KR930007410B1 - Dehydrogenation catalyst - Google Patents

Dehydrogenation catalyst Download PDF

Info

Publication number
KR930007410B1
KR930007410B1 KR1019860002581A KR860002581A KR930007410B1 KR 930007410 B1 KR930007410 B1 KR 930007410B1 KR 1019860002581 A KR1019860002581 A KR 1019860002581A KR 860002581 A KR860002581 A KR 860002581A KR 930007410 B1 KR930007410 B1 KR 930007410B1
Authority
KR
South Korea
Prior art keywords
catalyst
oxide
potassium
weight
dehydrogenation
Prior art date
Application number
KR1019860002581A
Other languages
Korean (ko)
Other versions
KR870009759A (en
Inventor
다께노리 히라노
히데미 우네이
Original Assignee
닛산가도라쇼꾸바이 가부시끼가이샤
다까하시 노부히꼬
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 닛산가도라쇼꾸바이 가부시끼가이샤, 다까하시 노부히꼬 filed Critical 닛산가도라쇼꾸바이 가부시끼가이샤
Priority to KR1019860002581A priority Critical patent/KR930007410B1/en
Publication of KR870009759A publication Critical patent/KR870009759A/en
Application granted granted Critical
Publication of KR930007410B1 publication Critical patent/KR930007410B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

내용 없음.No content.

Description

탈수소촉매Dehydrogenation Catalyst

본 발명은 탈수소촉매에 관한 것이다. 더욱 상세하게는, 본 발명은 스팀의 존재하에 에틸벤젠의 탈수소화에 의하여 스티렌을 제조하는 방법에 유용하고 스팀 대 에틸벤젠의 몰비(차후로는 "스팀 대 오일 비율"이라 칭함)가 낮을 때에도 양호한 수율로 스티렌을 제조할 수 있는 산화 마그네슘 함유 탈수소촉매에 관한 것이다.The present invention relates to a dehydrogenation catalyst. More specifically, the present invention is useful in the process for preparing styrene by dehydrogenation of ethylbenzene in the presence of steam and is good even when the molar ratio of steam to ethylbenzene (hereinafter referred to as the "steam to oil ratio") is low. It relates to a magnesium oxide-containing dehydrogenation catalyst capable of producing styrene in yield.

현재, 스티렌은 스팀 존재하에 에틸벤젠의 탈수소화에 의하여 공업적 규모로 제조된다. 공업적 촉매를 사용한 종래의 탈수소화 반응은 스팀 대 오일 비율이 12초과인 다량의 스팀중에 실시되었다. 스팀을 공급하는 이유는 ; (1) 스티렌의 부분압을 낮춰서 반응이 평형 상태하에 유리하게 진행되도록 하고 ; (2) 수성 가스 반응에 의하여, 탈수소와 반응 도중 촉매표면상에 석출하는 탄소성 물질을 제거하며 ; (3) 열공급원으로서 스팀을 사용하는데 있다.Currently, styrene is produced on an industrial scale by dehydrogenation of ethylbenzene in the presence of steam. Conventional dehydrogenation reactions using industrial catalysts have been carried out in large quantities of steam with a steam to oil ratio of greater than 12. The reason for supplying steam is; (1) lowering the partial pressure of styrene so that the reaction proceeds advantageously at equilibrium; (2) removing the carbonaceous material precipitated on the catalyst surface during the reaction with dehydrogenation by an aqueous gas reaction; (3) The use of steam as a heat source.

최근에, 에너지 절약이라는 측면에서 스팀 소모를 줄이기 위한, 즉 스팀 대 오일 비율을 감소시키기 위한 노력이 진행되어 왔다.Recently, efforts have been made to reduce steam consumption, that is, to reduce the steam to oil ratio, in terms of energy saving.

스팀 대 오일 비율을 낮추는 것은 스티렌의 원가가 감소한다는 잇점이 있다. 그러나, 부정적인 면으로서, 이는 500∼700 ℃의 탈수소 온도에서 탄소성 물질의 생성을 촉진시킨다. 따라서, 탄소성 물질이 촉매상에 석출하는 경향이 있고, 스팀 대 오일 비율이 12 이하일때 종래 공업적 촉매에 상당한 정도까지 촉매 활성의 저하(deterioration)가 생기는 어려움이 있었다.Lowering the steam-to-oil ratio has the advantage of reducing the cost of styrene. On the negative side, however, it promotes the production of carbonaceous materials at dehydrogenation temperatures of 500-700 ° C. Therefore, carbonaceous material tends to precipitate on the catalyst, and when the steam to oil ratio is 12 or less, there is a difficulty that deterioration of the catalyst activity occurs to a considerable extent in the conventional industrial catalyst.

종래 공업적 촉매는 대개 산화철, 조촉매(크롬 또는 세륨과 같은) 및 알칼리 금속 또는 알칼리토금속 화합물로 구성되어 있다. 알칼리금속 또는 알칼리토금속 화합물은 수성 가스 반응을 촉진하고 촉매상에 석출하는 탄소성 물질을 제거할 목적으로 혼합된다. 일반적으로 말해서, 칼륨, 루비듐 또는 세슘이 효과적이다. 그러나 경제적인 이유에서 칼륨이 가장 흔히 사용된다. 알칼리금속 또는 알칼리토금속 화합물의 함량은 예를 들면 일본 특허 공보 제 19864/1968호, 일본 특허 공개 공보 제 7889/1977, 94295/1978, 129190/1978 또는 129191/1978 호에 설명되어 있다. 알칼리 금속 화합물을 단독으로 사용할때에는 사용량은 통상 30중량% 이하이다. 일본 특허 공개 공보 제 25134/1972호에는 알칼리 금속으로서 칼륨을, 그리고 알칼리토금속으로서 칼슘을 함유한 촉매로서, 칼륨 및 칼슘 화합물의 총량이 24중량% 이하인 촉매를 설명하고 있다. 또한 과거에 사용되었던 필립스(Phillips) 1490 및 스탠다드(Standard) 1707과 같은 탈수소촉매들은 주활성 성분인 산화철용 캐리어(carrier)로서 산화마그네슘을 각각 30∼45중량% 및 72.4중량% 함유하였다.Conventional industrial catalysts usually consist of iron oxides, cocatalysts (such as chromium or cerium) and alkali or alkaline earth metal compounds. Alkali or alkaline earth metal compounds are mixed for the purpose of promoting the water gas reaction and removing the carbonaceous material that precipitates on the catalyst. Generally speaking, potassium, rubidium or cesium are effective. But for economic reasons potassium is most commonly used. The content of the alkali metal or alkaline earth metal compound is described, for example, in Japanese Patent Publication No. 19864/1968, Japanese Patent Publication No. 7889/1977, 94295/1978, 129190/1978 or 129191/1978. When the alkali metal compound is used alone, the amount of use is usually 30% by weight or less. Japanese Laid-Open Patent Publication No. 25134/1972 describes a catalyst in which the total amount of potassium and calcium compounds is 24% by weight or less as a catalyst containing potassium as the alkali metal and calcium as the alkaline earth metal. In addition, dehydrogenation catalysts such as Phillips 1490 and Standard 1707 used in the past contained 30 to 45% by weight and 72.4% by weight of magnesium oxide as carriers for iron oxide as the main active ingredients, respectively.

상술한 바와 같이, 종래 공업적 촉매에 있어서 수성가스 반응용 조촉매로서 가해지는 알칼리금속 또는 알칼리토금속 화합물의 함량은 30중량% 이하인데, 이로써 스팀 대 오일 비율이 12 이하일때 탄소성 물질의 석출량은 증가되고 촉매활성은 감소되고 저하되는 경향이 있다. 낮은 스팀 대 오일 비율에서 촉매 활성의 저하를 방지하기 위한 방법으로서, 전형적인 탈수소촉매로서 철-크롬-칼륨 촉매와 관련하여, 수성가스 반응을 촉진하고 촉매상에 석출되는 탄소성 물질을 쉽사리 제거하기위하여 칼륨 함량을 증가시키는 방법과 탄소성 물질 자체의 생성을 방지하기 위하여 800℃이상의 고온에서 산화철을 하소시키는 방법이 공지되어 있다.As described above, in the conventional industrial catalyst, the content of alkali metal or alkaline earth metal compound applied as a promoter for water gas reaction is 30% by weight or less, thereby depositing carbonaceous material when the steam to oil ratio is 12 or less. Tends to increase and catalytic activity decreases and decreases. A method for preventing the deterioration of catalyst activity at low steam to oil ratios, with respect to the iron-chromium-potassium catalyst as a typical dehydrogenation catalyst, to promote the water gas reaction and to easily remove the carbonaceous material deposited on the catalyst. Methods of increasing the potassium content and calcining iron oxide at high temperatures above 800 ° C. are known to prevent the formation of the carbonaceous material itself.

그러나, 다량의 칼륨을 함유한 촉매는 공기중에 방치할 때 칼륨의 매우 강한 흡습성 때문에 수분을 흡수하는 경향이 있으므로, 성형된 촉매 펠릿(pellet)의 강도가 저하되고, 칼륨이 반응 조건에 따라서 탈수소반응중에 펠릿의 내부로 점차 이동하는 경향이 있거나, 또는 칼륨이 촉매 펠릿의 외부로 이동하기 쉽다. 결국, 탈수소 반응중에 촉매 펠릿이 수축하거나 분쇄되기 쉽고, 이로 인한 촉매 크기의 변화 또는 촉매 강도의 저하로 인하여 여러가지 문제가 발생할 수 있다.However, catalysts containing a large amount of potassium tend to absorb moisture due to the very strong hygroscopicity of potassium when left in the air, thus reducing the strength of the formed catalyst pellets and dehydrogenation of potassium depending on the reaction conditions. It tends to move gradually into the interior of the pellets, or potassium is likely to move out of the catalyst pellets. As a result, catalyst pellets tend to shrink or crush during dehydrogenation reactions, which may cause various problems due to a change in catalyst size or a decrease in catalyst strength.

한편, 고온에서 산화철을 하소시켜서 제조된 촉매는 톨루엔 또는 벤젠과 같은 부산물을 생성할 수 있고, 따라서 스티렌에 대하여 낮은 선택성을 보이고 스팀 대 오일 비율의 하한이 약 6의 수준으로 제한된다.On the other hand, catalysts prepared by calcining iron oxide at high temperatures can produce by-products such as toluene or benzene, thus exhibiting low selectivity for styrene and having a lower steam-to-oil ratio of about 6 levels.

일본 특허 공개 공보 90102/1979호는 스팀 대 오일 비율 6∼12에서 MgFe1.9Cr0.1O4또는 MnFe1.5Cr0.5O4의 스피넬(spinel)상에 조촉매로서 산화바나듐 및 알칼리금속 산화물을 함유한 촉매가 사용될 수 있음을 설명하고 있다. 그러나, 그러한 촉매를 만들기란 어렵거나 성가신 일이고 또한 하소화에 고온을 요한다. 따라서, 그러한 촉매를 공업적 촉매로 사용하기란 어렵다.Japanese Patent Application Publication No. 90102/1979 discloses a catalyst containing vanadium oxide and alkali metal oxide as a cocatalyst on a spinel of MgFe 1.9 Cr 0.1 O 4 or MnFe 1.5 Cr 0.5 O 4 at a steam to oil ratio of 6 to 12. It is described that can be used. However, making such catalysts is difficult or cumbersome and also requires high temperatures for calcination. Therefore, it is difficult to use such a catalyst as an industrial catalyst.

상술한 철-크롬-칼륨형 이외의 공업적으로 사용되는 촉매로서 일본 특허 공개 공보 제 120887/1974 또는 120888/1974호에 설명된 바와 같은 철-세륨-몰리브덴-칼륨 촉매가 있다. 이 촉매는 스티렌 선택성이 높다는 특징을 갖는다. 그러나, 이를 낮은 스팀 대 오일 비율에서 사용하기 위하여는 탄산칼륨 함량이 40중량% 이상으로 높아야 하는데, 이로 인하여 칼륨의 흡습성 또는 탈수소 반응중에 칼륨의 이동으로 인하여 촉매가 구조적 분해를 하게 되는 것과 같은 상술한 결점을 피할 수 없다.As an industrially used catalyst other than the iron-chromium-potassium type described above, there is an iron-cerium-molybdenum-potassium catalyst as described in Japanese Patent Laid-Open Publication No. 120887/1974 or 120888/1974. This catalyst is characterized by high styrene selectivity. However, in order to use it at a low steam to oil ratio, the potassium carbonate content must be higher than 40% by weight, which causes the catalyst to undergo structural degradation due to the hygroscopicity of potassium or the movement of potassium during the dehydrogenation reaction. Defects cannot be avoided.

따라서 12 이하의 낮은 스팀 대 오일 비율에서 촉매활성의 적절한 안정과 적절한 스티렌 수율을 제공할 수 있는 현재 입수 가능한 공업적 촉매는 없다.Thus, there are currently no industrial catalysts available that can provide adequate stability of catalytic activity and proper styrene yield at low steam to oil ratios below 12.

본 발명자들은 예를들면 철-크롬-칼륨 촉매 또는 철-세륨-몰리브덴-칼륨 촉매에 마그내슘을 혼합함으로써 3.5∼12 수준의 낮은 스팀 대 오일 비율을 갖는 탈수소반응 조건하에서도 안정적인 촉매 활성과 높은 수율의 시티렌을 제공하는 촉매를 수득할 수 있음을 발견하였다. 본 발명은 이 발견에 근거하여 완성되었다.The inventors have found that, for example, by mixing magnesium with an iron-chromium-potassium catalyst or an iron-cerium-molybdenum-potassium catalyst, stable catalyst activity and high yield even under dehydrogenation conditions with a low steam to oil ratio of 3.5 to 12 It has been found that a catalyst can be obtained that gives a citrate of. The present invention has been completed based on this finding.

본 발명은 필수적으로 산화칼륨 9.0∼35.6중량%, 산화마그네슘 1.8∼8.0중량%, 하기 a) 및 b)로부터 선택되는 조촉매 및 나머지가 산화철로 구성된 탈수소촉매를 제공한다 : a) Ce2O33~6중량%, 및 MoO30.5~3중량% ; b)Ce2O33~6중량%, MoO30.5~3중량%, 및 CaO 2.0~7.3중량%.The present invention essentially provides a dehydrogenation catalyst consisting of 9.0-35.6 weight percent potassium oxide, 1.8-8.0 weight percent magnesium oxide, a cocatalyst selected from a) and b) and the remainder consisting of iron oxides: a) Ce 2 O 3 3 to 6 wt%, and MoO 3 0.5 to 3 wt%; b) 3 to 6 weight percent Ce 2 O 3 , 0.5 to 3 weight percent MoO 3 , and 2.0 to 7.3 weight percent CaO.

본 발명에 따르면, 성형된 촉매 펠릿은 마그네슘의 첨가에 의하여 구조적으로 안정화되고, 따라서, 촉매중에 칼륨의 수분 흡수에 의한 촉매 강도의 저하를 방지함과 동시에 탈수소반응중에 칼륨의 이동으로 인한 촉매의 분해를 방지할 수 있다. 또한, 산화물로서 마그네슘의 양을 1.8∼8.0중량% 수준으로 제한함으로써 탈수소반응 후에 촉매강도의 저하를 방지할 수 있다. 더우기, 촉매중에 산화칼륨의 양을, 12초과인 스팀 대 오일 비율에서 사용되던 종래 공업용 촉매의 함량과 실질적으로 동일한 9.0∼35.6중량% 수준으로 조절할 수 있다.According to the invention, the shaped catalyst pellets are structurally stabilized by the addition of magnesium, thus preventing degradation of the catalyst strength due to water absorption of potassium in the catalyst and at the same time decomposing the catalyst due to the movement of potassium during the dehydrogenation reaction. Can be prevented. In addition, by limiting the amount of magnesium to the level of 1.8 to 8.0% by weight as an oxide, it is possible to prevent the decrease in catalyst strength after the dehydrogenation reaction. Furthermore, the amount of potassium oxide in the catalyst can be adjusted to a level of 9.0 to 35.6% by weight which is substantially the same as the content of conventional industrial catalysts used at steam to oil ratios above 12.

현재까지, 산화칼륨의 함량이 약 35중량%인 촉매라도 700∼900℃의 고온에서 하소화함으로써 펠릿구조를 안정화시킬 수 있으며, 이로써 탈수소반응중에 수축 또는 분쇄를 거의 일으키지 않는다고 알려져 있다. 그러나, 이것은 하소화에 의한 촉매의 소결이나 표면적의 실질적인 감소에 따른 촉매 활성의 감소를 피하기가 거의 불가능하다.To date, even catalysts having a potassium oxide content of about 35% by weight can be stabilized by calcining at a high temperature of 700 to 900 DEG C, which is known to hardly cause shrinkage or grinding during dehydrogenation. However, it is almost impossible to avoid a decrease in catalyst activity due to sintering of the catalyst by calcination or a substantial reduction in surface area.

이와 반면에, 본 발명의 산화 마그네슘을 함유한 촉매는 구조적으로 안정되고, 산화 칼륨 함량이 약 35중량%인 촉매를 700℃ 이상의 고온에서 하소화시킬때라도 촉매의 펠릿 구조는 촉매 활성을 저하시키지 않고 더욱 안정화된다. 즉, 다음 조성을 갖는 마그네슘 함유 철-크롬-칼륨 촉매는 3.5∼12의 스팀 대 오일 비율에서 안정된 성능을 발휘하며, 이로써 에틸벤젠의 전환율은 산화칼륨 40.5중량%를 함유한 철-크롬-칼륨 촉매에 의하여 얻는 것보다 더 높고, 스티렌 선택성은 실질적으로 같거나 더 높다.On the other hand, the catalyst containing magnesium oxide of the present invention is structurally stable, and even when the catalyst having a potassium oxide content of about 35% by weight is calcined at a high temperature of 700 ° C or higher, the pellet structure of the catalyst does not deteriorate the catalytic activity. More stable. That is, the magnesium-containing iron-chromium-potassium catalyst having the following composition exhibits stable performance at a steam-to-oil ratio of 3.5 to 12, whereby the conversion of ethylbenzene is applied to the iron-chromium-potassium catalyst containing 40.5% by weight of potassium oxide. Higher than that obtained, and the styrene selectivity is substantially the same or higher.

Fe2O352.4~88.2중량%,Fe 2 O 3 52.4 ~ 88.2% by weight,

Cr2O31~4중량%Cr 2 O 3 1-4 wt%

K2O9.0~35.6중량%K 2 O9.0 ~ 35.6 wt%

MgO1.8~8.0중량%MgO1.8-8.0 wt%

(상기 조성중 각 성분의 함량은 그 산화물의 중량%로 표시되었다. 후술하는 명세서에도 동일한 원칙이 적용된다)(The content of each component in the composition is expressed by weight percentage of the oxide. The same principle applies to the specification described later)

철-크롬-칼륨 촉매는 탈수소반응 전과 후에 이의 표면적의 실질적인 감소를 대게 겪게 된다(예를들면, 산화칼륨 40.5중량%를 함유한 촉매는 표면적이 약 30.5% 감소하고 평균 세공직경이 약 10% 증가하게 된다) 특히, 산화칼륨을 22.6중량% 이상 함유한 촉매는 탈수소반응중에 펠릿 크기가 5∼8% 수축되거나, 완전히 분해 또는 분쇄된다(분해율 : 100%).Iron-chromium-potassium catalysts often undergo substantial decreases in their surface area before and after dehydrogenation (e.g., catalysts containing 40.5% by weight of potassium oxide have a surface area of about 30.5% reduction and an average pore diameter of about 10% increase). Particularly, catalysts containing at least 22.6% by weight of potassium oxide shrink 5 to 8% of the pellet size or decompose or completely break down during dehydrogenation (decomposition ratio: 100%).

반면에, 본 발명의 산화마그네슘을 함유한 촉매는 반응후에 오히려 표면적이 증가하는 경향이 있으며, 촉매의 평균 세공직경의 변화는 작다. 또한, 본 발명에 있어서, 촉매가 22.6중량% 이상의 산화칼륨을 함유하더라도 반응후 촉매 펠릿의 수축은 4% 이하로 낮고, 끓는물 중에 촉매의 분해율은 최대 35%정도 만큼 낮다.On the other hand, the catalyst containing magnesium oxide of the present invention tends to increase the surface area after the reaction, and the change in the average pore diameter of the catalyst is small. Further, in the present invention, even if the catalyst contains 22.6% by weight or more of potassium oxide, the shrinkage of the catalyst pellet after the reaction is low to 4% or less, and the decomposition rate of the catalyst in boiling water is as low as 35% at most.

따라서, 산화마그네슘은 촉매 펠릿의 구조를 안정화하는 기능을 갖는다. 그러나, 만일 산화마그네슘의 양이 8.0중량%를 초과한다면, 촉매의 세공용적이 너무 커서 탈수소반응후에 연마 시험을 할 때 촉매의 분쇄(마멸손실)이 20∼40%만큼 발생하는 경향이 있다. 이 마멸손실은 반응중에 촉매에 실질적인 힘이 부과될때(예를 들면, 과잉 가스 흐름에 의하여 촉매층의 일부가 흐를때) 촉매 분쇄의 원인이 되는데, 이는 바람직하지 않다. 그러나, 산화 마그네슘 함량이 1.8∼8.0중량% 범위로 제한될때, 마멸손실은 약 15% 정도로 감소되는데, 이는 종래 공업적 촉매와 비교될 만하고, 촉매 펠릿 구조의 안정화에 대한 산화마그네슘의 영향은 낮아지지 않으며, 촉매 활성은 유지될 것이다. 한편, 만일 산화마그네슘 함량이 1.8중량% 미만이라면, 산화마그네슘에 의한 구조 안정화에 적절한 효과를 얻을 수 없을 것이다.Thus, magnesium oxide has a function of stabilizing the structure of the catalyst pellets. However, if the amount of magnesium oxide exceeds 8.0% by weight, the pore volume of the catalyst is so large that there is a tendency for the catalyst (crushing loss) to occur by 20 to 40% during the polishing test after the dehydrogenation reaction. This wear loss causes catalyst crushing when a substantial force is applied to the catalyst during the reaction (eg when part of the catalyst bed flows due to excess gas flow), which is undesirable. However, when the magnesium oxide content is limited in the range of 1.8 to 8.0% by weight, the wear loss is reduced to about 15%, which is comparable to the conventional industrial catalyst, and the effect of magnesium oxide on the stabilization of the catalyst pellet structure is not lowered. And catalytic activity will be maintained. On the other hand, if the magnesium oxide content is less than 1.8% by weight, it will not be possible to obtain an adequate effect on the structure stabilization by magnesium oxide.

X-선회절에 의한 관찰로 부터, 촉매중에 산화마그네슘의 일부가 MgFe2O4형태로 산화철중에 고형용액을 형성하여 MgFe1.9Cr0.1O4의 스피넬이 발견되지 않았다. 다음 조성을 갖는 마그네슘 함유 철-크롬-칼륨-칼슘 촉매는 비록 3.5∼12의 스팀 대 오일 비율에서 에틸벤젠의 전환율이 본 발명의 철-크롬-칼륨-마그네슘 촉매의 경우와 실질적으로 동일할지라도 스티렌 선택성이 매우 높다는 특징을 갖는다.From the observation by X-ray diffraction, a part of magnesium oxide in the catalyst formed a solid solution in iron oxide in the form of MgFe 2 O 4 so that no spinel of MgFe 1.9 Cr 0.1 O 4 was found. Magnesium-containing iron-chromium-potassium-calcium catalysts with the following composition have styrene selectivity, although the conversion of ethylbenzene at a steam to oil ratio of 3.5-12 is substantially the same as for the iron-chromium-potassium-magnesium catalyst of the present invention. This is very high.

Fe2O345.1~86.2중량%,Fe 2 O 3 45.1 ~ 86.2% by weight,

Cr2O31~4중량%Cr 2 O 3 1-4 wt%

K2O9.0~35.6중량%K 2 O9.0 ~ 35.6 wt%

MgO1.8~8.0중량%MgO1.8-8.0 wt%

CaO 2.0~7.3중량%CaO 2.0 ~ 7.3 wt%

탈수소반응 전과 후에 이 촉매의 표면적과 세공 직경의 변화는 작고, 이 촉매는 구조적으로 안정하다.The change in surface area and pore diameter of the catalyst before and after the dehydrogenation reaction is small, and the catalyst is structurally stable.

한편, 철-세륨-몰리브덴-칼륨촉매는 높은 스티렌 선택성을 갖는 것으로 알려져 있다. 여기에 마그네슘을 첨가하여 다음 조성을 갖는 촉매를 수득할때, 이 촉매는 6∼12의 스팀 대 오일 비율에서 안정된 성능을 발휘하고 에틸벤젠의 전환율이 산화칼륨 26.8중량%를 함유한 철-세륨-몰리브덴-칼륨 촉매에 의하여 얻을 수 있는 것보다 더 높고, 선택성은 동일하거나 더 높다.On the other hand, iron-cerium-molybdenum-potassium catalysts are known to have high styrene selectivity. When magnesium is added thereto to obtain a catalyst having the following composition, the catalyst exhibits stable performance at a steam to oil ratio of 6 to 12 and the conversion of ethylbenzene to iron-cerium-molybdenum containing 26.8% by weight of potassium oxide. Higher than that obtainable by the potassium catalyst, the selectivity being the same or higher.

Fe2O347.4~85.7중량%,Fe 2 O 3 47.4-85.7 wt%,

Ce2O33~6중량%Ce 2 O 3 3 ~ 6 wt%

MoO30.5~3중량%MoO 3 0.5 ~ 3% by weight

K2O9.0~35.6중량%K 2 O9.0 ~ 35.6 wt%

MgO1.8~8.0중량%MgO1.8-8.0 wt%

반응 전과 후에 이 촉매의 표면적과 세공 직경의 변화 및 촉매 펠릿의 수축은 작다. 끓는물중에 이 촉매 펠릿의 분해는 관찰되지 않았다. 마멸손실은 산화마그네슘 8.0중량% 초과인 촉매와 비교할때 작다.Changes in surface area and pore diameter and shrinkage of catalyst pellets before and after the reaction are small. No decomposition of this catalyst pellet was observed in boiling water. Wear loss is small when compared to catalysts with more than 8.0 weight percent magnesium oxide.

다음 조성을 갖는 마그네슘 함유 철-세륨-몰리브덴-칼륨-칼슘 촉매는 6∼12의 스팀 대 오일 비율에서 안정적인 성능을 보이고 에틸벤젠 전환율은 산화칼륨 26.8중량%를 함유한 철-세륨-몰리브덴-칼륨 촉매에 의하여 얻는 것 이상이고, 선택성은 높다.The magnesium-containing iron-cerium-molybdenum-potassium-calcium catalyst with the following composition shows stable performance at a steam to oil ratio of 6 to 12, and the ethylbenzene conversion is applied to the iron-cerium-molybdenum-potassium catalyst containing 26.8% by weight of potassium oxide. It is more than you get by, and selectivity is high.

Fe2O340.1~83.7중량%,Fe 2 O 3 40.1 ~ 83.7% by weight,

Ce2O33~6중량%Ce 2 O 3 3 ~ 6 wt%

MoO30.5~3중량%MoO 3 0.5 ~ 3% by weight

K2O9.0~35.6중량%K 2 O9.0 ~ 35.6 wt%

MgO1.8~8.0중량%MgO1.8-8.0 wt%

CaO 2.0~7.3중량%CaO 2.0 ~ 7.3 wt%

또한, 다음 조성을 갖는 마그네슘 함유 철-세륨-몰리브덴-칼륨-크롬 촉매는 3.5∼12의 스팀 대 오일 비율에서 안정적인 높은 성능과 높은 선택성을 발휘한다. 이는 특히 6 이하의 스팀 대 오일 비율에서 높은 선택성을, 그리고 6 이상의 스팀 대 오일 비율에서 높은 활성을 보여주는 특성이 있다.In addition, the magnesium-containing iron-cerium-molybdenum-potassium-chromium catalyst having the following composition exhibits stable high performance and high selectivity at a steam to oil ratio of 3.5 to 12. It is particularly characterized by high selectivity at steam to oil ratios of 6 and below, and high activity at steam to oil ratios of 6 and above.

Fe2O343.4~84.7중량%,Fe 2 O 3 43.4 ~ 84.7% by weight,

Ce2O33~6중량%Ce 2 O 3 3 ~ 6 wt%

MoO30.5~3중량%MoO 3 0.5 ~ 3% by weight

K2O9.0~35.6중량%K 2 O9.0 ~ 35.6 wt%

Cr2O31~4중량%Cr 2 O 3 1-4 wt%

MgO1.8~8.0중량%MgO1.8-8.0 wt%

따라서, 본 발명의 탈수소촉매는 우수한 촉매활성, 선택성 및 구조적 안정성을 갖음이 명백하다.Therefore, it is apparent that the dehydrogenation catalyst of the present invention has excellent catalytic activity, selectivity and structural stability.

또한, 본 발명에 따르면 촉매가 높은 함량의 산화 칼륨을 갖더라도 700℃ 이상의 고온에서 하소화에 의하면 촉매 활성을 저해함이 없이 촉매 펠릿의 구조적 안정성을 개량할 수 있다.In addition, according to the present invention, even if the catalyst has a high content of potassium oxide, by calcination at a high temperature of 700 ℃ or more can improve the structural stability of the catalyst pellets without inhibiting the catalyst activity.

이제 본 발명을 실시예와 관련하여 보다 상세히 설명하겠다. 촉매 활성 시험은 달리 규정하지 않은 경우에는 다음 방법으로 실시하였다.The present invention will now be described in more detail with reference to examples. The catalytic activity test was carried out by the following method unless otherwise specified.

내경 32mm인 스테인레스강 반응관에, 압출성형된 촉매 50cc를 채우고, 반응관을 전기로로 가열하여 예정된 온도에서 반응시켰다.A stainless steel reaction tube with an inner diameter of 32 mm was charged with 50 cc of extruded catalyst, and the reaction tube was heated in an electric furnace to react at a predetermined temperature.

반응 조건으로서 압력은 대기압이고, 시간당 에틸벤젠의 액체 공간속도는 1이고, 스팀 대 오일 비율은 6 또는 10이었다.As reaction conditions, the pressure was atmospheric pressure, the liquid space velocity of ethylbenzene per hour was 1, and the steam to oil ratio was 6 or 10.

에틸벤젠의 전환율과 선택성을 다음 공식에 의하여 계산하였다.The conversion and selectivity of ethylbenzene was calculated by the following formula.

Figure kpo00001
Figure kpo00001

각 실시예의 탈수소화 시험 결과를 표 1 및 2에 나타내었다.The dehydrogenation test results of each example are shown in Tables 1 and 2.

표 1에서 "온도-50%"는 50%의 에틸벤젠 전환율을 보이는 촉매층의 온도를 나타내고, "선택성-50%"는 50%의 에틸벤젠 전환율에서 스티렌 선택성을 나타낸다.In Table 1, "temperature -50%" represents the temperature of the catalyst bed showing 50% ethylbenzene conversion, and "selectivity-50%" represents styrene selectivity at 50% ethylbenzene conversion.

표 2에 있어서 끓는 물에서 펠릿의 분해율(HWT)은 50ml의 끓는물에 촉매 약 10g을 넣은 후에, 증발 건조시키고 다음 공식에 의하여 계산되었다.In Table 2, the decomposition rate (HWT) of pellets in boiling water was calculated by the following formula after evaporating to dryness after adding about 10 g of catalyst to 50 ml of boiling water.

Figure kpo00002
Figure kpo00002

반응 전과 후의 표면적, 세공용적, 세공직경 및 펠릿 직경과 같은 물리적 성질의 변화는 다음 공식에 의하여 계산되었다.Changes in physical properties such as surface area, pore volume, pore diameter and pellet diameter before and after the reaction were calculated by the following formula.

Figure kpo00003
Figure kpo00003

반응후의 마멸손실은 수평 실린더에 반응후의 촉매 약 10g을 넣고 연마 시험을 하기 위하여 회전시키고 분쇄된 촉매를 10메시체(sieve)로 체질함으로써 측정하였다. 남은 촉매의 양을 측정하고 다음 공식에 따라서 마멸손실을 계산하였다.The abrasion loss after the reaction was measured by putting about 10 g of the catalyst after the reaction in a horizontal cylinder, rotating for a polishing test, and sieving the pulverized catalyst with 10 sieves. The amount of catalyst remaining was measured and the abrasion loss was calculated according to the following formula.

Figure kpo00004
Figure kpo00004

[실시예 1]Example 1

α-산화철(Ⅲ) 500g, 산화세륨 43g, 산화몰리브덴 22g, 탄산칼륨 261g 및 탄산마그네슘 43g(시중에서 입수 가능한 염기성 탄산마그네슘)을 혼합하였다. 순수(pure water)를 가한후에, 이 혼합물을 교반기로 충분히 혼합하여 압출성 페이스튼를 수득하였다. 이 페이스트를 직경 1/8"로 압출 성형한 후에 건조하여 540℃에서 6시간 하소시켜서 다음 조성을 갖는 촉매를 수득하였다.500 g of α-iron (III) oxide, 43 g of cerium oxide, 22 g of molybdenum oxide, 261 g of potassium carbonate and 43 g of magnesium carbonate (commercially available basic magnesium carbonate) were mixed. After pure water was added, the mixture was thoroughly mixed with a stirrer to obtain an extrudable paston. The paste was extruded to a diameter of 1/8 ", dried and calcined at 540 DEG C for 6 hours to obtain a catalyst having the following composition.

Fe2O365.7중량%Fe 2 O 3 65.7 wt%

Ce2O35.7중량%Ce 2 O 3 5.7 wt%

MoO32.9중량%2.9 wt% MoO 3

K2O23.3중량%K 2 O 23.3 wt%

MgO2.4중량%MgO2.4 wt%

탈수소화 시험자료를 표 1 및 2에 나타내었다.Dehydrogenation test data are shown in Tables 1 and 2.

[실시예 2]Example 2

α-산화철(Ⅲ) 500g, 산화세륨 51g, 산화몰리브덴 25g, 탄산칼륨 303g, 탄산마그네슘 51g 및 탄산칼슘 81g을 사용한 점을 제외하고 실시예 1과 동일한 방법으로 촉매를 제조하였다.A catalyst was prepared in the same manner as in Example 1, except that 500 g of α-iron (III) oxide, 51 g of cerium oxide, 25 g of molybdenum oxide, 303 g of potassium carbonate, 51 g of magnesium carbonate, and 81 g of calcium carbonate were used.

Fe2O358.9중량%,58.9 weight% Fe 2 O 3 ,

Ce2O36.0중량%Ce 2 O 3 6.0% by weight

MoO33.0중량%MoO 3 3.0 wt%

K2O24.3중량%K 2 O 24.3 wt%

MgO2.5중량%MgO2.5 wt%

CaO 5.3중량%CaO 5.3% by weight

탈수소화 시험자료를 표 1 및 2에 나타내었다.Dehydrogenation test data are shown in Tables 1 and 2.

[비교예 1]Comparative Example 1

α-산화철(Ⅲ) 500g, 산화세륨 42g, 산화몰리브덴 21g 및 탄산칼륨 277g을 사용한 점을 제외하고 실시예 1과 동일한 방법으로 촉매를 제조하였다.A catalyst was prepared in the same manner as in Example 1, except that 500 g of α-iron (III) oxide, 42 g of cerium oxide, 21 g of molybdenum oxide, and 277 g of potassium carbonate were used.

Fe2O366.5중량%,66.5 wt% Fe 2 O 3 ,

Ce2O35.6중량%Ce 2 O 3 5.6 wt%

MoO32.8중량%MoO 3 2.8 wt%

K2O25.1중량%K 2 O 25.1 wt%

탈수소화 시험자료를 표 1 및 2에 나타내었다.Dehydrogenation test data are shown in Tables 1 and 2.

[비교예 2]Comparative Example 2

α-산화철(Ⅲ) 500g, 산화세륨 59g, 산화몰리브덴 29g, 탄산칼륨 353g 및 탄산마그네슘 235g을 사용한 점을 제외하고 실시예 1과 동일한 방법으로 촉매를 제조하였다.A catalyst was prepared in the same manner as in Example 1, except that 500 g of α-iron (III) oxide, 59 g of cerium oxide, 29 g of molybdenum oxide, 353 g of potassium carbonate, and 235 g of magnesium carbonate were used.

Fe2O353.9중량%,53.9 wt% Fe 2 O 3 ,

Ce2O36.3중량%Ce 2 O 3 6.3 wt%

MoO33.2중량%MoO 3 3.2 wt%

K2O25.9중량%K 2 O25.9 wt%

MgO10.7중량%MgO10.7 wt%

탈수소화 시험 자료를 표 1 및 2에 나타내었다.Dehydrogenation test data are shown in Tables 1 and 2.

[비교예 3]Comparative Example 3

α-산화철(Ⅲ) 500g, 산화세륨 42g, 산화몰리브덴 21g, 탄산칼륨 252g 및 탄산마그네슘 25g을 사용한 점을 제외하고 실시예 1과 동일한 방법으로 촉매를 제조하였다.A catalyst was prepared in the same manner as in Example 1, except that 500 g of α-iron (III) oxide, 42 g of cerium oxide, 21 g of molybdenum oxide, 252 g of potassium carbonate, and 25 g of magnesium carbonate were used.

Fe2O367.1중량%Fe 2 O 3 67.1 wt%

Ce2O35.6중량%Ce 2 O 3 5.6 wt%

MoO32.8중량%MoO 3 2.8 wt%

K2O23.0중량%K 2 O 23.0 wt%

MgO1.4중량%MgO 1.4 wt%

탈수소화 시험 자료를 표 1 및 2에 나타내었다.Dehydrogenation test data are shown in Tables 1 and 2.

[표 1]TABLE 1

Figure kpo00005
Figure kpo00005

[표 2]TABLE 2

Figure kpo00006
Figure kpo00006

Claims (2)

산화철, 산화칼륨, 산화마그네슘 및 조촉매로 이루어진 탈수소촉매로서, 산화칼륨 9.0∼35.6중량%, 산화마그네슘 1.8∼5.4중량% 및, 조촉매로서 산화세륨 3.0∼6.0중량% 및 산화몰리브덴 0.5∼3.0중량%을 함유하고 나머지가 산화철로 이루어진 탈수소촉매.As a dehydrogenation catalyst consisting of iron oxide, potassium oxide, magnesium oxide and a cocatalyst, 9.0 to 35.6 wt% of potassium oxide, 1.8 to 5.4 wt% of magnesium oxide, and 3.0 to 6.0 wt% of cerium oxide and 0.5 to 3.0 wt% of molybdenum oxide as cocatalysts A dehydrogenation catalyst containing% and the remainder consisting of iron oxide. 제1항에 있어서, 또 다른 조촉매로서 산화 칼슘 2.0∼7.3중량%을 추가로 함유하는 탈수소촉매.The dehydrogenation catalyst according to claim 1, further comprising 2.0 to 7.3 wt% of calcium oxide as another cocatalyst.
KR1019860002581A 1986-04-04 1986-04-04 Dehydrogenation catalyst KR930007410B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019860002581A KR930007410B1 (en) 1986-04-04 1986-04-04 Dehydrogenation catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019860002581A KR930007410B1 (en) 1986-04-04 1986-04-04 Dehydrogenation catalyst

Publications (2)

Publication Number Publication Date
KR870009759A KR870009759A (en) 1987-11-30
KR930007410B1 true KR930007410B1 (en) 1993-08-10

Family

ID=19249253

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019860002581A KR930007410B1 (en) 1986-04-04 1986-04-04 Dehydrogenation catalyst

Country Status (1)

Country Link
KR (1) KR930007410B1 (en)

Also Published As

Publication number Publication date
KR870009759A (en) 1987-11-30

Similar Documents

Publication Publication Date Title
US5023225A (en) Dehydrogenation catalyst and process for its preparation
EP0705136B1 (en) New catalyst, and process for dehydrogenating dehydrogenatable hydrocarbons
US4460706A (en) Catalyst for the production of styrene
AU687814B2 (en) Dehydrogenation catalyst having improved moisture stability,and process for making and using the catalyst
US7663009B2 (en) Process for the manufacture of an alkenyl aromatic compound under low steam-to-oil process conditions
US2331292A (en) Catalysts and the preparation thereof
JP5102626B2 (en) Highly active and highly stable iron oxide based dehydrogenation catalyst with low titanium concentration and its production and use
EP0177832B1 (en) Dehydrogenation catalysts
PL159228B1 (en) Dehydrogenation catalyst
US3703593A (en) Method of preparing an improved dehydrogenation catalyst
US4467046A (en) Dehydrogenation catalyst
US3527834A (en) Conversion of butene-2 to butene-1
US4749674A (en) Catalyst for the non-oxidative dehydrogenation of alkylbenzene to alkenylbenzene
KR20000075903A (en) USE OF Ce/Zr MIXED OXIDE PHASE FOR THE MANUFACTURE OF STYRENE BY DEHYDROGENATION OF ETHYLBENZENE
US4092354A (en) Process for production of acrylic acid
US4208537A (en) Process for the selective ortho-alkylation of phenolic compounds
US4010114A (en) Oxidative dehydrogenation catalyst
JPS6352612B2 (en)
US2588359A (en) Nickel-copper-chromia-alkali metal sulfate catalyst and its preparation
KR930007410B1 (en) Dehydrogenation catalyst
JPH105592A (en) Catalyst for producing chlorine from hydrogen chloride
US3291756A (en) Catalytic dehydrogenation
US5268512A (en) Catalyst and process for producing phenol
KR100752418B1 (en) Catalysts for dehydrogenation of ethylbenzene into styrene, process thereof and preparation method for styrene monomer employing them
JP2833907B2 (en) Ethylbenzene dehydrogenation catalyst and method for producing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
J2X1 Appeal (before the patent court)

Free format text: APPEAL AGAINST DECISION TO DECLINE REFUSAL

G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19990712

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee