KR940000151B1 - Semiconductor ceramic meterials - Google Patents

Semiconductor ceramic meterials Download PDF

Info

Publication number
KR940000151B1
KR940000151B1 KR1019910002411A KR910002411A KR940000151B1 KR 940000151 B1 KR940000151 B1 KR 940000151B1 KR 1019910002411 A KR1019910002411 A KR 1019910002411A KR 910002411 A KR910002411 A KR 910002411A KR 940000151 B1 KR940000151 B1 KR 940000151B1
Authority
KR
South Korea
Prior art keywords
mol
grain boundary
tio
semiconductor ceramic
ceramic composition
Prior art date
Application number
KR1019910002411A
Other languages
Korean (ko)
Other versions
KR920016817A (en
Inventor
김호기
김성열
김소정
김대웅
Original Assignee
한국과학기술원
이상수
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원, 이상수 filed Critical 한국과학기술원
Priority to KR1019910002411A priority Critical patent/KR940000151B1/en
Publication of KR920016817A publication Critical patent/KR920016817A/en
Application granted granted Critical
Publication of KR940000151B1 publication Critical patent/KR940000151B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1272Semiconductive ceramic capacitors
    • H01G4/1281Semiconductive ceramic capacitors with grain boundary layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1236Ceramic dielectrics characterised by the ceramic dielectric material based on zirconium oxides or zirconates
    • H01G4/1245Ceramic dielectrics characterised by the ceramic dielectric material based on zirconium oxides or zirconates containing also titanates

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)
  • Ceramic Capacitors (AREA)

Abstract

A grain boundary insulating type semiconducting porcelain material is characterized by consisting of (Sr100-xBax)TiO3 as a major component, mixture of CaZrO3, TiO3, and TiO2, and one of CaZrO3 and TiO2 as a subsidiary component, and the above components should satisfy the following equation, (Sr100-xBax)TiO3 + yCaZrO3 + 1.7TiO2, where, x is 0 < x < 1.5 and 0<=0.5. In this method, Al2O3 of 0-0.12 mol and SiO2 of 0-0.24 mol can be added for the ratio of Al/Si to be 1/2, elements of 0.15 mol with valence 3 and of 0.2 mol of valence 5 or 6 can be included as a semiconductor material, and trivalent, pentavalent, and hexavalent elements are Nd, Y and La, Ta and Nb, and W, respectively.

Description

입계 절연형 반도체 자기 조성물Grain Boundary Insulation Semiconductor Ceramic Composition

본 발명은 터탄산스트론튬(SrTiO3)을 주재로 하는 입계 절연형 반도체 자기 조성물에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grain boundary insulating semiconductor ceramic composition mainly based on strontium titanate (SrTiO 3 ).

전자 제품의 수동 부품으로 사용되는 입계 절연형 반도체 콘덴서의 일반 개요 및 특징은 다음과 같다. 전자 제품의 급격한 소형화로 작은 크기에 고용량의 커패시터(capacitor) 요구에 대응하여 유전 상수가 큰 재료의 개발에 많은 연구를 기울여 왔다. 티탄산스트론튬(SrTiO3) 주재에, CaTiO3, BaTiO3등을 부원료로서 0-20mol% 정도 사용하고, 환원 후 높은 반도성을 주기 위해 희토류 원소인 Y, Nd, Na, Ce 또는 Nb, Ta, W 등의 원자가 제어 원소를 0.05-0.5중량% 정도, 절연층 형성이 용이하게 되도록 0.01-0.2중량% 정도의 SiO2, MnCO3, GeO2등을 넣고 균일하게 혼합한후 성형하여, N2/H2의 환원 분위기하에서 1,450℃로 3시간 정도 소성을 한다. 이때, 소성된 자기는 반도성을 나타내는데, 절연층을 만들어 주기 위해 PbO, B2O3, NaO, Bi2O3등으로 이루어진 글라스(glass) 물질을 도포하여 대기중에서 1,100-1,200℃로 2시간 열처리 하면, 글라스가 반도체 자기의 입계에 침투하여 입계 절연층을 형성하게 되고, 양면에 금속 전극를 형성시킴으로써 입계 절연형 반도체 자기가 이루어진다.General outlines and features of the grain boundary insulating semiconductor capacitors used as passive components of electronic products are as follows. Due to the rapid miniaturization of electronic products, much research has been made on the development of materials having high dielectric constants in response to the demands of a small size and a high capacity capacitor. In the strontium titanate (SrTiO 3 ), CaTiO 3 , BaTiO 3, etc. are used as an auxiliary material, about 0-20 mol%, and rare earth elements Y, Nd, Na, Ce, or Nb, Ta, W are used to give high semiconductivity after reduction. after putting the valence control elements for from 0.05 to 0.5 wt%, and an insulating layer is formed easily to 0.01-0.2% of SiO 2, MnCO 3, GeO 2, and the weight of such uniformly mixed and molded, N 2 / H It bakes about 3 hours at 1,450 degreeC in 2 reducing atmospheres. At this time, the fired porcelain exhibits a semiconductivity, and in order to make an insulating layer, a glass material made of PbO, B 2 O 3 , NaO, Bi 2 O 3, etc. is coated and 2 hours at 1,100-1,200 ° C. in the air. When the heat treatment is performed, the glass penetrates into the grain boundaries of the semiconductor porcelain to form a grain boundary insulating layer, and the grain boundary insulation semiconductor porcelain is formed by forming metal electrodes on both surfaces.

입계 절연형 반도체 자기 콘덴서의 특징은, 1) 넓은 주파수 영역에 대하여 높고 안정된 유전 상수를 가지며, 2) 뛰어난 방습성을 가지고, 3) 유전 상수에 비해 낮은 의존성을 가지며, 4) 넙은 주파수 영역에서 낮고 안정된 유전 손실을 갖는다.The characteristics of the grain boundary insulating semiconductor magnetic capacitors include 1) high and stable dielectric constant over a wide frequency range, 2) excellent moisture resistance, 3) low dependence on dielectric constant, and 4) low frequency in the frequency domain. Has a stable dielectric loss.

일본국 특허 공보(4) 57-132,316호에서 SrTiO3에 SiO2, CaO 및 Nd2O3를 첨가하고 결정 입계에 Bi2O3, Cu2O, MnO2등을 침투시킨 결과, 유전율 45,000, 유전 손실 0.4% 정도를 얻었다. 일본국 특허 공보(소) 55-14,665호에서는 SrTiO3에 CaTiO315-25mol% 및 희토류 원소 또는 Nb, Ta, W 등을 첨가하여 결정 입계에 PbO, B2O3, CuO, MnO, Bi2O3등을 침투시킨 결과, 유전율 80,000정도, 유전 솔실 1% 정도를 얻었다. 또한, 미국 특허 제4,323,617호에서는 SrTiO3에 BaZrO3, CaTiO3, Y2O3, CeO2등을 첨가하여 최고 유전율 63,000, 유전손실 0.55%를 얻었다. 그 밖의 종전의 특허에서도 유전율이 60,000정도가 될 경우에 절연 저항은 수백 MΩ으로 낮은 값을 나타내었다.In Japanese Patent Publication No. 57-132,316, SiO 2 , CaO, and Nd 2 O 3 were added to SrTiO 3 and Bi 2 O 3 , Cu 2 O, MnO 2, and the like were infiltrated into the grain boundaries. A dielectric loss of about 0.4% was obtained. Japanese Unexamined Patent Publication No. (sho) 55-14665 arc in the crystal by the addition of such as CaTiO 3 15-25mol% and rare earth elements, or Nb, Ta, W to the grain boundary SrTiO 3 PbO, B 2 O 3, CuO , MnO, Bi 2 As a result of infiltration of O 3 or the like, dielectric constants of about 80,000 and dielectric solels of about 1% were obtained. In addition, U.S. Patent No. 4,323,617 in the BaZrO 3, CaTiO 3, Y 2 O 3, CeO 2 , etc. to the mixture to obtain a top dielectric 63 000, the dielectric loss of 0.55% on a SrTiO 3. In other patents, the insulation resistance was low at several hundred MΩ when the dielectric constant was about 60,000.

본 발명에서는 이와 같은 절연 저항을 향상시키고 유전 손실을 개선하기 위하여 입계 절연형 반도체의 주재인 SrTiO3와 BaCO3및 CaZrO3를 기본 물질로 하며, 환원성을 좋게 하고 절연층 형성을 용이하게 하기 위하여 과량의 TiO2를 첨가한다. 또한, 반도성을 주기 위해 3가의 물질(Nd, Y, La 등) 및 5가지 물질 또는 6가의 물질을 첨가하고, 입계의 절연층 형성이 용이하도록 GeO2, Al2O3, SiO2, MnCO3, Ta2O5등을 첨가한다. Al2O3의 첨가시에는 그 비율이 Al/Si=1/2일 때 높은 유전율과 절연 저항을 얻을수 있었다.According to the present invention improve this insulation resistance, such as and and the the grain boundary insulation type Presence of the semiconductor in order to improve the dielectric loss of SrTiO 3 and BaCO 3 and CaZrO 3 as the base material, an excess in order to improve the reducing and facilitate the forming the insulating layer TiO 2 is added. In addition, trivalent materials (Nd, Y, La, etc.) and five materials or hexavalent materials are added to give semiconductivity, and GeO 2 , Al 2 O 3 , SiO 2 , MnCO to facilitate the formation of grain boundary layers. 3 , Ta 2 O 5 and the like are added. When Al 2 O 3 was added, high dielectric constant and insulation resistance were obtained when the ratio was Al / Si = 1/2.

이하, 본 발명을 실시예에 의하여 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예 1]Example 1

(Sr100-XBaX)TiO3+y CaZrO3+1.7TiO2 (Sr 100-X Ba X ) TiO 3 + y CaZrO 3 +1.7 TiO 2

상기 식에서 x는 0.0 내지 1.3 y는 0.0 내지 0.5로 하고, Al2O3를 0.12mol, SiO2를 0.24mol, 반도성을 주기 위해 3가로서 Nd, 5가로서 Nb를 각각 0.15mol, 0.2mol씩 첨가하고(그 밖에 Ta2O50.12mol, GeO20.15mol 및 MnCO30.23mol씩을 첨가물로 첨가할수 있음), 물과 함께 혼합하여 건조시킨 후, 1,000℃에서 3시간 하소한 분말을 분쇄하고, 유기 결합체(binder)를 이용하여 두께 0.5mm, 직경 12mm, 성형 밀도 2.4g/㎤로 성형하였다. 이어서, 대기하에 온도를 12시간 동안에 350℃까지 올리고, 동일 온도에서 2시간 동안 유지시켜 성형체로부터 유기 결합체를 완전히 제거하였다. 이어서, 시편을 상온까지 냉각하고, N2/H2=95/5 비율의 가스 분위기 하에 1,450℃에서 3시간 소성하여 반도성 자기를 만들었다. 산화납 50중량%, 산화비스무트 44.5중량%, 산화붕소 5중량%, 알루미나 0.5중량%의 글라스 프릿(glass frit)을 반도성 자기의 표면에 도포하고, 1,100℃-1,150℃에서 2시간 열처리하여 반도성 자기의 입계층에 절연층을 형성시킨 다음, 양면에 은전극을 도포하였다. 이렇게 하여 얻어진 입계 절연형 자기 콘덴서의 조성별 전기적 특성은 표 1 및 표 2와 같다.In the above formula, x is 0.0 to 1.3 y is 0.0 to 0.5, 0.12 mol of Al 2 O 3 , 0.24 mol of SiO 2 , and Nd as trivalent, N5 as 0.15 mol and 0.2 mol, respectively. (Additionally, 0.12 mol of Ta 2 O 5 , 0.15 mol of GeO 2 and 0.23 mol of MnCO 3 can be added as additives), mixed with water and dried, and then the powder calcined at 1,000 ° C. for 3 hours is pulverized. It was molded to a thickness of 0.5 mm, a diameter of 12 mm, and a molding density of 2.4 g / cm 3 using an organic binder. Subsequently, the temperature was raised to 350 ° C. in an atmosphere for 12 hours and maintained at the same temperature for 2 hours to completely remove the organic binder from the molded body. Subsequently, the specimen was cooled to room temperature and calcined at 1,450 ° C. for 3 hours under a gas atmosphere having a ratio of N 2 / H 2 = 95/5 to form a semiconducting porcelain. 50% by weight of lead oxide, 44.5% by weight of bismuth oxide, 5% by weight of boron oxide, and 0.5% by weight of alumina were coated on the surface of the semiconductive porcelain and heat-treated at 1,100 ° C-1,150 ° C for 2 hours. After the insulating layer was formed on the grain boundary layer of the porcelain, silver electrodes were coated on both surfaces. The electrical characteristics for each composition of the grain boundary insulation magnetic capacitor thus obtained are shown in Tables 1 and 2.

[표 1]TABLE 1

Figure kpo00001
Figure kpo00001

* 는 실시예 2에 적용된 시료임* Is the sample applied in Example 2

[표 2]TABLE 2

Figure kpo00002
Figure kpo00002

[실시예 2]Example 2

실시예 1과 동일한 조성물을 하소 및 성형한후 대기압하 1,450℃에서 3시간 동안 소성한 시편을 상온까지 냉각하고, 이어서 N2/H2=95/5의 가스 분위기하에서 1,450℃로 3시간 소성한후 상기 실시예 1과 동일한 공정을 거쳐 전기적 특성을 조사한 결과는 표 3과 같다.After calcining and molding the same composition as in Example 1, the specimens calcined at 1,450 ° C. for 3 hours at atmospheric pressure were cooled to room temperature, and then calcined at 1,450 ° C. for 3 hours under a gas atmosphere of N 2 / H 2 = 95/5. After the electrical properties through the same process as in Example 1 are shown in Table 3.

[표 3]TABLE 3

Figure kpo00003
Figure kpo00003

Claims (4)

(Sr100-XBaX)TiO3를 주성분으로, 그리고 CaZrO3와 TiO3와 TiO2의 혼합물, 또는 CaZrO3와 TiO2중 어느 하나를 부성분으로 함유하고, 이들 성분이 하기 식을 만족시킴을 특징으로 하는 입계 절연형 반도체 자기 조성물. (Sr100-XBaX)TiO3+y CaZrO3+1.7TiO2(식중, x는 0<x<1.5의 양수이고, y는 0≤y<0.5의 수이다)(Sr 100-X Ba X ) TiO 3 as a main component, and a mixture of CaZrO 3 and TiO 3 and TiO 2 , or CaZrO 3 and TiO 2 as a minor component, and these components satisfy the following formula A grain boundary insulating semiconductor ceramic composition. (Sr 100-X Ba X ) TiO 3 + y CaZrO 3 +1.7 TiO 2 (wherein x is a positive number of 0 <x <1.5 and y is a number of 0 ≦ y <0.5) 제1항에 있어서, 0-0.12mol의 Al2O3및 0-0.24mol의 SiO2를 Al/Si의 비가 1/2이 되도록 추가로 함유함을 특징으로 하는 입계 절연형 반도체 자기 조성물.The grain boundary insulating semiconductor ceramic composition according to claim 1, further comprising 0-0.12 mol of Al 2 O 3 and 0-0.24 mol of SiO 2 such that the Al / Si ratio is 1/2. 제1항에 있어서, 반도성 물질로 0.15mol의 3가의 원소 및 0.2mol의 5가 또는 6가의 원소를 추가로 함유함을 특징으로 하는 입계 절연형 반도체 자기 조성물.The grain boundary insulating semiconductor ceramic composition according to claim 1, further comprising 0.15 mol of a trivalent element and 0.2 mol of a pentavalent or hexavalent element as a semiconducting material. 제3항에 있어서, 3가지 원소가 Nd, Y 또는 La이고, 5가의 원소가 Ta, Nb이며, 6가의 원소가 W임을 특징으로 하는 입계 절연형 반도체 자기 조성물.4. The grain boundary insulating semiconductor ceramic composition according to claim 3, wherein the three elements are Nd, Y or La, the pentavalent element is Ta, Nb, and the hexavalent element is W.
KR1019910002411A 1991-02-13 1991-02-13 Semiconductor ceramic meterials KR940000151B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019910002411A KR940000151B1 (en) 1991-02-13 1991-02-13 Semiconductor ceramic meterials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019910002411A KR940000151B1 (en) 1991-02-13 1991-02-13 Semiconductor ceramic meterials

Publications (2)

Publication Number Publication Date
KR920016817A KR920016817A (en) 1992-09-25
KR940000151B1 true KR940000151B1 (en) 1994-01-07

Family

ID=19311090

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019910002411A KR940000151B1 (en) 1991-02-13 1991-02-13 Semiconductor ceramic meterials

Country Status (1)

Country Link
KR (1) KR940000151B1 (en)

Also Published As

Publication number Publication date
KR920016817A (en) 1992-09-25

Similar Documents

Publication Publication Date Title
US4978646A (en) Capacitors and high dielectric constant ceramics therefor
KR20000052606A (en) Capacitor and dielectric ceramic powder based upon a barium borate and zinc silicate dual-component sintering flux
GB2068931A (en) Grain boundary barrier layer ceramic capacitors and ceramic dielectric compositions
Herbert Thin ceramic dielectrics combined with nickel electrodes
JPH0226775B2 (en)
KR940000151B1 (en) Semiconductor ceramic meterials
Zhou et al. Electrical properties of Sr0. 7Ba0. 3TiO3 ceramics doped with Nb2O5, 3Li2O· 2SiO2, and Bi2O3
JPS6249977B2 (en)
JP3325051B2 (en) Dielectric porcelain composition
CA1296880C (en) Method for making a bismuth doped neodymium barium titanate
GB2027008A (en) Ceramic Dielectrics
KR940011059B1 (en) Semiconductor condenser
KR970003341B1 (en) Dielectric capacitor making method
KR960004290B1 (en) Composition for reduction-reoxidation type semiconductive ceramic capacitor
Masuno et al. Dielectric ceramics with boundary-layer structure for high frequency application
JP3125481B2 (en) Grain boundary insulating layer type semiconductor ceramic composition
KR0145121B1 (en) Dielectric ceramic compositions
JPS6249976B2 (en)
JP2681981B2 (en) Porcelain composition for reduction-reoxidation type semiconductor capacitor
KR20020028281A (en) Dielectric composition for low temperature sintered SrTiO3 varistor-capacitor multifunctional device
JP2893129B2 (en) Dielectric porcelain composition
JPS6249975B2 (en)
JPH0521266A (en) Method of manufacturing grain boundary insulated semiconductor porcelain matter
US4988651A (en) Temperature compensating dielectric ceramic composition
JP3333017B2 (en) Dielectric ceramic composition for temperature compensation

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19970828

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee