KR910007466B1 - Making method of solar cell of amorphous silicon - Google Patents

Making method of solar cell of amorphous silicon Download PDF

Info

Publication number
KR910007466B1
KR910007466B1 KR1019880017506A KR880017506A KR910007466B1 KR 910007466 B1 KR910007466 B1 KR 910007466B1 KR 1019880017506 A KR1019880017506 A KR 1019880017506A KR 880017506 A KR880017506 A KR 880017506A KR 910007466 B1 KR910007466 B1 KR 910007466B1
Authority
KR
South Korea
Prior art keywords
solar cell
film
amorphous silicon
electrode
silicon solar
Prior art date
Application number
KR1019880017506A
Other languages
Korean (ko)
Other versions
KR900011072A (en
Inventor
최종길
Original Assignee
삼성전관 주식회사
김정배
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전관 주식회사, 김정배 filed Critical 삼성전관 주식회사
Priority to KR1019880017506A priority Critical patent/KR910007466B1/en
Publication of KR900011072A publication Critical patent/KR900011072A/en
Application granted granted Critical
Publication of KR910007466B1 publication Critical patent/KR910007466B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Weting (AREA)
  • Photovoltaic Devices (AREA)

Abstract

An amorphous silicon solar cell is laminated with a glass substrate, a transparent electroconductive film, a pin layer and an aluminum electrode in order. The pattern-forming process of the Al electrode comprises (a) coating and soft-drying a negative photosensitive film at 90 deg.C for 20min, (b) developing the film using an optical mask, (c) depositing Al on the sample obtd. in (b), and (d) reverse-etching the film with an organic solvent. The solar cell prevents an intercorrosion of the Al pattern and the transparent electroconductive film.

Description

비정질 실리콘 태양전지의 제조방법Manufacturing method of amorphous silicon solar cell

제1도는 통상의 비정질 실리콘 태양전지의 구조를 도시한 단면도.1 is a cross-sectional view showing the structure of a conventional amorphous silicon solar cell.

제2도는 통상의 비정질 실리콘 태양전지의 평면도.2 is a plan view of a typical amorphous silicon solar cell.

제3a-e도는 종래 비정질 실리콘 태양전지의 Al전극 패턴형성 공정을 설명하기 위한 도면이다.3A to 3E are views for explaining an Al electrode pattern forming process of a conventional amorphous silicon solar cell.

제4a-d도는 본 발명에 의한 비정실 실리콘 태양전지의 Al전극 패턴형성 공정을 설명하기 위한 도면이다.4A to 4D are views for explaining an Al electrode pattern forming process of an amorphous silicon solar cell according to the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

10 : 유리기판 20 : 투명 도전막10 glass substrate 20 transparent conductive film

30 : pin층 40 : Al전극30: pin layer 40: Al electrode

본 발명은 비정실 실리콘 태양전지의 제조방법에 관한 것으로서, 특히 Al전극의 패턴 형성공정중 습식 식각시 발생하는 Al패턴과 투명도전막과의 상호부식 현상을 막을 수 있도록한 비정실 실리콘 태양전지의 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an amorphous silicon solar cell, and particularly, to fabricate an amorphous silicon solar cell capable of preventing mutual corrosion between an Al pattern and a transparent conductive film generated during wet etching during an Al electrode pattern forming process. It is about a method.

최근 미래 에너지원의 개발필요성이 심각하게 대두됨에 따라 그 대체에너지로서 무한정, 무공해의 태양에너지를 이용하는 기술이 활발하게 연구개발되고 있으며, 이와 같은 태양의 광에너지를 흡수하여 기전력을 발생하는 광기전력 효과를 이용하여 태양에너지를 직접 전기에너지로 변환시키는 태양전지는 계통선 전원의 송전이 불가능한 도서 또는 신간지역에 실용가능한 경계성을 가지며, 기존 디젤발전방식에 의해 수명(약20년)이 걸고 기계적 가동부분이 없어 소음이 없을 뿐만 아니라 연료수송, 유지관리등의 문제점을 해결할 수 있어 그 보급이 확대되고 있다.Recently, as the need for development of future energy sources is seriously developed, technologies that use solar energy indefinitely and without pollution as its alternative energy are being actively researched and developed, and photovoltaic effect that generates electromotive force by absorbing such solar light energy. The solar cell that converts solar energy directly into electrical energy by using has a viable boundary in islands or new areas where grid line power transmission is impossible, and it takes a life (about 20 years) and operates mechanically by the existing diesel power generation method. There is no part, so there is no noise, and the problem of fuel transportation, maintenance, etc. can be solved.

이러한 태양전지로서는 단결정 실리콘을 소재로한 것과, 화합물 반도체를 소재로한 것, 그리고 비정질 실리콘을 소재로 한 것 등이 널리 알려져 있으며, 특히 비정질 실리콘을 소재로한 비정질 실리콘 태양전지는 박막화가 가능하고 제조공종이 간단할뿐만 아니라 제조에 필요한 에너지량이 적기 때문에 각광을 받고 있다.Such solar cells are widely known as single crystalline silicon, compound semiconductor, and amorphous silicon. In particular, amorphous silicon solar cells made of amorphous silicon can be thinned. Not only is the manufacturing work simple, but the amount of energy required for manufacturing is drawing attention.

이와 같이 사용증가 추세에 있는 통상의 비정질 실리콘의 태양전지는 제1도에 도시한 바와 같이 유리기판(1), 투명도전막(2), pin층(3), Al전극(4)형태의 적층구조를 가지며, 비정질 실리콘 태양전지의 제조방법중 Al전극의 패턴형성 방법을 중점적으로 살펴보면 다음과 같다.As shown in FIG. 1, a conventional amorphous silicon solar cell having an increasing trend in use has a laminated structure in the form of a glass substrate 1, a transparent conductive film 2, a pin layer 3, and an Al electrode 4. In the manufacturing method of the amorphous silicon solar cell, the focus of the pattern formation method of the Al electrode is as follows.

제3도는 종래 비정질 실리콘 태양전지의 제조방법중 특히, Al전극의 패턴형성공정을 도시한바, (a)는 유리기판(1), 투명도전막(2) 및 pin층(3)이 차례로 증착된 적층구조상에 Al을 증착하는 공정이며, (b)는 소정의 Al패턴을 형성하기 위해 양성 감광막을 도포하는 감광막 도포공정으로 감광막의 접착력 증진을 위한 연화건조 공정이 포함되며, (c)는 감광막 노광 및 현상공정으로, 소정의 Al전극의 패턴을 가진 패턴 마스크로 급속마스크가 사용되며 감광막 자체의 내약품성 및 내구력 증진을 위햐 경화건조 공정을 포함하고, (d)는 식각하고자 하는 Al과 화학적으로 반응하여 용해시킬 수 있는 식각용액을 사용한 습식식각 공정으로서, 상기 식각용액으로는 Al과 반응을 일으키는 인산(H3PO4)을 사용하는 바, 이를 화학반응식으로 나타내면 2Al+2HPO4→2AlPO4+3H2↑와 같고, 마지막으로 용제 및 솔벤트를 사용하여 감광막을 제거하는 (e)의 감광막 제거 공정을 행함으로써 비정질 실리콘 태양전지를 제조한다.FIG. 3 illustrates a conventional method of manufacturing an amorphous silicon solar cell, in particular, a pattern forming process of an Al electrode, wherein (a) shows a laminate in which a glass substrate 1, a transparent conductive film 2, and a pin layer 3 are sequentially deposited. (B) is a photoresist coating process for applying a positive photoresist film to form a predetermined Al pattern, and includes a softening and drying process for enhancing adhesion of the photoresist film. As a developing process, a rapid mask is used as a pattern mask having a pattern of a predetermined Al electrode, and includes a curing drying process for enhancing chemical resistance and durability of the photosensitive film itself, and (d) chemically reacts with Al to be etched. as with an etching solution capable of dissolving a wet etching process, the etching solution in the bar using a phosphoric acid (H 3 PO 4) to cause the Al and reaction, as represented by chemical reaction formula 2Al + 2HPO 4 → 2AlPO 4 + 3H 2 And the like, to produce an amorphous silicon solar cell by performing a solvent and finally with solvent to remove the photoresist to remove the photoresist (e) step.

그런데, 상기 Al전극의 패턴형성공정중 (라)의 식각공정시에는 제2도에 도시한 바와 같이 투명도전막 패턴과 부착되어 있는 A부분에서 Al이 식각됨과 동시에 투명도전막(2)까지 식각되는 현상이 발생하는바, 이러한 현상은 Al전극의 구조적 형상화를 습식 식각반응도중 생성된 상기 AlPO4가 제2도 A부분의 투명도전막 패턴을 용해시키기 때문이다.However, during the etching process of (D) during the pattern forming process of the Al electrode, as shown in FIG. 2, Al is etched from the A portion attached to the transparent conductive film pattern and the transparent conductive film 2 is also etched. This phenomenon occurs because the AlPO 4 generated during the wet etching reaction during structural shaping of the Al electrode dissolves the transparent conductive film pattern in the portion A of FIG. 2.

따라서 본 발명은 상기 문제를 야기시키는 Al의 식각용액을 사용하지 않으면서도 패턴의 정확성 및 제조공정을 간단히 할 수 있는 비정질 실리콘 태양전지의 제조방법을 제공함에 그 목적이 있다.Accordingly, an object of the present invention is to provide a method of manufacturing an amorphous silicon solar cell, which can simplify the accuracy of the pattern and the manufacturing process without using the etching solution of Al causing the above problem.

상기 목적을 달성하기 위하여 본 발명은 유리기관, 투명도전막, pin층, Al전극이 적층된 비정질실리콘 태양전지의 제조방법에 있어서, 상기 Al 전극의 패턴형성공정으로서, 음성감광막을 도포한 후 90℃에서 20분 동안 연화건조하는 단계와, 소정의 광마스크를 사용하여 감광막을 현상하는 단계와, 상기 현상공정에서 얻어진 샘플위에 Al을 증착하는 단계와, Al과 투명도전막에 전혀 영향을 주지 않고 감광막과 반응을 일으켜 나가는 역 에칭을 행하는 단계로 이루어짐을 특징으로 한다.In order to achieve the above object, the present invention provides a method for manufacturing an amorphous silicon solar cell in which a glass engine, a transparent conductive film, a pin layer, and an Al electrode are stacked. Softening and drying for 20 minutes, developing a photoresist film using a predetermined photomask, depositing Al on the sample obtained in the developing process, and without affecting Al and the transparent conductive film at all. It is characterized by consisting of a step of performing reverse etching to cause a reaction.

이와 본 발명에 따른 비정질 실리콘 태양전지의 Al전극 패턴형성공정을 도시한 제4도를 참조하여 본 발명을 상세히 설명한다.The present invention will be described in detail with reference to FIG. 4 showing the Al electrode pattern forming process of the amorphous silicon solar cell according to the present invention.

(a)는 감광막(PR)도포 공정으로서, 정확한 크기 조절이 가능하고, 또 재작업을 별로 요하지 않는 음성감광막을 사용하여 감광막을 도포한후에 감광막의 접착력 증진을 위해 90℃에서 약 20분간 연화건조시킨다.(a) is a photoresist film (PR) coating process, which can be precisely sized and softly dried at 90 ° C. for about 20 minutes after application of the photoresist film using a negative photoresist film that requires little rework. .

(b)는 소정의 Al형상이 수록된 패턴 마스크의 형상을 감광막상에 재현시키는 감광막 노광 및 현상공정으로서, 광마스크를 사용하여 자외선을 조사하면 자외선이 조사되지 않은 부분의 감광막은 제거되어 (b)와 같은 샘플이 얻어진다. 이때 종래의 금속마스크 대신 광마스크를 사용함으로써 Pin층의 긁힘(scratch)현상을 없애고 패턴의 정확성을 기할 수 있으며, 또한 감광막 현상후 실시하던 경화건조가 필요없게 되는데 이는 감광막 현상공정이 끝난후 경화건조를 실시하면 후공정인 Al역에칭을 행할 때 감광막이 굳어져 잘 안 떨어지기 때문이다.(b) is a photosensitive film exposure and development step of reproducing the shape of the pattern mask containing a predetermined Al shape on the photoresist film. When the ultraviolet light is irradiated using a photomask, the photoresist film in the portion not irradiated with ultraviolet light is removed. A sample such as is obtained. In this case, by using an optical mask instead of the conventional metal mask, it is possible to eliminate the scratch phenomenon of the pin layer and to ensure the accuracy of the pattern. Moreover, the curing drying performed after the photoresist film development is not necessary. This is because the photoresist film hardens and hardly falls when Al reverse etching is performed.

(c)는 (b)의 감광막 현상공정에서 얻어진 샘플위에 알루미늄(Al)을 증착하는 공정이다.(c) is a process of depositing aluminum (Al) on the sample obtained in the photosensitive film developing process of (b).

(d)는 상기 감광막현상 공정이 끝난후 감광막위에 증착시킨 Al을 공정목적에 따라 선택적으로 제거하는 습식식각 공정으로서, 식각하고자 하는 Al과 화학반응을 일으켜 식각부위를 용해시키는 Al식각용액을 사용한 방법대신 Al과 투명도전막에 전혀 영향을 주지 않고 감광막과 반응을 일으키는 유기용제인 아세톤을 사용하여 실온에서 역 에칭(reverse etching)을 행하는 바, 이때 감광막이 떨어짐과 동시에 감광막 상에 증착된 Al도 함께 제거되므로 종래의 감광막제거 공정이 필요없이 태양전지의 제조가 완료된다.(d) is a wet etching process of selectively removing Al deposited on the photoresist film after the photoresist development process according to the purpose of the process, by using an Al etching solution that causes chemical reaction with Al to be etched to dissolve the etching site. Instead, reverse etching is performed at room temperature using acetone, an organic solvent that reacts with the photoresist film without affecting Al and the transparent conductive film. At this time, the photoresist falls and simultaneously removes Al deposited on the photoresist film. Therefore, the manufacturing of the solar cell is completed without the need for a conventional photoresist removal process.

이상에서 설명한 바와 같이 본 발명에 의하면, 종래의 Al전극 패턴형성 과정에서 발생하는 Al과 부착되는 투명도전막 부분의 동시 식각현상을 근본적으로 예방할 수 있고, 종래에 있었던 감광막 현상후의 경화건조 및 감광막 제거 공정을 줄일 수 있어 제조공정을 간단하게 할 수 있으며, 광마스크인 음성마스크를 사용함으로써 패턴의 정확성을 기할 수 있는 장점이 있다.As described above, according to the present invention, it is possible to fundamentally prevent the simultaneous etching of Al and the portion of the transparent conductive film adhered in the conventional Al electrode pattern formation process, and the curing drying and photoresist removal process after the conventional photoresist film development. It is possible to reduce the manufacturing process can be simplified, and the use of a voice mask that is an optical mask has the advantage of ensuring the accuracy of the pattern.

Claims (2)

유리기판(10), 투명도전막(20), pin층(30), Al전극(40)이 적층된 비정질 실리콘 태양전지의 제조방법에 있어서, 상기 Al전극(40)의 패턴 형성공정이 음성감광막을 도포한후 90℃에서 20분동안 연화건조하는 단계(가)와, 소정의 음성마스크를 사용하여 감광막을 현상하는 단계(나)와, 상기 (나)의 단계에서 얻어진 샘플위에 Al을 증착하는 단계(다)와, Al와 투명도전막에 전혀 영향을 주지 않고 감광막과 반응을 일으키는 유기용제를 사용하여 감광막이 용해되어 떨어짐과 동시에 감광막 상에 증착된 Al식각 부위도 함께 떨어져 나가는 역 에칭을 행하는 단계(라)로 이루어짐을 특징으로 하는 비정실 실리콘 태양전지의 제조방법.In the method of manufacturing an amorphous silicon solar cell in which a glass substrate 10, a transparent conductive film 20, a pin layer 30, and an Al electrode 40 are stacked, the pattern forming process of the Al electrode 40 is a negative photosensitive film. Softening and drying at 90 ° C. for 20 minutes after application (a), developing the photosensitive film using a predetermined negative mask (b), and depositing Al on the sample obtained in the step (b). (C) and performing a reverse etching process in which the photoresist film is dissolved and dropped using the organic solvent which reacts with the photoresist film without affecting Al and the transparent conductive film at all, and at the same time, the Al etching portion deposited on the photoresist film also falls off. D) A method for manufacturing an amorphous silicon solar cell, characterized in that consisting of. 제1항에 있어서, 상기 Al전극 패턴형성공정과정에서 역식각시 사용하는 유기용제로서 실온에서도 사용가능한 아세톤을 사용함을 특징으로 하는 비정질 실리콘 태양전지의 제조방법.The method of claim 1, wherein acetone that can be used at room temperature is used as an organic solvent used for reverse etching in the Al electrode pattern forming process.
KR1019880017506A 1988-12-26 1988-12-26 Making method of solar cell of amorphous silicon KR910007466B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019880017506A KR910007466B1 (en) 1988-12-26 1988-12-26 Making method of solar cell of amorphous silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019880017506A KR910007466B1 (en) 1988-12-26 1988-12-26 Making method of solar cell of amorphous silicon

Publications (2)

Publication Number Publication Date
KR900011072A KR900011072A (en) 1990-07-11
KR910007466B1 true KR910007466B1 (en) 1991-09-26

Family

ID=19280691

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019880017506A KR910007466B1 (en) 1988-12-26 1988-12-26 Making method of solar cell of amorphous silicon

Country Status (1)

Country Link
KR (1) KR910007466B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10164242B2 (en) 2011-04-07 2018-12-25 Massachusetts Institute Of Technology Controlled porosity in electrodes
US10569480B2 (en) 2014-10-03 2020-02-25 Massachusetts Institute Of Technology Pore orientation using magnetic fields

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10164242B2 (en) 2011-04-07 2018-12-25 Massachusetts Institute Of Technology Controlled porosity in electrodes
US10569480B2 (en) 2014-10-03 2020-02-25 Massachusetts Institute Of Technology Pore orientation using magnetic fields

Also Published As

Publication number Publication date
KR900011072A (en) 1990-07-11

Similar Documents

Publication Publication Date Title
CN110850688B (en) Method for manufacturing optical micro-nano graph on surface of lithium niobate thin film
US3639185A (en) Novel etchant and process for etching thin metal films
CN106575677B (en) The photovoltaic cell for being used to form the method for photovoltaic cell and being formed according to this method
CN111522208A (en) Method for stripping metal film by using positive photoresist as mask
CN113140644A (en) Single-sided or double-sided solar cell patterned mask and preparation method of solar cell
CN110989295A (en) Laser hot mold photoetching image reversal glue and photoetching method thereof
WO2024131295A1 (en) Method for preparing solar cell
KR910007466B1 (en) Making method of solar cell of amorphous silicon
CN1888978B (en) Photoetching patterning method with micro-transfer patterned graph as mask plate
KR20080081467A (en) Method of reworking a semiconductor substrate and method of forming the pattern
CN1332451A (en) Method for manufacturing first generation disk of optical disk
CN105576498B (en) A kind of preparation method and GaAs base lasers of fillet ridged GaAs base lasers
CN113862770A (en) Method for preparing patterned electrode by deplating process
CN110911273B (en) Preparation method of large-area patterned graphene
WO2000034961A1 (en) Method for forming transparent conductive film by using chemically amplified resist
CN111384185A (en) Electrode machining method
CN114828430A (en) Etching method of double-sided or multilayer printed circuit board
EP0060487A1 (en) Plugged pinhole thin film and method of making same
CN113816335A (en) Metal stripping preparation method of silicon-based wafer double-layer photoresist
JP2010073899A (en) Method for processing substrate and substrate processing apparatus
CN100468198C (en) Method for cutting film workpiece
CN215163230U (en) Patterned mask of single-sided or double-sided solar cell and solar cell
JP2003258274A (en) Method of manufacturing lower electrode of thin film solar cell
CN215600395U (en) Silicon-based OLED anode pixel photoetching internally-tangent structure
CN117747544B (en) Method for forming through silicon via

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080826

Year of fee payment: 18

EXPY Expiration of term