KR950009838B1 - Protease from streptomyces thermonitrificans - Google Patents

Protease from streptomyces thermonitrificans Download PDF

Info

Publication number
KR950009838B1
KR950009838B1 KR1019920007583A KR920007583A KR950009838B1 KR 950009838 B1 KR950009838 B1 KR 950009838B1 KR 1019920007583 A KR1019920007583 A KR 1019920007583A KR 920007583 A KR920007583 A KR 920007583A KR 950009838 B1 KR950009838 B1 KR 950009838B1
Authority
KR
South Korea
Prior art keywords
streptomyces
proteolytic enzymes
proteolytic
proteolytic enzyme
activity
Prior art date
Application number
KR1019920007583A
Other languages
Korean (ko)
Other versions
KR930023459A (en
Inventor
곽태환
정혜신
박순재
Original Assignee
주식회사엘지화학
성재갑
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사엘지화학, 성재갑 filed Critical 주식회사엘지화학
Priority to KR1019920007583A priority Critical patent/KR950009838B1/en
Publication of KR930023459A publication Critical patent/KR930023459A/en
Application granted granted Critical
Publication of KR950009838B1 publication Critical patent/KR950009838B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/52Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The thermo-stable protease (I) from Streptomyces thermonitrificans ATCC 23385 (II) is pepared by (1) culturing (II) at 45-55 deg.C with yeast extract 2g, Na glutamate 6.7g, galactose 30g, MgSO4 0.1g, FeCl2 0.01g, MnCl2 0.01g, ZnCl2 0.01g, KH2PO4 4g, K2HPO4 1.55g/l, pH 7.5 and (2) centrifuging the culture broth to get the supernatant, (3) precipitating (2) with acetone, (4) loading (4) through the columns of cationic exchange, phenyl-Sepharose and gel filtration sequentially. The mw of (I) is 25-30 kd. The inhibitors for (I) are elastinal, 3,4-dichloroisocoumarine and aprotinin. (I) is useful for cheese making, synthesis of artificial sweetner and leather industry.

Description

스트렙토미세스 써모니트리피칸스(Streptomyces thermonitrificans)로부터 유래된 열에 안정한 단백질 분해 효소Heat-stable proteolytic enzymes derived from Streptomyces thermonitrificans

제1도는 본 발명에 따라 스트렙토미세스 써모니트리피칸스로부터 정제한 단백질 분효소를 전기영동한 결과를 보여주는 사진이다.Figure 1 is a photograph showing the results of the electrophoresis of the protein dehydrogenase purified from Streptomyces thermolypicans according to the present invention.

제2도는 본 발명에 따라 정제한 단백질 분해 효소의 각 온도별 활성도를 나타내는 그래프이다.2 is a graph showing the activity of each temperature of the proteolytic enzyme purified according to the present invention.

본 발명은 스트렙토미세스 써모니트리피칸스(Streptomyces thermonitrifican-s, ATCC 23385)로부터 유래된 신규한 열에 안정한 단백질 분해 효소 및 이의 정제방법에 관한 것이다.The present invention relates to a novel heat stable proteolytic enzyme derived from Streptomyces thermonitrifican-s (ATCC 23385) and a purification method thereof.

단백질 분해 효소는 현재 산업적으로 여러 용도로 사용되고 있다. 예를 들면, 치즈의 생산, 인공 감미료의 함성 및 피혁제품 제조 공정의 일부에 사용되며 또한 합성세제의 세정작용을 높이기 위한 첨가제로서 사용되는 등 그 사용 범의가 매우 다양하다. 특히, 열에 안정한 단백질 분해 효소는 고온에서 활성이 쉽게 유실되는 중온성 단백질 분해 효소에 비하여 산업적 응용면에서 더 큰 사용 가능성을 내포하고 있다.Proteolytic enzymes are currently used in various industrial applications. For example, it is used in the production of cheese, the synthesis of artificial sweeteners and part of the manufacturing process of leather products, and is used as an additive to enhance the cleaning action of synthetic detergents, and the range of its use is very diverse. In particular, thermally stable proteolytic enzymes have greater potential for industrial applications compared to mesophilic proteolytic enzymes that are easily lost at high temperatures.

현재까지 생리학적인 온도 이상의 높은 온도에서 자라는 고온성 박테리아(thermophilic bacteria)에서 많은 종류의 효소들이 발견되었다. 이들 고온성 미생물로부터 수득한 효소들은 중온성 미생물로부터 수득한 같은 기능을 가진 효소들에 비해 열에 더 안정하기 때문에 고온 처리가 필요한 여러 산업분야에 매우 유용하므로 꾸준히 연구되어 왔으며 특히, 여러 종류의 단백질 분해 효소들이 정제되어 이들의 기질에 대한 특이성 등이 자세히 연구되었다.To date, many types of enzymes have been found in thermophilic bacteria that grow at temperatures above physiological temperatures. Enzymes obtained from these thermophilic microorganisms have been studied steadily because they are more thermally stable than enzymes having the same function obtained from mesophilic microorganisms and are very useful in many industries requiring high temperature treatment. Enzymes were purified and their specificity to the substrate was studied in detail.

일반적으로 최적 배양온도가 50 내지 65℃ 이상인 미생물을 초고온성 미생물이라 한다. 알려진 바에 의하면, 써머스(Thermus) 속에 속하는 미생물들은 초고온성으로서 주로 고온의 온천 지역에서 발견되며, 또한 바실루스(Bacillus)속의 일부 박테리아도 초고온성 미생물에 속한다.In general, microorganisms having an optimal culture temperature of 50 to 65 ° C. or more are referred to as ultra high temperature microorganisms. It is known that microorganisms belonging to the genus Thermus are extremely hot and are found mainly in hot spring areas, and some bacteria of the genus Bacillus also belong to ultra high temperature microorganisms.

고온성 박테리아민 바실루스 써모프로테오리티쿠스(Bacillus thermoproteolytiBacillus thermoproteolyti

cus)로부터 분리한 써모리신(thermolysin)은 가장 자세히 연구된 단백질 가수분해 효소중의 하나이다(Endo, S., Hakko Kogaku Zasshi 40, 346-353, 1962 참조). 써모리신은 아연 금속성 단백질 분해 효소(Znmetalloprotease)로서 분자량은 약 34,5000달톤에 달하며 효소 활성의 최적 온도는 약 80℃이다(Sidler, W. and Zuber, H. Eur. J. Appl. Microbiol. Biotechnol, 10, 197-209, 1980 참조). 바실루스 속은 특히 고온성 단백질 분해 효소를 얻기 위한 집중적인 연구 대상이 되어 왔는데, 바실루스 스테아로써모필러스(B. stearothermophilus) NCIB 8924의 배양액으로부터 분리된 중성 단백질 분해 효소는 65℃까지의 온도에 대해 안정한 반면, 바실루스 스테아로써모필러스 NRRL B-3880의 배양액으로부터 분리된 효소는 70℃까지의 온도에 대해 안정성을 나타내었다(Sidler, W. and Zuber, H., Eur. J. Appl. Microbiol. Biotechnol. 4, 255-266, 1977참조). 온천지역에서 채취된 최대 100℃에서도 자랄수 있는 박테리아인 바실루스 칼도리티쿠스(Bacillus caldolyticus)로부터 정제된 중성 단백질 분해 효소는 80℃까지의 온도에서 안정성을 유지하였다(Heinen, U. J. and Heinen, W. Arch Microbiol. 82, 1-23, 1972 참조).Thermolysin isolated from cus) is one of the most studied proteolytic enzymes (see Endo, S., Hakko Kogaku Zasshi 40, 346-353, 1962). Thermolysine is a zinc metalloprotease (Znmetalloprotease) with a molecular weight of about 34,5000 Daltons and an optimum temperature of enzyme activity of about 80 ° C (Sidler, W. and Zuber, H. Eur. J. Appl. Microbiol. Biotechnol , 10, 197-209, 1980). The genus Bacillus has been a particularly intensive study for obtaining pyrolytic proteases, where neutral proteolytic enzymes isolated from the culture of B. stearothermophilus NCIB 8924 are stable to temperatures up to 65 ° C. Enzyme isolated from the culture of Bacillus stearothermophilus NRRL B-3880 showed stability to temperatures up to 70 ° C. (Sidler, W. and Zuber, H., Eur. J. Appl. Microbiol. Biotechnol. 4 , 255-266, 1977). Neutral proteolytic enzymes purified from Bacillus caldolyticus, a bacterium that can grow up to 100 ° C in hot spring areas, remained stable at temperatures up to 80 ° C (Heinen, UJ and Heinen, W. Arch). Microbiol. 82, 1-23, 1972).

바실루스 속 외에 다른 고온성 박테리아에서도 단백질 분해 효소들이 정제되었는데, 그의 예로는 말브란체아 풀첼라 변이주 설푸레아(Malbranchea pulchella var. sulfurea)로부터 분리된 써모미콜린(thermomycolin)(Gaucher, G. M. and Stevenson,In addition to the genus Bacillus, proteolytic enzymes have been purified from other thermophilic bacteria, for example thermomomcholine (Gaucher, G. M. and Stevenson, isolated from Malbranchea pulchella var. Sulfurea).

K. J. Methods in Enzymology 45, 415-433, 1976 참조), 써모액티노미세스 불가리스(Thermoactinomyces vulgaris)로부터 분리된 써미타제(thermitase)(Hausdof, G. et al., Int. J. Peptide Protein Res. 15, 420-429, 1980 참조) 및 스트렙토미세스 렉투스(Streptomyces rectus)로부터 분리된 알칼리성 단백질 분해 효소(Mizysawa, K. and Yoshida, F. J. Biol Chem. 248, 4417-4423, 1973 참조) 등이 있다.KJ Methods in Enzymology 45, 415-433, 1976), thermase (Hausdof, G. et al., Int. J. Peptide Protein Res. 15 isolated from Thermoactinomyces vulgaris) , 420-429, 1980) and alkaline proteolytic enzymes isolated from Streptomyces rectus (see Mizysawa, K. and Yoshida, FJ Biol Chem. 248, 4417-4423, 1973).

초고온성 박테리아인 써머스 속으로부터도 다수의 단백질 분해 효소들이 정제되었다. 예를들어, 써머스 아쿠아티쿠스(T, aquaticus) YT-1에서는 알칼리 조건에서 높은 활성을 나타내는 분자량 28,500달톤의 아쿠아리신(aqualysin) I과 중성 pH에서 높은 활성을 나타내는 아쿠아리신 II가 정제되었다(Matsuzawa, H., et al ., Agric. Biol. Chem. 47, 25-28, 1983 참조). 이들 단백질 분해 효소들은 모두 높은 온도, 예를들면 80 내지 90℃에서 최대 활성을 나타낼 정도로 열에 안정하다. 또한, 온천 지역에서 얻은 써머스 칼도필루스(Thermus caldophilus) GK24의 발효 배양액으로부터 분자량이 31,000달톤이며 최대 활성 pH가 7.8인 단백질 분해 효소가 정제되었다(Taguchi, H. et al., J. Biochem.(Tokyo)93, 7-13, 1983 참조). 이들 써머스 속으로부터 분리된 효소들은 모두 세린 단백질 분해 효소인 특색이 있다.A number of proteolytic enzymes have also been purified from the genus Thermos. For example, in Thermos aquaticus YT-1, aqualysin I with a molecular weight of 28,500 daltons showing high activity in alkaline conditions and aqualysin II showing high activity at neutral pH were purified (Matsuzawa , H., et al., Agric. Biol. Chem. 47, 25-28, 1983). These proteolytic enzymes are all thermally stable enough to exhibit maximum activity at high temperatures, for example 80 to 90 ° C. In addition, proteolytic enzymes having a molecular weight of 31,000 Daltons and a maximum active pH of 7.8 were purified from fermentation broth of Thermos caldophilus GK24 obtained from the hot spring area (Taguchi, H. et al., J. Biochem. ( Tokyo) 93, 7-13, 1983). Enzymes isolated from these summer genera are all characterized as serine proteolytic enzymes.

이에 본 발명자들은 여러 고온성 박테리아를 대상으로 단백질 분해 효소에 관해 연구하던중 고온성 박테리아의 하나인 스트렙토미세스 써모니트리피칸스의 배양액으로부터 열에 안정한 단백질 분해 효소를 최초로 확인하여 분리 정제하는데 성공하게 되었다.Accordingly, the present inventors succeeded in identifying and purifying the heat-stable proteolytic enzyme from the culture medium of Streptomyces thermomonipicans, which is one of the thermophilic bacteria, while studying proteolytic enzymes on various thermophilic bacteria. .

스트렙토미세스 써모니트리피칸스는 고온성 방성균류(Actinomycete)의 일종으로 데사이(Desai)와 달라(Dhala)에 의하여 최초로 분류되었으며, 최적 배양 온도가 약 50℃인 것으로 알려져 있다(Desai, A. J. and Dhala, S. A. Anronie van Leeuwenhoek 33, 137-144, 1967 참조). 현재까지 스트렙토미세스 써모니트리피칸스로부터 정제된 단백질 분해 효소는 보고된 바가 없으나, 이와 같은 속에 속하는 스트렙토미세스 렉투스 변이주 프로테오리티쿠스(Streptomyces rectus var. proteolyticus)로부터 분자량이 약 21,500달톤이며, 최적 pH가 10.7인 열에 안정한 세린 단백질 분해 효소가 정제된 바 있다(Mizusawa, K. and Yoshida, F. J. Biol. Chem. 248, 4417-4423, 1973 참조). 본 발명의 산물인 스트렙토미세스 써모니트리피칸스로부터 분리된 단백질 분해 효소는 상기 단백질 분해 효소와는 전혀 다른 신규한 단백질 분해 효소인 것으로 확인되었다.Streptomyces thermomonipicans is a family of thermophilic fungi (Actinomycete), first classified by Desai and Dhala, and is known to have an optimum incubation temperature of about 50 ° C (Desai, AJ and Dhala). , SA Anronie van Leeuwenhoek 33, 137-144, 1967). To date, no proteolytic enzymes purified from Streptomyces thermomonipicans have been reported, but the molecular weight is approximately 21,500 Daltons from Streptomyces rectus var. Proteolyticus belonging to this genus. Heat-stable serine proteolytic enzymes with a pH of 10.7 have been purified (see Mizusawa, K. and Yoshida, FJ Biol. Chem. 248, 4417-4423, 1973). The proteolytic enzyme isolated from Streptomyces thermomonic pecanans, a product of the present invention, was identified as a novel proteolytic enzyme completely different from the proteolytic enzyme.

이하 본 발명을 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

스트렙토미세스 써모니트리피칸스의 발효배지에 단백질 분해 효소, 구체적으로 엔토프로테아제가 존재함을 확인한 후(참조 : Horikoshi, K. Agric. Biol, Chem. 35 1407~1212(1971)), 적절한 배양조건에서 배양하고 원심분리하여 배양액만 취한 후 아세톤으로 침전시켜 침전물을 수득한다. 상기 침전물을 용해시킨후 순차적으로 양이온 교환 크로마토그래피, 페닐-세파로스 크로마토그래피 및 젤 여과 크로마토그래피를 이용하여 정제한다.After confirming the presence of proteolytic enzymes, specifically, entoproteases, in the fermentation medium of Streptomyces thermomonipicans (see Horikoshi, K. Agric. Biol, Chem. 35 1407-1212 (1971)), appropriate culture conditions After culturing in a centrifugation and centrifugation, only the culture was taken and precipitated with acetone to obtain a precipitate. The precipitate is dissolved and purified sequentially using cation exchange chromatography, phenyl-sepharose chromatography and gel filtration chromatography.

이와 같이 하여 수득한 단백질 분해 효소를 SDS(Sodium Dodecyl Sulfate)-전기영동한 결과, 분자량이 약 28.000달톤인 것으로 밝혀졌으며, pH 8.0의 완충용액에서 60℃에서 최고의 효소활성을 나타낸다. 또한, 이 효소는 방향족 아미노산 옆에 있는 부위를 자르는 키모트립신(chymotrypsin) 타입으로 기질인 N-Suc(숙시닐)-Ala-Ala-Pro-Phe-pNA(파라니트로아닐리드)를 ↑위치에서 잘라 파라니트로아닐린을 만들어 황색 반을을 나타내며, APMSF(4-아미디노페닐 메탄설포닐플루오라이드), 아프로티닌(aprotinin), 3,4-디클로로이소코우마린 및 엘라스티날(elastinal)에 의해 효소 반응이 억제되나, 1,10-오르토페난쓰롤린, MEM(N-에틸마레이미드, 펩스타틴(pepstatin), 로이펩틴(leupeptin)에 의해서는 억제되지 않는다.Sodium Dodecyl Sulfate (SDS) -electrophoresis of the proteolytic enzyme thus obtained revealed a molecular weight of about 28.000 Daltons, showing the highest enzymatic activity at 60 ° C. in a buffer solution of pH 8.0. In addition, this enzyme is a chymotrypsin type that cleaves a site next to an aromatic amino acid and cuts the substrate N-Suc (succinyl) -Ala-Ala-Pro-Phe-pNA (paranitroanilide) in the ↑ position. Nitroaniline was formed to give a yellow half, and the enzyme reaction was induced by APMSF (4-amidinophenyl methanesulfonylfluoride), aprotinin, 3,4-dichloroisocomarin and elastinal. Inhibited, but not by 1,10-orthophenanthrosine, MEM (N-ethylmarimide, pepstatin, leupeptin).

이하 본 발명을 실시예에 의해서 자세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail with reference to Examples.

하기 실시예는 본 발명을 구체적으로 설명하기 위해 제공되는 것일 뿐 본 발명의 범위를 제한하는 것은 아니다.The following examples are provided only to specifically explain the present invention, but do not limit the scope of the present invention.

[실시예1]Example 1

[스트렙토미세스 써모니트리피칸스의 배양][Cultivation of Streptomyces thermomonipicans]

하기 표 1에서 나타낸 바와 같은 조성의 배지를 사용하여 상기 균주에서 분비되는 단백질 분해 효소를 생산하였다. 우선 초기 배양을 위해, 1,000ml 플라스크에 상기 배지 150ml을 가하고, 상기 배지 조성의 1%아가 플레이트에서 생육시킨 균주를 접종시켰다. 그후 50℃ 진탕기에서 300rpm의 속도로 진당시키면서 12시간동안 배양하였다.The protease secreted from the strain was produced using a medium of the composition as shown in Table 1 below. First, for initial culture, 150 ml of the medium was added to a 1,000 ml flask, and 1% of the medium composition was inoculated with the strain grown on the agar plate. Then incubated for 12 hours while shaking at 300 rpm in a 50 ℃ shaker.

그 다음, 생산 배양을 위해 5ℓ 발효조에 상기 배지 3ℓ을 가하고, 상기에서 수득한 플라스크 배양액 150ml을 접종시켰다. 그후 50℃에서 24시간동안 배양하였다Then, 3 L of the medium was added to a 5 L fermenter for production culture, and 150 ml of the flask culture obtained above was inoculated. Then incubated for 24 hours at 50 ℃

[표 1]TABLE 1

스트렙토미세스 써모니트리피칸스의 발효 배지 조성Fermentation medium composition of Streptomyces thermomonipicans

본 배지는 pH 7.5로 조정하고 121℃에서 10분간 멸균시켰다.The medium was adjusted to pH 7.5 and sterilized at 121 ° C. for 10 minutes.

[실시예2]Example 2

[단백질 분해 효소의 정제][Purification of protease]

하기와 같은 공정을 수행하여 실시예1에서 수득한 배양액으로부터 단백질 분해 효소를 분리 정제하였다.The proteolytic enzyme was separated and purified from the culture solution obtained in Example 1 by the following process.

〈단계1〉 원심분리<Step 1> Centrifugation

실시예1에서 진탕 배양한 배양액 6ℓ를 원심분리기(Backman사 JA-10 rotor)를 이용하여 8,500rpm에서 30분간 원심분리하여 세포를 분리 제거하고 상등액만을 취하였다.6 l of the culture culture shaken in Example 1 was centrifuged at 8,500 rpm for 30 minutes using a centrifuge (JA-10 rotor of Backman) to separate and remove the cells and only the supernatant was taken.

〈단계2〉 아세톤 침전<Step 2> Acetone Sedimentation

원심분리하여 얻은 상등액을 비이커에 옮긴 후, 교반하면서 4℃로 냉각된 아세톤(Junsei사, Japan)을 최종 농도 60%(v/v)가 되도록 첨가한 후 4℃에서 40분간 방치하여 침전물을 형성시켰다. 그후, 원심분리기(JA-10 rotor, Beckman사)를 이용하여 8,500rpm에서 30분간 원심분리하여 상등액을 버리고 침전물을 수득한 후 증류수 700ml를 첨가하여 용해시켰다. 투석막을 이용하여 20mM아세트산 나트륨 완충액(pH 5.0)에 상기 용액을 투석시켰다.The supernatant obtained by centrifugation was transferred to a beaker, and acetone (Junsei, Japan) cooled to 4 ° C. was added to a final concentration of 60% (v / v) while stirring, and then left at 4 ° C. for 40 minutes to form a precipitate. I was. Subsequently, the supernatant was discarded by centrifugation at 8,500 rpm for 30 minutes using a centrifuge (JA-10 rotor, Beckman) to obtain a precipitate, and then dissolved in 700 ml of distilled water. The solution was dialyzed in 20 mM sodium acetate buffer (pH 5.0) using a dialysis membrane.

〈단계 3〉 S-세파로스 크로마토그래피<Step 3> S-Sepharose Chromatography

상기 투석막을 이용하여 투석시킨 단백질 용액을 20mM아세트산 나트륨 완충액(pH 5.0)으로 평형 상태를 유지시킨 S-세파로스 컬럼(5×10cm, Pharmacia사)에 가한 후 상기 완충액으로 세척하였다. 상기 완충액에 염화나트륨을 0 내지 350mM 농도 구배로 하여 총 2ℓ의 완충액을 200ml/시간의 속도로 가하여 단백질 분해 효소를 함유하는 용액을 각각 11.7ml씩의 분획으로 튜브에 수거하였다. 각각의 분획을 하기 실시예3에 기재된 방법에 따라 단백질 분해 효소의 활성도를 측정하여 활성을 나타내는 분획 950ml을 따로 모았다.The protein solution dialyzed using the dialysis membrane was added to an S-Sepharose column (5 × 10 cm, Pharmacia) equilibrated with 20 mM sodium acetate buffer (pH 5.0) and washed with the buffer. Sodium chloride was added to the buffer at a concentration of 0 to 350 mM, and a total of 2 liters of buffer was added at a rate of 200 ml / hour, and solutions containing proteolytic enzymes were collected in tubes at a fraction of 11.7 ml each. Each fraction was measured separately according to the method described in Example 3 to collect the 950ml fraction showing the activity separately.

〈단계 4〉 페닐-세파로스 크로마토그래피<Step 4> Phenyl Sepharose Chromatography

상기 S-세라로스 크로마토그래피에서 수득한 단백질 분해 효소를 함유하는 용액 950ml에 염화나트륨을 최종 농도 2M이 되도록 첨가한 후, 상기 용액을 20mM 아세트산 나트륨(pH 5.0)중의 2M 염화나트륨 완충액으로 평형 상태를 유지시킨 페닐-세파포스 컬럼(5×5cm, Pharmacia사)에 가하여 단백질 분해 효소를 흡착시켰다. 이 컬럼에 다시 20mM 아세트산 나트륨 완충액을 가하여 세척한 후 20mM 아세트산 나트륨중의 20% 에틸렌 글리콜 완충액 1ℓ을 100ml/시간의 속도로 가하여 단백질 분해 효소를 함유하는 용액을 각각 10ml끽 의 분획으로 튜브에 수거하였다. 각각 분획을 하기 실시예 3에 기재된 방법에 따라 단백질 분해 효소의 활성도를 측정하여 활성을 나타내는 분획 300ml을 따로 모았다.Sodium chloride was added to a final concentration of 2M to 950 ml of the solution containing the proteolytic enzyme obtained by the S-Ceraros chromatography, and then the solution was equilibrated with 2M sodium chloride buffer in 20 mM sodium acetate (pH 5.0). Proteolytic enzymes were adsorbed by addition to a phenyl-sepaphos column (5 × 5 cm, Pharmacia). The column was washed again with 20 mM sodium acetate buffer, and then 1 liter of 20% ethylene glycol buffer in 20 mM sodium acetate was added at a rate of 100 ml / hour, and a solution containing proteolytic enzymes was collected in a tube of 10 ml each. . Each fraction was measured separately according to the method described in Example 3, and 300 ml of fractions showing activity were collected separately.

〈단계 5〉 S-200 젤 여과 크로마토그래피<Step 5> S-200 Gel Filtration Chromatography

상기 페닐-세파로스 크로마토그래피에서 분리된 단백질 분해 효소를 함유하는 용액 300ml을 YM 10막(amicon사)을 사용하여 농축시킨 후, 50mM 아세트산 나트륨(pH 5.0)중의 200mM 염화나트륨 완충액으로 평형상태를 유지시킨 S-200 젤 여과 컬럼(5×100cm, Pharmacia사)에 100ml/시간의 속도로 가하였다. 분리되는 단백질 분해 효소를 함유하는 용액을 각각 10ml씩의 분획으로 튜브에 분리수거한 후 하기 실시예 3에 기재된 방법에 따라 각각의 단백질 분해 효소의 활성도를 측정하여 활성을 나타내는 단백질 분해 효소 7.6mg을 최종적으로 순수 분리정제하였다. 그중 일부를 취하여 SDS-PAGE(Sodium Dodecyl Sulfate-Polyacryl-amide Gel Electrophoresis)한 결과 분자량이 약 25,000 내지 30,000달톤인 것으로 밝혀졌다. 상기 전기영동한 결과는 제1도에 나타내었으며, 왼쪽열의 표준분자량은 43K, 27.5K, 18.4K, 14.3K, 6.3K 및 3.0K이다.300 ml of the solution containing the proteolytic enzyme isolated from the phenyl-sepharose chromatography was concentrated using a YM 10 membrane (amicon), and then equilibrated with 200 mM sodium chloride buffer in 50 mM sodium acetate (pH 5.0). To a S-200 gel filtration column (5 × 100 cm, Pharmacia) was added at a rate of 100 ml / hour. A solution containing the proteolytic enzyme to be separated was collected and separated into tubes in 10 ml portions, and 7.6 mg of proteolytic enzymes showing activity were measured by measuring the activity of each proteolytic enzyme according to the method described in Example 3 below. Finally purified pure separation. Taking some of them, sodium dodecyl sulfate-polyacryl-amide gel electrophoresis (SDS-PAGE) was found to have a molecular weight of about 25,000 to 30,000 daltons. The electrophoresis results are shown in FIG. 1 and the standard molecular weights of the left column are 43K, 27.5K, 18.4K, 14.3K, 6.3K and 3.0K.

[실시예 3]Example 3

[단백질 분해 효소의 활성도 측정방법][Method for Measuring Activity of Protease]

상기 실시예 2에서 실시한 각 단계의 크로마토그래피에서 수득한 분획의 단백질 분해 효소의 활성도는 다음과 같이 측정하였다. 0.05(v/v) 트윈 20을 포함하는 0.1M 트리스-염산(Tris-HCl, pH 8.0)에 기질로서 N-Suc(숙시닐)-Ala-Ala-Pro-Phe-pNA(피라니트로아닐리드)를 최종기질농도 0.8mM이 되도록 첨가하였다. 수득된 반응 혼합물에 배양액 또는 컬럼 분획물을 최종부피 1ml가 되도록 첨가하여 50℃에서 10분간 반응시킨 후 70% 아세트산 250μl을 첨가하여 혼합하므로써 반응을 중지시켰다. 분광 광도계(Spectrophotometer)를 이용하여 파장 405nm에서 상기 용액의 흡광도를 측정하여 각각의 활성도를 확인하였다.The activity of the proteolytic enzymes of the fractions obtained in the chromatography of each step performed in Example 2 was measured as follows. N-Suc (succinyl) -Ala-Ala-Pro-Phe-pNA (pyranitronilide) as a substrate was added to 0.1M Tris-HCl (pH 8.0) containing 0.05 (v / v) Tween 20. The final substrate was added to a concentration of 0.8 mM. The reaction mixture was added to a final volume of 1 ml of the culture solution or column fraction and reacted at 50 ° C. for 10 minutes, followed by mixing by adding 250 μl of 70% acetic acid to mix the mixture. The activity of each solution was confirmed by measuring the absorbance of the solution at a wavelength of 405 nm using a spectrophotometer.

[실시예4]Example 4

[온도에 따른 단백질 분해 효소의 활성도의 변화][Change of Protease Activity According to Temperature]

각각의 0.005%(v/v) 트윈 20을 포함하는 0.1M 트리스-염산(Tris-HCl pH 8.0) 990μl에 포함된 단백질 분해 효소를 각각 25℃, 30℃, 40℃, 50℃, 60℃, 70℃ 및 80℃의 온도에서 10분간 먼저 배양한 후 기질로서 N-Suc-Ala-Pro-Phe-pNA(Suc-AAPF-pNA) 10μl를 첨가하여 최종농도 0.8mM이 되도록 하였다. 각각의 상기 용액을 상기 온도에서 10분간 다시 배양하여 반응시킨 후 70% 아세트산 250μl을 첨가하여 혼합하므로써 반응을 중지시켰다. 상기 각각의 용액을 상기 실시예 3에 기재된 방법에 따라 흡광도를 측정하고 그 결과는 제2도에 나타내었다. 제2도로부터 알 수 있는 바와 같이 60℃에서 최고활성을 나타내는 것으로 밝혀졌다.Proteolytic enzymes contained in 990 μl of 0.1M Tris-HCl pH 8.0 containing 0.005% (v / v) Tween 20, respectively, were 25, 30, 40, 50, 60, After incubation for 10 minutes at the temperature of 70 ℃ and 80 ℃ 10 μl of N-Suc-Ala-Pro-Phe-pNA (Suc-AAPF-pNA) was added as a substrate to a final concentration of 0.8mM. Each solution was incubated at this temperature for 10 minutes to react and then the reaction was stopped by adding 250 μl of 70% acetic acid and mixing. The absorbance of each solution was measured according to the method described in Example 3, and the results are shown in FIG. As can be seen from FIG. 2, it was found to exhibit the highest activity at 60 ° C.

[실시예5]Example 5

[단백질 분해 효소의 억제제에 대한 특이성][Specificity of Inhibitors of Protease]

정제된 단백질 분해 효소가 억제제에 대해 반응하는 정도를 알아보기 위하여 억제제에 대한 특이성을 조사하였다.Specificity of the inhibitor was examined to determine the extent to which the purified proteolytic enzyme responds to the inhibitor.

0.1M 트리스-염산 완충액(pH 8.5)에 표 2에 기재된 억제제를 각각 표에 기재된 농도로 첨가하여 최종부피 1ml가 되도록 하였다. 상기 용액을 50℃에서 30분간 정지시킨 후 상기 실시예 3 및 4에서 사용한 기질 Suc-AAPF-pNA을 첨가하여 최종농도 0.8mM이 되도록 하였다. 상기 용액을 50℃에서 10분간 반응시킨 후 70%(v/v) 아세트산 250㎕을 첨가하여 혼합하므로써 반응을 중지시켰다. 자외선-가시광선 분광광도계를 이용하여 405nm에서 상기 용액의 흡광도를 측정하였다. 한편, 억제제를 첨가하지 않은 용액을 대조물로 하여 그의 흡광도를 측정하였다. 대조용의 흡광도를 기준으로 하여 각각의 억제제가 첨가된 시료의 흡광도를 비교하여 각각의 억제제가 단백질 분해 효소의 활성을 억제하는 정도를 표 2에 나타내었다.The inhibitors listed in Table 2 were each added to 0.1 M Tris-HCl buffer (pH 8.5) at the concentrations listed in the table to a final volume of 1 ml. After stopping the solution at 50 ° C. for 30 minutes, the substrate Suc-AAPF-pNA used in Examples 3 and 4 was added to a final concentration of 0.8 mM. After the solution was reacted at 50 ° C. for 10 minutes, 250 μl of 70% (v / v) acetic acid was added and mixed to stop the reaction. The absorbance of the solution was measured at 405 nm using an ultraviolet-visible spectrophotometer. On the other hand, the absorbance was measured using the solution which did not add the inhibitor as a control. Table 2 shows the degree to which the inhibitors inhibit the activity of proteolytic enzymes by comparing the absorbances of the samples to which the inhibitors were added based on the control absorbance.

[표 2]TABLE 2

본 발명의 단백질 분해 효소에 대한 억제제들의 효과Effects of Inhibitors on Proteolytic Enzymes of the Invention

Claims (7)

스트렙토미세스 써모니트리피칸스(Streptomyces thermonitrificans, ATCC 23385)로부터 유래된 열에 안정한 단백질 분해 효소.Heat-stable proteolytic enzymes derived from Streptomyces thermonitrificans (ATCC 23385). 제1항에 있어서, 분자량이 25,000 내지 30,000달톤인 단백질 분해 효소.The proteolytic enzyme of claim 1, wherein the molecular weight is 25,000 to 30,000 Daltons. 제1항에 있어서, 50 내지 65℃의 온도에서 최대활성을 나타내는 단백질 분해 효소.The proteolytic enzyme according to claim 1, which exhibits maximum activity at a temperature of 50 to 65 ° C. 제1항에 있어서, 엘라스티날(elastinal), 3,4-디클로로이소코우마린 또는 아프로티닌(aprotinin)에 의해 효소활성이 억제되는 단백질 분해 효소.The proteolytic enzyme of claim 1, wherein the enzymatic activity is inhibited by elastinal, 3,4-dichloroisocomarin or aprotinin. 스트렙토미세스 써모니트리피칸스를 배지에서 배양한 배양액을 원심분리하여 상등액을 취하여 아세톤으로 침전시킨 후 양이온 교환 크로마토그래피, 페닐-세파로스 크로마토그래피 및 젤 여과 크로마토그래피를 순차적으로 실시함을 포함하는, 스트렙토미세스 써모니트리피칸스로부터 열에 안정한 단백질 분해 효소를 정제하는 방법.Centrifugation of the culture medium incubated in Streptomyces thermomonipicans in the medium to precipitate the supernatant and precipitate with acetone, followed by sequentially performing cation exchange chromatography, phenyl-sepharose chromatography and gel filtration chromatography. A method for purifying heat stable proteolytic enzymes from Streptomyces thermomonipicans. 제5항에 있어서, 상기 배지가 효모 추출물, 글루타민산 일나트륨, 갈락토우스, FeCl2, MnCl2및 ZnCl2를 포함하는 방법.The method of claim 5, wherein the medium comprises yeast extract, monosodium glutamate, galactose, FeCl 2 , MnCl 2 and ZnCl 2 . 제5항에 있어서, 배양온도가 45 내지 55℃인 방법.The method of claim 5 wherein the incubation temperature is 45 to 55 ° C.
KR1019920007583A 1992-05-04 1992-05-04 Protease from streptomyces thermonitrificans KR950009838B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019920007583A KR950009838B1 (en) 1992-05-04 1992-05-04 Protease from streptomyces thermonitrificans

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019920007583A KR950009838B1 (en) 1992-05-04 1992-05-04 Protease from streptomyces thermonitrificans

Publications (2)

Publication Number Publication Date
KR930023459A KR930023459A (en) 1993-12-18
KR950009838B1 true KR950009838B1 (en) 1995-08-29

Family

ID=19332700

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019920007583A KR950009838B1 (en) 1992-05-04 1992-05-04 Protease from streptomyces thermonitrificans

Country Status (1)

Country Link
KR (1) KR950009838B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019112352A3 (en) * 2017-12-06 2019-08-01 주식회사 아모라이프사이언스 Method for producing mussel adhesive protein

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019112352A3 (en) * 2017-12-06 2019-08-01 주식회사 아모라이프사이언스 Method for producing mussel adhesive protein

Also Published As

Publication number Publication date
KR930023459A (en) 1993-12-18

Similar Documents

Publication Publication Date Title
Adinarayana et al. Purification and partial characterization of thermostable serine alkaline protease from a newly isolated Bacillus subtilis PE-11
Bayoudh et al. Purification and characterization of an alkaline protease from Pseudomonas aeruginosa MN1
Lee et al. Purification and characterization of a fibrinolytic enzyme form Bacillus sp. KDO-13 isolated from soybean paste
JPH04271785A (en) Enzymic solid pharmaceutical and its production
JPS6055118B2 (en) Novel bacterial alkaline protease and its production method
Odu et al. Protease production capabilities of Micrococcus luteus and Bacillus species isolated from abattoir environment
JPH05219942A (en) Variant of clostridium and histolyticum method for production thereof and usage thereof
Coolbear et al. Screening of strains identified as extremely thermophilic bacilli for extracellular proteolytic activity and general properties of the proteinases from two of the strains
KR950009838B1 (en) Protease from streptomyces thermonitrificans
Park et al. Purification and characterization of protease enzyme from Burkholderia stabilis
JP3592811B2 (en) Low-temperature active alkaline protease, microorganism producing the same, and method for producing the alkaline protease
Bannerman et al. Isolation and characterization of an enzyme with esterase activity from Micropolyspora faeni
JP2676453B2 (en) Alkaline isoamylase, microorganism producing the same, and method for producing the alkaline isoamylase
JPH10248564A (en) Protease ek3 having keratin-degrading activity, and bacteria xanthomonas maltop hilia ek3 strain
Sharma et al. Amylase producing efficiency of Bacillus species isolated from Jammu soil
Oda et al. Purification and characterization of alkaline serine proteinase from photosynthetic bacterium, Rubrivivax gelatinosus KDDS1
JP2898022B2 (en) Method for producing collagen degrading enzyme
JP3820617B2 (en) ε-Poly-L-lysine-degrading enzyme and method for producing ε-poly-L-lysine with low polymerization degree using the same
JP2873936B2 (en) Cold-active protease and its production
JP2985018B2 (en) New microorganism
JP2690545B2 (en) Method for producing bacterial alkaline protease
JP2509540B2 (en) Novel microorganism that produces new protease
KR0127100B1 (en) Novel pseudomonas sp. and producing method of new protease
CZ258097A3 (en) Psychrophilic protease and psychrophilic bacteria
JP3055041B2 (en) α-1,2-mannosidase, method for producing the same, and bacteria producing the same

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19980727

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee