KR940011543B1 - Manufacturing process of elastic fiber having an excellent elastic property - Google Patents

Manufacturing process of elastic fiber having an excellent elastic property Download PDF

Info

Publication number
KR940011543B1
KR940011543B1 KR1019920011100A KR920011100A KR940011543B1 KR 940011543 B1 KR940011543 B1 KR 940011543B1 KR 1019920011100 A KR1019920011100 A KR 1019920011100A KR 920011100 A KR920011100 A KR 920011100A KR 940011543 B1 KR940011543 B1 KR 940011543B1
Authority
KR
South Korea
Prior art keywords
heat treatment
elastic
elongation
elastic yarn
polyether
Prior art date
Application number
KR1019920011100A
Other languages
Korean (ko)
Other versions
KR940000631A (en
Inventor
김광태
임대우
백문수
엄재영
Original Assignee
제일합섬 주식회사
박홍기
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일합섬 주식회사, 박홍기 filed Critical 제일합섬 주식회사
Priority to KR1019920011100A priority Critical patent/KR940011543B1/en
Publication of KR940000631A publication Critical patent/KR940000631A/en
Application granted granted Critical
Publication of KR940011543B1 publication Critical patent/KR940011543B1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/78Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
    • D01F6/86Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from polyetheresters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

The highly stretchable elastic yarn is produced by: (a) melt-spinning a polyether-ester block copolymer of polybutylene terephthalate-type polyester as a hard segment and polyoxybutylene glycol-type polyether as a soft segment; (b) heat-treating a monofilament elastic yarn at 10 % elogation rate, and heat-treating it to be at most 40 % shrinkage rate; and (c) drawing it at 20-150 deg.C by 2.0-4.0 times. The high stretch elastic yarn has a good elastic recoverability.

Description

고신축성 탄성사의 제조방법Manufacturing method of high elastic elastic yarn

본 발명은 폴리에테르-에스테르 블록 공중합체를 사용하여 저신장 뿐만 아니라 고신장하에서도 우수한 신장회복성을 나타내는 탄성사의 제조방법에 관한 것으로, 폴리부틸렌테레프탈레이트계 폴리에스테르를 경질세그먼트로 하고 폴리옥시부틸렌글리콜계 폴리에테르를 연질세그먼트로하는 블록공중합 폴리에테르-에스테르를 용융방사하고, 20% 이하의 신장하에서 열처리한 후에 이완열처리하는 것을 특징으로 하는 두단계의 열처리를 거친후 연신하므로서 고신장영역에서 응력이 작아져 신장시에 용이하게 변형되어 우수한 탄성 회복특성을 나타내는 것을 특징으로 하는 탄성사의 제조방법에 관한 것이다.The present invention relates to a method for producing an elastic yarn that exhibits excellent elongation recovery under high elongation as well as low elongation using a polyether-ester block copolymer, wherein polybutylene terephthalate-based polyester is used as a hard segment and polyoxybutyl Block-copolymerized polyether-esters made of lenglycol-based polyethers as soft segments are melt-spun and heat-treated under an elongation of 20% or less, followed by relaxation heat treatment. The present invention relates to a method for producing an elastic yarn, characterized in that the stress is reduced, the strain is easily deformed during stretching, and exhibits excellent elastic recovery characteristics.

일반적으로, 폴리부틸렌테레프탈레이트계 폴리에스테르를 경질세그먼트로 하고 폴리옥시부틸렌글리콜계 폴리에테르를 연질세그먼트로 하는 폴리에테르-에스테르 블록공중합체가 우수한 탄성회복특성을 나타낸다는 것은 이미 공지된 사실이고, 이러한 폴리부틸렌글리콜테레프탈레이트계 탄성체를 용융방사하여 탄성사를 제조하는 방법에 대하여 많은 연구가 진행되고 있다. 그러나, 폴리부틸렌테레프탈레이트계 탄성사는 탄성회복율면에 있어서 저신장영역에서는 양호한 회복성을 나타내나 고신장영역에서는 고무나 폴리우레탄에 미치지 못하고 있다.In general, it is already known that polyether-ester block copolymers having a polybutylene terephthalate polyester as a hard segment and a polyoxybutylene glycol polyether as a soft segment exhibit excellent elastic recovery properties. Many studies have been conducted on the method of producing an elastic yarn by melt spinning the polybutylene glycol terephthalate-based elastomer. However, the polybutylene terephthalate-based elastic yarn shows good recovery in the low elongation region in terms of elastic recovery rate, but does not reach rubber or polyurethane in the high elongation region.

이러한 단점을 개선하기 위하여 일본특개소59-45349호, 소59-45350호, 소58-91819호, 소58-91820호, 소58-98422호, 미국특허 제3,880,976호에는 연질세그먼트의 중량배합을 증가시켜 초기모듀러스(modulus)를 낮게하는 방법, 결정핵제를 배합하여 결절화도를 향상시키는 방법, 폴리에테르-에스테르 블록공중합체를 용융방사한 후 열처리하고 연신하는 방법, 연신하고 열처리하는 방법등이 제안되고 있으나, 상기 방법에 의해 얻어지는 탄성사는 약간의 개략효과는 있으나 스판덱스의 물성에는 아직도 미치지 못하고 있다. 따라서, 본 발명의 목적은 저신장뿐만아니라 고신장하에서도 우수한 신장 회복성을 나타내는 탄성사의 제조방법을 제공하는데 있다.In order to improve this disadvantage, Japanese Patent Laid-Open Nos. 59-45349, 59-45350, 58-91819, 58-91820, 58-98422, and 3,880,976, U.S. Pat. Increasing the initial modulus to lower the modulus, improving the nodule degree by mixing the crystal nucleating agent, heat-treating and stretching the polyether-ester block copolymer after melt spinning, stretching and heat-treating, and the like. Although proposed, the elastic yarn obtained by the above method has some schematic effects but still does not reach the physical properties of the spandex. Accordingly, it is an object of the present invention to provide a method for producing an elastic yarn that exhibits excellent stretch recovery even under high elongation as well as low elongation.

상기 목적을 달성하기 위하여 본 발명에서는 폴리부틸렌테레프탈레이트계 폴리에스테르를 경질세그먼트로하고 폴리옥시부틸렌글리콜계 폴리에테르를 연질세그먼트로하는 폴리에테르-에스테르 블록공중합체를 용융방사한 다음, 신장열처리 및 이완열처리의 두단계 열처리를 행하고 연신하므로서 보다 우수한 탄성회복 특성을 갖는 탄성사를 얻을 수 있었다.In order to achieve the above object, the present invention melt-spun polyether-ester block copolymer having a polybutylene terephthalate-based polyester as a hard segment and a polyoxybutylene glycol-based polyether as a soft segment, followed by extension heat treatment. And an elastic yarn having better elastic recovery characteristics by stretching and performing two-stage heat treatment of the relaxation heat treatment.

본 발명을 더욱 상세하게 설명하면 다음과 같다.The present invention is described in more detail as follows.

탄성사의 기본이 되는 폴리에테르-에스테르 블록공중합체의 경질 세그먼트를 구성하는 폴리에스테르 부분은 테레프탈산 성분과 부틸렌글리콜 성분으로 제조되는 폴리부틸렌테레프탈레이트를 주요구성 성분으로 한다. 그러나, 산성분의 일부, 일반적으로 20몰% 이하가 테레프탈산 성분이외의 디카르본산 성분이나 옥시카르본산 성분이 치환되어 있고, 글리콜성분의 일부, 일반적으로 20몰% 이하가 부틸렌글리콜 성분이외의 디옥시성분으로 치환된 것이 좋다. 또한, 연질세그먼트를 구성하는 폴리에테르부분은 폴리옥시부틸렌 글리콜을 주요성분으로 하지만, 그 반복단위의 20몰% 이하가 부틸렌글리콜 성분이외의 디옥시 성분으로 치환된 폴리에테르가 바람직하다. 그러나, 상기 폴리에테르 부분의 평균분자량이 500미만이면 충분한 탄성특성이 얻어지기 어렵고, 5000을 초과하면 경질세그먼트와의 상용성이 악화되므로 분자량의 범위가 500~5000, 좀더 바람직하게는 1000~3000인 것이 효과적이다. 또한 상기 폴리에테르 부분의 폴리에스테르 부분에 대한 배합은 0.25~4.0배의 범위가 좋으며, 그 배합율이 0.25미만이면 탄성 회복특성이 저하되고, 4.0을 초과하면 융점저하가 크게되어 충분한 열적 특성이 얻어지기 어렵다.The polyester portion constituting the hard segment of the polyether-ester block copolymer which is the basis of the elastic yarn has a polybutylene terephthalate made of a terephthalic acid component and a butylene glycol component as main components. However, a part of the acid component, generally 20 mol% or less, is substituted with a dicarboxylic acid component or an oxycarboxylic acid component other than the terephthalic acid component, and a part of the glycol component, and generally 20 mol% or less is other than the butylene glycol component. It is good to substitute with a deoxy component. In addition, the polyether portion constituting the soft segment includes polyoxybutylene glycol as a main component, but polyether in which 20 mol% or less of the repeating unit is substituted with a dioxy component other than butylene glycol component is preferable. However, if the average molecular weight of the polyether portion is less than 500, sufficient elastic properties are difficult to be obtained. If the average molecular weight of the polyether portion exceeds 5000, compatibility with the hard segment deteriorates, so that the molecular weight range is 500 to 5000, more preferably 1000 to 3000. Is effective. In addition, the blending ratio of the polyether portion to the polyester portion is preferably in the range of 0.25 to 4.0 times. If the blending ratio is less than 0.25, the elastic recovery property is lowered, and if it exceeds 4.0, the melting point decreases to be large, thereby obtaining sufficient thermal characteristics. it's difficult.

상기 폴리에테르-에스테르 블록공중합체를 제조하는데에는 본 발명이 속하는 기술분야에서 통상적으로 사용되는 방법이 채용된다. 일반적으로 테레프탈산 또는 디메틸테레프탈산, 부틸렌글리콜과 폴리옥시부틸렌글리콜을 가열반응시키는 방법이 사용되지만, 미리 부틸렌테레프탈레이트를 합성하고 그것과 폴리옥시부틸렌글리콜을 가열반응 시키는 방법도 효과적이다. 상기 방법의 경우 필요에 따라 임의의 촉매를 사용할 수 있으며, 또한 각종안정제, 자외선흡수제, 증점제, 착색제, 그외 각종의 개량제등도 필요에 따라 임의로 사용할 수 있다.In preparing the polyether-ester block copolymer, a method commonly used in the art to which the present invention pertains is employed. In general, a method of heating and reacting terephthalic acid or dimethyl terephthalic acid, butylene glycol and polyoxybutylene glycol is used, but a method of synthesizing butylene terephthalate in advance and heating it and polyoxybutylene glycol is also effective. In the case of the above method, any catalyst may be used as necessary, and various stabilizers, ultraviolet absorbers, thickeners, colorants, and various other improving agents may be optionally used as necessary.

상기 폴리에테르-에스테르 블록공중합체는 용융방사에 있어서 특별한 수단이 필요치 않다. 즉, 일반적인 열가소성 합성중합체의 용융방사법에 준하여 행하는 것이 가능하며, 폴리우레탄 탄성사와는 달리 통상의 폴리에스테르 섬유와 같이 섬도(denier)를 임의로 설정가능하다.The polyether-ester block copolymers do not require any special means for melt spinning. That is, it is possible to carry out according to the melt spinning method of a general thermoplastic synthetic polymer, and unlike polyurethane elastic yarn, the fineness can be arbitrarily set like ordinary polyester fiber.

상기 폴리에테르-에스테르 블록공중합체를 용융방사하여 얻어지는 사는 우수한 탄성특성을 나타내고 통상의 폴리에스테르보다 결정화 속도는 빠르지만 경징세그먼트의 결정화가 충분하게 이루어지지 않으므로 결정화 되지않은 경질세그먼트 부분을 열처리하므로서 결정화도를 상승시켜 탄성적 성질을 향상시키는 것이 가능하다. 또한, 비결정 부분의 배향도 열에 의해 완화되기 때문에 보다 랜덤하게 되어 탄성사로서 보다 좋은 구조로 된다.The yarns obtained by melt spinning the polyether-ester block copolymers exhibit excellent elastic properties and have a faster crystallization rate than conventional polyesters, but do not sufficiently crystallize the hardened segments. It is possible to improve the elastic properties by raising. In addition, since the orientation of the amorphous portion is also relaxed by heat, it becomes more random and has a better structure as an elastic yarn.

열처리 방식으로는 정장열처리, 신장열처리, 이완열처리의 임의의 방식을 채용하는 것이 가능하지만 일반적으로 정장 및 신장열처리가 좋으며, 특히 신장열처리가 좋다.As the heat treatment method, it is possible to employ any method of suit heat treatment, extension heat treatment, and relaxation heat treatment, but in general, suit and extension heat treatment are good, and in particular, extension heat treatment is preferable.

열처리온도는 경질세그먼트의 폴리부틸렌테레프탈계 폴리에스테르의 유리전이온도 부근에서 용융온도 30℃ 이하의 범위로 설정하는 것이 가능하다. 그러나, 용융온도에 가까워지면 멜트프로(melt flow)가 생겨 탄성특성이 개량효과가 없게되며, 반복실험을 통하여 20℃~120℃가 효과적인 것으로 밝혀졌다. 열처리시간은 열처리온도와 탄성사의 목표로하는 물성에 따라 순간에서 수개월까지 임의로 설정 가능하다. 정장열처리, 신장열처리 그리고 이완열처리의 차이점에 대해서는 일본 특개소 58-91819호에 상세히 기재되어 있으며, 열처리는 결정성을 높이기 위해 행하는 것으로 온도나 시간이 같은 조건에서는 정장, 신장, 이완열처리의 어떠한 것도 결정화도에서 차이를 나타내지 않는다. 그러나, 구조적으로 3가지 열처리방법에는 큰차이가 있어 X선에 의해 결정크기를 측정한 결과 정장 또는 신장열처리와 이완열 처리는 상당한 차이가 있었다. 즉, 이완열처리를 실시한 탄성사의 결정크기의 정장 또는 신장 열처리를 실시한 탄성사의 결정 크기 보다 약 2~5배로 비상하게 크게 된다. 이런 현상은 무장력하에서의 열처리의 경우, 경질세그먼트의 집합화가 일어나기 쉬워 결정크기가 크게되는 것으로 생각되며, 정장이나 신장열처리한 탄성사는 이완 열처리한 탄성사와 비교시 결정화도는 같아도 작은결정을 약 2~5배 정도 많이 갖는 것으로 보다 결정이 분산되는 것이다. 특히, 신장열처리는 정장열처리에 의한것 보다 더욱 효과적으로 모듀러스가 낮게되는데 이는 비정부(非晶部)가 더욱 완화되기 때문인 것으로 생각된다. 신장하에서의 열처리는 20% 이하의 신장율로 행하는 것이 좋다.The heat treatment temperature can be set within the range of the melting temperature of 30 ° C. or less near the glass transition temperature of the polybutylene terephthal-based polyester of the hard segment. However, when the melting temperature is approached, melt flow is generated and the elastic properties are not improved, and it is found that 20 ° C. to 120 ° C. is effective through repeated experiments. The heat treatment time can be arbitrarily set from an instant to several months depending on the heat treatment temperature and the target physical properties of the elastic yarn. The difference between suit heat treatment, extension heat treatment and relaxation heat treatment is described in detail in Japanese Patent Application Laid-Open No. 58-91819. The heat treatment is performed to increase crystallinity. There is no difference in crystallinity. However, structurally, there are significant differences between the three heat treatment methods. As a result of measuring the crystal size by X-ray, there was a significant difference between formal or extension heat treatment and relaxation heat treatment. That is, the size of the elastic yarn subjected to the relaxation heat treatment becomes larger than about 2 to 5 times larger than the crystal size of the elastic yarn subjected to the stretching or heat treatment. In the case of heat treatment under tension, it is thought that the harder the aggregation of hard segments, the larger the crystal size is.In the case of formal or stretch heat-treated elastic yarns, the crystallinity is about 2 to 5 times higher than that of loosely-treated elastic yarns. By having more, the more the crystals are dispersed. In particular, the extension heat treatment lowers the modulus more effectively than the suit heat treatment, which is considered to be because the non- government part is further alleviated. The heat treatment under elongation is preferably performed at an elongation rate of 20% or less.

상술한 바와같이 신장열처리를 실시한 사를 연신하기전에 이완열 처리를 실시한다. 탄성사로서는 저응력으로 신장이 높게되는 것이 필요조건으로 즉, 신장모듀러스가 낮게되는 것이 최고의 중요한 요건으로 신장열처리에 의해 비정부의 배향도 이완되어 비정부가 보다 랜덤하게 되기는 하나 충분치 못해 저신장영역에서의 응력이 커져 초기신장 하에서의 변형이 생기기 어려우므로 저신장영역에서의 신장회복성이 부족하게 된다. 따라서, 신장열처리를 실시한 다음, 적당한 온도에서 이완열처리를 실시함으로써 비정부의 완화가 가속되어 비정부가 더욱 랜덤하게 되고, 이에따라 신장모듀러스가 낮게되어 저응력으로 신장이 높게 되었다. 이때 낮은 모듀러스 영역은 처리조건에 따라 다르지만 300%의 신도까지 가능했다. 열처리온도는 50℃~140℃의 범위내에서 가능하며 양호한 결과를 나타낸다. 온도가 50℃ 미만이면 비정부의 완화효과가 낮아져 모듀러스의 개선효과가 적고, 140℃를 초과하면 멜트프로가 생겨 탄성특성이 악화된다.As described above, the relaxation heat treatment is performed before stretching the yarn subjected to the extension heat treatment. As the elastic yarn, it is necessary to have high elongation due to low stress, that is, low elongation modulus is the most important requirement. The non-negative orientation is also relaxed by elongation heat treatment by elongation heat treatment, so that the non-negotiation becomes more random, but stress in the low extension region It is difficult to produce deformation under the initial extension due to its enlargement, so that the recovery of elongation in the low extension region is insufficient. Therefore, by performing the heat extension treatment and then performing the relaxation heat treatment at an appropriate temperature, the relaxation of the non-government is accelerated and the non-government becomes more random. Accordingly, the elongation modulus is lowered and the elongation is high with low stress. The low modulus area was up to 300% elongation, depending on treatment conditions. The heat treatment temperature is possible within the range of 50 ° C to 140 ° C and shows good results. If the temperature is less than 50 ℃ low mitigation effect of the non-government has a small effect of improving the modulus, if the temperature exceeds 140 ℃ melt pro will create a deterioration of the elastic properties.

열처리에의한 이완수축하에서의 수축율은 얻어지는 탄성사의 목적에 따라 임의의 조건으로 50%까지 조정 가능하다. 열처리에 있어 신장율 및 수축율은 다음의 식으로 계산한다.The shrinkage rate under the relaxation shrinkage by heat treatment can be adjusted up to 50% under arbitrary conditions depending on the purpose of the elastic yarn to be obtained. Elongation and shrinkage in heat treatment are calculated by the following equation.

상술한 방법으로 신장 및 이완열처리한 사를 연신한다. 연신온도는 20℃~150℃가 바람직하며, 연신배율은 2.0~4.0배가 좋다. 연신배율이 2.0배 미만이면 연신에 의해 결정이 미분산화가 어렵고, 연신배율이 4.0배를 초과하면 배향된 비정부의 소성변형이 커서 완화가 되지 않아 탄성사로서의 특징이 없게 된다.The yarn stretched and loosened by the above-described method is stretched. The stretching temperature is preferably 20 ° C. to 150 ° C., and the stretching ratio is preferably 2.0 to 4.0 times. If the draw ratio is less than 2.0 times, the crystals are difficult to undifferentiate due to stretching, and if the draw ratio is more than 4.0 times, the plastic deformation of the oriented non-orientation is large, so that it is not relaxed, and there is no characteristic as an elastic yarn.

본 발명의 방법에 의해 얻게되는 탄성사는 신장열처리에 의해 결정화도가 증대되고 이완열처리에 의해 비정부를 구성하는 연질세그먼트 부분이 랜덤한 구조로 되고 연신에 의해 경질세그먼트부분의 결정의 미분산화가 진행되어 저신장 및 고신장 영역에서 응력이 작아져 신장시에 용이하게 변형되는 우수한 신장회복 특성을 나타낸다. 이러한 구조, 물성을 갖는 본 발명에 의한 탄성사는 저신장 및 고신장하에 양호한 신장 회복성을 나타내어 폴리우레탄 탄성사가 사용되는 전분야에 사용되는 것이 가능하다.The elastic yarn obtained by the method of the present invention increases the crystallinity by extension heat treatment, and the soft segment portion constituting the non-government by random heat treatment has a random structure, and by extension, the fine dispersion of the crystal of the hard segment portion progresses, resulting in low elongation. And excellent elongation recovery characteristics, which are easily deformed upon elongation due to low stress in the high elongation region. The elastic yarn according to the present invention having such a structure and physical properties exhibits good elongation recovery under low elongation and high elongation, and thus can be used in all fields in which polyurethane elastic yarn is used.

다음의 실시예 및 비교실시예는 본 발명을 좀더 구체적으로 설명하는 것이지만, 본 발명의 범주를 한정하는 것은 아니다. 또한, 실시예 및 비교실시예에서 제조된 탄성사의 물성은 다음과 같이 측정한다.The following examples and comparative examples further illustrate the present invention, but do not limit the scope of the present invention. In addition, the physical properties of the elastic yarn prepared in Examples and Comparative Examples are measured as follows.

(강도, 신도)(Strength, Shinto)

길이 5㎝의 시료를 인스트론 인장시험기를 이용해 분당 500%의 속도로 측정하였다.A 5 cm long sample was measured at an rate of 500% per minute using an Instron tensile tester.

(탄성회복율)(Elastic recovery rate)

강도 측정시와 동일한기기로 시료 5㎝에 100% 및 300%를 신장하는 것에 대응하는 하중을 걸어 100% 및 300%의 신도까지 6회 반복하여 신장시킨 후 하중을 제거한 다음의 시료의 길이(L)를 측정하면 다음식으로 계산하였다.The length of the sample after removing the load after extending the load repeatedly to 100% and 300% elongation by applying the load corresponding to 100% and 300% elongation on 5cm of the sample with the same instrument as the strength measurement. ) Was calculated by the following equation.

[실시예 1]Example 1

테레프탈산디메틸 165부, 테트라메틸렌글리콜 105부, 수평균분자량 2000의 폴리옥시부틸렌글리콜 320부, 펠타에리트리톨 0.2부, 티타늄테트라부톡시드 0.30부를 반응기에 넣고 반응기 내부온도 170℃에서 에스테르 교환반응을 진행한다. 이론양의 70%의 메탄올을 유출시킨 후, 반응기 내부온도를 200~250℃로 승온시켜 저진공하에서 60분, 고진공하에서 200분 반응시킨다. 반응혼합물에 안정제로서 이가녹스 1010(시바가이기사제품) 3.5부, 티누빈 327(시바가이기사 제품) 0.21부를 첨가하여 20분 교반후 반응을 종료시킨다. 제조된 폴리마는 고유 점도가 1.60이며, 융점이 190℃이었다. (고유점도는 오르토 클로로 페놀을 이용하여 25℃에서 측정) 상기 폴리마를 240℃에서 용융 방사하여 60데니아 모노 필라멘트(mono filament)의 탄성사를 얻었다. 그것의 강도는 1.2g/d, 신도는 450%, 탄성회복율은 100% 신장시 60%, 300% 신장시 30% 이었다.165 parts of dimethyl terephthalate, 105 parts of tetramethylene glycol, 320 parts of polyoxybutylene glycol with a number average molecular weight of 2000, 0.2 parts of pentaerythritol, 0.30 parts of titanium tetrabutoxide were placed in a reactor and subjected to transesterification at 170 ° C in the reactor. do. After 70% of the theoretical amount of methanol was distilled off, the reactor internal temperature was raised to 200 to 250 ° C., and the reaction was carried out for 60 minutes under low vacuum and 200 minutes under high vacuum. To the reaction mixture, 3.5 parts of Iganox 1010 (available from Ciba-Gaigi Co., Ltd.) and 0.21 parts of Tinuvin 327 (available from Ciba-Gaigi Co., Ltd.) were added to the reaction mixture, and the reaction was terminated after stirring for 20 minutes. The polymers produced had an inherent viscosity of 1.60 and a melting point of 190 ° C. (Intrinsic viscosity was measured at 25 ° C. using ortho chlorophenol) The polyma was melt spun at 240 ° C. to obtain an elastic yarn of 60 denia monofilament. Its strength was 1.2g / d, elongation was 450%, elastic recovery rate was 60% at 100% elongation and 30% at 300% elongation.

상기의 탄성사를 1시간이내 해사하여 110℃의 건조기를 통과시키면서 10% 신장하에서 10초간 열처리를 실시한 다음, 연속적으로 130℃의 건열상태에서 수축율이 40%가 되도록 15초간 이완열처리를 실시하고 상온에서 2.0배로 연신하여 탄성사를 제조한다. 제조된 탄성사의 물성을 표1에 나타내었다.The elastic yarn was dissolved within 1 hour and subjected to heat treatment for 10 seconds at 10% elongation while passing through a dryer at 110 ° C., followed by a 15-second relaxation heat treatment for a shrinkage of 40% at 130 ° C. in a dry heat state at room temperature. The elastic yarn is prepared by stretching 2.0 times. The physical properties of the prepared elastic yarn are shown in Table 1.

[실시예 2~3][Examples 2-3]

표 1에 기재된 바와같이 이완열처리시 수축율이 30%가 되게하거나 연신시 연신온도를 60℃로 한 것을 제외하고는 실시예 1과 동일한 방법으로 탄성사를 얻었으며, 물성을 표1에 나타내었다.As shown in Table 1, the elastic yarn was obtained in the same manner as in Example 1 except that the shrinkage ratio was 30% during the relaxation heat treatment or the stretching temperature was 60 ° C during stretching, and the physical properties are shown in Table 1.

[비교실시예 1~2][Comparative Examples 1 and 2]

표1에 기재된 바와같이 신장열처리만 실시하거나 신장열처리와 이완 열처리만을 실시한 것을 제외하고는 실시예1과 동일한 방법으로 탄성사를 얻었으며, 물성을 평가하여 표1에 나타내었다.The elastic yarns were obtained in the same manner as in Example 1 except that only the extension heat treatment or the extension heat treatment and the relaxation heat treatment were performed as described in Table 1, and the physical properties thereof were shown in Table 1 below.

[비교실시예 3]Comparative Example 3

실시예1과 동일한 방법으로 얻어진 60데니아의 미연신사를 해사하여 실온에서 2.0배로 연신후, 110℃의 건열상태에서 10초간 열처리한 다음, 연속적으로 130℃의 건열상태에서 수축율이 40%가 되도록 15초간 이완열처리를 실시하여 탄성사를 얻었으며, 그 조건 및 물성을 표1에 나타내었다.The undrawn yarn of 60 denier obtained in the same manner as in Example 1 was dissolved, stretched 2.0 times at room temperature, heat-treated for 10 seconds in a dry heat state at 110 ° C., and then continuously reduced to 15% at 130 ° C. in a dry heat state. The elastic yarn was obtained by performing a loose heat treatment for a second, and the conditions and the physical properties are shown in Table 1.

[비교실시예 4]Comparative Example 4

비교실시예 3에 있어서 연신시 열처리를 하지않은 것을 제외하고는 비교실시예 3과 동일한 방법으로 탄성사를 얻고, 물성을 평가하여 표1에 나타내었다.In Comparative Example 3, the elastic yarn was obtained in the same manner as in Comparative Example 3 except that heat treatment was not performed during stretching, and the physical properties thereof were shown in Table 1 below.

[표 1]TABLE 1

Claims (1)

폴리부틸렌테레프탈레이트계 폴리에스테르를 경질세그먼트로하고 폴리옥시부틸렌글리콜계 폴리에테르를 연질세그먼트로하는 블록공중합 폴리에테르-에스테르를 용융방사하고 다음에 두단계의 열처리 즉, 20% 이하의 신장하에서 신장 열처리한 다음, 곧바로 40% 이하의 수축율을 나타내도록 이완열처리하여 20℃~150℃에서 2.0~4.0배 연신하는 것을 특징으로 하는 고신축성 제조방법.Block-copolymerized polyether-esters having a polybutylene terephthalate polyester as a hard segment and a polyoxybutylene glycol polyether as a soft segment are melt spun and then subjected to a two-step heat treatment, i.e., elongation of 20% or less. After stretching heat treatment, and then relaxed heat treatment immediately to exhibit a shrinkage of 40% or less and stretched 20 to 4.0 times at 20 ℃ ~ 150 ℃.
KR1019920011100A 1992-06-25 1992-06-25 Manufacturing process of elastic fiber having an excellent elastic property KR940011543B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019920011100A KR940011543B1 (en) 1992-06-25 1992-06-25 Manufacturing process of elastic fiber having an excellent elastic property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019920011100A KR940011543B1 (en) 1992-06-25 1992-06-25 Manufacturing process of elastic fiber having an excellent elastic property

Publications (2)

Publication Number Publication Date
KR940000631A KR940000631A (en) 1994-01-03
KR940011543B1 true KR940011543B1 (en) 1994-12-20

Family

ID=19335240

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019920011100A KR940011543B1 (en) 1992-06-25 1992-06-25 Manufacturing process of elastic fiber having an excellent elastic property

Country Status (1)

Country Link
KR (1) KR940011543B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105088390A (en) * 2015-09-02 2015-11-25 太仓市宏亿化纤有限公司 Preparation method of uniformly dyed PBT high stretch yarn

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105088390A (en) * 2015-09-02 2015-11-25 太仓市宏亿化纤有限公司 Preparation method of uniformly dyed PBT high stretch yarn

Also Published As

Publication number Publication date
KR940000631A (en) 1994-01-03

Similar Documents

Publication Publication Date Title
CA1200048A (en) High compliance monofilament surgical sutures comprising poly¬alkylene terephthalate-co-(2- alkenyl or alkyl)succinate|
JP2603229B2 (en) Method for producing crystalline copolymer of p-dioxanone and lactide
US4082731A (en) Method for producing a high modulus polyester yarn
Fu et al. Structure and property studies of bioabsorbable poly (glycolide-co-lactide) fiber during processing and in vitro degradation
JPH10120774A (en) Triblock terpolymer, its production and use thereof for surgical suture material
JP3253222B2 (en) Copolymer of p-dioxanone
KR940011543B1 (en) Manufacturing process of elastic fiber having an excellent elastic property
KR950004351B1 (en) The method for preparing elastomeric yarn with high elastic
JPS6117946B2 (en)
DE2949181C2 (en)
DE69633047T2 (en) Elastic fibers, process for their preparation and polyester elastomer to be used therein
KR950015035B1 (en) Warp angle regulation equipment
KR960006932B1 (en) Method for producing high elastic yarn
KR960000790B1 (en) Method for producing high elastomeric yarn
JPS5891819A (en) Production of elastic yarn
KR100290707B1 (en) Manufacturing method of polyether high elastic elastic yarn
JPH0260342B2 (en)
KR0146571B1 (en) Method of manufacturing polyeterester
KR930005105B1 (en) Method for preparation of elastic fiber having a high shrink grading
JPH1136137A (en) Modified polyester fiber and its production
JPH0350007B2 (en)
KR20000013716A (en) Production method of high flexibility elastic yarn
KR0132280B1 (en) Preparation process of block copolymer of polyether ester
KR960005836B1 (en) Method for producing and polyester monofilament with excellent wear-resisting
JPH06257013A (en) Polycarbonate multifilament

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20011113

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee