KR910004306B1 - Adiabatic efficiency testing device of adiabatic material for pipe laying - Google Patents

Adiabatic efficiency testing device of adiabatic material for pipe laying Download PDF

Info

Publication number
KR910004306B1
KR910004306B1 KR1019880004333A KR880004333A KR910004306B1 KR 910004306 B1 KR910004306 B1 KR 910004306B1 KR 1019880004333 A KR1019880004333 A KR 1019880004333A KR 880004333 A KR880004333 A KR 880004333A KR 910004306 B1 KR910004306 B1 KR 910004306B1
Authority
KR
South Korea
Prior art keywords
pipe
steel pipe
insulation
heat
unit
Prior art date
Application number
KR1019880004333A
Other languages
Korean (ko)
Other versions
KR890016369A (en
Inventor
정헌생
안영수
고창조
Original Assignee
한국동력자원연구소
김지동
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국동력자원연구소, 김지동 filed Critical 한국동력자원연구소
Priority to KR1019880004333A priority Critical patent/KR910004306B1/en
Publication of KR890016369A publication Critical patent/KR890016369A/en
Application granted granted Critical
Publication of KR910004306B1 publication Critical patent/KR910004306B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K15/00Testing or calibrating of thermometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • G01K17/06Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device
    • G01K17/08Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature
    • G01K17/20Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature across a radiating surface, combined with ascertainment of the heat transmission coefficient

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Thermal Insulation (AREA)

Abstract

The system is used for measuring the heat conduction coefficient of pipe insulation internal layors, considering rarious conditions e.g. exterior moisture, temperature, internal convection and so on. The measurement system comprises a heating unit (H) and a control unit (9). In the heat unit, an asbetos ribbion heater (1) is installed within a steel pipe (2), and a copper pipe (7) having a narrower diameter than the steel pipe is inserted into the steel pipe. One end of the heat unit is welded in order to over come the two pipes' length variation according to the difference of heat expansion ratios. In the control unit, thermocouples (9) are set up on the surfaces of the steel pipe and the insulator, and an electric power meter is installed for measuring supply caloxic value, and a digital pulse counter (10) is connected to the meter in order to display the caloric value.

Description

배관용 단열재의 단열성능 측정장치Insulation performance measuring device of pipe insulation

제 1 도는 본 발명의 장치 개략도.1 is a device schematic of the present invention.

제 2 도는 본 발명의 장치의 형태도.2 is a diagram of a device of the present invention.

제 3 도는 본 발명 장치의 일부인 펄스 카운터(PULSE COUNTER)장치의 개략도.3 is a schematic diagram of a pulse counter device which is part of the inventive device.

본 발명은 산업체에서 주로 이용되고 있는 파이프 형태인 배관 단열재에 대한 열전도율을 측정할 수 있는 장치에 관한 것이다. 단열재의 단열성능은 수분, 온도, 공기 및 압력 등의 외적인 조건뿐만 아니라 기공의 형상이나 단열층내의 복사 등의 단열재 내부조건에 따라서도 상당한 차이를 나타낼 수 있으므로 동일 밀도의 단열재라고 하더라도 평판과 배관단열재의 성능은 서로 차이가 난다.The present invention relates to a device capable of measuring the thermal conductivity of the pipe insulation in the form of a pipe mainly used in industry. Insulation performance of insulation material can show considerable difference not only in external condition such as moisture, temperature, air and pressure, but also depending on the shape of pores or internal condition of insulation such as radiation in insulation layer. Performance differs from one another.

그러나, 종래에는 배관 단열재에 대한 단열성능을 측정할 수 있는 장치가 없으므로 산업용 배관에 이용되고 있는 파이프형 단열재에 대한 열전도율을 측정할 때 동일재질, 밀도를 갖는 평판단열재를 재료로 대체, 측정하여 이값을 사용하고 있으나 이와 같은 방법으로 배관 단열재의 단열성능을 측정한다는 것은 전술한바와 같은 오차가 있으므로 파이프형 단열재는 본 발명의 독립된 배관 단열재의 단열성능 장치를 사용하여 측정해야만 하는 것이다.However, conventionally, since there is no device that can measure the insulation performance of the pipe insulation material, when measuring the thermal conductivity of the pipe-type insulation material used in industrial piping, replace the plate heat insulating material having the same material and density with a material, and measure this value. Although measuring the thermal insulation performance of the pipe insulation in this way has the same error as described above, the pipe-type insulation is to be measured using the insulation performance device of the independent pipe insulation of the present invention.

이하 발명의 요지를 첨부도면에 연관시켜 설명하면 다음과 같다. 먼저 배관용 단열재의 단열성능측정장치에 대한 개략도를 제 1 도에 도시한다.Hereinafter, the gist of the present invention will be described with reference to the accompanying drawings. First, the schematic diagram of the heat insulation performance measuring apparatus of the heat insulating material for piping is shown in FIG.

본 발명 장치의 형태는 제 2 도와 같이 구성하며 크게 가열부(H)(HEATING UNIT)와 조절부(C)(CONTROL UNIT)로 되어 있다. 가열부(H)는 석면리본히터(1)를 내장한 강관(2)에 측정할 단열재(3)를 암면보충판(4)로서 양옆을 맞대어 설치한 후 임의의 설정온도(50℃-200℃)까지 승온시켜 방열시키는 부분이고, 조절부(C)는 강관(2)의 표면 온도를 조절하기 위한 PID콘트롤러(P)와 공급되는 열량을 측정할 수 있는 전산전력계(C)로 구성된 측정, 제어부이다.The apparatus of the present invention is configured as shown in FIG. 2 and has a heating unit (H) and a control unit (C). Heating part (H) is installed in the steel pipe (2) containing the asbestos ribbon heater (1) to install the heat insulating material (3) facing each other as the rock surface supplement plate (4) to any set temperature (50 ℃-200 ℃) Is a part that heats up and heats up to), and the adjusting unit (C) comprises a PID controller (P) for adjusting the surface temperature of the steel pipe (2) and a computer power meter (C) for measuring the amount of heat supplied. to be.

또한 조절부(C)에는 강관(2)의 중앙지점에서 온도를 측정하여 전체 시스템이 정상적으로 유지되는가를 확인토록 디지털 온도계(6)를 설치한다. 가열부(H)의 강관(2)은 산업용 배관으로 주로 사용되고 있는 SS-41강(MILD STEEL)으로 하고, 피측정단열재(3)의 내경에 따라 교체하면서 열전도율을 측정할 수 있도록 1m길이의 2", 4"강관을 사용한다. 강관(2)의 내부에는 강관(2)의 내경보다 작으며 열전도율이 훨씬 큰

Figure kpo00001
의 동관(7)을 삽입하고 동관(7)위에 용량 1㎾, 길이 1.5m 또는 2.5m의 석면리본히터(1) 2개를 각각 동관 양끝에서 서로 반대방향으로 감아서 강관(2)을 내부로부터 균일하게 가열토록 하고 양끝은 강판재 캡(8)으로 끼워서 지지토록 하였다.In addition, the control unit (C) is installed a digital thermometer (6) to measure the temperature at the central point of the steel pipe (2) to check whether the entire system is normally maintained. The steel pipe (2) of the heating part (H) is made of SS-41 steel (MILD STEEL), which is mainly used as an industrial pipe, and is 1m long so that the thermal conductivity can be measured while replacing it according to the inner diameter of the insulating material 3 to be measured. Use "4" steel pipe. The inside of the steel pipe (2) is smaller than the inner diameter of the steel pipe (2) and the thermal conductivity is much larger
Figure kpo00001
Insert the copper pipe (7) of the pipe and wind the steel pipe (2) from the inside by winding two asbestos ribbon heaters (1) with a capacity of 1㎾, 1.5m or 2.5m on the copper pipe (7), respectively, at opposite ends of the copper pipe. It was heated evenly and both ends were supported by sandwiching the steel plate cap (8).

가열시 강관(2)과 동관(7)과의 열팽창율 차이에 의한 길이의 변화차이를 완화시킬 수 있도록 가열부의 한쪽끝에서는 측면강판캡(8)과 강관(2)을 용접하고, 다른 한쪽끝은 용접하지 않는다. 강관(2)의 측면 즉 측면 강판캡(4)에서의 열손실을 방지하기 위하여 100m/m 두께의 암면보온판(4)으로 단열한다. 강판 표면온도는 PID 콘트롤러(P)로 조절하되 강관 중앙표면에 K-TYPE의 열전대(9)를 부착시켜 온도를 조절한다. 방산열량의 측정을 위해서는 가정용 적산전력계(5)를 설치하나 이 전력계눈금의 최소단위는 10wh로 너무 크기 때문에 최소 측정단위가 1wh로 나타날 수 있도록 창출된 디지털 펄스 카운터(10)(DIGITAL PULSE COUNTER)를 설치하여 이곳에서 열량변화를 읽는다. 이 카운타(10)는 적산전력계(5)의 회전판(5a)이 1회전할때마다 1단위씩 증가하도록 구성하며 그 장치의 개략도는 제 3 도와 같다.At one end of the heating part, the side steel plate cap 8 and the steel pipe 2 are welded at one end of the heating part so as to alleviate the variation in length due to the difference in thermal expansion rate between the steel pipe 2 and the copper pipe 7 during heating. Do not weld. In order to prevent heat loss from the side of the steel pipe (2), that is, the side steel plate cap (4) is insulated with a rock wool insulation plate (4) of 100m / m thickness. The temperature of the steel plate surface is controlled by PID controller (P), but the temperature is controlled by attaching K-TYPE thermocouple (9) to the center surface of steel pipe. In order to measure the heat dissipation, a home integrated power meter (5) is installed, but since the minimum unit of the power meter scale is too large as 10 wh, the digital pulse counter 10 (DIGITAL PULSE COUNTER) was created so that the minimum measurement unit can be displayed as 1 wh. Install and read calorie changes from here. The counter 10 is configured to increase by one unit for each rotation of the rotating plate 5a of the integrated power meter 5, and the schematic of the device is the same as that of the third diagram.

도면중 11은 홀(HOLE)이고, 12, 12'는 감광센서, 13은 회로(CIRCUIT), 14는 디스플레이(DISPLAY)이다. 측정은 강관(2)에 배관단열재(3)를 설치한후 가열하며, 강관(2) 및 단열재(3) 표면 온도가 일정하게 유지되는 정상상태에 도달시킨 다음 장치 조절부(C)내의 펄스카운타스위치(15)를 ON시켜 3-5시간 동안 매시간마다 가열부에 공급되는 열량을 디지털 펄스 카운타(10)장치를 이용하여 측정한다. 온도 측정을 위해서는 강관표면과 동일 위치의 단열재표면의 중앙부 상하좌우에 각각 4개의 K-TYPE 열전대(9)을 설치하여 데어타 로져(17)(DATA LOGGER)에 연결시켜 20분마다 측정하고, 이 측정값들을 산술평균내어 강관(2) 및 단열재(2)의 표면 온도로써 구한다. 이와 같이 구한 평균 방산열량, 평균강관 및 단열재표면 온도를 (식 1)에 대입하여 배관단열재의 열전도율값을 구한다.In the figure, 11 is a hole (HOLE), 12, 12 'is a photosensitive sensor, 13 is a circuit (CIRCUIT), 14 is a display (DISPLAY). The measurement is made after installing the pipe insulation (3) in the steel pipe (2) and heating, and after reaching the steady state in which the surface temperature of the steel pipe (2) and the heat insulating material (3) is kept constant, the pulse counter in the device control unit (C) The switch 15 is turned on to measure the amount of heat supplied to the heating unit every hour for 3-5 hours using the digital pulse counter 10 device. For temperature measurement, four K-TYPE thermocouples (9) are installed on the top, bottom, left and right of the center of the insulation surface at the same position as the steel pipe surface and connected to the data logger (17) (DATA LOGGER) and measured every 20 minutes. The measured values are arithmetic averaged to obtain the surface temperatures of the steel pipe (2) and the heat insulating material (2). The heat dissipation value of the pipe insulation is calculated by substituting the average heat dissipation, average steel pipe, and surface temperature of the insulation into Equation (1).

Figure kpo00002
Figure kpo00002

여기서 Q : 방산열량(Kcal/m2h)Q: Dissipation heat value (Kcal / m 2 h)

K : 열전도율(Kcal/mh℃)K: thermal conductivity (Kcal / mh ℃)

L : 단열재의 길이(m)L: length of insulation material (m)

di : 강관의 외경di: outer diameter of steel pipe

do : 단열재의 외경do: outer diameter of insulation

Tsi : 단열재 내표면 온도Tsi: Insulation Surface Temperature

Tso : 단열재 외표면 온도Tso: Insulation outer surface temperature

본 발명에 있어 장치의 정확도는 다음과 같은 해석을 통하여 검토하였다. 먼저 열전도율값을 구하는 (식 1)을 이용하여 이식에 내추럴 로가리즘(NATURAL LOGARI-In the present invention, the accuracy of the device was examined through the following analysis. First, natural logarithm (NATURAL LOGARI-) is used for transplantation by using (Equation 1), which calculates thermal conductivity.

THM)을 취한후 미분을 계산하면,Take the THM) and calculate the derivative,

Figure kpo00003
Figure kpo00003

이 된다.Becomes

(식 2)는 열전도율을 측정시 발생할 수 있는 최대상대오차를 구하는 식이므로 이 오차를 구하기 위하여 실제 측정한 각변수들의 최대변화폭을 대입하여 구한 결과를 (표 1)에 나타내었다. 이때 단열재두께의 불균일성과 단열재가 프렉시블(FLEXIBLE)한점을 고려하여 단열두께의 반경변화에 의한 오차는 3mm 로 가정하였다.(Equation 2) calculates the maximum relative error that can occur when measuring the thermal conductivity. Therefore, the result obtained by substituting the maximum change width of each measured variable to obtain this error is shown in (Table 1). At this time, considering the nonuniformity of the insulation thickness and the point that the insulation is flexible, the error due to the radius change of the insulation thickness is assumed to be 3mm.

이 결과 (표 1)에서 나타난 바와 같이 단열재의 반경변화가 측정오차에 미치는 영향은 4.5%이었고 온도와 열유량의 드리프팅(DRIFTING)이 측정오차에 미치는 영향은 5%정도임을 알 수 있다. 이는 평판 단열재와 열전도율 측정장치로 널리 쓰여지고 있는 RAPID-K(DYNATECH, USA)장치의 정확도가 5%임을 감안한다면 본 발명의 배관 단열재 단열성능장치도 장치의 정확도가 약 5% 정도임을 볼 때 만족스런 성능으로서 배관단열재에 대한 전문적 단열성능 측정장치로서 단열재 산업에 널리 공급할 수 있는 것이다.As a result, as shown in (Table 1), the influence of the radius change of the insulation on the measurement error was 4.5%, and the effect of temperature and heat flow drifting on the measurement error was about 5%. Considering that the accuracy of the RAPID-K (DYNATECH, USA) device, which is widely used as a flat plate insulation and a thermal conductivity measuring device, is 5%, the pipe insulation insulating performance device of the present invention is satisfactory when the accuracy of the device is about 5%. As a performance, it can be widely supplied to the insulation industry as a professional insulation performance measuring device for pipe insulation.

[표 1]TABLE 1

실제 측정한 각 변수들의 변화폭의 최대값Maximum value of change of each measured variable

Figure kpo00004
Figure kpo00004

Claims (1)

동관(7)에 석면리본히타(1)을 감고 그 외부에 강관(2)을 씌워서 이를 강판캡(8)에 연결하여 지지대로 세우고 그 하단에 전산전력계(5)의 회전판(5a)의 회전을 감지하여 1WH씩 적산하는 디지털 펄스 카운타(10)를 연결되게 한 배관용 단열재의 단열성능 측정장치.Wind the asbestos ribbon heater (1) on the copper pipe (7) and cover the outside with a steel pipe (2), connect it to the steel plate cap (8) to stand as a support, and rotate the rotation plate (5a) of the power meter (5) at the bottom Insulation performance measuring device of the heat insulating material for the pipe that is connected to the digital pulse counter (10) to detect and integrate by 1WH.
KR1019880004333A 1988-04-16 1988-04-16 Adiabatic efficiency testing device of adiabatic material for pipe laying KR910004306B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019880004333A KR910004306B1 (en) 1988-04-16 1988-04-16 Adiabatic efficiency testing device of adiabatic material for pipe laying

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019880004333A KR910004306B1 (en) 1988-04-16 1988-04-16 Adiabatic efficiency testing device of adiabatic material for pipe laying

Publications (2)

Publication Number Publication Date
KR890016369A KR890016369A (en) 1989-11-29
KR910004306B1 true KR910004306B1 (en) 1991-06-25

Family

ID=19273669

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019880004333A KR910004306B1 (en) 1988-04-16 1988-04-16 Adiabatic efficiency testing device of adiabatic material for pipe laying

Country Status (1)

Country Link
KR (1) KR910004306B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103180704A (en) * 2010-09-03 2013-06-26 圣戈班伊索福公司 Determination of the heat loss coefficient of a premises

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103180704A (en) * 2010-09-03 2013-06-26 圣戈班伊索福公司 Determination of the heat loss coefficient of a premises

Also Published As

Publication number Publication date
KR890016369A (en) 1989-11-29

Similar Documents

Publication Publication Date Title
Bradley et al. Determination of the emissivity, for total radiation, of small diameter platinum-10% rhodium wires in the temperature range 600-1450 C
US3267728A (en) Dynamic automatically controlled calorimeter and melting point device
RU2757064C1 (en) Heat flow sensor with increased heat exchange
US4647221A (en) Method of and apparatus for the determination of the thermal insulating properties of building walls
US4579462A (en) Dew point measuring apparatus
KR100308439B1 (en) Method and device for effecting temperature compensation in load detector
CA2166956A1 (en) Thermal Conductivity Measuring Device
US4036051A (en) Heat meters
US3365944A (en) Adiabatic calorimeter
US4171382A (en) Method of cooking meats in a microwave oven
US6572263B1 (en) Dry calorimeter
Ziebland et al. The thermal conductivity of liquid and gaseous oxygen
KR910004306B1 (en) Adiabatic efficiency testing device of adiabatic material for pipe laying
JPS5984145A (en) Method and device for measuring reynolds number of fluid
US4162175A (en) Temperature sensors
US4978229A (en) Method and apparatus for testing thermal conductivity
US3427882A (en) Contact-free temperature-sensing device
US20220397438A1 (en) Non-invasive thermometer
US3630084A (en) Comfort index indicator
CN114424035A (en) Non-invasive thermometer
KR102569705B1 (en) Sensor for detecting a change in the state of the medium
SU1068740A1 (en) Differential scanning microcalorimeter
RU2114400C1 (en) Device for uninterrupted measurement of level of liquid
JPS60225047A (en) Apparatus for measuring thermal weight
RU2164008C2 (en) Device measuring gas flow rate

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20030526

Year of fee payment: 13

LAPS Lapse due to unpaid annual fee