KR950008198B1 - A method for controlled catalyst sulfidation - Google Patents

A method for controlled catalyst sulfidation Download PDF

Info

Publication number
KR950008198B1
KR950008198B1 KR1019890700049A KR890700049A KR950008198B1 KR 950008198 B1 KR950008198 B1 KR 950008198B1 KR 1019890700049 A KR1019890700049 A KR 1019890700049A KR 890700049 A KR890700049 A KR 890700049A KR 950008198 B1 KR950008198 B1 KR 950008198B1
Authority
KR
South Korea
Prior art keywords
catalyst
hydrogenation
catalysts
selectivity
reaction
Prior art date
Application number
KR1019890700049A
Other languages
Korean (ko)
Other versions
KR890701204A (en
Inventor
스메들러 구드문드
쾰비 로버트
Original Assignee
스메들러 구드문드
쾰비 로버트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 스메들러 구드문드, 쾰비 로버트 filed Critical 스메들러 구드문드
Priority claimed from PCT/SE1987/000235 external-priority patent/WO1988008749A1/en
Publication of KR890701204A publication Critical patent/KR890701204A/en
Application granted granted Critical
Publication of KR950008198B1 publication Critical patent/KR950008198B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/12Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by hydrogenation
    • C11C3/123Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by hydrogenation using catalysts based principally on nickel or derivates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/049Sulfides with chromium, molybdenum, tungsten or polonium with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

내용 없음.No content.

Description

촉매 황화 반응을 조절하는 방법How to Control Catalytic Sulfation Reactions

일산화탄소의 수소화반응(피셔-트로프쉬-메탄화 및 관련방법) 및 폴리불포화 유기 화합물의 수소화반응은 촉매의 선택성이 경제성 측면에서 가장 중요하게 작용하는 공업적인 대규모 수소화반응 방법의 오랜 주지의 예이다. 목적하는 생성물의 수율을 반응기내에서 최대화시키고자할 경우, 쓸모가 적은 부생성물들의 생산으로부터 초래되는 원료의 낭비를 피해야 한다. 또한(그리고 더욱 중요한 것으로), 분리장치의 에너지소비 및 자재비용을 최소화 시켜야 한다. 에너지 시장에서의 오늘날의 추세에 비추어볼때, 종류와 같은 에너지 소모형 단위조작들이 장래의 제조공업에 있어서의 총비용을 보다 증가시키는 작용을 할 것으로 예상된다. 이와 같은 추세는 또한 지난 15년간 촉매제개발 및 반응기 고안분야에서의 집약적인 연구활동들에 의해서도 나타나고 있다.Hydrogenation of carbon monoxide (Fisher-Tropsch-methanation and related processes) and hydrogenation of polyunsaturated organic compounds are long-standing examples of industrial large-scale hydrogenation processes in which selectivity of the catalyst is most important in terms of economics. In order to maximize the yield of the desired product in the reactor, waste of raw materials resulting from the production of useless byproducts should be avoided. In addition (and more importantly), the energy and material costs of the separator should be minimized. In light of today's trends in the energy market, energy-consuming unit operations such as varieties are expected to increase the total cost of future manufacturing industries. This trend is also reflected in intensive research activities in catalyst development and reactor design over the last 15 years.

높은 촉매 활성(촉매제단위 질량당 높은 생산 능력)에 대한 요건은 높은 선택성(임의의 목적 반응에 대한 높은 선호도 및 목적하지 않는 다른 반응들에 대한 낮은 활성)에 대한 요건과 종종 상치되고 있다. 촉매 활성과 선택성이 상치되는 상업적으로 중요한 수소화반응 방법의 일부 대표적인 예로서 다음과 같은 것들을 들 수 있다 :The requirement for high catalytic activity (high production capacity per unit mass of catalyst) is often at odds with the requirement for high selectivity (high preference for any desired reaction and low activity for other undesired reactions). Some representative examples of commercially important hydrogenation processes that conflict with catalytic activity and selectivity include the following:

* 지방산을 제조하기 위한 폴리불포화 천연 트리글리세리드의 부분 수소화반응. 이 경우에 있어서는, 포화 트리글리세리드(스테아린)는 바람직하지 않다.Partial hydrogenation of polyunsaturated natural triglycerides to produce fatty acids. In this case, saturated triglyceride (stearin) is not preferable.

* 아세틸렌의 에텐으로의 부분 수소화 반응, 에텐은 모든 석유화학 화합물들중에서 아마도 가장 중요한 물질이며, 예를 들면 폴리에텐 및 PVC와 같은 플라스틱 제조시 출발물질로서 사용된다. 이 수소화반응의 포화 생성물(에탄) 자체는 단지 연료로서만 사용 가능하다.Partial hydrogenation of acetylene to ethene, ethene is probably the most important of all petrochemical compounds and is used as a starting material in the manufacture of plastics such as polyethene and PVC. The saturated product (ethane) of this hydrogenation reaction can only be used as fuel.

* 옥탄산을 생산하기 위한 2-에틸-헥세날의 2-에틸-헥사날로의 부분 수소화반응. 완전-수소화 생성물(2-에틸-헥산올)은 전혀 다른 특성들을 지니며, PVC-연화제로 사용된다.Partial hydrogenation of 2-ethyl-hexanal to 2-ethyl-hexanal to produce octanoic acid. Fully-hydrogenated products (2-ethyl-hexanol) have completely different properties and are used as PVC-softeners.

선택적 촉매제의 개발은, 주로 하기 열거된 바와같이 수행되어 왔다 :The development of selective catalysts has been carried out mainly as listed below:

* 활성 금속 성분의 치환. 팔라듐은, 니켈과는 대조적으로, 예를들면 아세틸렌 및 불포화 알데히드의 수소화 반응에서 매우 선택적인 것으로 나타났다. 활성성분의 변화는 종종(이 경우에 있어서와 같이) 촉매제 각각의 증가와 관련이 있다.* Substitution of active metal components. Palladium, in contrast to nickel, has been shown to be very selective, for example in the hydrogenation of acetylene and unsaturated aldehydes. Changes in the active ingredient are often associated with an increase in each of the catalysts (as in this case).

* 활성 금속과 다른, 보다 활성이 적은 금속과의 합금, Ni/Cu 합금은 경우에 따라서는 종래의 니켈 촉매들에 비해 현저히 보다 높은 선택성을 나타냈다. 그러나, 문제점은 성분들중 1종이 고온에서 표면 집적현상을 나타낸다는 것이다.Alloys of active metals with other less active metals, Ni / Cu alloys, in some cases, exhibited significantly higher selectivity than conventional nickel catalysts. However, a problem is that one of the components exhibits surface integration at high temperatures.

* 황 화합물에 의한 촉매의 독작용(poisoning). 일반적으로 원하지 않는 촉매 불활성화로 인해 심각한 문제점들을 야기하는 황은 금속 촉매와 상호 작용하는 원래의 것보다 실질적으로 더 높은 선택성과 더불어 새로운 형태의 촉매 부위들을 형성시킨다. 그러나, 이와 같은 기술은 방법상의 조건들을 엄격하게 통제시킨 상황하에서 적용시켜야 하며, 그러하지 않을 경우 전체적인 불할성화가 일어날 우려가 있다.Poisoning of the catalyst by sulfur compounds. Sulfur, which generally causes serious problems due to unwanted catalyst deactivation, forms new types of catalyst sites with substantially higher selectivity than the original ones interacting with metal catalysts. However, such techniques must be applied under tightly controlled methodological conditions, or there is a risk of total inactivation.

오래전 부터 니켈/황-촉매(NiS, Ni2S 및 Ni3S2)는 니켈 촉매에 비해 식용유의 수소화반응에 있어서 훨씬 더 높은 선택성을 제공하는 것으로 알려져 있다.Nickel / sulfur-catalysts (NiS, Ni 2 S and Ni 3 S 2 ) have long been known to provide much higher selectivity for the hydrogenation of cooking oils than nickel catalysts.

과거에는 니켈 촉매를 변형시키기 위한 목적으로 황원소를 수소화 반응기에 첨가하였으나, 일반적으로 결과를 예측하기가 어려웠다. 오늘날에는 Ni/S-촉매가 시판되고 있으며, 이로인해 재현가능성이 보다 큰 결과 -통상의 니켈 촉매들과 비교하여 보다 높은 선택성 및 보다 낮은 활성-가 수득된다.In the past, elemental sulfur was added to the hydrogenation reactor for the purpose of modifying the nickel catalyst, but the results were generally difficult to predict. Ni / S-catalysts are commercially available today, resulting in more reproducible results—higher selectivity and lower activity compared to conventional nickel catalysts.

제조공업에 있어서의 문제점은 촉매 특이성에 대한 요건들이 증가할 경우 현격하게 증가된 비용으로 시판되고 있는 제한된 수의 촉매들 중에서 1종을 선택해야만 하는 것이다.The problem in the manufacturing industry is that one must select one of the limited number of catalysts available on the market at a significantly increased cost as the requirements for catalyst specificity increase.

본 발명은 구매자가 그의 플랜트에서 직접 사용할 수 있는 촉매 독작용의 정도를 특정의 최적상태로 조절하는데 적용하는 새롭고도 융통성 있는 방법에 관한 것이다. 이와 같은 방법으로 종래의 니켈-촉매를 출발물질로하여 일시적인 원료 저장 및 목적 생성물들에 대하여 가장 적합한 촉매를 제조하는 것이 가능하다.The present invention is directed to a new and flexible method of applying to a particular optimum level of catalytic poisoning that a buyer can use directly in his plant. In this way it is possible to prepare catalysts which are most suitable for temporary raw material storage and the desired products, using conventional nickel-catalyst as starting material.

기술Technology

본 발명의 방법은 선택적으로 화합 흡착에 기초를 둔 것으로서, 이 경우에 있어서는 주요 반응이 진행되는 반응기의 특정한 수의 펄스를 통해서 또는 임의의 시간동안 저속으로 소량의 H2S를 첨가하는 것을 의미한다. 적당한 온도에서 비가역적으로 흡착되는 H2S는 촉매 표면상의 어느 곳에서나 흡착되지 못하며, 이는 표면의 많은 부분이 반응 관련물들로 흡착에 의해 피복되어 있기 때문이다. 또한, 본 발명의 방법은 질량전이효과를 이용한 것으로서 : H2S 흡착뿐만 아니라 수소화 속도 상수가 매우 높은 반응 조건에서, 관찰되는 속도는 H2및 H2S 각각의 외부 질량 전이 속도에 의해 전적으로 조절된다. 이어서 촉매 표면(독작용이 유발되는)에서 이들 분자들의 농도가 상응하는 포화 농도들에 비해 훨씬 더 낮게 되어 독작용이 유발되는 과정을 동력학적 및 열역학적으로 조절하는데 효과적으로 사용된다.The process of the present invention is optionally based on compound adsorption, which in this case means the addition of a small amount of H 2 S at a low rate for a certain time or through a certain number of pulses of the reactor in which the main reaction proceeds. . H 2 S, which is irreversibly adsorbed at the appropriate temperature, is not adsorbed anywhere on the catalyst surface, because much of the surface is covered by adsorption with reaction materials. In addition, the method of the present invention utilizes a mass transfer effect: in reaction conditions with very high hydrogenation rate constants as well as H 2 S adsorption, the rate observed is entirely controlled by the external mass transfer rate of H 2 and H 2 S respectively. do. The concentration of these molecules at the catalyst surface (which causes poisoning) is then much lower than the corresponding saturation concentrations, which is effectively used to control the poisoning process dynamically and thermodynamically.

실험 방법Experiment method

터어빈 임펠러가 장치된 유리 반응기내에 해바라기 오일 400ml 및 Ni-촉매(알루미나-실리카-담체상에 지지된 82% Ni) 20g을 충전한다. 수소화반응이 개시되기 전에 질소 대기하에서 1200r.p.m.의 교반기속도로 상기 혼합물을 180℃로 가열한다. 독작용 유발 단계동안 수소기류는 25ml/s(1기압, 25℃)이도록 한다. 공지된 부피량(5.43ml)의 기체 도우징 루우프를 사용하여 각기 다른 양의 H2S를 혼합 플라스크에 주입하고, 이로부터 주된 수소기류가 수소화 반응기내로 H2S을 운반하게 된다. 촉매의 H2S-흡수를 신속하고 용이하게 측정할 수 있는 온-라인 플래임포토멀티플리케이터(flamephotomultiplicator)의 탐지기를 사용하여 각기 다른 독작용 실험들로 부터 수득되는 결과들을 계속적으로 점검한다. 수소화 시간은 H2S 첨가량과 관계없이 모든 경우에 있어서 70분이었다.In a glass reactor equipped with a turbine impeller, 400 ml of sunflower oil and 20 g of Ni-catalyst (82% Ni supported on alumina-silica-carrier) are charged. The mixture is heated to 180 ° C. at a stirrer speed of 1200 r · pm under a nitrogen atmosphere before the hydrogenation is initiated. During the poisoning phase, the hydrogen stream is 25 ml / s (1 atm, 25 ° C). Known volumes (5.43 ml) of gas dosing loops are used to inject different amounts of H 2 S into the mixing flask, from which the main stream of hydrogen carries H 2 S into the hydrogenation reactor. Continuously check the results obtained from different poisoning experiments using detectors of on-line flamephotomultiplicator, which can quickly and easily measure the H 2 S-absorption of the catalyst. . The hydrogenation time was 70 minutes in all cases, regardless of the amount of H 2 S added.

전술한 방법을 사용하여, H2S를 4, 8, 10, 15, 20, 25, 34 및 60루우프 첨가하여 8개의 다른 촉매 시료들을 제조하였다. 이들 시료 각각으로부터 0.12g의 촉매를 취하여 동력학적 조건하에서(질량 전이 제한이 제거된 상태) 작동되는 슬러리 반응기내에서 활성 및 선택성 시험을 수행한다. 슬러리 반응기내의 조건은 다음과 같다 : PH2=5.0기압, 온도=180℃, 수소 유속=5ml/s(1기압, 25℃), 촉매부하=0.12g 및 교반속도=180r.p.m. 독작용이 없는 니켈촉매와 동일한 Ni함량을 가진 시판용 Ni/S 촉매를 대조물질로서 사용하였다.Using the method described above, eight different catalyst samples were prepared by adding 4, 8, 10, 15, 20, 25, 34 and 60 loops of H 2 S. 0.12 g of catalyst is taken from each of these samples to perform activity and selectivity tests in a slurry reactor operating under kinetic conditions (without removing mass transfer restrictions). The conditions in the slurry reactor were as follows: P H2 = 5.0 atm, temperature = 180 ° C, hydrogen flow rate = 5 ml / s (1 atm, 25 ° C), catalyst load = 0.12 g and stirring rate = 180 r.pm without poison A commercial Ni / S catalyst having the same Ni content as the nickel catalyst was used as a control.

첨부하는 표 1에 요약된 결과들로부터 모노-불포화 지방산의 최고 농도는 독작용 정도와 거의 무관한 반면, 모노-불포화 지방산의 트랜스/시스-비는 독작용 정도와 직접적으로 관련이 있다는 것을 알 수 있다. 또한 이 표로부터 본 발명에 따른 Ni/S 촉매의 활성들이 Ni-함량이 동일한 시판용 Ni/S-촉매의 활성에 비해서 모든 경우에 있어서 현저히 높다는 것을 알 수 있다.The results summarized in Table 1 show that the highest concentration of mono-unsaturated fatty acids is almost independent of the degree of poisoning, whereas the trans / cis-ratio of mono-unsaturated fatty acids is directly related to the degree of poisoning. have. In addition, it can be seen from this table that the activities of the Ni / S catalyst according to the present invention are significantly higher in all cases than the activities of commercial Ni / S-catalysts having the same Ni-content.

요약하면, 본 발명은 종래의 니켈 촉매를 자체의 선택성이 급격이 증가되고 반면에 활성은 시판용 Ni/S 촉매의 활성보다 여전히 더 높은 변형시키는 용의한 방법을 제공한다는 것이 명확하게 증명된다. 또한, 본 발명의 방법은 촉매 표면상의 제한된 부분만이 독작용을 갖는 것을 가능케함으로써 플래트에서 작동조건들을 변경시키는데 대하여 융통성 있게 대응할 수 있는 방법을 제공한다는 것도 알 수 있다.In summary, the present invention clearly demonstrates that the selectivity of conventional nickel catalysts provides a facile method of modifying their selectivity while the activity is still higher than that of commercial Ni / S catalysts. It can also be seen that the method of the present invention provides a method that allows for a flexible response to changing operating conditions in the platter by allowing only a limited portion of the catalyst surface to be poisonous.

[표 1]TABLE 1

Figure kpo00001
Figure kpo00001

주 1. 상기 조성운 몰%이다.Note 1. The composition is mol%.

주2. 모든 수소화반응은 5바아, 180℃에서 수행됨.Note 2. All hydrogenation was carried out at 5 bar, 180 ° C.

초기 반응속도로 나타낸 상기 시료들의 활성비교Activity comparison of the samples in initial reaction rate

Figure kpo00002
Figure kpo00002

Claims (1)

천연 오일류의 수소화반응중에 H2S를 역상 수소화 반응기에 첨가하여 니켈-함유 촉매를 황화시킴으로써 촉매 황화반응이 수소화반응과 동시에 진행되도록 함을 특징으로 하는 촉매 황화 반응을 조절하는 방법.A method for controlling a catalytic sulfidation reaction, characterized in that during the hydrogenation of natural oils, H 2 S is added to a reverse phase hydrogenation reactor to sulfide the nickel-containing catalyst so that the catalytic sulfidation proceeds simultaneously with the hydrogenation reaction.
KR1019890700049A 1987-05-13 1987-05-13 A method for controlled catalyst sulfidation KR950008198B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/SE1987/000235 WO1988008749A1 (en) 1985-11-15 1987-05-13 A method for controlled catalyst sulfidation

Publications (2)

Publication Number Publication Date
KR890701204A KR890701204A (en) 1989-12-19
KR950008198B1 true KR950008198B1 (en) 1995-07-26

Family

ID=67742090

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019890700049A KR950008198B1 (en) 1987-05-13 1987-05-13 A method for controlled catalyst sulfidation

Country Status (1)

Country Link
KR (1) KR950008198B1 (en)

Also Published As

Publication number Publication date
KR890701204A (en) 1989-12-19

Similar Documents

Publication Publication Date Title
Coenen Hydrogenation of edible oils
US4177136A (en) Hydrotreating process utilizing elemental sulfur for presulfiding the catalyst
US2511453A (en) Catalyst and process for carrying out hydrogenation reactions
Coenen Catalytic hydrogenation of fatty oils
US5482616A (en) Process for hydrogenation and/or dehydrogenation
JPH06509278A (en) How to presulfurize a catalyst
CA2194140C (en) Hydrogenation of substrate and products manufactured according to the process
US2690379A (en) Process for production of deuterium oxide as a source of deuterium
KR100328586B1 (en) Methods of treating pyrophoric catalysts
Gray et al. Hydrogenation catalysts—Their effect on selectivity
US4118342A (en) Process for producing catalysts
US11090637B2 (en) Fixed catalyst bed comprising metal foam bodies
FR2523149A1 (en) NEW CATALYST SUPPORTING PALLADIUM-OR, ITS PREPARATION AND USE IN SELECTIVE HYDROGENATION REACTIONS OF DIOLEFINIC AND / OR ACETYLENE HYDROCARBONS
CN108465462A (en) Catalyst, the preparation method of catalyst, the method for deoxidation and the system for fuel making
JPS63267441A (en) Preparatory sulfiding composition for preparing hydrotreating catalyst
EP0429995A2 (en) Process for hydrogenation of oils
EP0021528B1 (en) Process for the selective hydrogenation of triglyceride oils and products so obtained
KR950008198B1 (en) A method for controlled catalyst sulfidation
US3456029A (en) Process for the purification of lower olefin gases
EP0367758B1 (en) A method for controlled catalyst sulfidation
US6093309A (en) Method of treating spontaneously combustible catalysts
JPS6012905B2 (en) Methanation method
US2079404A (en) Catalyst preparation
KR910004885B1 (en) Process for the production of edible oils
Parry et al. The hydrogenation of triglycerides using supported alloy catalysts. I. Silica‐supported Ni—Ag catalysts

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
NORF Unpaid initial registration fee