KR920007820B1 - Magnetic materials - Google Patents

Magnetic materials Download PDF

Info

Publication number
KR920007820B1
KR920007820B1 KR1019900010711A KR900010711A KR920007820B1 KR 920007820 B1 KR920007820 B1 KR 920007820B1 KR 1019900010711 A KR1019900010711 A KR 1019900010711A KR 900010711 A KR900010711 A KR 900010711A KR 920007820 B1 KR920007820 B1 KR 920007820B1
Authority
KR
South Korea
Prior art keywords
iron
magnetic material
compound
high frequency
inorganic material
Prior art date
Application number
KR1019900010711A
Other languages
Korean (ko)
Other versions
KR920003340A (en
Inventor
박영우
최재철
Original Assignee
최재철
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 최재철 filed Critical 최재철
Priority to KR1019900010711A priority Critical patent/KR920007820B1/en
Publication of KR920003340A publication Critical patent/KR920003340A/en
Application granted granted Critical
Publication of KR920007820B1 publication Critical patent/KR920007820B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Theis magnetic material is formed by sintering a mixture of iron compound, bivalent metallic compound and 1-90 wt.% inorganic material containing silicate. The inorganic material containing silicate is obtained from crushed industrial waste and at least more than one iron compound is selected from iron oxide, ionic magnetite, mill-scale or iron hydroxide, which is obtained by acid cleaning waste water. And a mixture of electric furnace dust, bivalent metallic compound and inorganic material containing silicate are sintered to produce the magnetic material for high frequency and high magnetic loss.

Description

고주파 고손실성 자성재료High Frequency High Loss Magnetic Materials

본 발명은 전자파흡수체, 발열체 및 축열체등에 사용되는 고주파 고손실성 자성재료에 관한 것이며 특히 철화합물과 2가금속 화합물 및 규산질 함유무기재료를 혼합한 자성재료에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to high frequency high loss magnetic materials used for electromagnetic wave absorbers, heating elements and heat storage elements, and more particularly to magnetic materials in which iron compounds, divalent metal compounds, and siliceous-containing inorganic materials are mixed.

자성재인 페라이트는 일반적으로 마이크로파 주파수대사에서 자성손실이 증가하고 전자파에너지를 열에너지로 변환하여 전기적인 에너지손실을 이르키므로서 이의 성질을 이용하여 상기 자성재에 결합재를 혼합하여 전자파 흡수체로 사용하고 있으나 전자파흡수 성능면에서 개선의 여지가 많으며 한편 세계적으로 널리 보급되고 있는 전자레인지는 각종 음식물을 신속히 조리할 수는 있으나, 생선 또는 육류등과 같은 음식물의 표층을 황갈색화(그으름) 하지는 못하므로 맞갈스러움을 잃게하는 결점이 있었다.Ferrite, which is a magnetic material, generally increases its magnetic loss in microwave frequency metabolism and converts electromagnetic energy into thermal energy, leading to electrical energy loss. There is much room for improvement in electromagnetic wave absorption performance, and microwaves, which are widely used around the world, can cook various foods quickly, but they do not tan the surface of foods such as fish or meat. There was a flaw that led to the loss of feeling.

따라서 위의 결점을 개선하기 위하여 전자레인지 내부에 전열선을 추가로 내장한 것이 있으나 별도의 에너지를 필요로하므로 경제적이지 못하였다.Therefore, in order to improve the above drawbacks, there was an additional heating wire inside the microwave oven, but it was not economical because it requires extra energy.

또한 최근에는 고주파 손실 특성을 가진 자성재인 페라이트를 주성분으로하여 만든 발열체를 특수형상의 용기로 만들어 음식물의 표층을 황갈색화하거나 축열체를 개발하려는 시도가 있었다.In recent years, there has been an attempt to yellow the surface layer of food or to develop a heat storage body by making a heating element made mainly of ferrite, a magnetic material having high frequency loss characteristics, into a special shape container.

즉 일본국 특허출원공고 소55-20614에서는 Li2O(1-y)Al2O3yFe2O3ㆍXSiO2로 표시되는 세라믹재료에 의하여 전자파 에너지를 흡수하는 발열체를 제안하고 있으나 이 발열체도 내열충격성은 우수하나 전자레인지 내부에 넣어 사용하는 경우에 4분간에 도말한 온도는 섭씨 250도에 불과하였다.That is, Japanese Patent Application Publication No. 55-20614 proposes a heating element that absorbs electromagnetic wave energy by ceramic material represented by Li 2 O (1-y) Al 2 O 3 yFe 2 O 3 ㆍ XSiO 2 . The thermal shock resistance was excellent, but when used inside the microwave oven, the temperature spread in 4 minutes was only 250 degrees Celsius.

그리고 일본국 특허출원 공개소55-137183에서는 고주파 손실성을 가진 자성재로서 자기(磁器)반도체를 만들어 고주파를 조사(照射)하여 발열하는 것을 개시하고 있으나 자기반도체의 표면온도는 1분간 전자파를 조사한 결과 섭씨 220도에 불과하여 상기한 것들은 전자레인지의 특징인 음식물의 신속조리는 가능하지만 음식물의 표층을 황갈색화기에 충분한 발열온도까지 도달하하지 못하는 실정이다.In addition, Japanese Patent Application Publication No. 55-137183 discloses that a magnetic material having a high frequency loss property generates a magnetic semiconductor and emits heat by irradiating high frequency, but the surface temperature of the magnetic semiconductor is irradiated with electromagnetic waves for 1 minute. As a result, only 220 degrees Celsius, the above-mentioned things can be quickly cooked the food of the microwave oven, but the surface layer of the food does not reach the heating temperature sufficient for tanning.

본 발명자는 현재의 전자파흡수체, 발열체, 축열체등에 대하여 예의 검토한바 여기에 사용되는 고주파 손실성 자성재는 이를 제조할때 주성분화합물들의 순도를 최대한 높은 것을 선택사용하여 초투자율을 높이고 자성손실을 최소화한 것이므로 그 자성체를 예를들어 코어용등으로 사용하면 (코어는 자성손실이 적을수록 그 성능이 양호하기 때문임) 좋으나 상기한 자성손실이 적은 자성재를 자성손실이 클수록 성능이 좋은 전자파흡수체, 발열체, 축열체등에 사용하기 때문인 것으로 판명되었다.The present inventors have diligently studied the current electromagnetic wave absorber, heating element, heat storage element, etc. The high-frequency lossless magnetic material used here is selected by using the highest purity of the main component compounds as high as possible to increase the super-permeability and minimize the magnetic loss. If the magnetic material is used for a core, for example (the core has a lower magnetic loss, the performance is better), but the magnetic material having the lower magnetic loss has better performance. It is proved to be because it is used for heat storage bodies.

또한 현재까지 알려진 고주파 손실성 자성재는 그 자성손실이 일반적인 절연성 물질에 비하여는 그 손실이 크므로 고주파 고손실재라고도 불리우고 있지만 자성손실이 크면 클수록 전자파흡수능이 양호한 전자파 흡수체, 발열체등에 사용하기에는 그 자성손실이 적기 때문에 적합하지 못한점도 판명되었다.In addition, the high frequency loss magnetic material known to date is called the high frequency high loss material because its magnetic loss is larger than that of a general insulating material. However, the higher the magnetic loss, the higher the magnetic loss is. This smallness also proved inadequate.

본 발명에서는 위와 같은 사실과 자성재에 규사를 혼합하면 손실이 증대되는 점을 감안하여 전자파흡수능이 양호하며 짧은시간에 높은발열온도를 가지는 고주파 고손실성 자성재료를 제공하는 것을 목적으로 한다.The present invention is to provide a high frequency high loss magnetic material having good electromagnetic wave absorption capacity and high heat generation temperature in a short time in view of the fact that the loss is increased when the silica and the magnetic material is mixed with the above facts.

본 발명의 다른 목적은 내열충격 강도가 크고 축열성능이 양호한 자성재료를 제공하는 것이다.Another object of the present invention is to provide a magnetic material having high thermal shock strength and good heat storage performance.

본 발명은 위의 목적을 달성하기 위하여 철화합물과 2가금속화합물 및 규산질 함유 무기재료를 혼합소성함을 특징으로 한다.The present invention is characterized by mixing and firing an iron compound, a divalent metal compound and a siliceous-containing inorganic material in order to achieve the above object.

본 발명은 자성재료가 가지고 있는 전자파흡수능과 다중복사에 의한 전자파흡수능 향상원리를 고려하고, 전자파투과성인 규산질 함유무기재료에 의하여 다중복사 구조를 형성함과 동시에 강도를 보강하므로서 전자파 흡수능을 크게 증가시킬 뿐아니라 전자파흡수능의 향상에 의하여 발열온도가 획기적으로 상승되며 발열 시간이 짧고 내열성 내충격강도가 큰 고주파 고손실성 자성재료를 얻을 수 있다.The present invention considers the principle of improving the electromagnetic wave absorbing ability of the magnetic material and the electromagnetic radiation absorbing ability by multiple radiation, and increases the electromagnetic wave absorbing capacity by forming a multi-radiation structure by the silicic acid-containing inorganic material which is electromagnetic wave permeability and at the same time strengthening the strength. In addition, it is possible to obtain a high frequency high loss magnetic material having a short heat generation time and a high heat resistance and impact strength, due to the improvement of the electromagnetic wave absorption ability.

본 발명에서 사용되는 철화합물에는 산화철, 철분, 마그네타이트, 밀스케일, 산세정폐액(수산화철), 전기로의 분진등을 들 수 있으며, 2가 금속으로서는 망간, 니켈, 구리, 아연, 마그네슘, 코발트 바륨, 스트론튬 등의 화합물 또는 그 산화물 혼합물등을 들 수 있으며, 규산질함유 무기재료로서는 모래, 규사, 고령토, 점토, 벤토나이트, 샤모트, 지르콘, 유크립타이트, 코디에라이트, 스테아타이트, 뮤라이트 및 폐도기 등 산업폐기물 분쇄물등이 사용된다. 또한 본 발명에서 사용되는 철화합물, 2가금속, 규산질함유 무기재료는 각각 단독으로 사용할 수도 있고 2종이상을 혼합 사용할 수도 있다. 또한 본 발명의 자성재료에 무기질 또는 유기질 결합재를 혼합하여 임의의 형상예를 들면 판상체, 봉상체, 구상체등으로 성형할 수 있으며, 카본과 같은 도전손실재를 부가할 수도 있다.Examples of the iron compound used in the present invention include iron oxide, iron powder, magnetite, mill scale, pickling waste liquid (iron hydroxide), dust in an electric furnace, and the like. As the divalent metal, manganese, nickel, copper, zinc, magnesium, cobalt barium, Compounds such as strontium or oxide mixtures thereof may be used. Examples of the siliceous-containing inorganic materials include sand, silica sand, kaolin, clay, bentonite, chamotte, zircon, eu cryptite, cordierite, steatite, murite and waste pottery. Industrial waste grinding is used. In addition, the iron compounds, divalent metals, and siliceous-containing inorganic materials used in the present invention may be used alone or in combination of two or more thereof. In addition, the inorganic material of the present invention may be mixed with an inorganic or organic binder to form an arbitrary shape such as a plate, rod, spherical body, or the like, and a conductive loss material such as carbon may be added.

이하 본 발명을 실시예에 의거 설명한다.Hereinafter, the present invention will be described based on Examples.

[실시예 1]Example 1

제철소 또는 도금공장등에서 발생하는 산세정폐수를 임의의 방법으로 처리하여 얻어지는 각종 형태의 산화철 또는 수산화철 분말 60g에 시판의 공업용 산화이연분말 20g, 천연이산화망간 20g과 시판(유동기업(주)제품)되는 코디에라이트 분말 80g을 균일하게 혼합하여 섭씨 1300도 전후에서 4시간 소성분쇄하여 그 분말 50g에 염소화폴리에틸렌 10g을 가하고 가열혼련하여 두께 3㎜의 판상으로 만든 것을 동축관 법으로 2.45㎓에서 전파흡수능을 측정한 결과 최대 -25㏈의 반사감쇄특성을 나타냈다.60 g of commercially available deferred oxide powder, 20 g of natural manganese dioxide, and commercially available from Dairy Industry Co., Ltd. in 60 g of various types of iron oxide or iron hydroxide powders obtained by treating pickling wastewater generated in steel mills or plating plants by arbitrary methods. 80 g of the elite powder was uniformly mixed and small-component chains were circulated for 4 hours at around 1300 degrees Celsius. 10 g of chlorinated polyethylene was added to 50 g of the powder, and the mixture was heated and kneaded to form a plate having a thickness of 3 mm. As a result, the maximum reflection attenuation characteristic was -25㏈.

[실시예 2]Example 2

실시예 1에서의 판두께를 2.3㎜로 만들고 9.4-㎓에서 정재파 측정법으로 전파흡수능을 측정한 결과 최대 -30㏈의 반사감쇄 특성을 나타냈다.In Example 1, the plate thickness was 2.3 mm, and the radio wave absorption ability was measured by standing wave measurement at 9.4-㎓.

[실시예 3]Example 3

실시예 1에서 얻은 분말 50g에 점토 25g을 첨가하고 물로 반죽하여 두께 5㎜, 직경 50㎜로 성형하여 섭씨 1300도에서 3시간 소결시켜 얻은 원판형 시험편은 두께 4.7㎜, 직경 47㎜였다. 시험편을 시판의 600watt 전자레인지에 넣고 동작시킨바 100초후에 시편은 적열되어 섭씨 980도에 달했으며, 절연 손상이 없는 우수한 전자파발열체가 되었다.25 g of clay was added to 50 g of the powder obtained in Example 1, kneaded with water, molded into a thickness of 5 mm and a diameter of 50 mm, and sintered at 1300 degrees C for 3 hours to obtain a disk-shaped test piece having a thickness of 4.7 mm and a diameter of 47 mm. The specimens were operated in a commercial 600-watt microwave oven and after 100 seconds the specimens were red and reached 980 degrees Celsius and became an excellent electromagnetic heating element without insulation damage.

[실시에 4][Example 4]

제강공장의 전기로 분진(원자흡광법 및 습식법에 의해 분석한 화학성분은 아래에 표기한 제1표와 같다) 50g에 MgO 10g과 정밀 주조공정에서 폐기되는 주형(주로 지르콘모래와 샤모트로 구성됨)을 분쇄한 분말 40g을 가하여 균질하게 혼합하고 직경 50㎜, 두께 5㎜로 성형한 후 섭씨 1350도에서 4시간 소성 및 소결하여, 두께 4.2㎜, 직경 48㎜의 원판형 시험편을 얻고 실시예 3에서와 같이 시험한 결과 110초 후에 섭씨 970도에 달하였으며 균열등의 손상이 전연 없었다.50 g of electric furnace dust (atomic absorption method and wet method, chemical composition analyzed in the steelmaking plant is shown below), 10 g of MgO and mold discarded in the precision casting process (mainly composed of zircon sand and chamotte) 40 g of the pulverized powder was added, mixed homogeneously, molded into a diameter of 50 mm and a thickness of 5 mm, and then calcined and sintered at 1350 degrees for 4 hours to obtain a disk-shaped test piece having a thickness of 4.2 mm and a diameter of 48 mm. As a result of the test, it reached 970 degrees Celsius after 110 seconds and there was no damage such as cracks.

[표 1]TABLE 1

Figure kpo00001
Figure kpo00001

[실시예 5]Example 5

Mn-Zn계 페라이트 분말 50g에 실시예 1과 같은 코디에라이트 분말 40g을 균질하게 혼합한 것을 직경 50㎜, 깊이 5㎜의 홈을 갖는 내화벽돌의 홈에 넣어 균질하게 압축하여 다겨진 상태로 실시예 3 또는 4에서와 같은 시험을 한 결과 3분후에 섭씨 95도에 달하고 더 이상 승온되지 않았다.A homogeneous mixture of 40 g of cordierite powder as in Example 1 was uniformly mixed with 50 g of Mn-Zn ferrite powder into a groove of a refractory brick having a groove having a diameter of 50 mm and a depth of 5 mm, homogeneously compressed and compacted. The same test as in Example 3 or 4 resulted in 95 degrees Celsius after 3 minutes and no longer elevated.

이상의 실시예들로부터 알 수 있는 바와 같이 페라이트의 제조에 통상적으로 사용되는 철화합물과 2가금속에 규산질함유 무기재료를 적당량 혼합하여 고온반응시킨 본 발명의 자성재료는 기존의 페라이트보다 전자파 흡수능이 월등히 향상되었다. 이와 같은 결과에 대한 이론적인 설명은 아직 확실하게 규명되지는 않았으나 실시예 5의 결과를 고려한다면 공명현상에 의한 약간의 전자파흡수능은 이미 알려진 바와 같으나 본 발명의 자성재료는 소성 또는 소결공정에 있어서 규산질함유 무기재료와 각종 금속화합물 사이에 반응이 일어나 일부는 페라이트를 형성하고 또 일부는 새로운 화합물층이 생성되어 이 화합물층이 다중 복사현상을 이르켜 자성손실을 증대시키므로서 전자파 흡수능이 매우 높은 고주파 고손실성 자성재료가 되는 것이라고 판단된다. 또한 규산질함유 무기재료중 큰 입자는 소결체내에서 약간의 기공과 함께 열팽창과 수축에 있어서 완충작용을 하여 내열충격특성을 향상하는 것으로 생각된다.As can be seen from the above examples, the magnetic material of the present invention, in which an appropriate amount of a silicic acid-containing inorganic material is mixed with an iron compound and a divalent metal, which are commonly used in the production of ferrite, is reacted at a high temperature, and thus the electromagnetic wave absorbing ability is significantly improved. It became. Although the theoretical explanation for such a result has not been clarified yet, considering the results of Example 5, the slight absorption of electromagnetic waves due to resonance is already known, but the magnetic material of the present invention is siliceous in the firing or sintering process. Reaction occurs between the containing inorganic material and various metal compounds, partly to form ferrite, and partly to form a new compound layer, which causes multiple radiation phenomenon to increase magnetic loss, and high electromagnetic wave absorption ability with high electromagnetic wave absorption ability It is considered to be a magnetic material. In addition, the larger particles in the siliceous-containing inorganic material are thought to improve the thermal shock resistance by buffering the thermal expansion and contraction with some pores in the sintered body.

본 발명에 있어서 전자파흡수능 및 발열온도등의 조정은 철화합물 2가금속화합물, 규산질함유 무기재료의 양등의 증감에 의하여 설계적으로 변경실시된다.In the present invention, the adjustment of the electromagnetic wave absorption capacity, the exothermic temperature, etc. is changed by design by increasing or decreasing the amount of the ferrous compound divalent metal compound and the siliceous-containing inorganic material.

이상과 같은 본 발명은 철화합물과 2가금속화합물에 규산질함유무기재료를 혼합소성하므로서 전자파 흡수능이 매우 높은 고주파 고손실성 자성재료를 얻을 수 있으므로 전자파흡수체는 물론 짧은 시간에 높은 발열 온도를 가지는 발열체 및 축열체도 손쉽게 생산할 수 있으며 내열충격 강도가 높은 재료를 얻을 수 있는 등의 효과가 있다.As described above, the present invention can obtain a high frequency high loss magnetic material having a very high electromagnetic wave absorbing capacity by mixing and firing an iron compound and a divalent metal compound with a siliceous-containing inorganic material. And the heat storage body can also be easily produced and has the effect of obtaining a material having high heat shock strength.

Claims (7)

철화합물과 2가금속화합물 및 규산질함유 무기재료를 혼합 소성하여서 된 고주파 고손실성 자성재료.High frequency, high loss magnetic material made by mixing and firing iron compound, divalent metal compound and siliceous inorganic material. 제1항에 있어서 철화합물과 2가금속화합물은 금속수산화물인 고주파 고손실성 자성재료.The high frequency high loss magnetic material of claim 1, wherein the iron compound and the divalent metal compound are metal hydroxides. 제1항 또는 제2항에 있어서, 규산질함유 무기재료는 산업폐기물 분쇄물인 고주파 고손실성 자성재료.The high frequency high loss magnetic material according to claim 1 or 2, wherein the siliceous-containing inorganic material is an industrial waste pulverized product. 제1항에 있어서 규산질함유 무기재료는 1 내지 90중량%인 고주파 고손실성 자성재료.The high frequency high loss magnetic material according to claim 1, wherein the siliceous-containing inorganic material is 1 to 90% by weight. 제1항 또는 제2항에 있어서 철화합물은 산세정폐수에 의하여 얻은 산화철 또는 수산화철인 고주파 고손실성 자성재료.The high frequency high loss magnetic material according to claim 1 or 2, wherein the iron compound is iron oxide or iron hydroxide obtained by pickling wastewater. 제1항에 있어서 철화합물은 산화철, 철분 마그네타이트, 밀스케일, 수산화철 중에서 선택된 1조 이상인 고주파 고손실성 자성재료.The high frequency high loss magnetic material of claim 1, wherein the iron compound is at least one trillion selected from iron oxide, iron magnetite, mill scale, and iron hydroxide. 전기로 분진과 2감금속화합물 및 규산질함유 무기재료를 혼합소성하여서 된 고주파 고손실성 자성재료.High-frequency, high-loss magnetic material made by mixing and firing electric dust, divalent metal compound and siliceous inorganic material.
KR1019900010711A 1990-07-14 1990-07-14 Magnetic materials KR920007820B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019900010711A KR920007820B1 (en) 1990-07-14 1990-07-14 Magnetic materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019900010711A KR920007820B1 (en) 1990-07-14 1990-07-14 Magnetic materials

Publications (2)

Publication Number Publication Date
KR920003340A KR920003340A (en) 1992-02-29
KR920007820B1 true KR920007820B1 (en) 1992-09-17

Family

ID=19301274

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019900010711A KR920007820B1 (en) 1990-07-14 1990-07-14 Magnetic materials

Country Status (1)

Country Link
KR (1) KR920007820B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020046374A (en) * 2000-12-13 2002-06-21 김동일 High performance magnetic material by adding nc to ferrite

Also Published As

Publication number Publication date
KR920003340A (en) 1992-02-29

Similar Documents

Publication Publication Date Title
Peelamedu et al. Ultralow dielectric constant nickel–zinc ferrites using microwave sintering
Abbas et al. X-ray diffraction study of the cation distribution in the Mn-Zn-ferrites
US3773669A (en) Vessel for use in heating food in a microwave oven
US2575099A (en) Magnetic compositions
JP2010006617A (en) MgCu-BASED FERRITE POWDER FOR MICROWAVE ABSORPTION HEATING ELEMENT
US6440323B1 (en) Mn-Zn ferrite and production process thereof
KR102000446B1 (en) Cement composition capable of shielding electro magnetic interference, cement mortar and cement concrete using the compositioon
US20130040082A1 (en) Compounds and compositions for susceptor materials
KR920007820B1 (en) Magnetic materials
JP4512919B2 (en) Electromagnetic wave absorbing material for high frequency band using iron oxide containing waste
JP5017438B2 (en) Cooking device for electromagnetic wave absorption heating element and microwave oven
JP5468825B2 (en) Cooking device for electromagnetic wave absorption heating element and microwave oven
KR930009893B1 (en) Process for the production ceramic
KR950000696B1 (en) Ceramic materials
JP5546671B2 (en) Cooking device for electromagnetic wave absorption heating element and microwave oven
KR960007374B1 (en) Ceramic composition
Mathur et al. Processing of high density manganese zinc nanoferrites by co-precipitation method
JP6088417B2 (en) Li-based ferrite for microwave-absorbing heating element and method for producing the same, Li-based ferrite powder for microwave-absorbing heating element, Li-based ferrite sintered body for microwave-absorbing heating element, and microwave-absorbing heating element
KR920007541B1 (en) Ceramic heating device
KR830002534Y1 (en) Cooking container
JP7140346B2 (en) Coal ash volume reduction method
US2714580A (en) Magnetic materials and methods of making the same
JP4036267B2 (en) Method for manufacturing electromagnetic wave absorbing heating element
JPH0633190B2 (en) Porous microwave resistor and method for manufacturing the same
Sirugudu et al. Effect on the grain size of single-mode microwave sintered NiCuZn ferrite and zinc titanate dielectric resonator ceramics

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19961101

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee