KR930008906B1 - Isolation method of semiconductor device - Google Patents

Isolation method of semiconductor device Download PDF

Info

Publication number
KR930008906B1
KR930008906B1 KR1019900016256A KR900016256A KR930008906B1 KR 930008906 B1 KR930008906 B1 KR 930008906B1 KR 1019900016256 A KR1019900016256 A KR 1019900016256A KR 900016256 A KR900016256 A KR 900016256A KR 930008906 B1 KR930008906 B1 KR 930008906B1
Authority
KR
South Korea
Prior art keywords
forming
isolation
trench
etching
sog
Prior art date
Application number
KR1019900016256A
Other languages
Korean (ko)
Other versions
KR920008950A (en
Inventor
김기홍
Original Assignee
금성일렉트론 주식회사
문정환
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금성일렉트론 주식회사, 문정환 filed Critical 금성일렉트론 주식회사
Priority to KR1019900016256A priority Critical patent/KR930008906B1/en
Publication of KR920008950A publication Critical patent/KR920008950A/en
Application granted granted Critical
Publication of KR930008906B1 publication Critical patent/KR930008906B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)

Abstract

The isolation method for fabricating a self-aligned submicron device comprises (a) forming a gate line of the 1st conductive type on semiconductor substrate (10), forming an impurity region of the 2nd conductive type (13) by ion implantation, (b) forming an isolated gate electrode by selective etching the gate line, (c) forming an impurity layer of the 1st conductive type, (d) forming an oxide layer (14), SOG layer (15), (e) exposing the substrate by etching the SOG layer, (f) forming a trench, (g) and refilling the trench with an insulating layer.

Description

반도체 소자의 아이솔레이션 방법Isolation Method of Semiconductor Devices

제 1a - 1d 도는 종래의 아이솔레이션 공정순서도.1a-1d is a conventional isolation process flow chart.

제 2 도는 본 발명에 따른 아이솔레이션 공정을 설명하기 위한 평면도.2 is a plan view for explaining an isolation process according to the present invention.

제 3a - 3e 도는 본 발명에 따른 아이솔레이션 공정순서도.3a-3e or a flow chart of the isolation process according to the invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

10 : P형 실리콘기판 11 : 게이트10: P-type silicon substrate 11: gate

12 : LTO 13 : 소오스/드레인12: LTO 13: Source / Drain

14 : 배리어 산화막 15 : SOG14 barrier oxide film 15 SOG

16 : 절연체 17 : 트렌치 아이솔레이션 영역16: insulator 17: trench isolation region

18 : 게이트 커팅층18: gate cutting layer

본 발명은 반도체 제조에 관한 것으로 특히 서브미크론(Submicron) CMOS 집적소자에 적당하도록 한 반도체 소자의 아이솔레이션(Isolation) 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to semiconductor manufacturing, and in particular, to a method of isolating semiconductor devices adapted to be suitable for submicron CMOS integrated devices.

종래의 소자 격리기술 즉 아이솔레이션 기술은 여러가지가 있으나 그중 대표적인 LOCOS(Local Oxidation on Silicon : 국부산화)에 관해 기술하면 다음과 같다.Conventional device isolation techniques, i.e., isolation techniques, are available, but a typical LOCOS (Local Oxidation on Silicon: localization) is described as follows.

먼저 제 1a 도에서와 같이 실리콘기판(1)위에 패드 산화막(Pad Oxide)(2)을 성장시킨 후 Si3N4(3)를 LPCVD 방법으로 증착한다.First, as shown in FIG. 1A, a pad oxide film 2 is grown on the silicon substrate 1, and then Si 3 N 4 (3) is deposited by the LPCVD method.

그 다음 제 1b 도에서와 같이 액티브(소자가 형성될 영역)마스크 작업으로 소자가 형성될 영역을 정의하고 Si3N4(3)를 식각한다.Then, as shown in FIG. 1B, an active (region where the device is to be formed) mask operation is used to define a region where the device is to be formed and to etch Si 3 N 4 (3).

그다음 포토레지스터(4)를 제거하고 O2혹은 H2O 등을 이용하여 산화를 시키는데 Si3N4(3)는 산화가 잘 되지 않는 반면 실리콘기판(1)은 산화막 성장이 용이하므로 제 1c 도에서와 같이 Si3N4가 없는 영역에서만 국부적으로 두꺼운 산화막(5)이 성장하게 된다.Then, the photoresist 4 is removed and oxidized using O 2 or H 2 O. Si 3 N 4 (3) is not easily oxidized, whereas the silicon substrate 1 is easy to grow an oxide film. As in the above, the locally thick oxide film 5 grows only in the region without Si 3 N 4 .

그 다음 핫(Hot) H3PO4(약 155℃)로 Si3N4를 제거하고 패드산화막을 차례로 제거하면 제 1d 도에서와 같이 국부산화막이 형성되어 소자간 격리가 이루어지게 된다.Then, when Si 3 N 4 is removed by hot H 3 PO 4 (about 155 ° C.) and the pad oxide film is sequentially removed, a local oxide film is formed as shown in FIG.

단 주의해야할 것은 종래는 소자격리를 먼저 수행한 후 게이트, 소오스-드레인을 차례로 형성해가는 것이다.It should be noted, however, that device isolation is performed first, and then gates and source-drains are sequentially formed.

그런데 아이솔레이션 방법중 상기와 같은 LOCOS의 경우는 서브미크론에는 부적절하므로(버즈빅(Bird's beak)등에 의해) SWAMI(Side Wall Masked Isolation), STLO, POX(Polysilicon Oxidation), BOX(Buried Oxide) 아이솔레이션, 트렌치등 여러가지 방법이 동원되고 있으나 공정이 복잡하여 여러가지 문제점이 많이 내포되어 있는 단점이 있다.However, LOCOS as described above is not suitable for submicron (by Bird's beak), so it is SWAMI (Side Wall Masked Isolation), STLO, POOX (Polysilicon Oxidation), BOX (Buried Oxide) isolation, trench Various methods have been mobilized, but there are disadvantages in that the process is complicated and there are many problems.

본 발명은 이러한 단점을 해결하기 위해 아이솔레이션 즉 소자간의 격리를 종래와 다르게 게이트, 소오스-드레인 형성후에 SOG(Spin-On-Glass)를 배리어(Barrier)로 사용하여 쉘로우 트렌치 에치(shallow trench etch)/리필(refill)을 수행하도록 한 셀프 얼라인 서브미크론 소자 아이솔레이션 방법으로써 이하 첨부도면을 참조하여 상세히 설명하면 다음과 같다.In order to solve this drawback, the present invention uses a shallow trench etch (Isolation) between isolation and device isolation using a spin-on glass (SOG) as a barrier after gate and source-drain formation. A self-aligned submicron device isolation method for refilling is described in detail with reference to the accompanying drawings as follows.

제 2 도의 평면도 및 제 2 도의 A-A'선에 따른 단면도인 제 3 도를 참고하여 본 발명의 아이솔레이션 방법을 공정순서별로 차례로 설명하면(여기서는 NMOS FET에 관해서만 설명하기로 함), 일반적인 공정기술에 따라 제 2a 도의 게이트패턴을 이용하여 P형 실리콘기판(10)위에 게이트절연막과 게이트라인(11) 및 캡산화막(12)까지 형성한 후, 제 3a 도에서와 같이 n+소오스-드레인 이온주입을 행하여 n+소오스-드레인영역(13)을 형성한다.Referring to FIG. 3, which is a plan view of FIG. 2 and a cross-sectional view taken along the line A-A 'of FIG. 2, the isolation method of the present invention is described in order of process order (here, only the NMOS FET will be described). According to the technique, a gate insulating film, a gate line 11, and a cap oxide film 12 are formed on the P-type silicon substrate 10 using the gate pattern of FIG. 2a, and then n + source-drain ions as shown in FIG. 3a. Implantation is performed to form n + source-drain regions 13.

그리고 제 3b 도에서와 같이 결과물상에 포토레지스트를 도포하고 제 2b 도와 같은 게이트 컷팅 마스크(Gate Cutting Mask)를 적용한 사진식각공정에 의해 게이트라인의 소정부위를 식각하여 부분적으로 게이트를 남기고 이어서 상기 포토레지스트패턴이 남아 있는 상태에서 게이트영역끼리의 격리를 위한 보론등의 이온주입을 수행하여 소자격리용 이온주입영역(제 2c 도 참조부호 21)을 형성한 후, 포토레지스트패턴을 제거하고 이온주입에 따른 활성화를 위한 소오스-드레인 어닐링을 행한다.Then, as shown in FIG. 3b, a photoresist is applied on the resultant, and a predetermined portion of the gate line is etched by a photolithography process using a gate cutting mask as shown in FIG. In the state where the resist pattern remains, ion implantation such as boron for isolation of the gate regions is performed to form an ion isolation region for isolation (see FIG. 2C), and then the photoresist pattern is removed and ion implanted. Source-drain annealing is performed for subsequent activation.

이어서 후속공정에서 형성될 SOG의 배리어(Barrier) 역할을 하도록 하기 위해 상기 결과물 전면에 산화막(14)을 형성한 다음, SOG막(15)을 도포(Coat)하고 베이크(Bake)한다.Subsequently, an oxide film 14 is formed on the entire surface of the product to serve as a barrier of the SOG to be formed in a subsequent process, and then the SOG film 15 is coated and baked.

그 다음 제 3c 도에서와 같이 SOG막(15)을 에치백(Etchback)하여 아이솔레이션 영역을 정의하는데 이때 상기 SOG를 에치백하게 되면 다른 영역보다 SOG막이 얇게 형성된 곳인 게이트와 게이트 사이의 기판이 먼저 노출되게 되고 이에 따라 아이솔레이션영역은 셀프 얼라인 즉 자기정열되어 형성되게 된다.Next, as shown in FIG. 3C, the SOG film 15 is etched back to define an isolation region. When the SOG is etched back, the substrate between the gate and the gate, which is the place where the SOG film is thinner than other regions, is exposed first. Accordingly, the isolation region is formed by self-alignment, that is, self-alignment.

그 다음 제 3d 도에서와 같이 상기 자기정렬된 아이솔레이션영역의 기판을 식각하여 쉘로우(shallow)트렌치를 형성하고(제 2c 도 참조부호 22참조), 소자간 완전격리를 위한 채널스탑 이온주입을 상기 트렌치 하부에 행하고 그다음 제 3e 도에서와 같이 트렌치를 절연막으로 리필(refill)시키고 결과물 전면에 절연층(LTO/BPSG)(16)을 증착하고 플로우잉(Flowing)공정을 수행한다.Then, as shown in FIG. 3d, the substrate of the self-aligned isolation region is etched to form a shallow trench (see reference numeral 22 of FIG. 2c), and channel stop ion implantation for complete isolation between devices is performed. In the lower part, the trench is then refilled with an insulating film as shown in FIG. 3E, an insulating layer (LTO / BPSG) 16 is deposited on the entire surface of the resultant, and a flowing process is performed.

PMOS FET의 경우는 P형 기판(또는 P-Well)대신 N형 기판(또는 N-Well)과 n+소오스/드레인 이온주입 대신 P+소오스/드레인 이온주입을 수행하면 된다.In the case of the PMOS FET, P + source / drain ion implantation may be performed instead of n-type substrate (or N-Well) and n + source / drain ion implantation instead of the P-type substrate (or P-Well).

따라서 본 발명은 서브 미크론의 하이 덴시티(high density)를 갖는 집적회로로써 반복되는 구조인 게이트 어레이나 메모리등에 이용하면 아이솔레이션 영역감소에 따른 집적도 향상에 크게 기여할 수 있는 효과가 있다.Therefore, the present invention can greatly contribute to the improvement of the degree of integration due to the reduction of the isolation area when used in a gate array or a memory which is a repetitive structure as an integrated circuit having a high density of sub-micron.

Claims (1)

제 1 도전형의 반도체기판(10)상에 게이트라인(11)을 형성한 후, 이온주에 의해 제 2 도전형의 불순물영역(13)을 형성하는 공정과, 상기 게이트라인(11)의 소정부분을 식각하여 고립게이트전극을 형성한 후, 제 1 도전형의 불순물을 이온주입하는 공정, 결과물 전면에 산화막(14)을 형성하는 공정, 상기 산화막(14)상에 SOG막(15)을 도포하고 베이크하는 공정, 상기 SOG막(15)을 에치백하여 기판을 노출시키는 공정, 상기 노출된 기판부위를 식각하여 트렌치를 형성하는 공정, 상기 트렌치에 제 2 도전형의 불순물을 이온주입하는 공정, 상기 트렌치를 절연막으로 채우는 공정 및 결과물 전면에 절연층(16)을 형성하는 공정을 포함하는 것을 특징으로 하는 반도체소자의 아이솔레이션 방법.Forming a gate line 11 on the first conductive semiconductor substrate 10, and then forming an impurity region 13 of the second conductive type by an ion column, and predetermining the gate line 11 Etching the portion to form an isolation gate electrode, implanting impurities of a first conductivity type, forming an oxide film 14 on the entire surface of the resultant, and applying an SOG film 15 on the oxide film 14 And baking, etching the SOG film 15 to expose the substrate, etching the exposed substrate portion to form a trench, ion implanting a second conductivity type impurity into the trench, And filling the trench with an insulating film and forming an insulating layer on the entire surface of the resultant.
KR1019900016256A 1990-10-13 1990-10-13 Isolation method of semiconductor device KR930008906B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019900016256A KR930008906B1 (en) 1990-10-13 1990-10-13 Isolation method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019900016256A KR930008906B1 (en) 1990-10-13 1990-10-13 Isolation method of semiconductor device

Publications (2)

Publication Number Publication Date
KR920008950A KR920008950A (en) 1992-05-28
KR930008906B1 true KR930008906B1 (en) 1993-09-16

Family

ID=19304607

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019900016256A KR930008906B1 (en) 1990-10-13 1990-10-13 Isolation method of semiconductor device

Country Status (1)

Country Link
KR (1) KR930008906B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100671155B1 (en) * 2001-06-26 2007-01-17 매그나칩 반도체 유한회사 Method for manufacturing an isolation layer in a semiconductor device

Also Published As

Publication number Publication date
KR920008950A (en) 1992-05-28

Similar Documents

Publication Publication Date Title
KR910002831B1 (en) Process for manufacturing semiconductor devices
KR100227766B1 (en) Semiconductor device and the manufacturing method thereof
US4803176A (en) Integrated circuit structure with active device in merged slot and method of making same
US4319395A (en) Method of making self-aligned device
US6461900B1 (en) Method to form a self-aligned CMOS inverter using vertical device integration
US5665993A (en) Integrated circuit including a FET device and Schottky diode
EP0258396B1 (en) Fabrication process for stacked mos devices
US5340759A (en) Method of making a vertical gate transistor with low temperature epitaxial channel
US4825278A (en) Radiation hardened semiconductor devices
KR870006676A (en) Process for fabricating bipolar transistors and complementary MOS transistors on shared substrates
EP0224717B1 (en) Self-aligned channel stop
JPH0226063A (en) Trench transistor structure and its manufacture
US5554554A (en) Process for fabricating two loads having different resistance levels in a common layer of polysilicon
KR100247849B1 (en) Method of forming mos and bipolar transistor and transistor device having the same
US4939154A (en) Method of fabricating an insulated gate semiconductor device having a self-aligned gate
US5336625A (en) BiCMOS process with low base recombination current bipolar transistors
US4488348A (en) Method for making a self-aligned vertically stacked gate MOS device
US5352617A (en) Method for manufacturing Bi-CMOS transistor devices
EP0272491A2 (en) Deep trench isolation with surface contact to substrate
EP0126292B1 (en) Semiconductor device having an element isolation layer and method of manufacturing the same
KR930008906B1 (en) Isolation method of semiconductor device
US5705440A (en) Methods of fabricating integrated circuit field effect transistors having reduced-area device isolation regions
US5686347A (en) Self isolation manufacturing method
US5334550A (en) Method of producing a self-aligned window at recessed intersection of insulating regions
JPH03201559A (en) Reduction of buried layer capacity in ic

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20020820

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee