KR920004987B1 - Sensing error compensating method for inverter - Google Patents

Sensing error compensating method for inverter Download PDF

Info

Publication number
KR920004987B1
KR920004987B1 KR1019890015396A KR890015396A KR920004987B1 KR 920004987 B1 KR920004987 B1 KR 920004987B1 KR 1019890015396 A KR1019890015396 A KR 1019890015396A KR 890015396 A KR890015396 A KR 890015396A KR 920004987 B1 KR920004987 B1 KR 920004987B1
Authority
KR
South Korea
Prior art keywords
current
induction motor
inverter
offset
transistors
Prior art date
Application number
KR1019890015396A
Other languages
Korean (ko)
Other versions
KR910008929A (en
Inventor
강준구
권봉현
설승기
Original Assignee
금성계전 주식회사
백중영
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금성계전 주식회사, 백중영 filed Critical 금성계전 주식회사
Priority to KR1019890015396A priority Critical patent/KR920004987B1/en
Publication of KR910008929A publication Critical patent/KR910008929A/en
Application granted granted Critical
Publication of KR920004987B1 publication Critical patent/KR920004987B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/505Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/515Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/525Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with automatic control of output waveform or frequency
    • H02M7/527Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with automatic control of output waveform or frequency by pulse width modulation
    • H02M7/529Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with automatic control of output waveform or frequency by pulse width modulation using digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

Transistors (Q2)(Q3)(Q5) are driven to supply a DC power to an induction motor (2), and to measure the detected power values repeatedly. Then the values are saved, and an average DC offset is computed out to remove an excessive state. Then a positive power is supplied to the induction motor (2) for a certain period of time to calculate a current addition value, and then, a negative power is supplied to the induction motor (2) for a certain period of time to calculate a current addition value. This process is repeated to obtain an error compensating factor. Then the DC offset values and the error compensating values are utilized to compensate the current errors.

Description

인버터의 센서오차 자동 보정방법Automatic correction of sensor error of inverter

제 1 도는 본 발명의 인버터의 구성도.1 is a block diagram of an inverter of the present invention.

제 2a, b 도는 본 발명 인버터에 있어서, 직류전압 및 전류센서의 오차 종류에 대한 예시도.2a, b is an illustration of the error type of the DC voltage and the current sensor in the inverter of the present invention.

제 3 도는 본 발명 전류센서의 측정오차 테스트에 대한 등가회로도.3 is an equivalent circuit diagram of the measurement error test of the current sensor of the present invention.

제 4a, b 도는 본 발명 인버터의 전류 오프셋 측정과정에 대한 예시도.Figure 4a, b is an illustration of the current offset measurement process of the inverter of the present invention.

제 5 도는 본 발명 인버터에 있어서, 잔류의 크기오차보상 및 오차의 저장에 대한 신호흐름도.5 is a signal flow diagram for storing magnitude error compensation and residual of residual in the inverter of the present invention.

제 6 도는 본 발명 인버터에 있어서, 전류오차보상의 적용 흐름도에 대한 신호흐름도.6 is a signal flow diagram of an application flowchart of current error compensation in an inverter of the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 전류전원 2 : 유동전동기1: current power source 2: floating motor

3, 4 : 전류센서 5 : A/D변환기3, 4 current sensor 5 A / D converter

6 : 마이크로프로세서 7-9 : 게이트제어부6: microprocessor 7-9: gate controller

Q1-Q2: 트랜지스터Q 1 -Q 2 : transistor

본 발명은 인버터의 측정오차 자동 보정에 관한 것으로, 특히 마이크로프로세서를 통해 센서에 의한 오차를 측정하여 인버터에 보정 적용되도록 한 센서오차 자동 보정방법에 관한 것이다.The present invention relates to the automatic correction of the measurement error of the inverter, and more particularly to a method for automatically correcting the sensor error to be applied to the inverter by measuring the error by the sensor through a microprocessor.

일반적으로 인버터는 전류 및 전압센서와 같은 인버터의 내부센서들로 전류 및 전압의 측정시 어느정도의 오차를 포함하고 있게되므로 인력과 시간이 많이 소요될 뿐아니라 오차 보정의 정밀도에도 의문이 제기되는 문제점이 있었다.In general, the inverter is internal sensors of the inverter, such as current and voltage sensors, because it includes a certain error when measuring the current and voltage, it takes a lot of manpower and time, and also has a problem that the accuracy of the error correction is questioned. .

본 발명의 목적은 상기와 같은 종래의 문제점을 해결하기 위해서 마이크로프로세서를 이용하여 인버터의 센서에 한 오차를 자동으로 보상하도록 한 인버터의 센서오차 자동 보정방법을 제공함에 있다.An object of the present invention to provide a method for automatically correcting the sensor error of the inverter to automatically compensate for the error of the sensor of the inverter using a microprocessor to solve the conventional problems as described above.

상기와 같은 목적을 수행하기 위한 본 발명은 인버터를 통해 유도전동기에 일정횟수 만큼 직류전원을 공급하여 과도상태를 제거하고, 다시 직류전원을 공급하여 전류 오프셋(offset)보상을 통해 일정횟수만큼 전류 평균절대값을 가산하고, 상기 전류 평균절대값을 통해 보상계수를 계산하여 저장하고, 상기 보상계수에 의해 인버터를 제어하는 것을 특징으로 하는 것으로, 이를 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다.The present invention for performing the above object is to supply the DC power to the induction motor through the inverter a certain number of times to remove the transient state, and to supply the DC power again to average the current by a certain number of times through current offset compensation The absolute value is added, the compensation coefficient is calculated and stored based on the absolute value of the current average, and the inverter is controlled by the compensation coefficient. This will be described in detail with reference to the accompanying drawings.

제 1 도는 본 발명 인버터의 구성도로서 이에 도시한 바와 같이, 직류전원(1)을 공급받아 파워용트랜지스터(Q1-Q6)를 통해 교류전압을 발생하여 유도전동기((2)에 인가하며, 전류센서(3), (4)를 통해 상기 유도전동기(2)의 입력전류를 검출하고, 그 전류센서(3), (4)에서 검출된 입력전류를 A/D변환기(5)를 통해 디지탈 신호로 변환하여 마이크로프로세서(6)에 전송하고, 그 마이크로프로세서(6)에서 게이트 제어부(7-9)를 통해 상기 트랜지스터 (Q1-Q6)를 제어하게 구성한다.1 is a configuration diagram of the inverter of the present invention, as shown therein, is supplied with a DC power supply (1) to generate an AC voltage through the power transistor (Q 1 -Q 6 ) to apply to the induction motor (2) The input current of the induction motor 2 is detected through the current sensors 3 and 4, and the input current detected by the current sensors 3 and 4 is transferred through the A / D converter 5. The digital signal is converted into a digital signal and transmitted to the microprocessor 6, and the microprocessor 6 is configured to control the transistors Q 1 -Q 6 through the gate control unit 7-9.

제 2a, b 도는 본 발명 인버터에 있어서, 직류(DC)전압 및 직류센서의 오차 종류에 대한 예시도로서 이에 도시한 바와 같다. (a)는 직류 오프셋의 오차, (b)는 전류 크기의 오차를 나타낸다.2A and 2B are exemplary diagrams illustrating types of errors of a direct current (DC) voltage and a direct current sensor in the inverter of the present invention. (a) shows the error of the DC offset, and (b) shows the error of the current magnitude.

제 3 도는 본 발명 전류센서의 측정오차 테스트에 대한 등가회로도이고, 제 4a, b 도는 본 발명 인버터의 전류 오프샛 측정과정에 대한 예시도이다.3 is an equivalent circuit diagram of the measurement error test of the current sensor of the present invention, Figure 4a, b is an illustration of the current offset measurement process of the inverter of the present invention.

이와 같이 구성된 본 발명은 제 1 도에 도시한 바와 같이, 직류전원(1)이 공급되면, 그 직류전원(1)이 트랜지스터(Q1-Q6)를 통해 교류전원으로 변환되어 유도진동기(2)를 구동시키게 되며, 이때 전류센서(3), (4)에서 유도전동기(2)의 입력전류가 검출된 후 A/D변환기(5)에서 디지탈 신호로 변환되어 마이크로프로세서(6)에 인가된다.As shown in FIG. 1, when the direct current power source 1 is supplied, the direct current power source 1 is converted into an alternating current power source through the transistors Q 1 -Q 6 , and thus, the induction vibrator 2 shown in FIG. At this time, the input current of the induction motor 2 is detected by the current sensors 3 and 4, and then converted into a digital signal by the A / D converter 5 and applied to the microprocessor 6. .

이와 같이하여, 마이크로프로세서(6)로부터 게이트제어부(7-9)를 통해 트랜지스터(Q1-Q6)의 구동을 제어하게 된다.In this way, the driving of the transistors Q 1 -Q 6 is controlled from the microprocessor 6 through the gate control unit 7-9.

여기서 인버터의 전류센서(3), (4)들이 가질 수 있는 측정오차는 제 2a, b 도에 도시한 바와 같이 된다. 즉, 제 2a 도는 직류 오프셋 오차를 설명하고, 제 2b 도는 전류크기 오차를 나타낸것으로, 제 2a 도에서 실선①)과 같이 유도전동기(2)에 정현파의 전류가 흘러도 전류센서(3), (4)에서 측정한 측정전류는 실선(②)과 같이 되어지고, 결과적으로 실제전류는 평균값을 "0"으로 유지하나 측정전류의 평균값은 "0"을 유지하지 못하게 되어 직류 오프셋 오차를 가지게 된다.Here, the measurement errors that the current sensors 3 and 4 of the inverter may have are as shown in FIGS. 2A and 2B. That is, Fig. 2a illustrates the DC offset error, and Fig. 2b shows the current magnitude error. The current sensor 3, 4 even though the sinusoidal current flows in the induction motor 2 as shown in the solid line ① in Fig. 2a. The measured current measured at) becomes like a solid line (②), and as a result, the actual current maintains the average value as "0", but the average value of the measured current does not maintain "0", resulting in a DC offset error.

또한, 제 2b 도는 전류센서(3), (4)들이 직류 오프셋 오차를 제거하여도 전류센서(3)와 직류센서(4)사이에서 크기 오차를 가질 수 있는 상황을 보인 것으로, 실선(③)은 유동전동기(2)에 흐르는 실제전류를 전류센서(3)로 측정한 경우를 보인 것이고, 실선(④)은 그 실제전류를 전류센서(4)로 측정한 경우를 보인것이며, 이는 곧 전류센서(3), (4)의 크기 오차가 없는 경우 절대값의 평균값은 서로 동일하여야 하나, 크기 오차가 있는 경우 서로다른 절대값의 평균값을 작게됨을 의미한다.In addition, FIG. 2B illustrates a situation in which the current sensors 3 and 4 may have a magnitude error between the current sensor 3 and the DC sensor 4 even when the DC offset error is removed. Shows the case where the actual current flowing through the flow motor 2 is measured by the current sensor 3, and the solid line ④ shows the case where the actual current is measured by the current sensor 4, which is the current sensor. If there is no size error in (3) and (4), the mean value of the absolute values should be the same, but if there is a size error, it means that the mean value of the different absolute values is reduced.

먼저, 직류 오프셋 오차를 보상하는 방법에 대해 설명한다.First, a method of compensating for the DC offset error will be described.

우선, 트랜지스터(Q2, Q6)를 온시키면, 제 3 도에서 전류가 화살표 (①)방향으로 흐르면서 증가하고, 제 4a 도에 도시한 바와 같이 시간(Ton)동안 트랜지스터 (Q2, Q6)를 온시킨 후 오프시킨 상태에서 트랜지스터(Q3, Q5)를 온시키면 전압(EAB)이 음의 전압(-EAB)으로 되어 화살표(①)와 반대방향으로 흐르려고 한다.First, when the transistors Q 2 and Q 6 are turned on, an electric current flows in the direction of the arrow ① in FIG. 3 and increases, and as shown in FIG. 4A, the transistors Q 2 and Q 6 for a time Ton. When the transistors Q 3 and Q 5 are turned on in the off state, the voltage EAB becomes a negative voltage (−EAB) and tries to flow in the opposite direction to the arrow (①).

이후, 트랜지스터(Q3, Q5)를 시간(Ton)동안만 온시킨 후 다시 트랜지스터(Q2, Q6)를 온시키며, 이의 동작을 여러주기에 걸쳐 수행한다.Thereafter, the transistors Q 3 and Q 5 are turned on only for a time Ton, and the transistors Q 2 and Q 6 are turned on again, and the operation thereof is performed over several cycles.

이와 같이하여 전류센서(3), (4)에서는 유도전동기(2)를 통해 흐르는 전류가 검출된 후 A/D변환기(5)에서 디지탈 신호로 변환되어 마이크로프로세서(6)에 저장되며, 이에 따라 그 마이크로프로세서(6)에서는 그 저장된 A/D 변환기(5)의 출력신호를 읽어 입력전류의 검출값(iA), (iB)을 측정하게 된다.In this way, in the current sensors 3 and 4, the current flowing through the induction motor 2 is detected and then converted into a digital signal by the A / D converter 5 and stored in the microprocessor 6, accordingly. The microprocessor 6 reads the output signal of the stored A / D converter 5 and measures the detected values iA and iB of the input current.

한편, 측정의 정밀도를 높이기 위하여 상기 전류검출값(iA, iB)을 20회 이상 반복저장한 후 전류의 평균 직류 오프셋(iAoff, iBoff)을 구하면 하기의 식(1), (2)와 같이 된다.On the other hand, in order to increase the accuracy of the measurement, the current detection values iA and iB are repeatedly stored at least 20 times, and then the average direct current offsets iAoff and iBoff are obtained as shown in Equations (1) and (2) below. .

Figure kpo00001
Figure kpo00001

이와 같은 방법으로 전류의 직류 오프셋을 구하게 된다.In this way, the DC offset of the current is obtained.

따라서, 본 발명은 제 3 도에 도시한 바와 같이, 전류센서(3), (4)가 달려있는 2상만을 이용하여 오차시험을 수행하는 것으로, 이하 전류의 크기 오차 보상과 오차의 저장에 대한 신호흐름도인 제 5 도에 의해 전류의 크기 오차를 보상하는 방법에 대하여 설명한다.Therefore, as shown in FIG. 3, the present invention performs an error test using only two phases in which the current sensors 3 and 4 are attached. A method of compensating the magnitude error of the current will be described with reference to FIG. 5, which is a signal flow diagram.

상기에서 설명한 바와 같이 트랜지스터(Q2), (Q6)를 온시키면, 전류가 화살표(①)방향으로 흐르면서 점차 증가하고, 제 4a 도에 도시한 바와 같이, 시간(Ton)동안 온시킨 후 트랜지스터(Q2), (Q6)를 오프시킨 상태에서 트랜지스터(Q3), (Q5)를 온시키면 전압(EAB)이 -EAB로 되어 전류도 화살표(①)와 반대방향으로 흐르려고 한다. 이후 트랜지스터(Q3), (Q5)도 시간(Ton)동안만 온시킨 상태에서 다시 트랜지스터(Q2), (Q6)를 온시키며, 이의 동작을 여러주기에 걸쳐 수행한다.As described above, when the transistors Q 2 and Q 6 are turned on, the current gradually increases as the current flows in the direction of the arrow ①, and as shown in FIG. 4A, the transistor is turned on for a time Ton after being turned on. Turning on the transistors Q 3 and Q 5 with (Q 2 ) and (Q 6 ) off, the voltage (E AB ) becomes -E AB so that the current flows in the opposite direction to the arrow (①). do. After that, the transistors Q 3 and Q 5 also turn on the transistors Q 2 and Q 6 while the transistors Q 3 and Q 5 are turned on only for the time Ton, and the operation is performed for several cycles.

이때 측정하는 전류는 과도상태가 존재하므로 제 4a, b 도에 도시된 바와 같이, 주기(Ton)횟수를 10회이상 경과시킨 후에 전류를 측정하여 검출값(iA), (iB)를 검출하고, 상기식(1), (2)에서 구한 평균 직류 오프셋(iAoff), (iBoff)를 이용하여 전류절대값

Figure kpo00002
=│iA-iAoff│,
Figure kpo00003
=│iB-iBoff│을 구한다.At this time, since the current to be measured has a transient state, as shown in FIGS. 4A and 4B, after the number of times (Ton) has elapsed 10 times or more, the current is measured to detect the detected values iA and iB. Absolute value using the average DC offset (iAoff) and (iBoff) obtained from equations (1) and (2)
Figure kpo00002
= │iA-iAoff│,
Figure kpo00003
= IB-iBoff |

이와 같이하여 전동기(2)에 양의 직류전원(VDC)을 공급한 후 전류 오프셋 보상을 하여 전류절대값 │iA-iAoff│, iB=│iB-iBoff│를 시간(Ton)동안 반복하여 가산함으로써 전류값

Figure kpo00004
+│iA-iAoff│,
Figure kpo00005
+│iB-iBoff│를 구하고, 다시 전동기(2)에 음의 직류전원(-VDC)을 공급한 후 전류 오프셋 보상을 하여 시간(Ton)동안 새로운 전류 가산값을
Figure kpo00006
+│iA-iAoff│,
Figure kpo00007
+│iB-iBoff│로 가산하며, 이와 같은 측정을 20회이상 수행한다.In this way, after supplying a positive DC power (VDC) to the motor (2), current offset compensation is performed to add the current absolute values | iA-iAoff | and iB = | iB-iBoff | repeatedly for a time Ton. Current value
Figure kpo00004
+ │ iA-iAoff│,
Figure kpo00005
I + -iBoff│ is obtained, and a negative DC power (-V DC ) is supplied to the motor 2 again, and current offset compensation is performed to obtain a new current addition value for a time Ton.
Figure kpo00006
+ │ iA-iAoff│,
Figure kpo00007
Add to + | iB-iBoff | and perform this measurement 20 or more times.

이후 전류 크기의 오차보상계수(K)를 하기의 식(3)과 같이 구한다.The error compensation coefficient (K) of the current magnitude is then obtained as in Equation (3) below.

Figure kpo00008
Figure kpo00008

이후, 상기 오프셋 전류(iAoff, iBoff)와 보상계수(K)를 EEP롬에 저장한다.Thereafter, the offset currents iAoff and iBoff and the compensation coefficient K are stored in an EEP ROM.

이와 같이하여 인버터를 동작할때는 제 6 도에 도시한 바와 같이, 상기 식(1), (2), (3)에서 구하여 EEP롬에 저장한 오프셋 전류(iAoff), (iBoff)와 보상계수(K)를 읽고, 하기의 식(4), (5)와 같이 전류를 읽어 인버터의 연산부에서 사용함에 따라 센서들이 갖는 오차가 자동으로 보상된다.When operating the inverter in this way, as shown in FIG. ), And the errors of the sensors are automatically compensated for as the current is used in the calculation unit of the inverter as shown in Equations (4) and (5) below.

iA(실제)=[iA(측정)-iAoff].....................................................(4)iA (actual) = [iA (measure) -iAoff] ........................ ................(4)

iB(실제)=K[iB(측정)-iBoff]...................................................(5)iB (actual) = K [iB (measurement) -iBoff] ..................... ............... (5)

이상에서 상세히 설명한 바와 같이 본 발명은 인버터의 센서들이 갖는 오차를 자동으로 보상하므로 보다 정밀한 제어를 용이하게 실현할 수 있으며, 특히 마이크로프로세서를 갖는 다른 기기에서의 측정오차보상에도 이용될 수 있으며, 인버터의 전압센서에도 이용될 수 있는 효과가 있다.As described in detail above, the present invention automatically compensates for the errors of the sensors of the inverter, so that more precise control can be easily realized, and in particular, it can be used to compensate for measurement errors in other devices having a microprocessor. There is an effect that can be used in the voltage sensor.

Claims (2)

직류전원(1)을 트랜지스터(Q1-Q6)를 통해 교류전원으로 변환하여 유동전동기(2)를 구동하며, 전류센서(3), (4)로 상기 유도전동기(2)의 입력전류를 검출한 후 A/D변환기(5)를 통해 마아크로프로세서(6)에 인가하여 상기 트랜지스터(Q1-Q6)를 제어하게 구성된 인버터에 있어서, 상기 트랜지스터(Q2), (Q3), (Q5), (Q6)를 구동하여 상기 유도전동기(2)에 양(+), 음(-)의 직류전원(VDC), (-VDC)을 주기(Ton)동안 소정횟수 반복 출력하면서 입력전류의 검출값(iA), (iB)을 측정하여 반복저장한 후 평균 직류 오프셋(iAoff), (iBoff)을 산출하고, 상기 유도전동기(2)에 양, 음의 직류전원(VDC), (-VDC)을 반복출력하여 과도상태를 제거하고, 다시 상기 유도전동기(2)에 양의 직류전원(VD M)을 주기(Ton)동안 인가한 후 직류 오프셋(iAoff), (iBoff)을 보상하여 전류절대값의 가산으로 전류가산값
Figure kpo00009
을 산출하며, 다시 상기 유도전동기(2)에 음의 전류전원(-VDC)를 주기(Ton)동안 인가한 후 직류 오프셋(iAoff), (iBoff)을 보상하여 전류절대값의 전류가산값
Figure kpo00010
에 계속 누적 가산하고, 상기 과정을 소정횟수 반복하여 전류크기의 오차 보상계수(K)를 계산하고, 상기 직류 오프셋(iAoff), (iBoff)및 보상계수(K)를 저장하여 전류 오차 보상에 이용하는 것을 특징으로 하는 인버터의 센서오차 자동 보정 방법.
The DC power source 1 is converted into an AC power source through the transistors Q 1 -Q 6 to drive the flow motor 2, and the input current of the induction motor 2 is transferred to the current sensors 3 and 4. In the inverter configured to control the transistors (Q 1 -Q 6 ) by applying to the microprocessor (6) through the A / D converter (5), the transistors (Q 2 ), (Q 3 ), By driving (Q 5 ) and (Q 6 ), the positive and negative DC power supply (V DC ) and (-V DC ) are repeated a predetermined number of times during the ton of the induction motor 2. While outputting, the measured values iA and iB of the input current are measured and stored repeatedly, and then the average DC offsets iAoff and iBoff are calculated, and the induction motor 2 is positive and negative DC power V DC ), (-V DC ) is repeatedly outputted to remove the transient state, and again, a positive DC power supply (V D M ) is applied to the induction motor (2) during the period (Ton), and then DC offset (iAoff), Compensate (iBoff) and transfer to the addition of the absolute current value Addition value
Figure kpo00009
After applying a negative current power source (-V DC ) to the induction motor (2) for a period (Ton), and then compensates the DC offset (iAoff), (iBoff), the current addition value of the absolute current value
Figure kpo00010
The cumulative addition is continued, and the process is repeated a predetermined number of times to calculate the error compensation coefficient K of the current magnitude, and the DC offset iAoff, iBoff and the compensation coefficient K are stored for use in current error compensation. Automatic sensor error correction method, characterized in that the inverter.
제 1 항에 있어서, 상기 오차보상계수(K)는 전류가산값
Figure kpo00011
을 K=
Figure kpo00012
로 연산하여 산출되는 것을 특징으로 하는 인버터의 센서오차 자동 보정방법.
The method of claim 1, wherein the error compensation coefficient K is a current addition value.
Figure kpo00011
K =
Figure kpo00012
Automatic sensor error correction method, characterized in that calculated by calculating.
KR1019890015396A 1989-10-25 1989-10-25 Sensing error compensating method for inverter KR920004987B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019890015396A KR920004987B1 (en) 1989-10-25 1989-10-25 Sensing error compensating method for inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019890015396A KR920004987B1 (en) 1989-10-25 1989-10-25 Sensing error compensating method for inverter

Publications (2)

Publication Number Publication Date
KR910008929A KR910008929A (en) 1991-05-31
KR920004987B1 true KR920004987B1 (en) 1992-06-22

Family

ID=19291034

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019890015396A KR920004987B1 (en) 1989-10-25 1989-10-25 Sensing error compensating method for inverter

Country Status (1)

Country Link
KR (1) KR920004987B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100425738B1 (en) * 2002-01-10 2004-04-01 엘지전자 주식회사 Method for sensorless rotary velocity control of synchronous reluctance motor
JP2004135407A (en) * 2002-10-09 2004-04-30 Mitsubishi Electric Corp Control device for ac motor

Also Published As

Publication number Publication date
KR910008929A (en) 1991-05-31

Similar Documents

Publication Publication Date Title
US8199534B2 (en) Load current detection in electrical power converters
KR930000959A (en) Current measuring device of solid state motor controller
DE60036239D1 (en) Error detection on supply lines
EP0490670A3 (en) Induction motor control apparatus
JP4579523B2 (en) Magnetic bridge type power sensor
KR920004987B1 (en) Sensing error compensating method for inverter
US5528123A (en) Power circuit
US6864649B2 (en) Method and apparatus for supplying current to an electronically commutatable electric motor
JP3003659U (en) Impedance measuring device
JPH0670660B2 (en) Inverter device
JP2001078494A5 (en) AC motor drive device and its DC offset correction method
JP3705019B2 (en) Measuring device
KR0170341B1 (en) Inverter circuit and driving method thereof
JP2008519400A (en) Calculation of direct current for controlling fuel cells
ATE323964T1 (en) CIRCUIT ARRANGEMENT AND METHOD FOR MEASURING AND LIMITING CURRENTS
KR950005518B1 (en) Circuit for detecting indirect flux of motor
KR100539743B1 (en) Eccentricity load detecting method for washing machine
KR100438978B1 (en) Inverter current control apparatus including speed control unit, current detection unit, current scale compensator, current control unit, and inverter
KR19990021185A (en) DC motor speed measuring device
SU1100579A1 (en) Device for measuring and checking resistance of electric network insulation
RU2039364C1 (en) Induction motor current monitoring process
DE59004440D1 (en) Device for detecting active and / or reactive power in an inverter with impressed DC voltage.
KR20030087698A (en) Method for Detecting Phase Current in Motors
JPH0534580U (en) Power system measuring device
SU1399875A1 (en) Method of controlling d.c. motor speed

Legal Events

Date Code Title Description
A201 Request for examination
E601 Decision to refuse application
E902 Notification of reason for refusal
J2X1 Appeal (before the patent court)

Free format text: APPEAL AGAINST DECISION TO DECLINE REFUSAL

G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20030328

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee