KR950702637A - Methods for increasing carbon conversion efficiency in microorganisms - Google Patents

Methods for increasing carbon conversion efficiency in microorganisms Download PDF

Info

Publication number
KR950702637A
KR950702637A KR1019950700289A KR19950700289A KR950702637A KR 950702637 A KR950702637 A KR 950702637A KR 1019950700289 A KR1019950700289 A KR 1019950700289A KR 19950700289 A KR19950700289 A KR 19950700289A KR 950702637 A KR950702637 A KR 950702637A
Authority
KR
South Korea
Prior art keywords
isocitrate
microorganisms
phosphatase
dna
dehydrogenase kinase
Prior art date
Application number
KR1019950700289A
Other languages
Korean (ko)
Inventor
산드라 제이. 코엔
토마스 엠. 이반스
리차드 에이. 넬슨
폴 피. 테일러
Original Assignee
제프리 엠. 호스터
더 뉴트라스위트 컴퍼니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제프리 엠. 호스터, 더 뉴트라스위트 컴퍼니 filed Critical 제프리 엠. 호스터
Publication of KR950702637A publication Critical patent/KR950702637A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P1/00Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P1/00Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes
    • C12P1/04Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes by using bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/22Tryptophan; Tyrosine; Phenylalanine; 3,4-Dihydroxyphenylalanine

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

미생물에 글리옥실에이트 싸이클의 DNA 코딩효소를 도입하여 미생물의 탄소 전이효율을 증대시키는 방법을 제시한다.The present invention proposes a method of increasing the microbial carbon transfer efficiency by introducing a DNA encoding enzyme of a glyoxylate cycle into a microorganism.

Description

미생물에서 탄소 전이효율을 증대시키는 방법(Methods for increasing carbon conversion efficiency in microorganisms)Methods for increasing carbon conversion efficiency in microorganisms

본 내용은 요부공개 건이므로 전문내용을 수록하지 않았음Since this is an open matter, no full text was included.

Claims (8)

미생물이 탄소 전이효율을 증가시키는 방법은: (a) 미생물에 결합시키고 이 미생물을 기능성 글리옥실레이트 오페론, DNA 인코딩 이소시트레이트, 말레이트 합성효소, 이소시트레이트 탈수소효과 카이나제/포스포타제; (b) TCA 싸이클로 들어갈 수 있는 탄소화합물을 포함하는 적절한 배양배지에서 미생물을 발효시키고; (c) 배양배지에서 하나이상의 생합성 물질을 선택하는 단계로 구성된 것을 특징으로 하는 방법.Methods by which microorganisms increase carbon transfer efficiency include: (a) binding to microorganisms and binding them to functional glyoxylate operons, DNA-encoded isocitrate, malate synthase, isocitrate dehydrogenase kinase / phosphatase ; (b) fermenting the microorganisms in a suitable culture medium containing carbon compounds that can enter the TCA cycle; (c) selecting at least one biosynthetic material in the culture medium. 제1항에 있어서, DNA 인코딩 이소시트레이트 분해효소, 말레이트 합성효소, 그리고 이소시트레이트 탈수소 효소 카이나제/포스포타제는 글리옥시레이트 오페론으로 구성되는 것을 특징으로 하는 방법.The method of claim 1, wherein the DNA encoding isocitrate degrading enzyme, malate synthetase, and isocitrate dehydrogenase kinase / phosphatase are comprised of a glycoxylate operon. 제1항에 있어서, 미생물이 박테리아 세포인 것을 특징으로 하는 방법.The method of claim 1 wherein the microorganism is a bacterial cell. 제3항에 있어서, 박테리아 세포가 대장균 세포인 것을 특징으로 하는 방법.The method of claim 3, wherein the bacterial cells are E. coli cells. 제1항에 있어서, 결합단계는 DNA 인코드 이소시트레이트 분해효소, 말레이트 합성효소와 이소시트레이트 탈수소효소 카이나제/인산효소로 구성된 벡터로 미생물에 형질도입시키는 단계로 구성되는 것을 특징으로 하는 방법.The method of claim 1, wherein the binding step comprises transducing the microorganism with a vector consisting of DNA encode isocitrate degrading enzyme, malate synthase and isocitrate dehydrogenase kinase / phosphatase. How to. 제1항에 있어서, DNA 인코드 이소시트레이트 탈수소효소 카이나제/포스포타제는 주요 카이나제 활성을 가지는 이소시트레이트 탈수소효소 카이나제/포스포타제를 인코드하기 위해 돌연변이된 것을 특징으로 하는 방법.The method of claim 1, wherein the DNA encode isocitrate dehydrogenase kinase / phosphatase is mutated to encode isocitrate dehydrogenase kinase / phosphatase with major kinase activity. How to. 아미노산을 생산하는 방법에 있어서; (a) 미생물에 결합시키고, 이 미생물을 기능성 글리옥실레이트 오페론, DNA 인코드 이소시트레이트 분해효소, 말레이트 합성효소와 이소시트레이트 탈수소 효과를 가지고; (b) TCA 싸이클로 들어갈 수 있는 탄소화합물을 포함하는 적절한 배양배지에서 미생물을 발효시키고; (c) 발효배지에서 아미노산을 분리시키는 단계로 구성된 것을 특징으로 하는 방법.In a method for producing an amino acid; (a) binds to a microorganism and has the effect of functional glyoxylate operon, DNA encode isocitrate degrading enzyme, malate synthase and isocitrate dehydrogenation; (b) fermenting the microorganisms in a suitable culture medium containing carbon compounds that can enter the TCA cycle; (c) separating the amino acids from the fermentation broth. 제7항에 있어서, 아미노산은 페닐알라닌, 티로신과 트립토판으로 구성된 집단에서 선택되는 것을 특징으로 하는 방법.8. The method of claim 7, wherein the amino acid is selected from the group consisting of phenylalanine, tyrosine and tryptophan. ※ 참고사항 : 최초출원 내용에 의하여 공개하는 것임.※ Note: The disclosure is based on the initial application.
KR1019950700289A 1993-05-27 1994-05-27 Methods for increasing carbon conversion efficiency in microorganisms KR950702637A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US6843393A 1993-05-27 1993-05-27
US08/068433 1993-05-27
PCT/US1994/006084 WO1994028154A1 (en) 1993-05-27 1994-05-27 Methods for increasing carbon conversion efficiency in microorganisms

Publications (1)

Publication Number Publication Date
KR950702637A true KR950702637A (en) 1995-07-29

Family

ID=22082557

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950700289A KR950702637A (en) 1993-05-27 1994-05-27 Methods for increasing carbon conversion efficiency in microorganisms

Country Status (6)

Country Link
EP (1) EP0660875A4 (en)
JP (1) JPH07509375A (en)
KR (1) KR950702637A (en)
AU (1) AU6960894A (en)
CA (1) CA2140527A1 (en)
WO (1) WO1994028154A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1407021B1 (en) * 2001-07-18 2008-02-27 Evonik Degussa GmbH Process for the preparation of l-amino acids using strains of the enterobacteriaceae family which contain an attenuated ugpb gene
JP5602982B2 (en) * 2006-07-03 2014-10-08 三菱化学株式会社 Method for producing succinic acid
CN105296411B (en) * 2015-11-24 2019-03-08 南京工业大学 One plant utilizes the genetic engineering bacterium and its construction method of monosaccharide fermentation production L-Aspartic acid and application

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0066994A3 (en) * 1981-06-04 1984-02-01 Imperial Chemical Industries Plc Production and use of genetically-modified microorganisms
US5169768A (en) * 1983-10-07 1992-12-08 Biotechnica International, Inc. Method of biosynthesis of phenylalanine
JP3036912B2 (en) * 1991-09-02 2000-04-24 協和醗酵工業株式会社 Gene expression regulatory DNA

Also Published As

Publication number Publication date
EP0660875A1 (en) 1995-07-05
AU6960894A (en) 1994-12-20
WO1994028154A1 (en) 1994-12-08
EP0660875A4 (en) 1998-08-05
CA2140527A1 (en) 1994-12-08
JPH07509375A (en) 1995-10-19

Similar Documents

Publication Publication Date Title
Lütgens et al. Why a co-substrate is required for anaerobic growth of Escherichia coli on citrate
CN1097632C (en) A mutant E. coli strain with increased succinic acid production
US5028539A (en) Ethanol production using engineered mutant E. coli
HUP9702361A2 (en) Method for producing l-lysine
HUP9702360A2 (en) Method for producing l-lysine
CN103314101A (en) Biofuel and chemical production by recombinant microorganisms via fermentation of proteinacious biomass
EP0493060A2 (en) Production method of d-pantothenic acid and plasmids and microorganisms thereof
BR0106255A (en) Pope method to produce a target substance by using a microorganism
Stadtman et al. Clostridium barkeri sp. n
JP4108766B2 (en) Improved transaminase biological transformation method
EP1201758B1 (en) Microorganisms and method for L-arginine production by fermentation
Favre-Bulle et al. Biooxidation of n-octane by a recombinant Escherichia coli in a two-liquid-phase system: effect of medium components on cell growth and alkane oxidation activity
O'Brien et al. Biological production of acrylic acid from cheese whey by resting cells of Clostridium propionicum
CN113462623B (en) Method for preparing D-alanine by microbial fermentation method
White et al. Minimal nutritional requirements of Bacillus sphaericus NCTC9602 and 26 other strains of this species: the majority grow and sporulate with acetate as sole major source of carbon
Bakhiet et al. Lysine biosynthesis in Methanobacterium thermoautotrophicum is by the diaminopimelic acid pathway
KR950702637A (en) Methods for increasing carbon conversion efficiency in microorganisms
CN104480172A (en) Method of producing L-alanyl-L-glutamine from recombinant escherichia coli
US5783428A (en) Method of producing fumaric acid
KR900004424B1 (en) Process for producing amino acids
Yang et al. Morphogenesis, ATP content and oxytetracycline production by Streptomyces rimosus in solid substrate cultivation
Jones et al. Guanosine 5′-diphosphate 3′-diphosphate (ppGpp), guanosine 5′-diphosphate 3′-monophosphate (ppGp) and antibiotic production in Streptomyces clavuligerus
Ezemba Lysine production of microbacterium lacticum by submerged fermentation using various hydrocarbon, sugar and nitrogen sources
Ding et al. Cloning and analysis of the leuB gene of Leptospira interrogans serovar pomona
Faghfuri et al. L-tryptophan production by whole cells of Escherichia coli based on Iranian sugar beet molasses

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid