KR910008029B1 - The making method of w-cu fusion alloy - Google Patents

The making method of w-cu fusion alloy Download PDF

Info

Publication number
KR910008029B1
KR910008029B1 KR1019890020168A KR890020168A KR910008029B1 KR 910008029 B1 KR910008029 B1 KR 910008029B1 KR 1019890020168 A KR1019890020168 A KR 1019890020168A KR 890020168 A KR890020168 A KR 890020168A KR 910008029 B1 KR910008029 B1 KR 910008029B1
Authority
KR
South Korea
Prior art keywords
tungsten
alloy
nickel
copper
infiltration
Prior art date
Application number
KR1019890020168A
Other languages
Korean (ko)
Other versions
KR910011369A (en
Inventor
이재성
Original Assignee
이재성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이재성 filed Critical 이재성
Priority to KR1019890020168A priority Critical patent/KR910008029B1/en
Publication of KR910011369A publication Critical patent/KR910011369A/en
Application granted granted Critical
Publication of KR910008029B1 publication Critical patent/KR910008029B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties

Abstract

An infiltrated W-Cu alloy is produced by adding 0.3-1 wt.% Ni-P alloy to W powder of 1-10μ particle size by the electroless plating to form a mixed powder, molding the mixed powder to form a green compact, and infiltrating the green compact with Cu in the furnace of hydrogen or ammonia gas stream at 1100-1200 deg.C for 20min or less. The W-Cu alloy is useful as a very high pressure electric contact material.

Description

텅스텐-동 (W-Cu)계 용침합금의 제조방법Manufacturing Method of Tungsten Copper (W-Cu) Infiltration Alloy

제1도는 선행기술의 일반적인 텅스텐-동계 용침합금 제조방법의 개요도.1 is a schematic view of a general tungsten-copper infiltration alloy manufacturing method of the prior art.

제2도는 본 발명의 텅스텐-동계 용침합금 제조방법의 개요도.2 is a schematic view of a tungsten-copper infiltration alloy manufacturing method of the present invention.

제3도는 수소 분위기하에서 150℃/분의 속도로 1150℃ 온도까지 가열한 후 냉각시킨 텅스텐 분말 압분체 골격구조의 주사전자현미경사진으로서,3 is a scanning electron micrograph of a tungsten powder green compact skeleton structure heated and cooled to a temperature of 1150 ° C. at a rate of 150 ° C./min in a hydrogen atmosphere,

제3a도는 본 발명에 따라 무전해 도금법으로 니켈-인(Ni-P)합금을 첨가한 텅스텐 분말 압분체의 골격구조이고,3a is a skeleton structure of a tungsten powder green compact in which a nickel-phosphorus (Ni-P) alloy is added by an electroless plating method according to the present invention;

제3b도는 니켈-인(Ni-P) 합금을 첨가하지 않은 선행기술의 텅스텐 분말 압분체의 골격구조임.3b is a skeletal structure of a prior art tungsten powder compact without addition of a nickel-phosphorus (Ni-P) alloy.

제4도는 텅스텐-동계 용침합금 미세구조의 주사전자현미경 사진으로서,4 is a scanning electron micrograph of the tungsten-copper infiltration alloy microstructure,

제4a도는 본 발명에 따라 제조된 용침합금 미세구조이고,Figure 4a is a infiltration alloy microstructure prepared according to the present invention,

제4b도는 선행기술에 따라 제조된 용침합금 미세구조임.Figure 4b is an infiltration alloy microstructure prepared according to the prior art.

제5도는 본 발명에 따라 니켈-인 합금이 첨가된 텅스텐-동계 용침합금, 및 선행기술의 용침합금의 전기접점특성(접점개폐빈도에 따른 접촉저항 변화)을 나타낸 그래프.5 is a graph showing the electrical contact characteristics (change in contact resistance according to contact opening and closing frequency) of a tungsten-copper infiltration alloy to which a nickel-phosphorus alloy is added and a prior art infiltration alloy according to the present invention.

본 발명은 초고압 전기접점재로서 유용한 텅스텐-동(W-Cu)계 용침합금의 개선된 제조방법, 좀 더 상세히는, 소량의 니켈-인(Ni-P)합금을 무전해 도금법으로 첨가시킨 텅스텐-동계 용침합금의 제조방법에 관한 것이다.The present invention provides an improved method for producing a tungsten-copper (W-Cu) -based infiltration alloy, which is useful as an ultra-high pressure electrical contact material, and more specifically, a tungsten in which a small amount of nickel-phosphorus (Ni-P) alloy is added by electroless plating. It relates to a method for producing a winter infiltration alloy.

텅스텐-동계 용침합금은 초고압 전기접점재로서 매우 유용하며, 분말야금 기술인 용침법을 이용하여 텅스텐 분말성형압분체(소결체)에 동을 용침시켜 제조된다. 선행기술에 있어서 전형적인 텅스텐-동계 용침합금의 제조방법은, 제1도에 개략적으로 설명되어 있는 바와 같이, 평균입자 약 5미크론의 텅스텐분말을 압축성형한 텅스텐압분체를 1차소결처리한 후 소결체상부에 용침동(Cu)을 얹고 다시 열처리함으로써 용융된 동이 텅스텐 소결골격체내의 미세기공으로 스며들어가게 하는 2단계 공정으로 구성되어 있다.Tungsten-copper infiltration alloys are very useful as ultra-high pressure electrical contact materials, and are prepared by infiltration of copper in tungsten powder compacts (sintered compacts) using powder metallurgical infiltration. A typical tungsten-copper infiltration alloy in the prior art is a sintered compact after primary sintering of a tungsten powder obtained by compression molding a tungsten powder having an average particle of about 5 microns as outlined in FIG. It is composed of a two-step process by placing molten copper (Cu) on the top and heat treatment again to allow molten copper to penetrate into the micropores in the tungsten sintered framework.

이때, 일반적인 열처리 조건은 1차 소결처리 및 2차 열처리 모두다 분해 암모니아 또는 수소기권하 1200-1250℃에서 약 1시간 동안 행하는 것이다. 텅스텐 압분체를 1차 소결처리하는 근본적인 이유는 텅스텐 압분체(골격체)가 취급상 충분한 강도를 갖도록 하기 위한 것이다. 그러나, 일반적인 제조방법에서 사용되는 1200-1250℃의 온도에서는 만족할만한 강도를 얻기 어려우며, 특히, 낮은 소결온도로 인하여, 결과의 소결텅스텐 골격체의 기공구조가 소결전의 다각형 구조를 거의 그대로 유지하는 텅스텐 분말구조에 의하여 거칠고 불규칙한 형태(제3b도 참조)를 이룬다. 즉, 제3b도의 조직사진에서 보듯이, 선행기술에 따라 미량(약 0.3wt%)의 Ni를 첨가하여 소결시킨 텅스텐 분말입자의 경우 크기가 매우 불규칙하며 무디게 각이진 입자들(사진중 흰부분)로 분말 골격체의 구조가 형성된다. 따라서, 이들 텅스텐 입자 사이에 존재하는 기공구조(사진중 검은 부분) 또한 골격체구조와 상응하는 형상을 유지하게 되어 결과적으로 직경의 크기가 매우 불규칙하며 표면상태도 들쑥날쑥한 모양을 갖는 기공통로를 형성하게 된다. 그러므로, 후속공정인 동용침과정도 바람직하지 못한 상태로 진행될 수 있다.In this case, general heat treatment conditions are performed for about 1 hour at 1200-1250 ° C. under decomposition ammonia or hydrogen gas in both the primary sintering treatment and the secondary heat treatment. The primary reason for the primary sintering of tungsten green compacts is to ensure that the tungsten green compacts (skeleton) have sufficient strength for handling. However, it is difficult to obtain a satisfactory strength at a temperature of 1200-1250 ° C. used in a general manufacturing method, and in particular, due to the low sintering temperature, the pore structure of the resulting sintered tungsten skeleton keeps the polygonal structure before sintering almost intact. The powder structure gives a rough and irregular shape (see also 3b). That is, as shown in the tissue photograph of FIG. 3b, the tungsten powder particles sintered by adding a trace amount (about 0.3 wt%) of Ni according to the prior art are very irregular in size and are sluggishly angled particles (white part in the picture). The structure of the powder skeleton is thus formed. Therefore, the pore structure (black part in the photo) existing between these tungsten particles also maintains the shape corresponding to the skeletal structure, resulting in a pore passage having a very irregular diameter size and a jagged surface. Done. Therefore, the subsequent agitation process may also proceed undesirably.

한편, 텅스텐압분체를 1600℃이상의 높은 온도에서 소결처리하면 충분한 소결강도를 얻을 수 있으나, 이 경우에는 초고온처리를 위한 별도의 특수장비가 필요하고 공정이 복잡해지며, 또한 경제적으로 불합리한 단점이 있으므로 실질적인 실용화가 곤란하다. 한편, 동용침단계의 가열처리조건도 1차 소결처리조건과 동일한 1200-1250℃에서 1시간 처리인데, 이는 동의 용융온도(1083℃)를 고려할 때 필요이상의 고온 및 장시간 처리조건이나, 전술한 바와 같이 1차소결처리에서의 결점 및 그에 따른 용침과정에 대한 저해요인을 극복하기 위하여 충분한 가열처리조건을 부여하는 것이다.On the other hand, if the sintered tungsten powder is sintered at a high temperature of 1600 ° C. or more, sufficient sintering strength can be obtained, but in this case, a special equipment for ultra-high temperature treatment is required, and the process is complicated and economically unreasonable. It is difficult to put it to practical use. On the other hand, the heat treatment condition of the copper infiltration step is also treated for 1 hour at 1200-1250 ° C., which is the same as the primary sintering treatment condition, which is higher than necessary in consideration of the copper melting temperature (1083 ° C.). As such, sufficient heat treatment conditions are given to overcome the drawbacks of the primary sintering treatment and the inhibitory effects on the infiltration process.

본 발명은 선행기술의 제조방법이 갖고 있는 제문제점을 해소하여, 비교적 낮은 열처리온도에서 짧은 시간 동안 열처리함에 의하여 더욱 물성이 향상된 텅스텐-동계 용침합금을 제조하는 새롭고 개선된 방법을 제공하고자 하는 것이다. 본 발명은 특히, 낮은 온도에서 짧은 시간 동안 단 1회 열처리함으로써 텅스텐-동계 합금의 소결 및 용침을 동시에 우수하게 행할 수 있는 제조방법을 제공하고자 하는 것이다.The present invention is to solve the problems of the prior art manufacturing method, to provide a new and improved method for producing a tungsten-copper infiltration alloy with improved physical properties by heat treatment for a short time at a relatively low heat treatment temperature. In particular, the present invention aims to provide a manufacturing method capable of simultaneously performing excellent sintering and infiltration of a tungsten-copper alloy by heat treatment only once at a low temperature for a short time.

본 발명에 의하여, 소량의 니켈-인 합금을 텅스텐 분말에 무전해 도금법으로 첨가·혼합하여 압분체를 형성한 후, 그 압분체에 용침동을 적용하고 1100-1200℃의 온도에서 20분이내의 짧은 시간 동안 가열함으로써, 물성이 우수한 텅스텐-동계 용침합금을 제조하는 방법이 제공된다. 제2도에 개략적으로 설명되어 있듯이, 본 발명의 제조방법은 니켈-인 합금첨가를 통하여, 종래 2단계 공정으로 실시되었던 열처리과정을 1단계 공정으로 단축시켰을 뿐만 아니라 열처리온도 및 시간도 상당히 개선시키는 특성을 갖는다. 즉, 종래의 방법에서는 1단계 및 2단계 각각 1200-1250℃에서 1시간 동안 열처리하였으나, 본 발명의 방법에서는 약 1100-1200℃에서 20분 이내로 단 1회 열처리함으로써 충분한 것이며, 오히려 결과 산출되는 텅스텐-동계 용침합금의 물성도 향상되는 것이다.According to the present invention, a small amount of nickel-phosphorus alloy is added to and mixed with tungsten powder by an electroless plating method to form a green compact, and then the melt is applied to the green compact, which is short within 20 minutes at a temperature of 1100-1200 ° C. By heating for a time, a method for producing a tungsten-copper infiltration alloy having excellent physical properties is provided. As outlined in FIG. 2, the manufacturing method of the present invention not only shortens the heat treatment process performed in the conventional two-step process to one-step process but also considerably improves the heat treatment temperature and time through the addition of nickel-phosphorus alloy. Has characteristics. That is, in the conventional method, the heat treatment was performed for 1 hour at 1200-1250 ° C. for 1 hour and the second step, respectively, but in the method of the present invention, it is sufficient by heat treatment only once within 20 minutes at about 1100-1200 ° C., rather, the resultant tungsten. -The physical properties of the winter infiltration alloy is also improved.

본 발명의 제조방법을 좀 더 상세히 설명하면, 우선 입자크기가 1-10미크론이고 평균입도가 5미크론 정도인 텅스텐 분말에 니켈-(7-12중량%)인 합금[Ni-(7-12wt%)P alloy]을 무전해 도금법으로 2중량% 이하의 양으로 첨가하여 니켈-인 함유 텅스텐 혼합분말을 형성하고 이를 압분체로 성형한다. 여기서, 텅스텐에 첨가되는 니켈-인합금에 있어서, 인의 함량이 너무 작으면 니켈 단독 사용시보다 낮은 온도로서 향상된 텅스텐 골격구조 변화를 유도할 수 없고, 너무 크면 더 이상의 효과를 기대할 수 없을 뿐 아니라 강도에 역영향을 줄 수도 있으므로 7-12중량%가 바람직하며, 10-11중량%가 특히 바람직하다. 또한, 니켈-인 합금의 텅스텐에의 첨가량이 0.1중량% 이하이면 소망되는 텅스텐 골격구조 변화를 만족스럽게 유도할 수 없고, 2.0중량% 이상이면 더 이상의 효과도 기대할 수 없을 뿐 아니라 최종 W-Cu계 합금 전기접점특성에 역영향을 줄 수도 있다. 바람직한 첨가량은 0.3중량% 내지 약 1중량%이다. 니켈-인합금의 무전해도금은 공지의 다양한 기술에 의하여 행하여 질수 있으며 특정적인 것은 아니다. 무전해도금시 전처리 단계 역시 널리 공지된 선행기술에 의하여 행하여질 수 있다. 전형적인 방법은 텅스텐 분말의 불순물 및 오염피막을 제거하기 위하여 텅스텐 분말을 800℃ 정도의 수소기체내에서 약 1시간 가열한 후 분말표면의 활성화를 위하여 약 65-75℃의 묽은 염산용액에 수분간 침적하고 증류수로 세척하는 것이다.In more detail, the preparation method of the present invention is an alloy of nickel- (7-12 wt%) in tungsten powder having a particle size of 1-10 microns and an average particle size of about 5 microns [Ni- (7-12 wt%). ) P alloy] is added in an amount of 2% by weight or less by electroless plating to form a nickel-phosphorous tungsten mixed powder, which is formed into a green compact. Here, in the nickel-phosphorous alloy added to tungsten, too small phosphorus content can lead to improved tungsten skeletal structure change at a lower temperature than when nickel alone is used, and when too large, no further effect can be expected and strength is increased. 7-12% by weight is preferred, with 10-11% by weight being particularly preferred as it may adversely affect. In addition, when the amount of nickel-phosphorus alloy added to tungsten is 0.1% by weight or less, the desired tungsten skeleton structure change cannot be satisfactorily induced, and when 2.0% by weight or more, no further effect can be expected and the final W-Cu-based It may adversely affect the alloy electrical contact characteristics. Preferred amounts of addition are from 0.3% by weight to about 1% by weight. Electroless plating of nickel-phosphorus alloy can be carried out by various known techniques and is not specific. The pretreatment step in electroless plating can also be done by well known prior art. A typical method is to heat tungsten powder in hydrogen gas at 800 ℃ for about 1 hour to remove impurities and contaminating film of tungsten powder, and then immerse for several minutes in dilute hydrochloric acid solution at about 65-75 ℃ for activation of powder surface. And wash with distilled water.

한편, 선행기술에서 널리 알려진 바와 같이, 압분체의 기공도는 용침될 동의 양에 따라 달라지는데, 소망 기공도는 압분체성형압을 조절함으로써 달성할 수 있다. 예를 들면, 요침동 함량이 20wt%인 경우 소망기공도는 약 37%이고 이를 위한 성형압은 약 2ton/cm2이 된다.On the other hand, as is widely known in the prior art, the porosity of the green compact depends on the amount of copper to be infiltrated, and the desired porosity can be achieved by controlling the green compacting pressure. For example, when the urine oscillation content is 20wt%, the desired porosity is about 37% and the molding pressure for this is about 2ton / cm 2 .

상기한 바와 같이 니켈-인 함유 텅스텐 압분체를 성형한 다음 용침동을 적용하고 수소 또는 분해암모니아 분위기하 약 1100-1200℃에서 20분 이내의 시간 동안 열처리함으로써 우수한 물성의 텅스텐-동계 용침합금이 산출되는데, 이때 열처리는 약 120-150℃/min의 속도로 1100-1200℃까지 승온시킨 후 그 온도에서 약 10분 동안 유지시켜 행하는 것이 바람직하다.As described above, a tungsten-copper infiltration alloy having excellent physical properties is obtained by forming a nickel-phosphorus-containing tungsten green compact, followed by application of a melt-precipitation and heat treatment at a temperature of about 1100-1200 ° C. under a hydrogen or decomposition ammonia atmosphere for less than 20 minutes. In this case, the heat treatment is preferably carried out by increasing the temperature to 1100-1200 ℃ at a rate of about 120-150 ℃ / min and maintained at that temperature for about 10 minutes.

한편, 동 용침단계에서 적용되는 동의 함량범위는 일반적인 텅스텐-동계 용침합금에서와 마찬가지로, 용도에 따라 약 10-40wt%이며, 바람직하게는 약 18-25중량%이다.Meanwhile, the copper content range applied in the copper infiltration step is about 10-40 wt%, preferably about 18-25 wt%, depending on the use, as in the general tungsten-copper infiltration alloy.

본 발명의 제조방법에서는, 니켈-인 합금의 첨가로 인하여, 동용침이 개시되기 전단계인 약 10분 이내의 짧은 승온단계에서 니켈-인 함유 텅스텐 압분체에서의 분말간 소결이 급속이 활성화되어 분말간 결합이 강해지고 또한 분말형태가 매끄럽게 변화되어 압분체(소결체)가 동용침에 유리한 기공구조(제3a도 참조)를 형성하게 된다. 결과적으로 이러한 골격구조를 갖는 니켈-인함유 텅스텐 소결체에서의 동용침거동은 상대적으로 낮은 온도 및 짧은 시간에서도 매우 우수하게 행하여지는 것이다.In the production method of the present invention, due to the addition of the nickel-phosphorus alloy, the powder sintering in the nickel-phosphorous tungsten green compact is rapidly activated in a short temperature rising step within about 10 minutes before the copper infiltration is started. The interbonding is strengthened and the powder form is smoothly changed so that the green compact (sintered body) forms a pore structure (see also 3a) advantageous for copper infiltration. As a result, the copper infiltration behavior in the nickel-phosphorus-containing tungsten sintered body having such a skeletal structure is performed very well even at a relatively low temperature and a short time.

이제 실시예를 통하여 본 발명을 설명한다.The present invention will now be described by way of examples.

[실시예 1]Example 1

입자크기가 1-10 미크론 범위이고 평균입자도 약 5미크론인 텅스텐분말에 니켈-인 합금을 다음과 같은 무전해도금법으로 첨가하였다.A nickel-phosphorus alloy was added to a tungsten powder having a particle size in the range of 1-10 microns and an average particle size of about 5 microns by the following electroless plating method.

무전해도금의 전처리로서, 텅스텐분말의 불순물 및 오염피막을 제거하기 위하여 텅스텐분말을 800℃ 수소 기체내에서 약 1시간 가열한 후 분말 표면의 활성화를 위하여 71℃의 5% 염산용액에 2-3분간 침적하고 증류수로 세척하였다. 무전해도금욕은 염화니켈육수화물(NiC12·6H2O), 인산나트륨(NaH2PO4)및 초산나트륨삼수화물(CH3COONa·3H2O)의 혼합수용액을 사용하였다. 증류수 1ℓ에 염화니켈육수화물 21g과 인산나트륨 24g및 초산나트륨산화물 10g을 첨가혼합하여 도금용액의 pH 및 온도를 각각 5.4및 90℃로 유지시킨 다음, 전처리된 텅스텐 분말 250g을 혼입하였다. 무전해도금은 반응개시촉진제로서 철편을 담근 상태에서 분말을 교반하여 행하였다. 도금처리된 텅스텐분말을 2-3회 수세 및 탈수하고 55℃에서 6시간 진공건조처리시켰다. 화학분석 결과, 도금시간 3분 후 0.3중량%의 니켈-인 합금이 텅스텐 분말에 피복되었으며, 도금된 합금의 조성은 니켈-11.2중량%인이었다.As a pretreatment for electroless plating, the tungsten powder is heated in 800 ° C hydrogen gas for about 1 hour to remove impurities and contaminant coating of the tungsten powder, followed by 2-3 to 5% hydrochloric acid solution at 71 ° C for activation of the powder surface. It was deposited for a minute and washed with distilled water. As the electroless plating bath, a mixed aqueous solution of nickel chloride hexahydrate (NiC1 2 · 6H 2 O), sodium phosphate (NaH 2 PO 4 ), and sodium acetate trihydrate (CH 3 COONa · 3H 2 O) was used. 21 g of nickel chloride hexahydrate, 24 g of sodium phosphate, and 10 g of sodium acetate oxide were added and mixed in 1 L of distilled water to maintain the pH and temperature of the plating solution at 5.4 and 90 ° C., respectively, followed by mixing 250 g of the pretreated tungsten powder. Electroless plating was performed by stirring the powder in a state where iron pieces were soaked as a reaction initiation accelerator. The plated tungsten powder was washed 2-3 times with water and dehydrated and vacuum dried at 55 ° C. for 6 hours. As a result of chemical analysis, 0.3 wt% of nickel-phosphorus alloy was coated on the tungsten powder after 3 minutes of plating time, and the composition of the plated alloy was nickel-11.2 wt%.

도금처리된 니켈-인 함유 텅스텐 분말 100g을 약 2ton/㎠의 성형압으로 가압·성형하여 기공도가 약 37%인 압분체를 제조하고, 그 상부에 용침동 25g을 적용하여 로(furnace)내로 장입하였다. 수소 기권하에서 로의 온도를 150℃/min의 속도로 1150℃의 온도까지 승온시킨 다음 그 온도에서 9분 동안 유지시켜 용침을 완료하였다. 결과, 동함량 20wt%의 텅스텐-동계 용침합금을 산출하였다.100 g of plated nickel-phosphorous tungsten powder was pressurized and molded at a molding pressure of about 2 ton / cm 2 to prepare a green compact having a porosity of about 37%, and 25 g of a molten metal was applied to the top of the furnace. Charged. In the hydrogen atmosphere, the furnace temperature was raised to a temperature of 1150 ° C. at a rate of 150 ° C./min, and then maintained at that temperature for 9 minutes to complete the infiltration. As a result, a tungsten-copper infiltration alloy having a copper content of 20 wt% was calculated.

한편, 비교를 목적으로, 선행기술의 일반적인 방법에 따라서, 텅스텐 분말(평균입 : 5미크론)을 기공도 약37%의 압분체로 성형한 후, 이를 수소 기권하로내에서 150℃/min의 속도로 1250℃의 온도까지 승온시켜 1시간 동안 유지시키고, 냉각시킨 후, 결과의 텅스텐 소결체에 용침동을 적용하고 다시 150℃/min의 속도로 1200℃의 온도까지 승온시켜 1시간 동안 용침을 행하여 동함량 20중량%의 텅스텐-동계 용침합금을 산출하였다.On the other hand, for the purpose of comparison, according to the general method of the prior art, a tungsten powder (average particle: 5 microns) was formed into a green compact having a porosity of about 37%, and then, at a rate of 150 ° C./min in a hydrogen atmosphere. The furnace was heated to a temperature of 1250 ° C. and maintained for 1 hour. After cooling, the resultant tungsten sintered body was applied to the resulting tungsten sintered body, and again heated to a temperature of 1200 ° C. at a rate of 150 ° C./min. A tungsten-copper infiltration alloy having a content of 20% by weight was calculated.

상기한 바와 같이 제조된 본 발명의 텅스텐-동계 용침합금 및 선행기술의 텅스텐-동계 용침합금의 미세구조를 주사전자현미경으로 관찰하고 그 사진을 제4도에 도시하였다.The microstructures of the tungsten-copper immersion alloy of the present invention prepared as described above and the tungsten-copper immersion alloy of the prior art were observed with a scanning electron microscope and the photograph is shown in FIG.

제4도에서 보듯이, 본 발명의 용침합금 제4a도는 강한 결합구조를 형성하는 텅스텐 골격사이에 용침된 동이 균일하게 분포되어 치밀하고 균질한 미세조직을 갖는 반면, 선행기술의 용침합금 제4b도는 텅스텐 골격이 초기의 다각형 분말구조를 유지하여 용침된 동의 분포가 불균일하고 조직이 덜 치밀하였다.As shown in FIG. 4, the infiltration alloy 4a of the present invention has a dense and homogeneous microstructure by uniformly distributing copper between tungsten skeletons forming a strong bonding structure, while the infiltration alloy 4b of the prior art is The tungsten skeleton retained the initial polygonal powder structure, resulting in uneven distribution of copper and less dense texture.

한편, 각각의 용침합금으로 초고압 전기접점재를 제조하여 그 전기적 특성을 다음과 같이 측정 평가하였다. 즉, 교류전류 220V-30A 부하조건에서 접촉력 500g, 개리력 300g, 개폐속도 2㎝/sec 및 개폐빈도 1회/초 통전 개폐조건으로 개폐시험을 행하여 개폐빈도에 다른 접촉저항의 변화를 제5도에 도시하였다.On the other hand, the ultra-high voltage electrical contact material was manufactured from each infiltration alloy, and its electrical characteristics were measured and evaluated as follows. That is, the contact force 500g, the opening force 300g, the switching speed 2cm / sec and the switching frequency 1 / sec. Shown in

도면에서 보듯이, 본 발명에 따라 니켈-인을 첨가한 텅스텐-동계 접점재가 선행기술에 의한 접점재에 비하여 매우 낮은 접촉저항의 증가를 나타내었다. 또한, 12000회 개폐시험 후 측정한 아크 소모량에서도 선행기술의 텅스텐-동 접점재가 35mg 인데 반하여 본 발명의 텅스텐-동 접점재는 12mg이었는 바, 니켈-인 합금 첨가에 의하여 제조된 본 발명의 텅스텐-동계 용침합금이 선행기술에 의한 순수 텅스텐-동계 용침합금에 비하여 월등히 우수한 전기접점특성을 가짐을 알 수 있다.As shown in the figure, according to the present invention, the tungsten-copper contact material added with nickel-phosphorus exhibited a very low increase in contact resistance compared to the contact material according to the prior art. In addition, the tungsten-copper contact material of the present invention was 12 mg, whereas the tungsten-copper contact material of the present invention was 12 mg even in the arc consumption measured after 12,000 opening and closing tests. It can be seen that the infiltration alloy has superior electrical contact characteristics compared to the pure tungsten-copper infiltration alloy according to the prior art.

[실시예 2-5]Example 2-5

다음표에 표기한 바와 같이, 니켈-인 합금 조성 및 첨가량, 텅스텐 압분체 기공도, 용침동 함량 및 용침조건을 달리하여, 실시예 1에서의 방법에 따라 텅스텐-동계 용침합금들을 제조하였다.As shown in the following table, tungsten-copper infiltration alloys were prepared according to the method of Example 1, by varying the nickel-phosphorus alloy composition and addition amount, tungsten compact porosity, infiltration content and infiltration conditions.

한편, 용침조건에 있어서, 용침온도까지의 승온가열속도는 약 120-150℃/min로 행하여졌다.On the other hand, in the infiltration conditions, the heating rate of heating up to the infiltration temperature was performed at about 120-150 ° C / min.

결과 산출된 텅스텐-동계 용침금속들의 미세구조 및 전기접점특성을 분석시험한 결과, 실시예 1에서 제조된 용침합금과 거의 동일한 미세구조 및 전기접점특성을 나타내었다.As a result of analyzing and analyzing the microstructure and electrical contact characteristics of the resulting tungsten copper-based infiltrating metals, the microstructure and electrical contact characteristics were almost the same as those of the infiltration alloy prepared in Example 1.

[표 1]TABLE 1

Figure kpo00001
Figure kpo00001

(비고) 상기 %에서, 기공도의 경우는 부피에 대한 %이고, 나머지는 모두 중량에 대한 %임.(Note) In the above%, the porosity is% by volume, the rest are% by weight.

이상에서 설명하였듯이, 본 발명은 텅스텐-동계 용침합금 제조에 있어서 소결(용침) 열처리전 텅스텐 분말에 소량의 니켈-인 합금을 무전해도금 첨가함에 의하여, 부수적인 1차소결처리없이 상대적으로 낮은 온도에서 짧은 시간 동안 1단계 용침공정으로서, 종래의 텅스텐-동계 용침합금보다 우수한 금속학적 특성 및 전기접점특성을 갖는, 텅스텐-동계 용침합금을 제조하는 매우 경제적이고, 개선된 방법을 제공하는 것이다.As described above, the present invention provides a relatively low temperature without ancillary primary sintering treatment by electroless plating of a small amount of nickel-phosphorus alloy to the tungsten powder before sintering (annealing) heat treatment in the production of tungsten copper-based infiltration alloy. It is to provide a very economical and improved method for producing a tungsten copper-based infiltration alloy, which has a metallurgical property and an electrical contact property, which is superior to the conventional tungsten-copper infiltration alloy, in a one step infiltration process for a short time.

Claims (6)

텅스텐-동계 용침합금의 제조에 있어서, 미세립의 텅스텐분말에 니켈-인 합금을 무전해도금법으로 0.1-2wt% 의 양으로 첨가하여 니켈-인 함유 텅스텐 혼합분말을 형성하고 이를 압분체로서 가압 성형한 후, 결과의 압분체에 용침동을 적용하고 수소 또는 분해 암모니아 기권하 로내에서 1100-1200℃ 온도에서 20분 이내의 시간 동안 열처리함을 특징으로 하는 텅스텐-동계 용침합금의 제조방법.In the production of tungsten copper-based infiltration alloy, nickel-phosphorus alloy is added to fine tungsten powder in an amount of 0.1-2wt% by electroless plating to form a nickel-phosphorus-containing tungsten mixed powder, which is press-molded as a green compact. After that, the molten metal is applied to the resulting green compact and heat-treated for 20 minutes at a temperature of 1100-1200 ° C. in a furnace under hydrogen or decomposition ammonia. 제1항에 있어서, 니켈-인 합금이 Ni-(7-12wt%) P의 조성을 갖는 것임을 특징으로 하는 제조방법.The method according to claim 1, wherein the nickel-phosphorus alloy has a composition of Ni- (7-12wt%) P. 제2항에 있어서, 니켈-인 합금이 Ni-(10-11wt%) P의 조성을 갖는 것임을 특징으로 하는 제조방법.The method according to claim 2, wherein the nickel-phosphorus alloy has a composition of Ni- (10-11 wt%) P. 제1항에 있어서, 니켈-인 합금이 0.1-1.0wt%의 양으로 첨가되는 것임을 특징으로 하는 제조방법.The method of claim 1 wherein the nickel-phosphorus alloy is added in an amount of 0.1-1.0 wt%. 제4항에 있어서, 니켈-인 합금이 0.1-0.5wt%의 양으로 첨가되는 것임을 특징으로 하는 방법.The method of claim 4 wherein the nickel-phosphorus alloy is added in an amount of 0.1-0.5 wt%. 제1항에 있어서, 열처리가 120-150℃/min의 승온속도로 1100-1200℃까지 승온시킨 다음 그 온도를 8-12분 동안 유지시켜 행하는 것임을 특징으로 하는 제조방법.The method according to claim 1, wherein the heat treatment is performed by raising the temperature to 1100-1200 ° C at a heating rate of 120-150 ° C / min and then maintaining the temperature for 8-12 minutes.
KR1019890020168A 1989-12-29 1989-12-29 The making method of w-cu fusion alloy KR910008029B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019890020168A KR910008029B1 (en) 1989-12-29 1989-12-29 The making method of w-cu fusion alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019890020168A KR910008029B1 (en) 1989-12-29 1989-12-29 The making method of w-cu fusion alloy

Publications (2)

Publication Number Publication Date
KR910011369A KR910011369A (en) 1991-08-07
KR910008029B1 true KR910008029B1 (en) 1991-10-07

Family

ID=19294203

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019890020168A KR910008029B1 (en) 1989-12-29 1989-12-29 The making method of w-cu fusion alloy

Country Status (1)

Country Link
KR (1) KR910008029B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100918826B1 (en) * 2008-10-16 2009-09-25 승림전기주식회사 Different contact and a manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100918826B1 (en) * 2008-10-16 2009-09-25 승림전기주식회사 Different contact and a manufacturing method thereof

Also Published As

Publication number Publication date
KR910011369A (en) 1991-08-07

Similar Documents

Publication Publication Date Title
US4309457A (en) Process of producing multilayer-coated composite powder
US4833040A (en) Oxidation resistant fine metal powder
CN110216282B (en) Preparation method of copper-based alloy contact
US2167240A (en) Magnet material
CN114093698A (en) Silver tin oxide electric contact material and preparation method thereof
US5963771A (en) Method for fabricating intricate parts with good soft magnetic properties
CN112501464B (en) Silver-nickel composite material and preparation method thereof
CN105798319B (en) Preparation method of silver-tungsten electrical contact material, electrical contact material and electrical contact
KR910008029B1 (en) The making method of w-cu fusion alloy
JPH02254108A (en) Tantalum sintered body and its production
US1633258A (en) Refractory metal alloy of high density and high melting point and method of making the same
US3969112A (en) Process for preparing silver-cadmium oxide alloys
US2196875A (en) Bronze bearing and method of manufacture
Chang et al. Powder metallurgy preparation of new silver-tin oxide electrical contacts from electrolessly plated composite powders
KR100581259B1 (en) Method for Manufacturing Metal-Coated Amorphous Powder
US4836979A (en) Manufacture of composite structures
JP4703843B2 (en) Composite metal powder for powder metallurgy, sintered body obtained by sintering the powder, and bearing comprising the sintered body
JP4331538B2 (en) Copper-coated graphite powder and method for producing the same
JP2005325411A (en) Metal powder having excellent sinterability, its production method and method for producing sintered compact using the metal powder
US2740191A (en) Manufacture of plated powdered metal articles
JPS6043894B2 (en) Process for manufacturing composite metals consisting of tungsten, silver and copper
JP3796321B2 (en) Method for producing sintered material using tin-coated copper powder
JPH01149902A (en) Fine granular complex powder
JPS6055580B2 (en) Method for manufacturing sintered molded parts with few pores mainly composed of chromium and copper
US3129068A (en) Metal coated refractory and process of manufacturing same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19991008

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee