KR930004557B1 - Chromium alloy surface coating of sncm9 steel for using co2 laser - Google Patents

Chromium alloy surface coating of sncm9 steel for using co2 laser Download PDF

Info

Publication number
KR930004557B1
KR930004557B1 KR1019860003209A KR860003209A KR930004557B1 KR 930004557 B1 KR930004557 B1 KR 930004557B1 KR 1019860003209 A KR1019860003209 A KR 1019860003209A KR 860003209 A KR860003209 A KR 860003209A KR 930004557 B1 KR930004557 B1 KR 930004557B1
Authority
KR
South Korea
Prior art keywords
laser
chromium
sncm9
steel
chromium alloy
Prior art date
Application number
KR1019860003209A
Other languages
Korean (ko)
Other versions
KR870010210A (en
Inventor
문병기
김경식
Original Assignee
삼성전자 주식회사
한형수
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사, 한형수 filed Critical 삼성전자 주식회사
Priority to KR1019860003209A priority Critical patent/KR930004557B1/en
Publication of KR870010210A publication Critical patent/KR870010210A/en
Application granted granted Critical
Publication of KR930004557B1 publication Critical patent/KR930004557B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

A surface chromium alloy of SNCM9 steel is made by irradating CO2 laser on the surface of a chromium containing alloy steel sheet. The CO2 laser has 17 mm/sec of irradating rate, 1,000 W output and its contacting condition is f and f+1. The surface melting by CO2 laser, which is generated at local area for short time, makes it quenched and tempered. Chromium element is distributed homogeneously by convection from high energy density. Then the chromium coating layer has good wear resistance, long duration and good adhesion.

Description

CO2레이저를 이용한 SNCM9 강의 표면 크롬합금Surface Chromium Alloys of SNCM9 Steel Using CO2 Laser

제1도는 본 발명의 합금층의 구조도.1 is a structural diagram of an alloy layer of the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 모재 SNCM9 강과 크롬의 합금구역 2 : 열영향부위(HAZ)1: Alloy zone of base steel SNCM9 steel and chrome 2: Heat affected area (HAZ)

3 : 기지조직3: Base organization

본 발명은 CO2레이저를 이용하여 SNCM9강(Ni-Cr-Mo 강을 표시하는 기호이며, 9는 그래이드(grade)이다. 한국공업규격 KSD-3709참조)의 표면에 모재의 재료와 크롬과의 합금을 형성하여 내마모성과 내식성을 향상시켜 산업에서 필요로 하는 성질을 가진 재료의 도금에 관한 것이다.The present invention is a symbol for indicating the SNCM9 steel (Ni-Cr-Mo steel, using a CO 2 laser, and 9 is a grade. Refer to the KSD-3709 of Korean Industrial Standards). The present invention relates to the plating of materials having properties required by the industry by forming alloys to improve wear resistance and corrosion resistance.

종래에는 기존방법인 경질 크롬 도금을 실시하는 방향으로 존재하는 크랙(Crack)으로 인하여 부식이나 마모가 발생되는 조건이 주어지면 크롬 도금층이 떨어져 나가므로써 목적하는 재료의 성질과 수명이 짧아지는 결점이 있었다.Conventionally, there is a drawback that the properties and life of the target material are shortened by the chromium plating layer falling off under the condition that corrosion or abrasion occurs due to cracks existing in the direction of hard chromium plating, which is a conventional method. .

따라서 본 발명은 종래의 이와 같은 문제점을 해소하기 위해 CO2레이저를 이용하여 SNCM9 강의 표면 크롬합금을 얻음으로써 결점을 보완할 수 있다. 이러한 레이저 합금화를 실제 실시예를 통하여 상세히 설명하면 다음과 같다.Therefore, the present invention can compensate for the shortcomings by obtaining the surface chromium alloy of SNCM9 steel using a CO 2 laser in order to solve such a conventional problem. This laser alloying will be described in detail with reference to the following examples.

금속 또는 비금속 피복층과 그 밑에 위치한 기지금속의 일부를 용융시키기 위하여 높은 에너지 밀도의 레이저를 이용하여 본래의 성질을 유지하면서 표면에만 필요로 되는 성질을 부여하는 합금 도금 방법이면 레이저에 의한 표면용융은 아주 짧은 시간동안 국부적으로 발생되어지므로 급속한 냉각과 재응고(Quenching and Tempering)가 발생되며 고 에너지 밀도에 대한 대류에 의해 크롬원소가 재빨리 균일하게 분포된다.In the case of an alloy plating method in which a high energy density laser is used to melt a metal or non-metal coating layer and a portion of a base metal located below it, the surface plating by the laser is very difficult. As it occurs locally for a short time, rapid cooling and tempering occur, and chromium is rapidly distributed uniformly by convection to high energy density.

이러한 점을 이용하여 모재의 조직에 따른 영향을 비교 설명한다.Use these points to compare the effects of the base material's organization.

모재를 SNCM9 강으로 20mm×20mm×10mm로 절단하고 표면을 평형연마하여 시편을 준비한 후 이것을 재료가공시에 발생되어진 응력 및 조직변화 등을 원상태로 하기위해 염욕로 내에서 870℃로 1시간 동안 유지후 표준화(Normalizing)하여진 SNCM9강과 표준화된 시편을 다시 염욕로내에서 840℃로 1시간 유지한 후 노에서 꺼내어 유냉시켜 마르텐사이트조직을 얻고 이중 일부를 다시 400℃로 염욕로내에서 1시간 유지한 후 수냉하여 소려된(Tempered) 마르텐사이드를 얻었다.After cutting the base material into 20mm × 20mm × 10mm with SNCM9 steel, equilibrating the surface to prepare the specimen, and maintaining it at 870 ℃ for 1 hour in the salt bath to restore the stress and structure change generated during material processing. After normalizing the normalized SNCM9 steel and the standardized specimens again in the salt bath at 840 ° C. for 1 hour, they were removed from the furnace and cooled to obtain martensite structure, and some of them were maintained at 400 ° C. for 1 hour in the salt bath. After cooling with water to obtain Tempered Martenside.

다시 모재의 표면을 연마하여 표면의 기복을 충분히 없애고 표면의 불순물을 제거키 위해 에틸알콜로 세척후 건조시켰고 약 60㎛ 두께의 테이프를 표면에 부착후 1.5mm×15mm의 크기로 테이프를 도려내고 이 부분을 다시 에칠알콜로 세척하였다.Again, the surface of the base material was polished to remove the surface relief and the surface impurities were washed with ethyl alcohol and dried. After attaching a tape with a thickness of about 60 µm to the surface, the tape was cut out to a size of 1.5 mm x 15 mm. Was washed again with ethyl alcohol.

이렇게 만들어진 모재의 표면위에 iso-propyl알콜과 합금크롬원소가 슬러리 상태로된 분말을 뿌리고 테이프두께의 동일한 두께로 맞추어 피복한 결과 피복된 분말의 두께는 60㎛이지만 분말입자 사이의 가공율 등을 감안하면 치밀한 도금층의 두께는 약 30㎛ 정도가 되며 이와 같은 방법으로 합금 재료는 준비되었고 본 발명은 여기에 레이저빔을 최대출력 1000W로 하고 접속조건을 변화시키고 빔의 주사속도는 17mm/sec로 하여 빔을 조사하고 이때 산화방지를 위하여 노즐을 통해 아르곤(Ar)가스를 불어준다.A powder of slurry of iso-propyl alcohol and alloy chromium element was sprinkled on the surface of the base material thus prepared and coated to the same thickness of the tape. The thickness of the coated powder was 60 μm, but the processing rate between the powder particles was considered. When the thickness of the dense plating layer is about 30 μm, the alloying material is prepared in the same way, and the present invention provides the laser beam with the maximum output of 1000 W, changing the connection conditions, and the beam scanning speed of 17 mm / sec. In this case, argon (Ar) gas is blown through the nozzle to prevent oxidation.

레이저빔의 조사를 받은 부분의 조직관찰을 위해 조사방향과 수직하게 절단하여 연마를 한후 니트롤산(Nitrolic acid) 3% 용액의 부식액으로 표면을 부식한 후 금속 현미경으로 용융부, 열영향부, 기지금속을 관찰하였으며, 각부에 대해 빅커스 미소경도가 하중 50g을 주어서 표면에서 깊이 방향으로 경도를 측정한 결과 레이저에 의해 영향을 받은 전체구역과 용융된 구역의 깊이를 주사속도와 깊이

Figure kpo00001
(n<1)관계가 있으며 전체 구역의 폭은 초점거리에 가까울수록 감소되어진다.In order to observe the structure of the laser beam irradiated, it is cut and polished perpendicularly to the irradiation direction, and the surface is corroded with a corrosion solution of nitrolic acid (3%) solution. The metals were observed, and the Vickers microhardness was applied to each part and the hardness was measured in the depth direction from the surface with a load of 50g. The scanning speed and depth of the total area and the molten area affected by the laser were measured.
Figure kpo00001
There is a (n <1) relationship, and the width of the whole area decreases as it approaches the focal length.

◇ 표준화를 거친 시편의 경우 1000W의 레이저 에너지를 이용하여 주사속도 17mm/sec, 접속조건 f+1로 레이저빔을 조사하였을 경우 응용부의 깊이는 약 170㎛ 정도이며, 이 이하의 구역에서는 열영향부와 기지조직이 나타난다.◇ In the case of standardized specimens, when the laser beam is irradiated at a scanning speed of 17mm / sec and connection condition f + 1 using 1000W laser energy, the depth of the application part is about 170㎛. And gangs appear.

또, 열 영향부는 오스테나이트에서 마르텐사이트로 변태한다.In addition, the heat affected zone transforms from austenite to martensite.

◇ 냉각과 시효를 거친 시편의 경우 주사속도 17mm/sec 접속조건 f=0로 하여 빔을 조사한 결과 용융부의 깊이는 320㎛ 정도되었으며, 이 이하의 구역과 열 영향부는 소리가 제거된 마르텐사이트와 기지조직이 나타난다.◇ In the case of the cooled and aged specimens, the depth of the molten part was about 320 µm when the beam was irradiated with a scanning speed of 17 mm / sec at a connection condition of f = 0. Organization appears.

합금층 형성시에 합금원소인 크롬이 기지금속내로 침투 및 분산되어지는 정도를 알아보기 위하여 EPMA(electron-probe-micero-analysis)를 사용하여 크롬에 대한 X선 mapping과 선주사농도 분석 및 50㎛간격으로 특정위치마다의 점분석을 실시하였는바 비교적 균일한 크롬원소의 분포가 나타나며 이에 대한 것을 (표 1)과 (표 2)에 제시되었다.In order to investigate the degree of penetration and dispersion of chromium, which is an alloying element, into the base metal when forming the alloy layer, X-ray mapping, line concentration analysis, and 50 μm interval analysis for chromium were performed using electron-probe-micero-analysis (EPMA). As a result of the point analysis for each specific location, the distribution of chromium element is relatively uniform.

[표 1)] 표준화 처리된 모재[Table 1]] Standardized Base Material

Figure kpo00002
Figure kpo00002

[표 2)] Q.T(Quenching and Tempering) 처리된 모재[Table 2)] Q.T (Quenching and Tempering) treated base material

Figure kpo00003
Figure kpo00003

크롬분말을 피복시킨 후의 재료 표면은 거칠어서 레이저 에너지의 흡수량이 많으므로 온도증가가 크고 용융층의 유동성이 증가되어 어느 정도의 레이저 출력만 있으며 크롬이 용융층 깊이까지 침투하게 되나 크롬의 분포가 불연속적으로 된다.The material surface after coating the chromium powder is rough and absorbs much of the laser energy. Therefore, the temperature increases and the fluidity of the molten layer is increased.Therefore, there is only a certain laser power and chromium penetrates to the depth of the molten layer. It is continuous.

이상의 모든 공정을 마친 결과는 기지의 표면에서 4%-25% 정도의 균일한 합금이 얻어진 것이다.As a result of completing all the above steps, a homogeneous alloy of about 4% to 25% is obtained on the surface of the matrix.

본 발명은 통상의 도금방법으로 얻을 수 없는 것을 레이저를 이용하여 문제시되고 있는 크롬도금층의 분리 및 기지조직 내부로의 크랙현상을 막을 수 있으며 또한 산화분위기에서 사용돼야할 재료 및 내마모를 요하는 재료에 이와 같은 표면 크롬 합금을 이용하여 상당히 개선된 재료 수명을 부여할 것이고 또한 국부적인 합금 필요시에 재료 및 에너지 절약과 전반적인 산업에 있어서 실용성이 부응될 것으로 기대된다.The present invention can prevent the separation of the chromium plating layer and the cracking of the inside of the matrix structure, which is a problem by using a laser, which is not obtained by the conventional plating method, and the material that needs to be used in the oxidizing atmosphere and the material that requires abrasion resistance. The use of such surface chromium alloys will give significantly improved material life and are expected to meet material and energy savings and practicality in the overall industry when local alloy needs are required.

Claims (1)

SNCM9 강중에서 표준화 및 급냉소려의 열처리를 행한 재료에 주사속도 17mm/sec 접속조건 f 및 f+1출력 1000W의 CO2레이저를 이용한 SNCM9 강의 표면 크롬합금.SNCM9 steel from standardized and rapid injection on the material subjected to heat treatment in a cool going speed 17mm / sec connection condition SNCM9 river surface chromium alloy using a CO 2 laser of f and f + 1 outputs 1000W.
KR1019860003209A 1986-04-25 1986-04-25 Chromium alloy surface coating of sncm9 steel for using co2 laser KR930004557B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019860003209A KR930004557B1 (en) 1986-04-25 1986-04-25 Chromium alloy surface coating of sncm9 steel for using co2 laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019860003209A KR930004557B1 (en) 1986-04-25 1986-04-25 Chromium alloy surface coating of sncm9 steel for using co2 laser

Publications (2)

Publication Number Publication Date
KR870010210A KR870010210A (en) 1987-11-30
KR930004557B1 true KR930004557B1 (en) 1993-06-01

Family

ID=19249630

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019860003209A KR930004557B1 (en) 1986-04-25 1986-04-25 Chromium alloy surface coating of sncm9 steel for using co2 laser

Country Status (1)

Country Link
KR (1) KR930004557B1 (en)

Also Published As

Publication number Publication date
KR870010210A (en) 1987-11-30

Similar Documents

Publication Publication Date Title
Chi et al. Laser surface alloying on aluminum and its alloys: A review
Majumdar et al. Effect of laser surface melting on corrosion and wear resistance of a commercial magnesium alloy
Kwok et al. Effect of processing conditions on the corrosion performance of laser surface-melted AISI 440C martensitic stainless steel
Dubourg et al. Laser cladding of MMC coatings on aluminium substrate: influence of composition and microstructure on mechanical properties
Fatoba et al. Laser Alloying of an Al-Sn Binary Alloy onto Mild Steel: In Situ Formation, Hardness and Anti-corrosion Properties.
Selvan et al. Laser alloying of aluminium with electrodeposited nickel: optimisation of plating thickness and processing parameters
KR930004557B1 (en) Chromium alloy surface coating of sncm9 steel for using co2 laser
Wang et al. Effect of rare earth elements on microstructure and wear resistance of laser remelted iron alloy coatings containing metalloids
Ion et al. Laser surface modification of a 13.5% Cr, 0.6% C steel
Chiba et al. Some corrosion characteristics of stainless surface alloys laser processed on a mild steel
Yilbas et al. Electrochemical properties of the laser nitrided surfaces of Ti–6Al–4V alloy
Boas et al. Laser-alloying of a plasma-sprayed WC/Co layer to enhance wear properties
Pelletier et al. Laser surface melting of low and medium carbon steels: influence on mechanical and electrochemical properties
Zhao et al. Effects of different scanning speeds on microstructure evolution and tribological properties of Inconel 718 alloy vacuum electron beam surface modification
RU2707776C1 (en) Method of sulphocementation of steel parts
Yilbas et al. Electrochemical response of laser surface melted inconel 617 alloy
Jonda et al. Microstructure and properties of the hot work tool steel gradient surface layer obtained using laser alloying with tungsten carbide ceramic powder
Montgomery Laser treatment of chromium plated steel
Iwaszko Microstructural aspects of laser surface treatment of commercially pure titanium
Dobrzański et al. Improvement of wear resistance of the hot work tool steel by laser surface feeding with ceramic powder
US3623919A (en) Method for treating the surface of a ferrous material
Barnikel et al. Enhancing the corrosion resistance of metals by laser processing
Van Vinha et al. Tribology in Industry
Doong et al. Effect of laser surface alloying chromium onto AISI 1018 steel on the fatigue crack growth rate
Kwok et al. Laser surface melting of martensitic stainless steel 440C for enhancing corrosion resistance

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20020530

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee