)로 표현되는 화합물의 대표적인 예로는 R1은 수소이고 R2가 -OH인 화합물, R1은 수소이고 R2가 메톡시기인 화합물 또는 R1및 R2가 메톡시긴인 화합물이 있으며, 일반식(II)로 표현되는 화합물의 예로는 A1이 메틸, 에틸, 부틸 또는 t-부틸인 것이 있고, 일반식(IV)로 표현되는 화합물의 예로는 R3가 수소인 화합물, R3가 -C8H17인 화합물 또는 R3가 t-부틸인 화합물이 있다.Representative examples of the compound represented by the general formula (I) include a compound in which R 1 is hydrogen and R 2 is -OH, R 1 is hydrogen and R 2 is a methoxy group, or a compound in which R 1 and R 2 are methoxygin Examples of the compound represented by the general formula (II) include A 1 being methyl, ethyl, butyl or t-butyl. Examples of the compound represented by the general formula (IV) include a compound wherein R 3 is hydrogen. There are compounds in which R 3 is -C 8 H 17 or compounds in which R 3 is t-butyl.

그러나, 일반식(I) 화합물의 경우에는 반응기로 -OH기를 자유롭게 조절할 수 있다는 점 때문에 이온결합이 가능한 섬유에 대해서는 이용 가능성이 높으나 가격이 비싸다는 단점이 있으며, 일반식(II)의 화합물의 경우에는 반응기를 가지고 있지 않아서 이용에 상당한 제약을 받고 있지만, 가격이 저렴하고 독성이 적으며, 고온수에서의 용해도가 비교적 높은 관계로 다수 이용되고 있고, 일반식(IV) 화합물의 경우에는 융점이 낮고, 승화성이 강하며, 흡수영역이 저파장이라는 점 때문에 실용성이 낮다.However, in the case of the compound of formula (I), it is highly available for the fiber which can be ion-bonded due to the fact that the -OH group can be freely controlled by the reactor, but has the disadvantage of being expensive. Although it does not have a reactor, it is considerably restricted in its use, but it is inexpensive, has low toxicity, and has been used due to its relatively high solubility in high temperature water, and has a low melting point in the case of the general formula (IV) compound. It has low practicality due to its strong sublimation and low absorption wavelength.

자외선 차단효과를 부여하기 위한 종래의 방법으로는 일반식(I)로 표현되는 벤조페논계 화합물 또는 일반식(II)로 표현되는 베조트리아졸계 화합물을 중축합 반응시에 단독투입하여 사용하였지만, 자외선 흡수제 자체가 중합반응시에 고열에 의하여 분해되어 자외선 차단성능을 상실하고 칩의 색조 및 섬유의 색조를 악화시키는 경우가 자주 있었다.As a conventional method for imparting a sunscreen effect, a benzophenone-based compound represented by the general formula (I) or a bezotriazole-based compound represented by the general formula (II) was used alone during the polycondensation reaction. In many cases, the absorbent itself decomposes due to high heat during the polymerization reaction, resulting in loss of UV blocking performance and deterioration of color tone of the chip and color tone of the fiber.

따라서, 본 발명에서는 자외선 흡수제를 중합시 투입하지 않고 혼련방사시 투입하되 폴리에스터와 반응성이 높은 일반식(I)로 표현되는 벤조페논계 화합물과 열안정성이 비교적 우수한 일반식(II)로 표현되는 벤조트리아졸계 화합물을 혼련전 혼합하여 투입하므로서 자외선 차단효과를 상승시키고 칩 및 섬유의 색조악화를 방지하였다.Therefore, in the present invention, the ultraviolet absorber is added to the kneading spinning without polymerization, but is represented by the benzophenone compound represented by general formula (I) having high reactivity with polyester and general formula (II) having excellent thermal stability. The benzotriazole-based compound was mixed and mixed before kneading to increase the UV blocking effect and prevent color deterioration of chips and fibers.

일반신(I) 화합물과 일반식(II) 화합물의 혼합비율은 10 : 1~0.1 : 1, 바람직하기로는 7 : 1~1.5 : 1로 하는 것이 자외선 차단성 및 섬유물성면에서 효과적이었으며, 전체투입량은 생성폴리머에 대하여 0.1~0.5중량부인 것이 바람직하였다.The mixing ratio of the general shin (I) compound and the general formula (II) compound was 10: 1 ~ 0.1: 1, preferably 7: 1 ~ 1.5: 1, which was effective in terms of UV protection and fiber properties. The amount added is preferably 0.1 to 0.5 parts by weight based on the resulting polymer.

그러나, 혼련시 혼합된 자외선 차단제와 용융된 폴리머가 혼합될 때 열적산화에 의한 포리머쇄의 취화현상이 발생되어 색조가 변화되는 문제점이 발생하므로 본 발명에서는 하기 일반식(III)으로 표현되는 힌더드(hindered)페놀계 화합물을 첨가하여 산화에 의한 급격한 색조악화 및 용융점도 저하현상을 방지하였다.However, when the mixed sunscreen and the molten polymer are mixed during kneading, embrittlement of the polymer chain due to thermal oxidation occurs, thereby causing a problem in that the color tone changes. Hindered represented by the following general formula (III) in the present invention. The addition of (hindered) phenolic compounds prevents rapid color deterioration and melt viscosity drop due to oxidation.

여기서, A1은 탄소수 1~5의 알킬기를 포함하는 화합물이며, A2는 탄소수 1~3의 지방족 탄화수소기를 포함하는 화합물이다.Here, A <1> is a compound containing a C1-C5 alkyl group, and A <2> is a compound containing a C1-C3 aliphatic hydrocarbon group.

일반식(III)의 화합물은 하이드로퍼옥사이드(hydroperoxide)를 분해시키고 라디칼(radical)을 반응진행을 차단하므로서 2차적 산화방지제의 효과를 나타낼 뿐만 아니라 퍼옥시라디칼과 반응하여 쇄정지시키므로서 산화진행을 지연시키는 1차적인 산화방지제의 효과도 나타낸다. 일반식(III)의 호합물은 폴리에스터 칩에 대하여 0.2~0.6중량부 사용하는 것이 효과적이며, 0.6중량부 초과할 경우에는 첨가에 따른 상승효과가 없었으며, 0.2중량부 미만일 경우에는 첨가효과가 저조하였다.Compound of formula (III) not only shows the effect of secondary antioxidants by decomposing hydroperoxide and blocking radical progression, but also progresses oxidation by reacting with peroxy radicals and stopping chains. The effect of delaying primary antioxidants is also shown. The compound of formula (III) is effective to use 0.2 ~ 0.6 parts by weight with respect to the polyester chip, and when the content exceeds 0.6 parts by weight, there is no synergistic effect according to the addition, when less than 0.2 parts by weight Low.

다음의 실시예 및 비교예는 본 발명을 좀더 구체적으로 설명하는 것이지만, 본 발명의 범주를 한정하는 것은 아니다.The following examples and comparative examples further illustrate the present invention, but do not limit the scope of the present invention.

[실시예 1]Example 1

디메틸테레프탈레이트 100중량부, 에틸렌글리콜 60중량부, 망간아세테이트 0.083중량부, 삼산화안티몬 0.038중량부를 에스테르 교환반응기에 넣고, 140℃에서 서서히 가열하였다. 반응기 내부온도가 170℃에 이르는 시점에 에틸렌글리콜에 분산된 평균입자 직경 65nm의 구상실리카가 함유된 15% 실리카 분산액(콜로이드형 실리카졸)을 실리카 기준으로 4.0중량부 투입한 다음, 메탄올 유출량이 75%인 시점에 평균입경 0.25u의 이산화티탄(TiO2)(일본 후지사 제품)이 에틸렌글리콜에 분산된 14% 슬러리 용액을 산화티탄 기준으로 3.0중량부 투입한 후, 메탄올 유출량이 100%에 이르고 반응기 최종 내부온도가 240℃에 이르면 에스테르 교환반응을 종료시킨 후 생성물을 중축합 반응조로 이행하여 5분후 아인산 0.035중량부를 투입하고 0.1mmHg까지 감압하면서 285℃의 온도로 약 2시간 30분간 반응을 행하여 심색성 폴리에스터 칩을 제조하였다. 칩의 고우점도는 0.655~0.658수준이며, 이 칩을 진공건조기를 이용하여 150℃에서 6시간 건조하여 건조후 수분율을 40ppm으로 유지하였다.100 parts by weight of dimethyl terephthalate, 60 parts by weight of ethylene glycol, 0.083 parts by weight of manganese acetate, and 0.038 parts by weight of antimony trioxide were placed in a transesterification reactor and heated slowly at 140 ° C. When the temperature inside the reactor reached 170 ° C., 4.0 parts by weight of a 15% silica dispersion (colloidal silica sol) containing spherical silica having an average particle diameter of 65 nm dispersed in ethylene glycol was added to silica, and then the methanol discharge amount was 75%. % Of titanium dioxide (TiO2) (manufactured by Fuji Corporation) with an average particle diameter of 0.25 u was added 3.0 parts by weight of a 14% slurry solution dispersed in ethylene glycol, based on titanium oxide. When the final internal temperature reached 240 ℃, the transesterification reaction was terminated, the product was transferred to a polycondensation reaction tank, and after 5 minutes, 0.035 parts by weight of phosphorous acid was added, and the reaction was carried out at a temperature of 285 ℃ for about 2 hours 30 minutes under reduced pressure to 0.1mmHg. A colored polyester chip was prepared. The high viscosity of the chip was 0.655 ~ 0.658, and the chip was dried at 150 ° C. for 6 hours using a vacuum dryer to maintain a moisture content of 40 ppm after drying.

건조된 칩을 일반적인 폴리에스터 용융방사설비를 이용하여 방사온도 285℃의 조건에서 용융압출하는 도중 별도용기(vessel)내의 온도를 195℃의 온도로 유지하여 2-2'-디하이드록시-4-4'-디메톡시벤조페논 0.24중량부, 2(2'-하이드록시-3'-tert-부틸-5'-메틸-페닐)-벤조트리아졸 0.06중량부, 트리에틸렌글콜-비스-3(3-tert-부틸-4-하이드록시-5-메틸페닐)-프로피오네이트 0.3중량부를 용기내에서 교반하여 용융한 뒤 정적혼련용 스태틱 믹서(일본 도레이사제품, HI-MIXER)를 이용하여 용융폴리머와 혼련 후, 방사온도 280℃에서 미연신사를 제조한 후 연신사 F.Y 75데니어/36필라멘트를 제조하였다.While the dried chip is melt-extruded using a general polyester melt spinning equipment under a spinning temperature of 285 ° C., the temperature in a separate vessel is maintained at a temperature of 195 ° C. to give 2-2'-dihydroxy-4-. 0.24 part by weight of 4'-dimethoxybenzophenone, 0.06 part by weight of 2 (2'-hydroxy-3'-tert-butyl-5'-methyl-phenyl) -benzotriazole, triethyleneglycol-bis-3 (3 0.3 parts by weight of -tert-butyl-4-hydroxy-5-methylphenyl) -propionate was stirred in a vessel and melted, followed by melting with a molten polymer using a static mixer for static kneading (HI-MIXER, Japan). After kneading, an undrawn yarn was prepared at a spinning temperature of 280 ° C., followed by a drawn yarn FY 75 denier / 36 filament.

제조된 원사를 경,위사로 모두 사용하여 위사 꼬임수 2,750T/M, 경사밀도 170본/inch, 위사밀도 98본/inch, 중량 85g/yd의 팰리스(palace)직물을 제직하였다. 50% NaOH 용액으로 감량율 23%로 알칼리 감량을 행한 후 130℃에서 1시간 동안 흑색 및 유색의 일반 분산성 염료를 이용하여 고온고압법으로 염색하였다.The yarn was used as both light and weft yarns to weave palace fabrics with a weft twist of 2,750T / M, a warp density of 170 / inch, a weft density of 98 / inch, and a weight of 85 g / yd. Alkaline reduction was performed with a 50% NaOH solution at 23% reduction, and then dyed by high temperature and high pressure using black and colored general dispersible dyes at 130 ° C. for 1 hour.

제조된 직물의 표면반사율(L*)을 측정하여 심색성을 평가하였으며, 일본 시마쓰(shinadzu)사 자기분광 광도계(모델명 : UV-3101)를 사용하여 자외선 투과율(T%) 측정을 행하여 자외선 차단성 평가를 행하고 그 결과를 표 1에 기재하였다.The deep reflectivity was evaluated by measuring the surface reflectance (L * ) of the fabric, and UV transmission (T%) was measured by using a SHADAD magnetic spectrophotometer (Model: UV-3101). Sex evaluation was performed and the result is shown in Table 1.

[실시예 2]Example 2

평균입경 100nm인 실리카를 6.0중량부로 사용하는 것 이외에는 실시예 1과 동일한 조건, 동일한 방법으로 실험을 행하였으며, 평가결과를 표 1에 기재하였다.The experiment was carried out under the same conditions and in the same manner as in Example 1, except that 6.0 parts by weight of silica having an average particle size of 100 nm was used, and the evaluation results are shown in Table 1.

[실시예 3]Example 3

이산화티탄의 투입량을 1.5중량부로 하고, 2-2'-디하이드록시-4-4'-디메톡시벤조페논을 0.2중량부, 2(2'-하이드록시-3'-tert-부틸-5'-메틸-페닐)-벤조트리아졸을 0.1중량부로 하는 것 이외에는 실시예 1과 동일하게 행하고, 평가결과를 표 1에 기재하였다.The amount of titanium dioxide was 1.5 parts by weight, 0.2 parts by weight of 2-2'-dihydroxy-4-4'-dimethoxybenzophenone and 2 (2'-hydroxy-3'-tert-butyl-5 ' Except having made -methyl-phenyl)-benzotriazole into 0.1 weight part, it carried out similarly to Example 1, and shows the evaluation result in Table 1.

[실시예 4]Example 4

평균입경 50nm인 실리카를 3.0중량부, 입경 0.11인 이산화티탄을 2.0중량부로 하는 것 이외에는 실시예 1과 동일하게 행하고, 평가결과를 표 1에 기재하였다.The evaluation results are shown in Table 1 except that 3.0 parts by weight of silica having an average particle diameter of 50 nm and 2.0 parts by weight of titanium dioxide having a particle diameter of 0.11 were used.

[비교예 1]Comparative Example 1

자외선 차단제로서 2-2'-디하이드록시-4-4'-디메톡시벤조페논을 0.3중량부로 단독 투입하는 것 이외에는 실시예 1과 동일하게 행하고, 평가결과를 표 1에 기재하였다.The evaluation results are shown in Table 1 except that 2-2'-dihydroxy-4-4'-dimethoxybenzophenone is added at 0.3 parts by weight alone as a sunscreen.

[비교예 2]Comparative Example 2

자외선 차단제로서 2(2'-하이드록시-3'-tert-부틸-5'-메틸-페닐)-벤조트리아졸을 0.3중량부로 단독 투입하는 것 이외에는 실시예 1과 동일하게 행하고, 평가결과를 표 2에 기재하였다.As the sunscreen agent, 2 (2'-hydroxy-3'-tert-butyl-5'-methyl-phenyl) -benzotriazole was added in 0.3 parts by weight alone, and the same procedure as in Example 1 was carried out. 2 is described.

[실시예 5]Example 5

트리에틸렌글리콜-비스-3-(3-tert-부틸-4-하이드록시-5-메틸페닐)-프로피오네이트를 0.6중량부 투입하는 것 이외에는 실시예 1과 동일하게 행하고 평가결과를 표 1에 기재하였다.Except for adding 0.6 parts by weight of triethylene glycol-bis-3- (3-tert-butyl-4-hydroxy-5-methylphenyl) -propionate, the same procedure as in Example 1 was carried out and the evaluation results are shown in Table 1. It was.

[비교예 3]Comparative Example 3

에스테르 교환반응이 완료된 다음 5분후에 아인산 0.035중량부를 투입하고, 2-2'-디하이드록시-4-4'-디메톡시벤조페논 0.24중량부, 2(2'-하이드록시-3'-tert-부틸-5'-메틸-페닐)-벤조트리아졸 0.06중량부, 트리에틸렌글리콜-비스-3(3-tert-부틸-4-하이드록시-5-메틸페닐)-프로피오네이트 0.3중량부를 혼합하여 투입한뒤 0.1mmHg까지 감압하면서 285℃의 온도로 약 2시간 30분간 반응을 완료하여 칩을 제조한 것을 제외하고는 실시예 1과 동일한 방법 및 조건으로 행하고, 물성을 평가하여 결과를 표 1에 기재하였다.5 minutes after the completion of the transesterification reaction, 0.035 parts by weight of phosphorous acid was added thereto, 0.24 parts by weight of 2-2'-dihydroxy-4-4'-dimethoxybenzophenone, and 2 (2'-hydroxy-3'-tert. 0.06 parts by weight of -butyl-5'-methyl-phenyl) -benzotriazole and 0.3 parts by weight of triethylene glycol-bis-3 (3-tert-butyl-4-hydroxy-5-methylphenyl) -propionate After completion of the reaction, the reaction was completed at a temperature of 285 ° C. for about 2 hours and 30 minutes under reduced pressure to 0.1 mmHg, and the same procedure and conditions as in Example 1 were carried out, and the physical properties were evaluated. Described.

[비교예 4][Comparative Example 4]

고유점도 0.658, 이산화티탄함량 0.4중량부인 일반적인 세미덜(Seni-Dull)형의 PET 칩을 진공건조하여 방사온도 285℃에서 미연신사를 제조한 후 연신사 F.Y 75/36을 얻은 다음, 실시예 1과 동일한 조건, 방법으로 제직, 염색가공, 평가를 행하였다. 그 결과는 표 1에 기재하였다.After vacuum drying a general semi-Dull type PET chip having an intrinsic viscosity of 0.658 and 0.4 parts by weight of titanium dioxide, a non-drawn yarn was produced at a spinning temperature of 285 ° C., followed by obtaining a drawn yarn FY 75/36. Weaving, dyeing, and evaluation were carried out under the same conditions and methods as described above. The results are shown in Table 1.

[표 1]TABLE 1

* 물성평가방법* Property evaluation method

1) 팩내압 : 폴리머를 용융압출하는 경우 팩내에 걸리는 압력을 표시하며, 폴리에스터(PET)의 경우 15~190kgf/㎠가 가장 적절함.1) Inner pack pressure: It indicates the pressure in the pack when melt extruded polymer. In case of polyester, 15 ~ 190kgf / ㎠ is most appropriate.

2) 만권율 : 방사속도 3,000m/분에서 방사 및 연신공정시 실이 끊어지는 사절수와 관계되며, 사절회수가 전혀 없는 경우를 100%로 한다.2) Winding rate: It is related to the number of trimming thread broken in the spinning and drawing process at spinning speed of 3,000m / min.

3) 사색조 : 사를 샘플링하여 색차계를 이용해 L값(백도 : whiteness) 및 b값(황도 : yellowness)을 측정하며, 내열성이 불량할수로 L값이 저하되고, 특히 b값이 상승하는 경향이 있다.3) Four-color tone: sample L and measure L value (whiteness: whiteness) and b value (yellowness: yellowness) using colorimeter, and L value decreases, especially b value rises due to poor heat resistance. There is this.

4) 심색성 : ㆍL* : 색차계 측정에 의해 반사율(L*)을 측정하는 것으로 심색성이 양호할수록 이 값이 적다.4) Deep color: ㆍ L *: The reflectance (L *) is measured by colorimeter measurement. The better the color depth, the smaller this value.

급수로 판정하는 법 : 심색사로 제직한 포지와 동일한 조직의 일반원사를 사용한 포지를 동일한 염료, 염색조건으로 염색하여 색상결과를 육안으로 비교, 판정한다(4급 이상이면 합격수준).How to judge by water supply: Forge made of deep yarn and plain yarn of the same tissue are dyed with the same dye and dyeing conditions. Color results are visually compared and judged.

ㆍα=K/S=(kubelka-Munk 式)Α = K / S = (kubelka-Munk 式)

: 분광광도계 측정에 의해 반사율 R을 측정함으로서 판정한다. α 값이 클수록 심색성이 양호하다(단, K : 시료의 흡광계수, S : 시료의 광산란계수, R : 단색광의 반사율): It determines by measuring the reflectance R by spectrophotometer measurement. The larger the value of α, the better the color depth (wherein K is the extinction coefficient of the sample, S is the light scattering coefficient of the sample, and R is the reflectance of the monochromatic light).

5) 자외선 차단 및 가시광선 차단성 : 동일원사 및 동일조직의 직물과 자외선 차단 직물과를 비교하기 위하여 적분구가 있는 자기 분광광도계를 사용하여 파장 180nm~400nm인 자외선 영역 및 파장 400nm~790nm인 가시광선 영역에서의 투과율(%)을 측정하여 차단율을 계산한다.5) UV protection and visible light blocking property: In order to compare the fabric of the same yarn and the same tissue with the UV blocking fabric, a UV spectrophotometer with an integrating sphere is used, and an ultraviolet region having a wavelength of 180 nm to 400 nm and a visible ray having a wavelength of 400 nm to 790 nm Calculate the blocking rate by measuring the transmittance in the ray region.

Claims (4)

디올과 디카르본산 또는 그의 에서테르 형성성 유도체를 반응시켜 폴리에스터를 제조함에 있어서, 에스테르 교환반응중에 에틸렌글리콜에 분산된 콜로이드형 실리카졸을 투입하여 반응시켜 폴리에스터 칩을 얻고 제조된 칩과 하기 일반식(I), (II) 및 (III)으로 표현되는 화합물을 혼련방사함을 특징으로 하는 폴리에스터 섬유의 제조방법.In preparing a polyester by reacting diol with dicarboxylic acid or an ester-terminating derivative thereof, a colloidal silica sol dispersed in ethylene glycol is added and reacted during a transesterification reaction to obtain a polyester chip. A method for producing a polyester fiber characterized by kneading and spinning a compound represented by formulas (I), (II) and (III). 여기서, R1과 R2는 수소, 하이드록시, 메톡시 또는 에톡시기에서 각각 선택된 것이고, A1은 탄소수 1~5의 알킬기를 포함하는 화합물이며, A2는 탄소수 1~3의 지방족 탄화수소기를 포함하는 화합물이다.Wherein R 1 and R 2 are each selected from hydrogen, hydroxy, methoxy or ethoxy groups, A 1 is a compound containing an alkyl group of 1 to 5 carbon atoms, and A 2 contains an aliphatic hydrocarbon group of 1 to 3 carbon atoms. It is a compound. 제1항에 있어서, 실리카는 평균입경이 50~100nm인 구상실리카이고, 그 투입범위는 생성 폴리에스테르에 대하여 2.0~6.0중량부로 하는 것을 특징으로 하는 폴리에스터 섬유의 제조방법.The method for producing a polyester fiber according to claim 1, wherein the silica is spherical silica having an average particle diameter of 50 to 100 nm, and its input range is 2.0 to 6.0 parts by weight based on the produced polyester. 제1항에 있어서, 일반식(I)과 (II)화합물과의 혼합비율은 7 : 1~1.5 : 1로 하고, 그 투입범위는 0.1~0.5중량부로 하는 것을 특징으로 하는 폴리에스터 섬유의 제조방법.The method of claim 1, wherein the mixing ratio of the general formula (I) and (II) compound is 7: 1 to 1.5: 1, the input range is 0.1 to 0.5 parts by weight of the production of polyester fibers Way. 제1항에 있어서, 일반식(III) 화합물 투입범위는 0.2~0.6중량부로 하는 것을 특징으로 하는 폴리에스터 섬유의 제조방법.The method of producing a polyester fiber according to claim 1, wherein the compound of formula (III) is added in an amount of 0.2 to 0.6 parts by weight.
KR1019930023980A 1993-11-12 1993-11-12 Method for manufacturing of polyester fiber KR960000083B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019930023980A KR960000083B1 (en) 1993-11-12 1993-11-12 Method for manufacturing of polyester fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019930023980A KR960000083B1 (en) 1993-11-12 1993-11-12 Method for manufacturing of polyester fiber

Publications (2)

Publication Number Publication Date
KR950014387A KR950014387A (en) 1995-06-16
KR960000083B1 true KR960000083B1 (en) 1996-01-03

Family

ID=19367885

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019930023980A KR960000083B1 (en) 1993-11-12 1993-11-12 Method for manufacturing of polyester fiber

Country Status (1)

Country Link
KR (1) KR960000083B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7477097B2 (en) 2005-09-29 2009-01-13 Hynix Semiconductor Inc. Internal voltage generating circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7477097B2 (en) 2005-09-29 2009-01-13 Hynix Semiconductor Inc. Internal voltage generating circuit

Also Published As

Publication number Publication date
KR950014387A (en) 1995-06-16

Similar Documents

Publication Publication Date Title
TWI382112B (en) Polyster fiber having excellent lightshielding and flame retardanct characteristic and textile goods using the same
KR100445849B1 (en) Polyester resin composition and fiber
CN110055615B (en) Production process of ultraviolet-resistant polyester low-stretch yarn
KR101930560B1 (en) Core-sheath composite fiber, false twist yarn comprising the core-sheath composite fiber and process for producing same, and woven/knitted fabric constituted of the fiber
CN1800465A (en) Textile with ultraviolet resistant , hygroscopic and perspiratory function, and its preparation method
KR100615782B1 (en) Dope dyed flame retardant polyester fiber and textile products therefrom
KR20120070858A (en) Recycled polyester fiber having uv blocking property and flame retardant, and manufacturing method thereof
CN110409016A (en) A kind of polyester fiber and fabric
KR101035603B1 (en) Flame-retardant polyester fiber for artificial hair and manufacturing method thereof
KR960000083B1 (en) Method for manufacturing of polyester fiber
JP2007146306A (en) Artificial-hair fiber
KR20120070859A (en) Recycled polyester fiber having uv blocking property and manufacturing method thereof
JP7209547B2 (en) UV shielding polyester fiber
JP5065576B2 (en) Artificial hair fiber
JPH05117508A (en) Polyester composition having ultraviolet light screening performance, its production and fiber therfrom
JP2013018802A (en) Polyester resin composition, method for producing the same, polyester fiber composed of the same, and fiber product of the polyester fiber
JPS58197309A (en) Polyester fiber and preparation thereof
KR960011598B1 (en) Method for manufacturing of polyester fiber
KR0120017B1 (en) Method for manufacturing polyester fiber
JPH04153314A (en) Polyester fiber having excellent light-resistance
KR940004694B1 (en) Method of manufacturing polyester fiber shutted from ultra-violet rays
KR101691464B1 (en) Polyphenylene sulfide fiber having excellent dyeability and light fastness and Fiber Assembly Using This
KR930005098B1 (en) Method for preparation of polyester fiber having a high shrink grading and batho-chromic eftect
JPH11350252A (en) Easily dyeable polyester fiber
KR19980054880A (en) Manufacturing method of sunscreen polyester fiber

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20020103

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee