KR950009636B1 - Manufacturing method of ybco/laalo3/au structure three pole band pass filter - Google Patents

Manufacturing method of ybco/laalo3/au structure three pole band pass filter Download PDF

Info

Publication number
KR950009636B1
KR950009636B1 KR1019920025339A KR920025339A KR950009636B1 KR 950009636 B1 KR950009636 B1 KR 950009636B1 KR 1019920025339 A KR1019920025339 A KR 1019920025339A KR 920025339 A KR920025339 A KR 920025339A KR 950009636 B1 KR950009636 B1 KR 950009636B1
Authority
KR
South Korea
Prior art keywords
bandpass filter
ybco
laalo
manufacturing
thin film
Prior art date
Application number
KR1019920025339A
Other languages
Korean (ko)
Other versions
KR940016981A (en
Inventor
강광용
성건용
이종용
서정대
Original Assignee
재단법인한국전자통신연구소
양승택
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인한국전자통신연구소, 양승택 filed Critical 재단법인한국전자통신연구소
Priority to KR1019920025339A priority Critical patent/KR950009636B1/en
Publication of KR940016981A publication Critical patent/KR940016981A/en
Application granted granted Critical
Publication of KR950009636B1 publication Critical patent/KR950009636B1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0521Processes for depositing or forming copper oxide superconductor layers by pulsed laser deposition, e.g. laser sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0548Processes for depositing or forming copper oxide superconductor layers by deposition and subsequent treatment, e.g. oxidation of pre-deposited material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0576Processes for depositing or forming copper oxide superconductor layers characterised by the substrate
    • H10N60/0604Monocrystalline substrates, e.g. epitaxial growth
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0884Treatment of superconductor layers by irradiation, e.g. ion-beam, electron-beam, laser beam or X-rays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • H10N60/855Ceramic superconductors
    • H10N60/857Ceramic superconductors comprising copper oxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

The method consists of the steps of; forming a circuit pattern on a crystalline substrate by using a metal mask fabricated by the laser ablation method, forming a contact surface by using a conducting metal on the bottom surface of the crystalline substrate, and forming an ohmic contact by annealing in the oxygen atmosphere.

Description

YBCO/LaAlO3/Au 구조의 3극 대역통과 여파기의 제조방법Manufacturing method of 3-pole bandpass filter with YBCO / LaAlO3 / Au structure

제1도는 본 발명에 따라 고온초전도 필터회로패턴을 기판위에 증착하기 위해 "레이져 애블레이션을 응용한 금속마스크 형상화공정(laser ablation aided metal patterning process)"에 대한 개략도.1 is a schematic diagram of a "laser ablation aided metal patterning process using laser ablation" for depositing a high temperature superconducting filter circuit pattern on a substrate in accordance with the present invention.

제2도는 고온초전도 단결정 박막을 이용하여 제작된 Y-Ba-Cu-O/LaAlO3/Au 구조의 3극-대역통과 여파기의 단면도.2 is a cross-sectional view of a three-pole-pass filter of Y-Ba-Cu-O / LaAlO 3 / Au structure fabricated using a high temperature superconducting single crystal thin film.

제3도는 대역통과 여파기의 회로패턴만을 강조하기 위해 나타낸 평면도.3 is a plan view showing only a circuit pattern of a bandpass filter.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 스테인레스 스틸로 제작한 금속마스크(metal-mask)1: metal-mask made of stainless steel

2 : 엑시머 레이저(excimer laser)에 의해 타깃으로 부터 이탈되는(ablated) 타깃 구성원소들의 집합체(plume)2: a collection of target elements ablated from the target by an excimer laser

3 : 금속마스크에 피복시킨 고온초전도체(YBa2Cu3O7-x)의 후막3: thick film of a high temperature superconductor (YBa 2 Cu 3 O 7-x ) coated on a metal mask

4 : 고주파용 대역통과 여파기의 회로패턴(제 2도, 제 3도에서는 (6)임)4: Circuit pattern of high frequency bandpass filter ((6) in Figs. 2 and 3)

5 : 유전체 단결정 LaAlO3기판5: dielectric single crystal LaAlO 3 substrate

6 : YBa2Cu3O7-x박막 또는 삼극대역통과 여파기 (3-pole bandpass filter)의 회로패턴6: Circuit pattern of YBa 2 Cu 3 O 7-x thin film or 3-pole bandpass filter

7 : 유전체단결정기판 8 : 접지평면7: dielectric single crystal substrate 8: ground plane

본 발명은 산화물 고온초전도 박막을 이용하여 제작한 3극 대역통과 여파기(3-pole bandpass filter)를 제조하는 방법에 관한것이다.The present invention relates to a method of manufacturing a 3-pole bandpass filter fabricated using an oxide high temperature superconducting thin film.

산화물 고온초전도체는 조성이 복잡한 다성분체(多性分體)이지만, 소규모 전자공학(microelectronics)에 응용되기 위해서는 특성이 우수한 에피텍셜 박막이 피룡하다.Oxide high-temperature superconductors are complex multi-component materials, but epitaxial thin films with excellent properties are required for applications in small-scale microelectronics.

또한, 고온초전도 박막의 임계특성을 향상시키기 위해 잘알려진(in situ)방법으로 박막을 성장시키고 있으며 고온초전도 단일층 박막을 미세형상화하여 고주파 수동소자들을 개발하고 있다.In addition, in order to improve the critical characteristics of the high temperature superconducting thin film, the thin film is grown by an in situ method and the high temperature superconducting single layer thin film is developed to develop high frequency passive devices.

한편, 미세형상화를 위한 최적공정변수의 확보하면서 고주파소자를 제작하기 위해서는 포토리소그래피 및 습식식각과 같은 반도체 공정과 결합되어야 한다.On the other hand, in order to fabricate high frequency devices while securing optimal process parameters for micro-shaping, they must be combined with semiconductor processes such as photolithography and wet etching.

그러나, 이러한 반도체 공정은 여러가지 복잡한 단계를 거칠뿐만아니라 공정과정에서 수반되는 수분과 유기물에 의해 초전도 박막은 초전도성에 열화(劣化)가 초래된다.However, such a semiconductor process not only goes through various complicated steps but also deteriorates the superconductivity of the superconducting thin film due to the moisture and organic matters involved in the process.

본 발명의 목적은 고온초전도 박막을 이용하여 고주파(microwave)용 대역통과 여파기를 제조하는 방법을 제공하는 것이다.It is an object of the present invention to provide a method for manufacturing a bandpass filter for microwave using a high temperature superconducting thin film.

상기한 목적을 달성하기위해 본 발명에서는 펄스레이져 증착(pulsed laser deposition)방법 즉, 레이저 애블레이션(laser ablation)방법으로 여파기의 회로패턴을 유전체 단결정 기판위에 직접 형성시켰다.In order to achieve the above object, in the present invention, a circuit pattern of a filter is directly formed on a dielectric single crystal substrate by a pulsed laser deposition method, that is, a laser ablation method.

현재 연구되고 있는 고주파 수동소자의 회로패턴 선폭이 반도체 소자에 비해 훨씬 넓기때문에, 여러가지 복잡한 공정을 대폭 줄이면서 초전도성의 열화도 최소화하기 위하여 채택한 펄스 레이져 증착법을 응용한 금속마스크 미세형상화 공정은 고진공 챔버(high vaccum chamber)내에서 이루어진다.Since the circuit pattern line width of the high frequency passive device under study is much wider than that of the semiconductor device, the metal mask micro shaping process using the pulsed laser deposition method, which has been adopted to minimize the deterioration of superconductivity while greatly reducing various complicated processes, has a high vacuum chamber ( in a high vaccum chamber.

이제부터 첨부될 도면을 참조하면서 본 발명에 대해 상세하게 설명하겠다.The present invention will now be described in detail with reference to the accompanying drawings.

제1도는 레이저 애블레이션을 응용한 금속마스크 형상화공정(laser ablation aided metal mask-patternimg process)를 나타낸 것이다.FIG. 1 shows a laser ablation aided metal mask-patternimg process using laser ablation.

외부에 있는 엑시머 레이저로부터 고에너지 빔(beam)이 YBa2Cu3O7-x소결체(타깃)에 입사하게 되면 타깃으로부터 이탈되어 나오는 클러스터(cluster : 타깃을 구성하는 원자, 분자, 또는, 그들의 집합체등)들이 모여 플럼(plume)(2)을 형성하게 되고, 이들은 레이저에 의해 가공된 0.2㎜두께의 스테인레스(stainless)금속마스크(1)를 통해 박막제조용 단결성 LaAlC3기판(5)위에 도달하게 된다.When a high-energy beam enters the YBa 2 Cu 3 O 7-x sintered body (target) from an external excimer laser, a cluster is released from the target (a cluster: atoms, molecules, or aggregates thereof constituting the target) Etc.) to form a plume (2), which is placed on a unitary LaAlC 3 substrate (5) for thin film production through a 0.2 mm thick stainless metal mask (1) processed by a laser. do.

경험적인 레이저 빔의 발사(shot)수에 의해 필요한 두께만큼 증착한후(760℃에서), 산소분위기의 챔버내에서 냉각시킨다.After deposition (at 760 ° C.) to the required thickness by the number of shots of the empirical laser beam, it is cooled in a chamber of oxygen atmosphere.

이러한 공정후에 금속마스크를 제거하면 원하는 두께(350㎜)를 가진 박막형 회로패턴(6)이 단결정기판위에 형성된다.After this process, the metal mask is removed to form a thin film circuit pattern 6 having a desired thickness (350 mm) on the single crystal substrate.

참고로 금속마스크(1)상에 미리 피복된 박막(3)은 제조할 박막형 회로패턴의 조성에 도움을 주고, 증착분위기를 좋게하기 위해 금속마스크의 뒷면(또는 앞면)에 고온초전도 박막을 피복시킨 것이다.For reference, the thin film 3 previously coated on the metal mask 1 assists in the composition of the thin film circuit pattern to be manufactured, and the high temperature superconducting thin film is coated on the back side (or front side) of the metal mask to improve the deposition atmosphere. will be.

제2도는 본 발명의 목적에 따라 평면형 YBa2Cu3Ox/LaAlO3/Au 구조의 고주파 대역통과 여파기의 제작공정을 나타낸 것이다.2 shows a manufacturing process of a high frequency bandpass filter having a planar YBa 2 Cu 3 O x / LaAlO 3 / Au structure according to an object of the present invention.

우선, 금속마스크 형상화 공정으로 1㎜두께의 LaAlO3단결정 기판(7) 위에 박막형태의 회로패턴(6)을 형성시킨다.First, a circuit pattern 6 in the form of a thin film is formed on the LaAlO 3 single crystal substrate 7 having a thickness of 1 mm by a metal mask shaping process.

이 경우, 발열체(heater)가 부착된 홀더(도시되지않음)에 단결정 LaAlO3기판을 은 접착제(Ag-paste)로서 접착시키고, 플럼(plume)에 수직되게 위치시킨다.In this case, the single crystal LaAlO 3 substrate is bonded as a silver adhesive (Ag-paste) to a holder (not shown) to which a heater is attached, and is placed perpendicular to the plume.

홀더의 온도를 800℃정도 올리면서 패턴을 형성시키기 때문에, 이 단계가 끝나면 기판(7)을 홀더에서 떼어내고 은 접착제를 깨끗이 제거한 후, 전자선 증발기나 열증발기에 의해 접지평면(8)을 위한 금속박막(Au : 두께 1μ정도)을 증착해야한다.Since the pattern is formed while raising the temperature of the holder by about 800 ° C., after the completion of this step, the substrate 7 is removed from the holder, the silver adhesive is removed, and the metal for the ground plane 8 is removed by an electron beam evaporator or a thermal evaporator. A thin film (Au: about 1μ thick) must be deposited.

이 층착단계에서는 대역통과 여파기의 성능시험에 오류가 발생하지 않게, 앞서 제작한 회로패턴에 미세한손상(scratch, 홈집, 균열)등이 생기지 않도록 세심한 주의가 필요하다.In this layering step, care must be taken not to induce errors in the performance test of the bandpass filter and to prevent minute damage (scratches, grooves, cracks) on the circuit patterns fabricated previously.

한편 접지평면(8)이 증착되고나면, 정밀측정이 가능하도록 컨넥터의 핀(pin)과 회로패턴의 가장자리 결합선(edge coupled line)을 접촉시키기 위해, 가장자리 결합선 위에 전도성 금속(Au) 박막의 패드(pad)를 형성시켜야 한다.On the other hand, after the ground plane 8 is deposited, a pad of conductive metal (Au) thin film is formed on the edge coupling line to contact the pin of the connector and the edge coupled line of the circuit pattern to allow precise measurement. pads).

이 경우에도 세심한 주의가 필요하다.In this case, great care is also required.

이러한 공정이 끝나면 일반용 전기로를 이용하여 400℃정도, 산소분위기에서 1시간정도 열처리하여 저항접촉(ohmic contact)과 접지평면(8)을 완성하면 고주파용(~10GHz)고온초전도 대역 통과 여파기가 제작된다.After this process, using a general electric furnace, heat treatment at about 400 ℃ and oxygen atmosphere for about 1 hour to complete ohmic contact and ground plane 8, high frequency (~ 10GHz) high temperature superconducting bandpass filter is produced. .

그리고 고온조전도 에피텍셜 박막제조 및 고주파 소자의 개발을 위해서는 기판의 선택이 매우 중요하다.In addition, substrate selection is very important for high temperature conduction epitaxial thin film manufacturing and high frequency device development.

일반적으로 기판은 증착하는 박막과 격자상수 및 열팽창 계수가 비슷해야하고, 박막과 기판사이의 계면에서는 상호화산(相互擴散)이 없어야 한다.In general, the substrate should have similar lattice constants and thermal expansion coefficients to the deposited thin film, and there should be no cross volatility at the interface between the thin film and the substrate.

본 발명에 사용한 LaAlO3기판(7)은 다른 기판(예를들면, MgO, YSZ등)에 비해 고가(高價)이지만 격자상수가 고온초전도 YBa2Cu3O7과 거의 같기 때문에 이 기판위에 제조한 고온초전도 에피텍셜 박막의 특성이 가장 우수한 것으로 알려져 있다.The LaAlO 3 substrate 7 used in the present invention is more expensive than other substrates (e.g., MgO, YSZ, etc.), but because the lattice constant is almost the same as that of the high temperature superconducting YBa 2 Cu 3 O 7 , It is known that the characteristics of the high temperature superconducting epitaxial thin film are the best.

그러나 박막제조온도를 450℃ 이상으로 올리면 LaAlO3결정이 갖는 상전이(相轉移)에의해 박막상에 쌍정(雙晶 : twin boundary)이 나타난다고 하는 문제점이 있다.However, when the thin film manufacturing temperature is raised to 450 ° C. or higher, there is a problem that twin boundaries appear on the thin film due to the phase transition of the LaAlO 3 crystal.

제3도는 마이크로스트립 대역통과 여파기의 평면도를 나타낸 것이다.3 shows a plan view of a microstrip bandpass filter.

제3도의 하부에 있는 회로패턴는 단결정 기판(7)의 유전 특성(유전상수, 유전손실등)과 기판의 두께등을 변수하로하여 고주파 부품 개발용 시뮬레이션(EEsof)을 통해 구한 최적설계 패턴으로, 공진기(resonator)의 공명특성을 결합시키는 방식을 이용하여 제작한 3극 대역통과 여파기(3-pole bandpass filter)이다.The circuit pattern at the bottom of FIG. 3 is an optimal design pattern obtained through the simulation of high frequency components (EEsof) with the dielectric characteristics (dielectric constant, dielectric loss, etc.) of the single crystal substrate 7 and the thickness of the substrate as variables. It is a 3-pole bandpass filter manufactured by combining the resonance characteristics of a resonator.

고주파 수동소자의 기본은 공명현상을 이용하는 공진기(resonator)이지만, 실제로 부품화하거나능동소자와 결합시켜 하이브리드(hybrid)소자를 개발하기 위해서는 특정주파수 대역에서 필요한 대역폭을 갖는 여파기(filter)가 핵심소자이다.The fundamental of the high frequency passive element is a resonator using resonance phenomena, but in order to develop a hybrid element by actually making a component or combining it with an active element, a filter having a bandwidth required in a specific frequency band is a key element. .

실제로, 수 GHz이상의 초고주파 영역에서 대용량의 정보를 손실없이 고속으로 처리할수 있고 넓은 범위에서 동시적으로 상호전송(相互傳送)하기 위해서는 다양한 여파기의 개발이 요구되고 있다.In fact, in the ultra-high frequency region of several GHz or more, a large amount of information can be processed at high speed without loss, and various filters are required for simultaneous transmission in a wide range.

따라서 앞서 널명한 바와 같이 본 발명의 고주파용 고온초전도 대역통과 여파기는 차세대를 겨냥한 이동통신 및 위성통신용 송수신 시스팀의 핵심부품으로 각광 받을 수 있을 뿐만아니라, 초전도 특성을 이용하기 때문에 손실 및 잡음특성이 대폭 개선되고, 고집적에 의한 경박단소화된 초고주파 부품개발에 큰 효과를 줄것으로 기대된다.Therefore, as mentioned above, the high-frequency high-temperature superconductor bandpass filter of the present invention can be spotlighted as a core component of the transmission / reception system for mobile communication and satellite communication aimed at the next generation, and the loss and noise characteristics are greatly increased because it uses superconducting characteristics. It is expected to have a great effect on the development of high-frequency components which are improved and light and shortened by high integration.

Claims (4)

대역통과 여파기를 제조하는 방법에 있어서, 레이저 애블레이션에 의해 형상화된 금속마스크(1)를 사용하여 단결정기판(7) 위에 회로패턴(6)을 형성하는 공정과, 상기 단결정기판(7)의 하부표면에 전도성 금속으로 접지평면(8)을 형성하는 공정과, 산소분위기에서 열처리하여 저항접촉을 형성하는 공정을 포함하는 것을 특징으로하는 YBCO/'LaAlO3/Au 구조의 3극 대역통과 여파기의 제조방법.A method of manufacturing a bandpass filter, comprising: forming a circuit pattern 6 on a single crystal substrate 7 using a metal mask 1 shaped by laser ablation, and a lower portion of the single crystal substrate 7. Fabrication of a three-pole bandpass filter having a YBCO / 'LaAlO 3 / Au structure comprising the step of forming a ground plane (8) with a conductive metal on the surface, and a step of forming a resistance contact by heat treatment in an oxygen atmosphere. Way. 제1항에 있어서, 상기 금속마스크(1)의 앞면과 뒷면중 어느 하나에는 초전도체 물질이 도포된 것을특징으로 하는 YBCO/LaAlO3/Au 구조의 3극 대역통과 여파기의 제조방법.The method of manufacturing a three-pole bandpass filter having a YBCO / LaAlO 3 / Au structure according to claim 1, characterized in that a superconducting material is applied to one of the front and rear surfaces of the metal mask (1). 제2항에 있어서, 상기 초전도체 물질은 YBa2Cu3O7-x인 것으로 하고 기판 LaAlO3로 하는 것을 특징으로 하는 YBCO/LaAlO3/Au 구조의 3극 대역통과 여파기의 제조방법.The method as claimed in claim 2, wherein the superconductor material is YBa 2 Cu 3 O 7-x and the substrate LaAlO 3 is used for producing a three-pole bandpass filter having a YBCO / LaAlO 3 / Au structure. 제1항에 있어서, 상기 금속마스크(1)의 형상화단계는 히터가 부착된 홀더에 스테인레스마스크를 은 접착제로서 접착시키고 상기 홀더의 온도를 800℃로 올리면서 패턴을 형성하는 것을 특징으로 하는 YBCO/LaAlO3/Au 구조의 3극 대역통과 여파기의 제조방법.According to claim 1, wherein the shaping step of the metal mask (1) YBCO / characterized in that to form a pattern while attaching a stainless mask to the holder with a heater as a silver adhesive and raising the temperature of the holder to 800 ℃ Manufacturing method of 3-pole bandpass filter of LaAlO 3 / Au structure.
KR1019920025339A 1992-12-24 1992-12-24 Manufacturing method of ybco/laalo3/au structure three pole band pass filter KR950009636B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019920025339A KR950009636B1 (en) 1992-12-24 1992-12-24 Manufacturing method of ybco/laalo3/au structure three pole band pass filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019920025339A KR950009636B1 (en) 1992-12-24 1992-12-24 Manufacturing method of ybco/laalo3/au structure three pole band pass filter

Publications (2)

Publication Number Publication Date
KR940016981A KR940016981A (en) 1994-07-25
KR950009636B1 true KR950009636B1 (en) 1995-08-25

Family

ID=19346502

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019920025339A KR950009636B1 (en) 1992-12-24 1992-12-24 Manufacturing method of ybco/laalo3/au structure three pole band pass filter

Country Status (1)

Country Link
KR (1) KR950009636B1 (en)

Also Published As

Publication number Publication date
KR940016981A (en) 1994-07-25

Similar Documents

Publication Publication Date Title
CA2033137C (en) Microwave component and method for fabricating substrate for use in microwave component
EP0455527B1 (en) Microstrip line resonator composed of oxide superconductor material
US5446016A (en) Method for forming a patterned oxide superconductor thin film
JPH05299712A (en) Microwave part
JP2567517B2 (en) Superconducting microwave components
KR950009636B1 (en) Manufacturing method of ybco/laalo3/au structure three pole band pass filter
JP3568547B2 (en) Josephson junction structure
JP2596400B2 (en) Superconducting filter
KR950009637B1 (en) Manufacturing mehtod of ybco/mgo/au structure three pole bandpass filter
JP4771632B2 (en) Method for forming high-temperature superconductor film
JP3189403B2 (en) Element having superconducting junction and method of manufacturing the same
Aiga et al. HTS hairpin microstrip filter on r-cut sapphire substrate
JPH03205904A (en) Microwave delay line
JPH057104A (en) Superconducting microwave component
KR0146557B1 (en) Microstrip open-stub line type high-tc superconducting 9-pole lowpass filter
JPH03194979A (en) Microwave resonator
JPH05299914A (en) Superconducting high frequency resonator and filter
JP2850562B2 (en) Superconducting substrate manufacturing method
KR0146556B1 (en) Microstrip parallel coupled-line type high-tc 6-pole bandpass filter
KR100199019B1 (en) Duplexer for microwave and method for fabricating it
KR0155309B1 (en) Microstrip branch-line type high tc superconducting 3-db quadrature hybrid coupler and method thereof
KR950002070B1 (en) Manufacturing method for ring type oscillator
EP0517560B1 (en) Method of manufacturing a superconducting microwave component substrate
JP3292168B2 (en) Filter adjustment method and adjustment device
KR950000113B1 (en) Microstirp type high temperature superconducting resonator manufacturing method and apparatus

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19980616

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee