KR920004504B1 - Fuel-oxidant mixtures for explosive gun flame plating and flame plating methods in explosive guns - Google Patents

Fuel-oxidant mixtures for explosive gun flame plating and flame plating methods in explosive guns Download PDF

Info

Publication number
KR920004504B1
KR920004504B1 KR1019880002892A KR880002892A KR920004504B1 KR 920004504 B1 KR920004504 B1 KR 920004504B1 KR 1019880002892 A KR1019880002892 A KR 1019880002892A KR 880002892 A KR880002892 A KR 880002892A KR 920004504 B1 KR920004504 B1 KR 920004504B1
Authority
KR
South Korea
Prior art keywords
mixture
oxidant
fuel
oxygen
volume percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
KR1019880002892A
Other languages
Korean (ko)
Other versions
KR890006848A (en
Inventor
에릭 잭슨 존
Original Assignee
유니온 카바이드 코포레이션
티모티 엔. 비숍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/146,723 external-priority patent/US4902539A/en
Application filed by 유니온 카바이드 코포레이션, 티모티 엔. 비숍 filed Critical 유니온 카바이드 코포레이션
Publication of KR890006848A publication Critical patent/KR890006848A/en
Application granted granted Critical
Publication of KR920004504B1 publication Critical patent/KR920004504B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/0006Spraying by means of explosions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/02Compositions containing acetylene
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/126Detonation spraying

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

내용 없음.No content.

Description

폭발건 불꽃도금용 연료-산화제 혼합물 및 폭발건으로의 불꽃도금 방법Fuel-oxidant mixtures for explosive gun flame plating and flame plating methods in explosive guns

도면은 질소로 희석된 산소-아세틸렌 혼합물 또는 아세틸렌-제 2의 탄화수소 혼합물에 대한 RP% 대 RT%를 나타낸 그래프.The figure shows RP% vs. RT% for an oxygen-acetylene mixture or an acetylene-second hydrocarbon mixture diluted with nitrogen.

본 발명은 폭발수단을 사용하는 불꽃도금(flame plating)용 장치에 사용하기 위한 신규의 연료-산화제 혼합물 및 이로부터 제조된 피복층에 관한 것으로서, 보다 상세하게는 아세틸렌과 프로필렌과 같은 적어도 2개의 연소성 가스들을 함유하는 연료-산화제 혼합물에 관한 것이다.The present invention relates to a novel fuel-oxidant mixture and to a coating layer prepared therefrom for use in an apparatus for flame plating using explosive means, more particularly at least two combustible gases such as acetylene and propylene. To a fuel-oxidant mixture containing them.

폭발건(D-gun)을 사용하는 폭발수단에 의한 불꽃도금은 여러 가지 조성물들의 피복을 제조하기 위하여 4반세기 이상동안 관련산업 분야에 사용되어왔다. 이 폭발건은 기본적으로 약 1인치의 작은 내부직경을 갖는 유체-냉각형 배럴로 구성된다. 일반적으로 산소와 아세틸렌의 혼합물은 분쇄된 피복재료와 함께 상기 건속으로 공급된다. 산소-아세틸렌 연료가스 혼합물은 발화되어 폭발파를 만들고, 이 폭발파는 폭발건 배러의 아랫쪽으로 이동하여 여기서 피복재료를 가열시키고 이 피복재료를 건으로부터 피복되어질 제품쪽으로 가게한다. 미합중국 특허 제 2,714,563 호에서는 불꽃 피복을 위해 폭발파를 이용하는 방법 및 장치를 공개하고 있다. 본 명세서에서는 상기 특허를 그 전문을 인용한 것과 같이 참고문헌으로 언급한다.Flame plating by means of explosives using D-guns has been used in related industries for more than four quarters to manufacture coatings of various compositions. The explosion gun consists essentially of a fluid-cooled barrel with a small inner diameter of about 1 inch. In general, a mixture of oxygen and acetylene is fed to the gun with the pulverized coating material. The oxygen-acetylene fuel gas mixture is ignited to produce an explosion wave, which travels underneath the explosion gun barr, where it heats the coating material and directs the coating material from the gun to the product to be coated. US Patent No. 2,714,563 discloses a method and apparatus for using explosive waves for spark coating. In this specification, such patents are referred to by reference, as cited in their entirety.

일반적으로, 폭발건속의 연료가스 혼합물이 발화될 때는, 피복재료가 그 융점부근의 온도로 가열되는 동안, 분쇄된 피복재료를 약 2400피트 1초로 가속시키는 폭발파가 형성된다. 피복재료가 폭발건의 배럴을 빠져나온 후 질소 펄스(pulse)가 배럴을 청소하게 된다. 일반적으로 이러한 사이클은 1초에 약 4∼8번 반복된다. 폭발 피복의 주된 조절은 산소 대 아세틸렌의 폭발 혼합물을 변화시켜 얻는다.In general, when the fuel gas mixture in the explosion dry ignites, an explosion wave is formed that accelerates the crushed coating material to about 2400 feet one second while the coating material is heated to a temperature near its melting point. A nitrogen pulse cleans the barrel after the coating material exits the barrel of the explosion gun. Typically this cycle is repeated about 4 to 8 times per second. The main control of the explosion coating is obtained by changing the explosion mixture of oxygen to acetylene.

탄화텅스텐-코발트 기본의 피복을 만드는 것과 같은 어떤 응용에 있어서는, 질소 또는 아르곤과 같은 불활성 가스로 산소-아세틸렌 연료 혼합물을 희석하면 개선된 피복을 얻을 수 있음이 알려졌다. 이러한 가스형 희석제는 폭발반응과는 무관함으로 인해 불꽃온도를 저하시키거나 저하시키려는 경향이 있음이 밝혀졌다. 미합중국 특허 제 2,972,550 호에서는 원하는 피복에 근거하여 새롭고 폭넓은 적용을 위하고, 또 폭발도금 공정에 사용할 수 있는 증가된 수의 피복조성물로 산소-아세틸렌 연료혼합물을 희석시키는 공정을 공개하고 있다. 이 특허 역시 본 명세서에서 참고문헌으로 언급한다.In some applications, such as making tungsten carbide-cobalt based coatings, it has been found that diluting the oxygen-acetylene fuel mixture with an inert gas such as nitrogen or argon may result in an improved coating. It has been found that these gaseous diluents tend to lower or lower the flame temperature because they are independent of the explosion reaction. US Pat. No. 2,972,550 discloses a process for diluting an oxygen-acetylene fuel mixture with an increased number of coating compositions for new and wider applications based on the desired coating and for use in explosive plating processes. This patent is also referred to herein by reference.

일반적으로, 아세틸렌은 어떤 다른 포화 또는 불포화 탄화수소 가스로부터 얻을 수 있는 것보다 더 높은 온도 및 압력을 만들 수 있음으로 인해 연소성 연료가스로서 사용되어 왔다. 그러나 어떤 피복응용에 대하여는, 산소 대 탄소가 약 1 : 2 원자비의 산소-아세틸렌 혼합물의 연소온도는 원하는 온도보다 상당히 더높은 연소온도를 만든다. 상기 언급한 것처럼, 산소-아세틸렌 연료가스의 높은 연소온도를 보상하기 위한 일반적인 방법은 질소나 아르곤과 같은 불활성 가스로 연료가스 혼합물을 희석시켜주는 것이다. 그러나, 이러한 희석으로 인해 연소로 인한 온도를 낮출 수는 있지만, 이로인해 연소반응의 피크압력을 부수적으로 낮추는 결과를 또한 초래한다. 이러한 피크압력의 감소는 배럴로부터 기지위로 뿜어나오는 피복재료의 속도를 감소시키는 결과가 된다. 산소-아세틸렌 연료혼합물에 희석되는 불활성 가스가 증가함에 따라 연소반응의 피크압력은 연소온도보다 훨씬 빠르게 감소된다는 것이 밝혀졌다.In general, acetylene has been used as a combustible fuel gas because it can create higher temperatures and pressures than can be obtained from any other saturated or unsaturated hydrocarbon gas. However, for some cladding applications, the combustion temperature of the oxygen-acetylene mixture of oxygen to carbon ratio of about 1: 2 makes the combustion temperature considerably higher than the desired temperature. As mentioned above, a common way to compensate for the high combustion temperatures of oxygen-acetylene fuel gases is to dilute the fuel gas mixture with an inert gas such as nitrogen or argon. However, this dilution can lower the temperature due to combustion, but this also results in an incidentally lower peak pressure of the combustion reaction. This reduction in peak pressure results in a decrease in the velocity of the coating material emerging from the barrel onto the substrate. It has been found that the peak pressure of the combustion reaction decreases much faster than the combustion temperature as the inert gas diluted in the oxygen-acetylene fuel mixture increases.

본 발명의 목적은 통상의 산소-아세틸렌 연료 가스로부터 얻을 수 있는 온도보다 더 낮은 연료 연소온도를 제공할 수 있는, 폭발건에 사용하기 위한 신규의 가스형 연료-산화제 혼합물을 제공하는 동시에 연소반응에서 비교적 높은 피크압력을 제공함에 있다.It is an object of the present invention to provide a novel gaseous fuel-oxidant mixture for use in explosive guns, which can provide fuel combustion temperatures lower than those obtainable from conventional oxygen-acetylene fuel gases, while at the same time in combustion reactions. To provide a relatively high peak pressure.

본 발명의 또다른 목적은 연소반응에서 피크압력에 손상을 주지 않으면서도 불활성 가스로 희석된 통상의 산소-아세틸렌 연료가스로부터 얻을 수 있는 연료연소온도와 동일한 온도를 제공할 수 있는, 폭발건에 사용하기 위한 신규의 가스형 연료-산화제 혼합물을 제공함에 있다.Another object of the present invention is to use in an explosion gun, which can provide the same temperature as the fuel combustion temperature obtained from conventional oxygen-acetylene fuel gas diluted with inert gas without damaging the peak pressure in the combustion reaction. To provide a novel gaseous fuel-oxidant mixture for.

본 발명의 또다른 목적은 본 발명의 신규한 연료-산화제 혼합물을 사용하여 기지에 새로운 피복을 제공함에 있다.Another object of the present invention is to provide a new coating on the base using the novel fuel-oxidant mixture of the present invention.

상기한 목적들 및 본 발명의 또다른 특징은 이하에서 기술하는 본 발명의 상세한 설명 및 실시예들로부터 충분히 인식될 것이다.The above objects and other features of the present invention will be fully appreciated from the following detailed description and embodiments of the present invention.

본 발명은, (a) 산화제 및, (b) 포화 및 불포화 탄화수소의 그룹에서 선택되는 적어도 2종류의 연소성 가스의 연료 혼합물로 이루어지는, 폭발건에 사용하기 위한 가스형 연료-산화제 혼합물에 관한 것이다.The present invention relates to a gaseous fuel-oxidant mixture for use in an explosion gun, comprising (a) an oxidant and (b) a fuel mixture of at least two types of combustible gases selected from the group of saturated and unsaturated hydrocarbons.

본 발명은 또한, 폭발건을 이용하는 개선된 불꽃도금 방법에 관한 것으로서, 이 방법은 폭발성의 혼합물을 만들기 위해 원하는 연료와 산화제 가스들을 폭발건 속으로 유입시키는 단계와, 폭발건내의 상기 폭발성 혼합물 속으로 분쇄된 피복재료를 유입시키는 단계와, 이 피복재료가 피복될 제품위로 부딛쳐 피복되도록 연료-산화제 혼합물을 폭발시키는 단계를 포함하고, 여기서 개선된 것으로는 포화 탄화수소 및 불포화 탄화수소의 그룹으로부터 선택된 적어도 2종류의 연소성 가스의 연료 혼합물과, 산화제의 폭발성 연료-산화제 혼합물을 사용함을 특징으로 한다. 폭발건은 혼합실과 배럴부로 구성되어서 폭발성 연료-산화제 혼합물이 혼합 및 발화실로 유입되는 동안 분쇄된 피복재료가 배럴로 유입되게 한다. 연료-산화제 혼합물의 발화로 폭발파가 만들어지며 이 폭발파는 폭발건의 배럴 아랫쪽으로 이동하여 거기서 분쇄된 피복재료를 가열시키고 이피복재료가 기지위로 피복되게 한다.The present invention also relates to an improved flame plating method using an explosive gun, which method comprises introducing a desired fuel and oxidant gases into the explosive gun to produce an explosive mixture, and into the explosive mixture in the explosive gun. Introducing a pulverized coating material and exploding the fuel-oxidant mixture such that the coating material is coated over the product to be coated, wherein the improvements include at least two selected from the group of saturated hydrocarbons and unsaturated hydrocarbons. A fuel mixture of a combustible gas of a kind and an explosive fuel-oxidant mixture of oxidants. The explosive gun consists of a mixing chamber and a barrel to allow the pulverized coating material to flow into the barrel while the explosive fuel-oxidant mixture enters the mixing and ignition chamber. The ignition of the fuel-oxidant mixture produces an explosive wave that travels under the barrel of the explosive gun, heating the ground cladding there and covering the cladding onto the substrate.

본 발명은 또한 본 발명의 신규한 방법으로 만들어지는 피복된 제품에 관한 것이다.The invention also relates to coated articles made by the novel process of the invention.

본 발명에 사용하기위한 산화제는 산소, 아산화질소(nitrous oxide) 및 이들의 혼합물등으로 구성되는 그룹으로부터 선택될 수 있다.The oxidant for use in the present invention may be selected from the group consisting of oxygen, nitrous oxide, mixtures thereof and the like.

또한, 본 발명에 사용하기위한 적어도 2종류의 가스들의 연소성 연료혼합물은 아세틸렌(C2H2), 프로필렌(C3H6), 메탄(CH4), 에틸렌(C2H4), 메틸아세틸렌(C3H4), 프로판(C3H8), 에탄(C2H6), 부타디엔(C4H6), 부틸렌(C4H8), 부탄(C4H10), 시클로프로판(C3H6), 프로파디엔(C3H4), 시클로부탄(C4H8), 및 산화에틸렌(C2H4O)으로 구성되는 그룹으로부터 선택될 수 있다. 바람직한 연료혼합물은 프로필렌과 같은 적어도 하나의 다른 연소성 가스와 함께 아세틸렌 가스로 구성되는 것이다.In addition, the combustible fuel mixture of at least two kinds of gases for use in the present invention is acetylene (C 2 H 2 ), propylene (C 3 H 6 ), methane (CH 4 ), ethylene (C 2 H 4 ), methylacetylene (C 3 H 4 ), propane (C 3 H 8 ), ethane (C 2 H 6 ), butadiene (C 4 H 6 ), butylene (C 4 H 8 ), butane (C 4 H 10 ), cyclopropane (C 3 H 6 ), propadiene (C 3 H 4 ), cyclobutane (C 4 H 8 ), and ethylene oxide (C 2 H 4 O). Preferred fuel mixtures are those consisting of acetylene gas together with at least one other combustible gas such as propylene.

상기 언급한 바와 같이, 아세틸렌이 폭발건 작동용으로는 가장 우수한 연소성 연료로 판단되고 있는데, 왜냐하면 아세틸렌은 다른 어떤 포화 또는 불포화 탄화수소로부터 얻을 수 있는 것보다도 더 큰 온도 및 압력을 만들 수 있기 때문이다. 연소성 가스의 반응 생성물의 온도를 감소시키기 위하여는, 일반적으로 질소나 아르곤을 산화제-연료 혼합물에 첨가하여 희석시킨다. 그러나 이 방법은 폭발파의 압력을 낮추어 얻을 수 있는 입자속도를 한정시킨다는 단점을 갖고 있다. 그러나 이외로, 프로필렌과 같은 제2의 연소성 가스를 아세틸렌과 혼합시키면, 적절한 산화제와 연소성 가스의 반응은 어떠한 온도에서의 피크 압력을 형성하는, 즉 질소로 희석된 아세틸렌-산소 혼합물의 동일온도의 압력보다 더 높은 압력을 형성함이 발견되었다. 만약에 어떤 주어진 온도에서, 아세틸렌-산소-질소 혼합물을 아세틸렌-제 2의 연소성 가스-산소 혼합물로 바꾼다면, 이 제 2의 연소성 가스를 함유하는 가스형 혼합물은 아세틸렌-산소-질소홉합물보다 항상 더 높은 피크압력을 만들 것이다.As mentioned above, acetylene is believed to be the best combustible fuel for explosive gun operation, because acetylene can create temperatures and pressures greater than those obtainable from any other saturated or unsaturated hydrocarbon. To reduce the temperature of the reaction product of the combustible gas, nitrogen or argon is usually added to the oxidant-fuel mixture and diluted. However, this method has the disadvantage of limiting the particle velocity that can be obtained by lowering the pressure of the explosion wave. In addition, however, when a second combustible gas such as propylene is mixed with acetylene, the reaction of a suitable oxidant with the combustible gas forms a peak pressure at any temperature, ie the pressure at the same temperature of the acetylene-oxygen mixture diluted with nitrogen. It has been found to form higher pressures. If at any given temperature, the acetylene-oxygen-nitrogen mixture is replaced with an acetylene-second combustible gas-oxygen mixture, the gaseous mixture containing this second combustible gas is always better than the acetylene-oxygen-nitrogen hop mixture. Will create a higher peak pressure.

RP%와 RT%의 이론값은 다음과 같이 정의된다.The theoretical values of RP% and RT% are defined as follows.

RP%〓100(PD/PO)RP% 〓100 (P D / P O )

RT%〓100△TD/TO RT% 〓100 △ T D / T O

여기서 PO와△TO는 다음 반응식으로부터 산소와 아세틸렌의 1 : 1 혼합물의 폭발다음에 증가하는 압력 및 온도를 각각 나타낸다.Where P O and ΔT O represent the pressure and temperature which increase after explosion of the 1: 1 mixture of oxygen and acetylene, respectively, from the following reaction formulae.

C2H2+O2→2CO+H2 C 2 H 2 + O 2 → 2CO + H 2

또한, PD와△TD는 탄소 대 산소의 비가 1 : 1인 경우에 질소로 희석된 산소-아세틸렌 혼합물 또는 아세틸렌-제2의 탄화수소가스-산소혼합물중 어느 것의 폭발다음에 증가하는 압력 및 온도를 각각 나타낸다.In addition, P D and ΔT D are increased in pressure and temperature following the explosion of either an oxygen-acetylene mixture or an acetylene-second hydrocarbon gas-oxygen mixture diluted with nitrogen when the carbon to oxygen ratio is 1: 1. Respectively.

또한, 다음식에서 X또는Y에 대한 여러 가지 값을 사용하여 서로 다른 온도를 얻는다.In addition, different values are obtained using various values for X or Y in the following equation.

C2H2+O2+X N2=2CO+H2+X N2(2a)C 2 H 2 + O 2 + XN 2 = 2CO + H 2 + XN 2 (2a)

[1-Y]C2H2+y CAHB+[1-y+Ay/2]O2[1-Y] C 2 H 2 + y C A H B + [1-y + Ay / 2] O 2

[2-2Y+AY]CO+[1-y+BY/2]H2(2b)[2-2Y + AY] CO + [1-y + BY / 2] H 2 (2b)

질소로 희석된 산소-아세틸렌 혼합물 또는 아세틸렌-제 2의 탄화수소-산소혼합물의 폭발에 대한 RP%대 RT%의 값을 도면에 나타냈다. 도면에서 알 수 있는 바와 같이, 상기식 2a에서와 같이 N2를 첨가하여△TD및 그 결과 RT%값을 감소시키면, 피크압력 PD및 그결과 RP%값이 감소하게 된다. 예를들어, 충분한 양의 질소를 첨가시켜 60%의 △TO가 되도록 △TD를 감소시키면, 피크압력 PD는 50%의 PO로 떨어지게 된다. 그러나, △TD또는 RT%의 어떤 값에 대해 아세틸렌-제 2의 탄화수소-산소혼합물을 사용한다면, 질소로 희석된 아세틸렌-산소 혼합물을 사용했을 때 보다도 더 큰 PD및 그 결과 RP%값을 얻을 것이다. 예를들어 도면에서와 같이, 60%의 RT%값을 얻기위해 아세틸렌-프로필렌-산소 혼합물을 사용하면, RP%의 비는 80%로서, 동일한 RT%값을 얻기위해 아세틸렌-산소-질소 혼합물을 사용했을 때 보다 1.6배가 크게된다. 높은 압력은 입자속도를 증가시키고, 따라서 피복특성을 개선시키는 것으로 판단된다.The values of RP% vs. RT% for the explosion of an oxygen-acetylene mixture or an acetylene-second hydrocarbon-oxygen mixture diluted with nitrogen are shown in the figures. As can be seen from the figure, when N 2 is added as in Equation 2a to decrease ΔT D and consequently the RT% value, the peak pressure P D and consequently the RP% value decreases. For example, if DELTA T D is reduced to 60% DELTA T O by adding a sufficient amount of nitrogen, the peak pressure P D drops to 50% P O. However, if an acetylene-secondary hydrocarbon-oxygen mixture is used for any value of ΔT D or RT%, then a larger P D and consequently RP% value will be obtained than with an acetylene-oxygen mixture diluted with nitrogen. Will get For example, as shown in the figure, when using an acetylene-propylene-oxygen mixture to obtain an RT% value of 60%, the ratio of RP% is 80%, and the acetylene-oxygen-nitrogen mixture is obtained to obtain the same RT% value. 1.6 times larger than when used. It is believed that the high pressure increases the particle velocity, thus improving the coating properties.

대부분의 적용에 있어서, 본 발명으 가스형 연료-산화제 혼합물은 산소 대 탄소의 원자비가 약 0.9∼2.0, 바람직하게는 0.95∼1.6, 가장 바람직하게는 0.98∼1.4를 갖는 것이다. 산소 대 탄소의 원자비가 0.9보다 작으면 유리탄소 및 그을음 등의 형성으로 인해 일반적으로 바람직스럽지 않고, 한편 원자비가 2.0보다 크게 되면 과도한 불꽃산화로 인해 탄화물 및 금속성 피복에 바람직스럽지 못하게 될 것이다.In most applications, the gaseous fuel-oxidant mixture of the present invention has an atomic ratio of oxygen to carbon of about 0.9 to 2.0, preferably 0.95 to 1.6, most preferably 0.98 to 1.4. An atomic ratio of oxygen to carbon of less than 0.9 is generally undesirable due to the formation of free carbon and soot, etc., while an atomic ratio of greater than 2.0 will be undesirable for carbides and metallic coatings due to excessive flame oxidation.

본 발명의 바람직한 실시예에서의 가스형 연료-산화제 혼합물은 35∼80부피%의 산소, 2∼50부피%의 아세틸렌 및 2∼60부피%의 제 2연소성 가스형 연료로 구성된다. 본 발명의 보다 바람직한 실시예에서의 가스형 연료-산화제 혼합물은 45∼70부피%의 산소, 7∼45부피%의 아세틸렌 및 10∼45부피%의 제2연소성 연료로 구성될 것이다. 또한, 존 발명의 또 다른 바람직한 실시예에서의 가스형 연료-산화제 혼합물은 50∼65부피%의 산소, 12∼26부피%의 아세틸렌 및 18∼30부피%의 프로필렌과 같은 제 2연소성 가스형 연료로 구성된다. 어떤 응용분야에 있어서는, 불활성 희석가스를 가스형 연료-산화제 혼합물에 첨가하는 것이 바람직스럽고, 적당한 불활성 희석 가스들로는 아르곤, 네온, 크립톤, 크세논, 헬륨 및 질소들이 있다.The gaseous fuel-oxidant mixture in a preferred embodiment of the present invention consists of 35 to 80 volume percent oxygen, 2 to 50 volume percent acetylene and 2 to 60 volume percent second combustible gaseous fuel. In a more preferred embodiment of the present invention the gaseous fuel-oxidant mixture will consist of 45-70 volume percent oxygen, 7-45 volume percent acetylene and 10-45 volume percent second combustible fuel. In addition, the gaseous fuel-oxidant mixture in another preferred embodiment of the zone invention has a second combustible gaseous fuel such as 50-65 volume percent oxygen, 12-26 volume percent acetylene and 18-30 volume percent propylene. It consists of. For some applications, it is desirable to add an inert diluent gas to the gaseous fuel-oxidant mixture, and suitable inert diluent gases are argon, neon, krypton, xenon, helium and nitrogen.

일반적으로, 폭발건 응용분야에서 선행기술의 연료-산화제 혼합물로 사용될 수 있는 모든 종래 기술의 피복재료들이 본 발명의 신규한 가스형 연료-산화제 혼합물과 더불어 사용될 수 있다. 또한, 종래 기술의 피복조성물이라도 종래 기술에서보다 낮은 온도 및 더 높은 압력에서 가하게 되면, 통상의 조성을 갖지만 새롭고 경도와 같은 독특한 물리적 성질을 갖는 피복을 기지상에 형성시킬 수 있다. 본 발명의 가스형 연료-산화제 혼합물과 함께 사용하기에 적합한 피복조성물들로는 탄화텅스텐-코발트, 탄화텅스텐-니켈, 탄화텅스텐-코발트크롬, 탄화텅스텐-니켈크롬, 크롬-니켈, 산화알루니늄, 탄화크롬-니켈크롬, 탄화크롬-코발트크롬, 텅스텐-탄화티탄-니켈, 코발트합금, 코발트합금에 분산산화물, 알루미나-티타니아, 구리기본합금, 크롬기본합금, 산화크롬, 산화크롬+산화알루미늄, 산화티탄, 티탄+산화알루미늄, 철 기본합금,철 기본합금에 분산된 산화물, 니켈, 니켈 기본합금등이 있다. 이러한 독특한 피복재료들은 티탄, 강, 알루미늄, 니켈, 코발트 및 이들의 합금등과 같은 물질로 만들어진 기지를 피복하는데 이상적으로 적합하다.In general, all prior art coating materials that can be used as prior art fuel-oxidant mixtures in explosive gun applications can be used with the novel gaseous fuel-oxidant mixtures of the present invention. In addition, even when the coating composition of the prior art is applied at a lower temperature and higher pressure than in the prior art, it is possible to form a coating having a conventional composition but having a new physical property such as new hardness and unique properties. Coating compositions suitable for use with the gaseous fuel-oxidant mixtures of the present invention include tungsten carbide-cobalt, tungsten carbide-nickel, tungsten carbide-cobalt chromium, tungsten carbide-nickel chromium, chromium-nickel, aluminium oxide, carbonization Chromium-nickel chromium, chromium carbide-cobalt chromium, tungsten-titanium carbide-nickel, cobalt alloy, cobalt alloy dispersion oxide, alumina-titania, copper base alloy, chromium base alloy, chromium oxide, chromium oxide + aluminum oxide, titanium oxide , Titanium + aluminum oxide, iron base alloy, oxide dispersed in iron base alloy, nickel, nickel base alloy and so on. These unique coating materials are ideally suited for coating substrates made of materials such as titanium, steel, aluminum, nickel, cobalt and their alloys.

본 발명에 의한 피복을 가하기 위해 D-건에 사용하는 분말은 주조 및 분쇄공정에 의해 만들어진 바람직한 분말이다. 이 공정에서 분말의 구성체들은 용융되어 셸(shell)형 주괴로 주조된 다음, 이 주괴를 분쇄하여 분말형으로 만든 후 체로 걸러 원하는 입자크기분포를 얻는다.Powders used in the D-gun to apply the coatings according to the invention are preferred powders made by casting and grinding processes. In this process, the powder components are melted and cast into a shell ingot, and then the ingot is pulverized into a powder and then sieved to obtain a desired particle size distribution.

그러나, 소결공정에 의하여 만들어진 소결분말과 같은 다른 형태의 분말 및 분말의 혼합물들도 사용할 수 있다. 소결공정에서는, 분말의 구성체들이 소결케이크로 함께 소결된 다음, 이 케이크를 분쇄하여 분말형으로 만든 수 체로 결러 원하는 입자크기분포를 얻게된다.However, other types of powders and mixtures of powders, such as sintered powders produced by the sintering process, can also be used. In the sintering process, the constituents of the powder are sintered together with a sinter cake, and the cake is then crushed into powdered water bodies to obtain the desired particle size distribution.

본 발명의 예시를 위해 몇가지 실시예를 이하에서 기술한다. 이들 실시예에서 피복은 표 1에 제시된 분말조성을 사용해 만들었다.Some embodiments are described below for illustration of the present invention. In these examples the coatings were made using the powder compositions shown in Table 1.

[표 1]TABLE 1

피복재료분말Coating material powder

Figure kpo00001
Figure kpo00001

* 미합중국 표준 메쉬크기* US standard mesh size

[실시예 1]Example 1

다음의 표 2에 제시된 조성의 가스형 연료-산화제 혼합물들을 각각 폭발건으로 유입시켜 표 2에 나타난 산소 대 탄소으 원자비를 갖는 폭발성 혼합물을 만든다. 또한 시료 피복분말 A도 폭발건으로 공급한다. 각각의 가스형 연료-산화제 혼합물의 유동속도는 시료 28,29 및 30이 11.0ft3/분(cfm)인 것을 제외하고는 13.5cfm이고, 각 피복분말으 공급속도는 시료 29가 46.7g/분(gpm), 시료 30이 40.0gpm인 것을 제외하고는 53.3gpm였다. 부피%로의 가스형 연료-혼합물과 각 피복예에 대한 산소 대 탄소의 원자비를 표 2에 나타내었다. 피복시료분말은 가스형 연료-산화제 혼합물과 동시에 폭발건으로 공급한다. 폭발건은 약 초당 8번의 속도로 발화시켜 폭발건속의 피복분말이 강철기지에 충돌하게하여 서로 맞물리고 중첩되는 미세한 리브(leave)형태의 조밀한 점착피복을 형성시킨다.Each of the gaseous fuel-oxidant mixtures of the composition shown in Table 2 below is introduced into an explosion gun to produce an explosive mixture having an atomic ratio of oxygen to carbon shown in Table 2. Sample coating powder A is also supplied to the explosion gun. The flow rate of each gaseous fuel-oxidant mixture is 13.5 cfm, except that samples 28, 29 and 30 are 11.0 ft 3 / min (cfm), and the feed rate for each coating powder is 46.7 g / min for sample 29 (gpm) and 53.3 gpm, except that sample 30 was 40.0 gpm. The atomic ratio of oxygen to carbon for each coating example and gaseous fuel-mixture in% by volume is shown in Table 2. The coated sample powder is fed to the explosion gun simultaneously with the gaseous fuel-oxidant mixture. Explosive guns ignite at a rate of about eight times per second, causing the coating powders of the blast bombards to collide with the steel base, forming a dense adhesive coating in the form of fine ribs that interlock and overlap with each other.

피복층에서의 코발트와 탄소의 중량%는 피복에 대한 경도와 함께 결정한다. 표2에서의 대부분 피복예의 경도는 록크웰 표면 경도로 측정하여 빅커어스 경도로 바꾼 값이다. 여기서 사용한 록크웰 표면경도 측정법은 ASTM 표준법 E-18에 의한 것이다. 경도측정은 경화된 강철 기지상에 침적된 피복자체의 부드럽고 편평한 면상에서 행하였다. 록크웰 경도수를 빅커어스 경도수로 전환하는데는 다음식을 사용하였다.The weight percent of cobalt and carbon in the coating layer is determined along with the hardness for the coating. The hardness of most coating examples in Table 2 is the value measured by Rockwell surface hardness and changed to Vickers hardness. The Rockwell surface hardness measurement method used here is based on ASTM Standard Method E-18. Hardness measurements were made on the smooth and flat surface of the coating itself deposited on the hardened steel matrix. The following equation was used to convert Rockwell hardness to Vickers hardness.

HV.3〓-1774+37.433 HR45NHV.3〓-1774 + 37.433 HR45N

상기식에서, HV.3은 0.3kgf의 하중으로 얻어진 빅커어스 경도이고, HR45N은 다이아몬드 원추와 45kgf 하중으로 N 스케일 상에서 얻어진 록크웰 표면경도이다. 시료 28,29 및 30의 경도는 직접 빅커어스 경도로 특정한 것이다. 사용된 빅커어스 경도측정법은 양 대각선의 길이를 측정하여 평균을 내는 것 보다는 오히려 평방 압흔의 단지 한 대각선을 측정한 것을 제외하고는 기본적으로 ASTM 표준법 E-384에 의해 측정하였다. 사용된 하중은 0.3kgf였고(HV.3), 이들의 데이터를 표 2에 나타내었다. 이 표로부터 알 수 있듯이, 질소대신에 가스형 연료-혼합물에 프로필렌을 사용하여 얻어진 피복이 경도가 우수하였다.Where HV.3 is the Bigcus hardness obtained with a load of 0.3 kgf and HR45N is the Rockwell surface hardness obtained on N scale with a diamond cone and 45 kgf load. The hardness of Samples 28,29 and 30 is specified by direct Vickers hardness. The Vickers hardness test used was basically measured by ASTM Standard Method E-384, except that only one diagonal line of square indentation was measured, rather than averaged over both diagonal lengths. The load used was 0.3 kgf (HV.3) and their data are shown in Table 2. As can be seen from this table, the coating obtained by using propylene in the gaseous fuel-mixture instead of nitrogen had excellent hardness.

침식은 충돌하는 입자들의 작용에 의해 표면으로부터 재료들이 제거되는 마모의 형태이다. 이 입자들은 일반적으로 고체이면서 가스형이나 유체스트림에 운반되고, 한편 입자들이 가스형 스트림에 담겨있는 유체일 수도 있다.Erosion is a form of wear in which materials are removed from the surface by the action of colliding particles. These particles are generally solid and carried in a gaseous or fluid stream, while the particles may be a fluid contained in a gaseous stream.

침식에 의한 마모에 영향을 주는 것으로는 많은 인자들이 있다. 입자의 크기 및 질량과 속도들은 이들이 충돌하는 입자들의 운동에너지를 결정하기 때문에 중요한 인자가 된다. 또한, 입자의 형태, 그들의 경도, 형성각 및 형태와 이들의 밀도가 침식속도에 영향을 줄 수 있고, 입자충돌각 또한 침식속도에 영향을 줄 수 있다. 일반적으로 시험목적용으로는 알루미나 및 실리카 분말이 광범위하게 사용된다.There are many factors that affect wear caused by erosion. Particle size, mass and velocity are important factors because they determine the kinetic energy of the particles they collide with. In addition, the shape of the particles, their hardness, the angle of formation and the shape and their density can affect the erosion rate, the particle collision angle can also affect the erosion rate. In general, alumina and silica powders are widely used for test purposes.

실시예에 기술괸 피복의 침식마모률을 측정하기 위해 ASTMG 76-83에 기술된 방법과 유사한 시험절차를 사용했다. 기본적으로는, 분당 약 1.2gm의 알루미나 연마제가 노즐로가는 가스스트림에 운반되는데, 이 노즐은 피보트상에 설치되어 일정간격을 유지하면서 다양한 입자중돌각을 설정하게 한다. 90˚와 30˚ 충돌각에서 피복을 시험하는 것이 표준방법이다.Test procedures similar to those described in ASTMG 76-83 were used to determine the erosion wear rates of the coatings described in the Examples. Basically, about 1.2 gm of alumina abrasive per minute is transported in the gas stream to the nozzle, which is installed on the pivot to allow for a variety of intergranular angles to be maintained at regular intervals. Testing of the cladding at 90 ° and 30 ° impact angles is the standard method.

시험하는 동안, 충돌하는 입자들은 시험시료위에 크레이터(crater)를 만들게된다. 크레이터의 측정된 홈을 시료위에 충돌된 연마제의 양으로 나눈다. 그결과, 연마제의 그램당 마이크로메터(μ)로서의 마모를 침식마모률(μ/gm)로 취했고, 이 결과를 표 2에 또한 나타냈다.During the test, the colliding particles create craters on the test sample. The measured groove of the crater is divided by the amount of abrasive impinged on the sample. As a result, the wear as micrometer (μ) per gram of abrasive was taken as the erosion wear rate (μ / gm), and the results are also shown in Table 2.

경도 및 침식마모 데이터로서, 질소로 희석된 아세틸렌-산소혼합물 대신에 아세틸렌-탄화수소가스-산소 혼합물을 사용한 것이 동일한 코발트 함량에서 더 높은 경도를 갖고(시료피복 9와 시료피복 22 및 23을 비교) 또는 동일 경도에서는 더 많은 코발트 함량을 갖는(시료피복 1과 시료피복 22를 비교)피복을 만들 수 있음을 알 수 있다.As hardness and erosion wear data, the use of an acetylene-hydrocarbon gas-oxygen mixture in place of nitrogen diluted acetylene-oxygen mixture has a higher hardness at the same cobalt content (compare sample 9 and sample 22 and 23) or It can be seen that at the same hardness, a coating can be made with a higher cobalt content (compare Sample 1 and Sample 22).

[표 2]TABLE 2

분말 A로부터 만든 피복의 D-건 매개변수 및 성질D-Gun Parameters and Properties of Coatings Made from Powder A

Figure kpo00002
Figure kpo00002

주(1) ; 록크웰 표면 경도로서 측정하여 별표(*)로 나타낸 것외에는 빅커어스 경도로 전환됨.Note (1); Measured as Rockwell surface hardness and converted to Vickers hardness, except as indicated by an asterisk (*).

[실시예 2]Example 2

표 3에 제시된 조성의 가스형 연료-산화제 혼합물을 13.5ft3/분의 유동속도로 폭발건에 각각 유입시켜 역시 표 3에 나타난 바와 같은 산소 대 탄소의 원자비를 갖는 폭발성 혼합물을 만든다. 피복분말은 시료 A였었고, 연료-산화제 혼합물 및 분말공급속도 또한 표 3에 나타내었다. 실시예 1에서와 같이, 빅커어스 경도 및 침식율(μ/gm)데이타를 결정해 표 3에 나타내었다. 이 데이터로부터 알 수 있듯이, 여러 가지 탄화수소 가스들이 기지를 피복하기 위한 본 발명에 의한 가스형 연료-산화제 혼합물을 제공하도록 아세틸렌과 함께 사용할 수 있다. 빅커어스 데이터로서, 아세틸렌-산소-질소 혼합물대신에 아세틸렌-탄화수소가스-산소혼합물을 사용한 것이 동일 코발트 함량에서 더 높은 경도를 갖거나 (표 2에서 시료피복 5 및 10을 시료피복 23과 비교) 또는 동일 경도에 대해 더많은 코발트 함량을 갖는(표 2에서 시료피복 6,8 및 11을 시료피복 22와 비교) 피복을 만들 수 있음을 알 수 있다.Each of the gaseous fuel-oxidant mixtures of the compositions shown in Table 3 is introduced into the explosion gun at a flow rate of 13.5 ft 3 / min, respectively, to produce an explosive mixture having an atomic ratio of oxygen to carbon as also shown in Table 3. The coating powder was sample A, and the fuel-oxidant mixture and the powder feed rate are also shown in Table 3. As in Example 1, Bigcurs hardness and erosion rate (μ / gm) data were determined and shown in Table 3. As can be seen from this data, various hydrocarbon gases can be used with acetylene to provide a gaseous fuel-oxidant mixture according to the present invention for coating a matrix. As Bigcurs data, the use of an acetylene-hydrocarbon-oxygen mixture instead of an acetylene-oxygen-nitrogen mixture has a higher hardness at the same cobalt content (compare sample coatings 5 and 10 in Table 2 with sample coating 23) or It can be seen that a coating can be made with more cobalt content for the same hardness (compare Samples 6, 8 and 11 in Table 2 with Sample 22).

[표 3]TABLE 3

분말 A로부터 만든 피복의 D-건 매개변수 및 성질D-Gun Parameters and Properties of Coatings Made from Powder A

Figure kpo00003
Figure kpo00003

* 시료피복 8은 또한 18.3 부피%의 질소를 함유한다.Sample coating 8 also contains 18.3% by volume of nitrogen.

[실시예 3]Example 3

표 4에 제시된 조성의 가스형 연료-산화제 혼합물을 폭발건에 각각 유입시켜 역시 표 4에 나타난 사소대 탄소의 원자비를 갖는 폭발성 혼합물을 만든다. 피복분말은 시료 B였었고, 연료-산화제 혼합물 또한 표 4에 나타내었다. 가스유동속도는 13.5 ft3/분(cfm)이고 공급속도는 표 4에 있는 바와 같다. 실시예 1에서와 같이, 경도 및 침식율(μ/gm)을 결정해 표 4에 나타내었다. 소결분말은 폭발건 온도변화와 더불어 코발트 함량에 큰 변화를 나타내지 않지만, 아세틸렌-산소-질소 혼합물보다도 아세틸렌-탄화수소가스-산소 혼합물로서 동일 코발트 함량으로 더 높은 경도으 피복을 얻을 수 있게 한다(시료피복 4와 시료피복 1을 비교).Each of the gaseous fuel-oxidant mixtures of the compositions shown in Table 4 was introduced into the explosion gun to produce an explosive mixture having an atomic ratio of tetracarbons, also shown in Table 4. The coating powder was sample B, and the fuel-oxidant mixture is also shown in Table 4. The gas flow rate is 13.5 ft3 / min (cfm) and the feed rates are shown in Table 4. As in Example 1, hardness and erosion rate (μ / gm) were determined and shown in Table 4. The sintered powder does not show a significant change in the cobalt content with the change in the explosive temperature, but it is possible to obtain a higher hardness coating with the same cobalt content as the acetylene-hydrocarbon-oxygen mixture than the acetylene-oxygen-nitrogen mixture (sample coating 4 and Sample 1).

[표 4]TABLE 4

분말 B로부터 만든 피복의 D-건 매개변수 및 성질D-Gun Parameters and Properties of Coatings Made from Powder B

Figure kpo00004
Figure kpo00004

[실시예 4]Example 4

표 5에 제시된 조성의 가스형 연료-산화제 혼합물을 폭발건에 각각 유입시켜 역시 표 5에 나타난 산소대탄소의 원자비를 갖는 폭발성 혼합물을 만든다. 피복분말은 시료 C였었고, 연료-산화제 혼합물 또한 표 5에 나타내었다. 가스유동속도는 13.5ft3/분(cfm)이고 공급속도는 표 5에 있는 바와같다. 실시예 1에서와 같이, 빅커어스 경도 및 침식율(μ/gm)을 결정해 표 5에 나타내었다. 빅커어스 경도 데이터로부터, 아세틸렌-산소-질소 혼합물대신에 아세틸렌-탄화수소가스-산소 혼합물을 사용한 것이 동일 코발트 함량에서 더 높은 경도를 갖는 피복을 얻을 수 있게함을 알 수 있다(시료피복 2와 시료피복 1을 비교)Each of the gaseous fuel-oxidant mixtures of the compositions shown in Table 5 was introduced into an explosion gun to produce an explosive mixture having an atomic ratio of oxygen to carbon, also shown in Table 5. The coating powder was sample C and the fuel-oxidant mixture is also shown in Table 5. The gas flow rate is 13.5 ft3 / min (cfm) and the feed rates are as shown in Table 5. As in Example 1, Bigcurs hardness and erosion rate (μ / gm) were determined and shown in Table 5. From the Vickers hardness data, it can be seen that using an acetylene-hydrocarbon-oxygen mixture instead of an acetylene-oxygen-nitrogen mixture yields a coating with a higher hardness at the same cobalt content (Sample Coating 2 and Sample Coating). Compare 1)

[표 5]TABLE 5

분말 C로부터 만든 피복의 D-건 매개변수 및 성질D-Gun Parameters and Properties of Coatings Made from Powder C

Figure kpo00005
Figure kpo00005

[실시예 5]Example 5

표 6에 제시된 조성의 가스형 연료-산화제 혼합물을 폭발건에 각각 유입시켜 역시 표 6에 나타난 산소대 탄소으 원자비를 갖는 폭발성 혼합물을 만든다. 피복분말은 시료 D였었고, 연료-산하제 혼합물 또한 표 6에 나타내었다. 가스유동속도는 시료피복 17,18 및 19가 11.0ft3/분(cfm)인 것을 제외하고는 13.5cfm였었고 공급속도는 46.7g/분(gpm)였었다. 실시예 1에서와 같이, 빅커어스 경도 및 침실율(μ/gm)을 결정해 이들 데이터를 표 6에 나타내었다. 이 빅커어스 경도 데이터로 부터, 아세틸렌-산소-질소혼합물 대신에 아세틸렌-탄화수소가스-산소 혼합믈을 사용한 것이 동일 코발트 함량에서 더 높은 경도를 갖거나(시료피복 5와 시료피복 17을 비교) 또는 동일 경도에 대해 더 많은 코발트 함량을 갖는(시료피복 5와 시료피복 18을 비교)피복을 만들 수 있음을 알 수 있다.Each of the gaseous fuel-oxidant mixtures of the compositions shown in Table 6 was introduced into the explosion gun to produce an explosive mixture having an atomic ratio of oxygen to carbon, also shown in Table 6. The coating powder was sample D, and the fuel-oxidant mixture is also shown in Table 6. The gas flow rate was 13.5 cfm except that sample coatings 17, 18 and 19 were 11.0 ft 3 / min (cfm) and the feed rate was 46.7 g / min (gpm). As in Example 1, Bigcus hardness and bedroom fraction (μ / gm) were determined and these data are shown in Table 6. From this Big Cus hardness data, the use of an acetylene-hydrocarbon-oxygen mixture instead of an acetylene-oxygen-nitrogen mixture has a higher hardness at the same cobalt content (compare Sample Coating 5 and Sample Coating 17) or the same. It can be seen that a coating can be made with a higher cobalt content for hardness (compare Sample 5 and Sample 18).

[표 6]TABLE 6

분말 D로부터 만든 피복의 D-건 매개변수 및 성질D-Gun Parameters and Properties of Coatings Made from Powder D

Figure kpo00006
Figure kpo00006

주 (1) 록크웰 표면경도로서 측정하여 별표(*)로 나타낸 것외에는 빅커어즈 경도로 전환됨NOTE (1) Measurements as Rockwell Surface Hardness, converted to Vickers Hardness, except as indicated by an asterisk (*).

본 발명의 사상을 벗어남이 없이 다른 여러 가지 실시들이 있을 수 있으며, 상기한 실시예들은 본 발명을 예시하기 위한 것이지 이들로서 본 발명을 한정하려는 것은 아니다.There may be other various implementations without departing from the spirit of the invention, and the above-described embodiments are intended to illustrate the invention and are not intended to limit the invention thereto.

Claims (29)

a) 산화제와 (b) 포화 및 불포화 탄화수소들의 그룹으로부터 선택된 적어도 2개의 연소성 가스들의 연료 혼합물로 구성됨을 특징으로 하는, 포갈건에 사용하기위한 가스형 연료-산화제 혼합물.A gaseous fuel-oxidant mixture for use in a foal gun, characterized in that it comprises a) an oxidant and (b) a fuel mixture of at least two combustible gases selected from the group of saturated and unsaturated hydrocarbons. 제 1 항에 있어서, 연료혼합물은 아세틸렌과 ; 프로필렌, 메탄, 에틸렌, 메틸아세틸렌, 프로판, 펜탄, 부타디엔, 부틸렌, 부탄, 산화에틸렌, 에탄, 시클로프로판, 프로파디엔, 시클로부탄 및 이들의 혼합물로 구성되는 그룹으로부터 선택된 제 2의 연소성 가스의 혼합물로 구성됨을 특징으로 하는 가스형 연료-산화제혼합물.The fuel mixture of claim 1, wherein the fuel mixture is acetylene; Of a second combustible gas selected from the group consisting of propylene, methane, ethylene, methylacetylene, propane, pentane, butadiene, butylene, butane, ethylene oxide, ethane, cyclopropane, propadiene, cyclobutane and mixtures thereof A gaseous fuel-oxidant mixture, characterized in that it consists of a mixture. 제 2 항에 있어서, 산화제가 산소, 이산화질소 및 이들의 혼합물로 구성되는 그룹으로부터 선택됨을 특징으로 하는 가스형 연료-산화제 혼합물.3. The gaseous fuel-oxidant mixture according to claim 2, wherein the oxidant is selected from the group consisting of oxygen, nitrogen dioxide and mixtures thereof. 제 3 항에 있어서, 혼합물이 0.9∼2.0의 산소대 탄소의 원자비를 갖음을 특징으로 하는 가스형 연료-산화제 혼합물.4. The gaseous fuel-oxidant mixture according to claim 3, wherein the mixture has an atomic ratio of oxygen to carbon of 0.9 to 2.0. 제 4 항에 있어서, 제 2의 연소성 가스가 프로필렌, 프로판 및 부틸렌으로 구성되는 그룹으로부터 선택되고, 산소대 탄소의 원자비가 0.95∼1.6임을 특징으로 하는 가스형 연료-산화제 혼합물.5. The gaseous fuel-oxidant mixture according to claim 4, wherein the second combustible gas is selected from the group consisting of propylene, propane and butylene, and the atomic ratio of oxygen to carbon is 0.95 to 1.6. 제 4 항에 있어서, 제 2의 연소성 가스가 프로필렌으로 구성됨을 특징으로 하는 가스형 연료-산화제 혼합물.5. The gaseous fuel-oxidant mixture according to claim 4, wherein the second combustible gas consists of propylene. 제 1 항에 있어서, 혼합물이 35∼80부피%의 산화제, 2∼50부피%의 아세틸렌 및 2∼60 부피%의 제 2연소성 가스를 함유함을 특징으로 하는 가스형 연료-산화제 혼합물.The gaseous fuel-oxidant mixture according to claim 1, wherein the mixture contains 35 to 80% by volume of oxidant, 2 to 50% by volume of acetylene and 2 to 60% by volume of a second combustible gas. 제 7 항에 있어서, 혼합물이 45∼70 부피%의 산소, 7∼45%의 아세틸렌 및 10∼45 부피%의 제 2연소성 가스를 함유함을 특징으로 하는 가스형 연료-산화제 혼합물.8. The gaseous fuel-oxidant mixture according to claim 7, wherein the mixture contains 45 to 70 volume percent oxygen, 7 to 45 percent acetylene and 10 to 45 volume percent second combustible gas. 제 8 항에 있어서, 혼합물이 50∼65 부피%의 산소, 12∼26 부피%의 아세틸렌 및 18∼30 부피%의 제 2연소성 가스를 함유함을 특징으로 하는 가스형 연료-산화제 혼합물.9. The gaseous fuel-oxidant mixture according to claim 8, wherein the mixture contains 50 to 65 volume percent oxygen, 12 to 26 volume percent acetylene and 18 to 30 volume percent second combustible gas. 제 9 항에 있어서, 제 2연소성 가스가 프로필렌으로 구성됨을 특징으로 하는 가스형 연료-산화제 혼합물.10. The gaseous fuel-oxidant mixture according to claim 9, wherein the second combustible gas consists of propylene. 제 1,3 또는 4 항에 있어서,혼합물이 불활성 희석가스를 함유함을 특징으로 하는 가스형 연료-산화제 혼합물.The gaseous fuel-oxidant mixture according to claim 1, 3 or 4, characterized in that the mixture contains an inert diluent gas. 제 11 항에 있어서, 불활성 희석 가스가 아르곤, 네온, 크립톤,크세논, 헬륨 및 질소로 구성되는 그룹으로부터 선택됨을 특징으로 하는 가스형 연료-산화제 혼합물.12. The gaseous fuel-oxidant mixture according to claim 11, wherein the inert diluent gas is selected from the group consisting of argon, neon, krypton, xenon, helium and nitrogen. 제 12 항에 있어서, 불활성 희석 가스가 질소임을 특징으로 하는 가스형 연료-산화제 혼합물.13. The gaseous fuel-oxidant mixture according to claim 12, wherein the inert diluent gas is nitrogen. 폭발성 혼합물을 만들기 위해 원하는 연료와 산화제 가스들을 폭발건속으로 유입시키는 단계와, 이 피복재료가 피복될 제품위로 부딛쳐 피복되도록 연료-산화제 혼합물을 폭발시키는 단계로 구성되는, 폭발건에 의한 불꽃도금 방법에 있어서, (a) 산화제와 ; (b) 포화 및 불포화 탄화수소으 그룹으로부터 선택된 적어도 2개으 연소성 가스들의 연료 혼합물의 폭발성 연료-산화제 혼합물을 사용함을 특징으로 하는 폭발건에 의한 불꽃도금방법.Exploding gun flame plating method comprising the steps of introducing a desired fuel and oxidant gases into the explosion gun to form an explosive mixture, and exploding the fuel-oxidant mixture such that the coating material is coated over the product to be coated. (A) an oxidizing agent; and (b) using an explosive fuel-oxidant mixture of a fuel mixture of at least two combustible gases selected from the group of saturated and unsaturated hydrocarbons. 제 14 항에 있어서, 산화제는 산소, 아산화질소 및 이들의 혼합물로 구성되는 그룹으로부터 선택되고, 연료혼합물은 아세틸렌과 ; 프로필렌, 메탄, 에틸렌, 메틸아세틸렌, 프로판, 펜탄, 부타디엔, 부틸렌, 부탄, 산화에틸렌, 에탄, 시클로프로판, 프로파디엔, 시클로부탄 및 이들의 혼합물들로 구성되는 그룹으로부터 선택된 제 2의 연소성 가스들의 혼합물로 구성된 것을 사용함을 특징으로 하는 방법.15. The fuel mixture of claim 14, wherein the oxidant is selected from the group consisting of oxygen, nitrous oxide, and mixtures thereof, wherein the fuel mixture is selected from the group consisting of acetylene; A second combustible gas selected from the group consisting of propylene, methane, ethylene, methylacetylene, propane, pentane, butadiene, butylene, butane, ethylene oxide, ethane, cyclopropane, propadiene, cyclobutane and mixtures thereof Characterized in that it consists of a mixture of these compounds. 제 15 항에 있어서 혼합물이 불활성 희석 가스를 함유함을 특징으로 하는 방법.The method of claim 15 wherein the mixture contains an inert diluent gas. 제 14 항에 있어서, 혼합물이 0.9∼2.0의 산소대 탄소으 원자비를 갖음을 특징으로 하는 방법.15. The process of claim 14, wherein the mixture has an atomic ratio of oxygen to carbon of 0.9 to 2.0. 제 17 항에 있어서, 제 2의 가스는 프로필렌, 프로판 및 부틸렌으로 구성되는 그룹으로부터 선택되고, 산소대 탄소의 원자비가 0.95∼1.6임을 특징으로 하는 방법.18. The method of claim 17, wherein the second gas is selected from the group consisting of propylene, propane and butylene, wherein the atomic ratio of oxygen to carbon is 0.95 to 1.6. 제 18 항에 있어서, 제 2의 연소성 가스가 프로필렌으로 구성됨을 특징으로 하는 방법.19. The method of claim 18, wherein the second combustible gas consists of propylene. 제 15 항에 있어서, 혼합물이 45∼70 부피%의 산화제, 7∼45 부피%의 아세틸렌 및 10∼45 부피%의 제 2연소성 가스를 함유함을 특징으로 하는 방법.16. The process according to claim 15, wherein the mixture contains 45 to 70 volume percent oxidant, 7 to 45 volume percent acetylene and 10 to 45 volume percent second combustible gas. 제 19 항에 있어서, 혼합물이 50∼65 부피%의 산소, 12∼26 부피%의 아세틸렌 및 18∼30 부피%의 프로필렌을 함유함을 특징으로 하는 방법.20. The process of claim 19, wherein the mixture contains 50 to 65 volume percent oxygen, 12 to 26 volume percent acetylene and 18 to 30 volume percent propylene. 혼합 및 발화실과 배럴부를 갖고 있는 폭발건의 조작방법으로, 원하는 연료 및 산화제 가스를 상기 혼합 및 발화실을 통해 상기 건으로 유입시키고, 상기 배럴부로 분쇄된 피복재료를 유입시키며, 이 피복재료가 피복될 제품위로 부딛쳐 피복되도록 상기 건내의 혼합물을 폭발시키는 폭발건의 조작방법에 있어서,(a) 산화제와 (b) 포화 및 불포화 탄화수소 가스들의 그룹으로부터 선택된 적어도 2개의 연소성 가스들의 연료혼합물의 폭발성 연료-산화제 혼합물을 사용함으로 특징으로 하는 폭발건 조작방법.A method of operating an explosive gun having a mixing and ignition chamber and a barrel, wherein a desired fuel and oxidant gas is introduced into the gun through the mixing and ignition chamber, the crushed coating material is introduced into the barrel, and the product to be coated is coated. A method of operating an explosive gun that explodes a mixture in the gun so as to clasp upwards, the explosive fuel-oxidant mixture of a fuel mixture of (a) an oxidant and (b) at least two combustible gases selected from the group of saturated and unsaturated hydrocarbon gases. Operation method of the explosion gun characterized by using. 제 21 항에 있어서, 산화제는 산소, 아산화질소, 및 이들의 혼합물로 구성되는 그룹으로부터 선택되고, 연료혼합물은 아세틸렌과; 프로필렌, 메탄, 에틸렌, 메틸아세틸렌, 프로판, 펜탄, 부타디엔, 부틸렌, 부탄, 산화에틸렌, 에탄, 시클로프로판, 프로파디엔, 시클로부탄 및 이들의 혼합물로 구성되는 그룹으로부터 선택된 제 2의 연소성 가스의 혼합물로 구성된 것을 사용함을 특징으로 하는 방법.22. The method of claim 21, wherein the oxidizing agent is selected from the group consisting of oxygen, nitrous oxide, and mixtures thereof, the fuel mixture comprising acetylene; Of a second combustible gas selected from the group consisting of propylene, methane, ethylene, methylacetylene, propane, pentane, butadiene, butylene, butane, ethylene oxide, ethane, cyclopropane, propadiene, cyclobutane and mixtures thereof Characterized in that it consists of a mixture. 제 23 항에 있어서, 혼합물이 불활성 희석 가스를 함유함을 특징으로 하는 방법.The method of claim 23 wherein the mixture contains an inert diluent gas. 제 23 항에 있어서,혼합물이 0.9∼2.0의 산소대 탄소의 원자비를 갖음을 특징으로 하는 방법.The method of claim 23, wherein the mixture has an atomic ratio of oxygen to carbon of 0.9 to 2.0. 제 25 항에 있어서, 제 2 의 연소성 가스가 프로판, 프로필렌 및 부틸렌으로 구성되는 그룹으로부터 선택되고, 산소대 탄소의 원자비가 0.95∼1.6임을 특징으로 하는 방법.26. The method of claim 25, wherein the second combustible gas is selected from the group consisting of propane, propylene and butylene, and the atomic ratio of oxygen to carbon is 0.95 to 1.6. 제 26 항에 있어서, 제 2의 연소성 가스가 프로필렌으로 구성됨을 특징으로 하는 방법.27. The method of claim 26, wherein the second combustible gas consists of propylene. 제 27 항에 있어서, 혼합물이 45∼70 부피%의 산화제, 7∼45 부피%의 아세틸렌 및 10∼45 부피%의 제 2연소성 가스를 함유함을 특징으로 하는 방법.28. The process of claim 27 wherein the mixture contains 45-70 volume percent oxidant, 7-45 volume percent acetylene and 10-45 volume percent second combustible gas. 제 27 항에 있어서, 혼합물이 50∼65 부피%의 산소, 12∼26 부피%의 아세틸렌 및 18∼30부피%의 프로필렌을 함유함을 특징으로 하는 방법.28. The process of claim 27 wherein the mixture contains 50-65 volume percent oxygen, 12-26 volume percent acetylene and 18-30 volume percent propylene.
KR1019880002892A 1987-10-21 1988-03-18 Fuel-oxidant mixtures for explosive gun flame plating and flame plating methods in explosive guns Expired KR920004504B1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US11084187A 1987-10-21 1987-10-21
US110841 1987-10-21
US110,841 1987-10-21
US07/146,723 US4902539A (en) 1987-10-21 1988-02-04 Fuel-oxidant mixture for detonation gun flame-plating
US146723 1988-02-04
US146,723 1988-02-04

Publications (2)

Publication Number Publication Date
KR890006848A KR890006848A (en) 1989-06-16
KR920004504B1 true KR920004504B1 (en) 1992-06-08

Family

ID=26808432

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019880002892A Expired KR920004504B1 (en) 1987-10-21 1988-03-18 Fuel-oxidant mixtures for explosive gun flame plating and flame plating methods in explosive guns

Country Status (6)

Country Link
KR (1) KR920004504B1 (en)
CN (1) CN1022637C (en)
AU (1) AU616172B2 (en)
BR (1) BR8801187A (en)
CA (1) CA1312732C (en)
PT (1) PT86965B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100276642B1 (en) * 1996-12-09 2001-01-15 이구택 Low melting point alloy explosion spray coating method using propane gas
EP2209876A4 (en) * 2007-11-09 2014-01-08 Firestar Engineering Llc Nitrous oxide fuel blend monopropellants
CN117483931B (en) * 2024-01-03 2024-04-23 四川钛程钛业有限公司 Explosion welding preparation method of novel marine metal composite board

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2501713A1 (en) * 1981-03-16 1982-09-17 Air Liquide TERNARY FUEL WITH SUBSTANTIALLY CONSTANT ACETYLENE CONTENT IN LIQUID AND STEAM PHASES

Also Published As

Publication number Publication date
CN1032670A (en) 1989-05-03
BR8801187A (en) 1989-05-23
CN1022637C (en) 1993-11-03
KR890006848A (en) 1989-06-16
AU1286788A (en) 1989-04-27
AU616172B2 (en) 1991-10-24
PT86965B (en) 1992-11-30
PT86965A (en) 1989-07-31
CA1312732C (en) 1993-01-19

Similar Documents

Publication Publication Date Title
EP0313176B2 (en) Fuel-oxidant mixture for detonation gun flame-plating
CA2136147C (en) Thermal spray powder of tungsten carbide and chromium carbide
US2861900A (en) Jet plating of high melting point materials
US6641917B2 (en) Spray powder and method for its production
US9487854B2 (en) Amorphous-nanocrystalline-microcrystalline coatings and methods of production thereof
KR100259482B1 (en) Method for preparing a transition metal-chromium-aluminum-yttrium base coating and a substrate including the same
US5075129A (en) Method of producing tungsten chromium carbide-nickel coatings having particles containing three times by weight more chromium than tungsten
US4826734A (en) Tungsten carbide-cobalt coatings for various articles
US2972550A (en) Flame plating using detonation reactants
US3071489A (en) Process of flame spraying a tungsten carbide-chromium carbide-nickel coating, and article produced thereby
TW198730B (en)
US2976166A (en) Metal oxide containing coatings
KR920004504B1 (en) Fuel-oxidant mixtures for explosive gun flame plating and flame plating methods in explosive guns
Li et al. Effect of WC particle size on the abrasive wear of thermally sprayed WC-Co coatings
Korpiola et al. Effect of HVOF gas velocity and fuel to oxygen ratio on the wear properties of tungsten carbide coating
RU1830085C (en) Gaseous mixture for detonation coating spraying
US2965474A (en) Reduction of metal oxides
Laul et al. New chromium carbide–nickel chrome materials for high temperature wear applications
Fagoaga et al. High Frequency Pulse Detonation (HFPD): Processing Parameters
KR890005128B1 (en) Wear and corrosion resistant coatings and articles and method for producing the same
Fauchais et al. Combustion spraying systems
Mchedlov Thermal spraying in hardening and reconditioning of machine components: Part 1. Gas flame and detonation spraying
Huhne et al. Recent Advances in HVOF-Spraying Using Acetylene and Other Gases

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 19880318

PG1501 Laying open of application
A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 19900319

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 19880318

Comment text: Patent Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 19911217

Patent event code: PE09021S01D

G160 Decision to publish patent application
PG1605 Publication of application before grant of patent

Comment text: Decision on Publication of Application

Patent event code: PG16051S01I

Patent event date: 19920507

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 19920903

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 19921006

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 19921006

End annual number: 3

Start annual number: 1

PR1001 Payment of annual fee

Payment date: 19930326

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 19960530

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 19970530

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 19980603

Start annual number: 7

End annual number: 7

PR1001 Payment of annual fee

Payment date: 19990601

Start annual number: 8

End annual number: 8

PR1001 Payment of annual fee

Payment date: 20000603

Start annual number: 9

End annual number: 9

PR1001 Payment of annual fee

Payment date: 20010605

Start annual number: 10

End annual number: 10

PR1001 Payment of annual fee

Payment date: 20020531

Start annual number: 11

End annual number: 11

PR1001 Payment of annual fee

Payment date: 20030529

Start annual number: 12

End annual number: 12

FPAY Annual fee payment

Payment date: 20040601

Year of fee payment: 13

PR1001 Payment of annual fee

Payment date: 20040601

Start annual number: 13

End annual number: 13

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee