KR900004848B1 - Making process for high-tensile steel - Google Patents

Making process for high-tensile steel Download PDF

Info

Publication number
KR900004848B1
KR900004848B1 KR1019860011714A KR860011714A KR900004848B1 KR 900004848 B1 KR900004848 B1 KR 900004848B1 KR 1019860011714 A KR1019860011714 A KR 1019860011714A KR 860011714 A KR860011714 A KR 860011714A KR 900004848 B1 KR900004848 B1 KR 900004848B1
Authority
KR
South Korea
Prior art keywords
steel
rolling
heat treatment
less
temperature
Prior art date
Application number
KR1019860011714A
Other languages
Korean (ko)
Other versions
KR880007754A (en
Inventor
김태웅
Original Assignee
포항종합제철 주식회사
안병화
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항종합제철 주식회사, 안병화 filed Critical 포항종합제철 주식회사
Priority to KR1019860011714A priority Critical patent/KR900004848B1/en
Publication of KR880007754A publication Critical patent/KR880007754A/en
Application granted granted Critical
Publication of KR900004848B1 publication Critical patent/KR900004848B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Abstract

Method for producing high tension non-tempered steel by normalizing treatment is characterised by holding a rolled steel at Ac3-Ac3+50 deg.C after fining grain size of steel by control hotrolling. The steel is composed of (in wt.%) up to 0.3% C, 0.5-2.0% Mn, up to 0.5% P, up to 0.5% S, up to 0.2% Nb, up to 0.2% V, 0.01-0.2% Ti, 100-300 ppm N2, up to 1.0% at least one element selected from the group consisting of Ni, Mo, Cr and Cu, and the balance Fe.

Description

노말라이징 열처리에 의한 비조질 고장력강의 제조방법Manufacturing Method of Non-Quality High Tensile Steel by Normalizing Heat Treatment

제1도는 압연법 변화에 따른 현미경조직사진.1 is a microscopic picture of the change in rolling method.

제2도는 질소량에 따른 석출물 분포사진.2 is a precipitate distribution picture according to the amount of nitrogen.

본 발명은 노말라이징(normalizing) 열처리에 의한 고장력강의 제조방법에 관한 것이며, 특히 결정립미세화와 탄질화물의 석출을 극대화하여 강도도 높고 인성도 우수하며 열간가공 공정에서 조직 및 기계적 성질 변화가 적은 비조질고장력강을 제조하는 방법에 관한 것이다. 종래의 노말라이징 열처리에 의한 고강도강 제조방법은 고강도를 가진 강을 얻기 위해서 많은 합금원소를 사용하기 때문에 탄소당량(Ceq)이 0.50% 정도로 높으므로 용접성 및 크랙(응력제거소둔시 발생하는 crack) 감수성이 나쁠뿐만 아니라 제조원가가 비싸다는 단점이 있었으며 또한 강도, 인성, 용접성 등을 동시에 향상시킬 수 있는 결정입 미세화에 의한 강화를 별로 활용하지 못하고 있는 강판 제조방법인 것이다.The present invention relates to a method of manufacturing high tensile strength steel by normalizing heat treatment, and in particular, maximizes grain refinement and precipitation of carbonitrides, and thus has high strength, excellent toughness, and low structural and mechanical properties in the hot working process. It relates to a method of manufacturing high tensile steel. In the conventional method for producing high strength steel by normalizing heat treatment, since many alloy elements are used to obtain high strength steel, the carbon equivalent (Ceq) is high as about 0.50%, so that the weldability and crack sensitivity are generated. This is not only bad, but also has a disadvantage in that the manufacturing cost is expensive, and is also a method of manufacturing a steel sheet that does not utilize the reinforcement by refining grains that can simultaneously improve strength, toughness, weldability, and the like.

이에 최근에 와서는 급속냉각으로 우수한 품질을 얻을 수 있는 켄칭 탬퍼링(Quenching and Tempering) 방법이나 열처리를 하지 않고 결정입 미세화를 통하여 품질수분을 향상시킬 수 있는 제어압연 기술이 발전함에 따라 노말라이징 열처리 방법에 의한 고장력강 제조는 계속 감소하는 추세에 있다.In recent years, normalizing heat treatment has been developed with the advance of quenching and tempering method, which can obtain excellent quality by rapid cooling, or control rolling technology that can improve quality moisture through grain refinement without heat treatment. High tensile steel production by the method continues to decrease.

그러나, 압력용기의 부품을 제조하기 위해 강판을 열간에서 가공하는 용도에은 켄칭 템퍼링에 의해 제조된 강판이나 제어압연에 의해 제조된 강판은 열간가공중에 금속조직이 크게 변화되므로 사용할 수 없어 반드시 노말라이징 열처리에 의한 강판이 사용되고 있다.However, the steel sheet manufactured by quenching tempering or the steel sheet manufactured by controlled rolling cannot be used for hot processing of steel sheet to manufacture parts of pressure vessels. Steel sheet by is used.

왜냐한면, 강판의 기계적성질은 강판의 금속조직에 의해 좌우되는 것으로 켄칭 템퍼링에 의해 얻어진 말텐사이트조직이나 제어압연에 의해 얻은 미세한 조직이 600-800℃에서 실시하는 열간가공에 의해 소멸되거나 조대화하여 원래의 강판이 갖고 있는 기계적성질을 크게 열화(劣化)시키는데 비해 노말라이징에 의해 제조한 강판은 열간압연후 800-900℃ 정도의 노말라이징 열처리과정을 이미 거치므로 경판(鏡板) 가공공정에서 금속조직변화와 기계적성질 열화가 거의 발생하지 않기 때문이다.Because the mechanical properties of the steel sheet depend on the metal structure of the steel sheet, the martensite structure obtained by quenching and tempering or the microstructure obtained by controlled rolling are extinguished or coarsened by hot working at 600-800 ° C. Compared to the deterioration of the mechanical properties of the original steel sheet, the steel sheet manufactured by normalizing has already undergone the normalizing heat treatment of 800-900 ℃ after hot rolling. This is because change and mechanical property deterioration hardly occur.

현재까지 압력용기의 경판 가공용 강판을 제조하기 위해 사용되고 있는 노말라이징 열처리는 통상의 열간압연조직 즉, 1200℃ 부근으로 가열한 후 950℃ 정도의 마무리 압연온도로 열간압연하여 제조한 강판을 Ac3보다 50℃ 정도 높은 온도에서 재가열 유지한 후 공냉함으로서 강판의 화학성분 및 조직불균일을 제거하고 약간의 결정입 미세화 효과만을 얻을 수 있었다.A normalizing heat treatment is usually in the hot rolling organization that is, the steel sheet manufactured by hot rolling with finish rolling temperature of 950 ℃ degree was heated at about 1200 ℃ in the currently being used to prepare the hard decision processing of the steel sheet of the pressure vessel than the Ac 3 By reheating and maintaining at a high temperature of about 50 ° C., air-cooling was able to remove chemical composition and structure irregularities of the steel sheet and obtain only a slight grain refining effect.

그러므로, 노말라이징 열처리 강의 강화방법은 주로 합금량을 높히는 방법에 의존하므로 높은 탄소 당량이 문제가 되고 있다. 또한 노말라이징 열처리는 강판중의 편석을 제거하고 조직의 불균일을 제거하는 것이 주목적으로 결정입의 미세화효과는 크지 않다.Therefore, the method of reinforcing the normalized heat-treated steel mainly depends on the method of increasing the amount of alloy, so that a high carbon equivalent becomes a problem. In addition, the normalizing heat treatment mainly removes segregation in the steel sheet and removes nonuniformity of the structure, and the effect of grain refinement is not large.

따라서, 본 발명의 목적은 노말라이징 열처리에 있어서 결정립의 미세화 효과를 극대화시키고 탄소당량을 0.45% 이하로 낮추고도 50kg/mm2급 고강도강을 제조하는 방법을 제공하는데 있다.Accordingly, it is an object of the present invention to provide a method for maximizing the miniaturization effect of grains in normalizing heat treatment and lowering the carbon equivalent to 0.45% or less and producing 50 kg / mm 2 grade high strength steel.

본 발명에 의한 방법은 노말라이징 열처리전 열간압연에서 제어압연을 도입함으로서 노말라이징 열처리후 강판의 결정입을 더욱 미세화시키는 방법으로, 강중에 질소(N2)를 다량 첨가함으로서 제어 압연고정에서 석출물의 량을 증가시켜 결정입 미세화 효과를 증대시키고, 제어압연후 공냉과정과 노말라이징 열처리 과정에서 탄질화물의 석출량을 증가시킴으로서 석출강화효과를 극대화하여 비조질 고장력강을 제조하는 것이다.The method according to the present invention is a method to further refine the grains of the steel sheet after the normalized heat treatment by introducing the control rolling in hot rolling before normalizing heat treatment, the amount of precipitates in the controlled rolling fixed by adding a large amount of nitrogen (N 2 ) in the steel In order to increase the grain refining effect and increase the amount of precipitation of carbonitride in the air cooling process and the normalizing heat treatment process after the control rolling, it is to manufacture the non-tough high tensile strength steel by maximizing the precipitation strengthening effect.

다시말하여 일반 압연후 노말라이징 열처리를 하는 종래의 노말라이징 열처리 강재보다 결정입을 미세화시키고 탄질화물의 석출강화를 증가시켜 후강판의 강도와 인성을 향상시킨 것이다.In other words, the grain size is refined and the precipitation strengthening of carbonitride is increased than the conventional normalized heat-treated steel which is subjected to normalized heat treatment after general rolling to improve the strength and toughness of the thick steel sheet.

본 발명은 중량%로 C : 0.3% 이하, Mn : 0.5-2.0%, P 및 S : 각각 0.5% 이하 함유되어 있는 일반 저탄소강에 Nb 및 V이 각각 0.2% 이하로 복합첨가되나, 게다가, Ni, Mo, Cr 및 Cu로 이루어진 그룹중에서 적어도 1종 이상의 원소 : 1.0% 이하, Ti : 0.01-0.2% 및 N2: 100-300ppm 첨가된 저합금 고장력강을 열간 제어압연하여 결정립을 미세화시킨후, 이 강판을 Ac3온도로부터 Ac3+50℃의 온도범위로 가열유지하는 노말라이징 열처리를 함으로서 탄질화물의 석출량을 증가시키고 결정립을 더욱 미세화시켜 고강도와 고인성을 갖는 비조질 고장력강을 제조하는 방법에 관한 것이다.According to the present invention, Nb and V are each added in an amount of 0.2% or less to general low carbon steels containing C: 0.3% or less, Mn: 0.5-2.0%, and P and S: 0.5% or less. At least one element of the group consisting of Mo, Cr and Cu: 1.0% or less, Ti: 0.01-0.2% and N 2 : 100-300ppm added low alloy high tensile strength steel by hot control rolling to refine the grains, and In the method for producing non-tough high tensile strength steel having high strength and toughness by increasing the amount of precipitation of carbonitrides and making finer grains by performing normalizing heat treatment to heat the steel plate from Ac 3 temperature to Ac 3 + 50 ° C. It is about.

이하, 본 발명에서 화학성분과 제조조건을 한정한 이유에 대하여 설명하면 다음과 같다.Hereinafter, the reasons for limiting chemical components and manufacturing conditions in the present invention will be described.

합금 원소인 상기 Nb(니오븀)와 V(바나듐)는 각각 0.2% 이하로 복합첨가하고, Ni, Mo, Cr 및 Cu로 이루어진 그룹중에서 선택된 1종 이상의 원소는 1.0% 이하의 범위로 첨가하여 50kg/mm2급 이상의 고장력강을 제조하는데 이용할 수 있다.The alloying elements Nb (niobium) and V (vanadium) are each added at 0.2% or less, and at least one element selected from the group consisting of Ni, Mo, Cr and Cu is added in a range of 1.0% or less and 50 kg / It can be used to manufacture high strength steel of mm 2 or higher.

Nb와 V를 복하첨가하는 이유는 다음과 같다.The reason for adding and adding Nb and V is as follows.

Ac3+50℃ 정도의 노말라이징에 석출해 있는 Nb계 탄질화물은 노말라이징 열처리과정에서 오스테나이트 결정입의 성장을 억제하고, V계 탄질화물은 노말라이징 열처리에 의해 재고용 되었다가 냉각과정에서 재석출하여 강도를 향상시키기 때문이다. 이때 다량 첨가된 질소가 존재하기 때문에 노말라이징전보다 석출물이 발생하게 되며 석출강화효과는 극대화 하게 된다. 그러나, 첨가량이 0.2%를 넘을때는 효과가 포화되므로 0.2%를 상한으로 하였다.Nb-based carbonitrides precipitated at normalization at Ac 3 + 50 ° C suppressed the growth of austenite grains during the normalization heat treatment, while V-based carbonitrides were re-used by normalizing heat treatment and then re-cooled during the cooling process. This is because it precipitates to improve strength. At this time, since a large amount of nitrogen is present, precipitates are generated than before normalizing, and the precipitation strengthening effect is maximized. However, when the added amount exceeds 0.2%, the effect is saturated, so 0.2% is the upper limit.

Ti(티타늄)은 TiN 형태로 고온에서 석출하여 스타브가열 과정에서부터 초기 오스테나이트 결정의 성장을 억제시켜 제어 압연의 효과를 높혀주며 열간압연공정과 노말라이징 열처리공정중에 석출하는 석출물의 핵역할을 하여 석출현상을 촉진시켜 준다.Ti (Titanium) is precipitated at high temperature in TiN form to suppress the growth of early austenite crystals from the stab heating process to enhance the effect of controlled rolling and to act as a nucleus of precipitates precipitated during hot rolling and normalizing heat treatment processes. It promotes precipitation phenomenon.

Ti 첨가의 범위는 효과를 감안하여 0.01-0.2% 범위로 하였다. 질소는 100-300ppm 범위가 바람직한데, 그 이유는 100ppm 이하 일때는 질화물 석출량이 적으므로 석출강화의 효과가 적고, 300ppm 이상일때는 열처리후에도 석출물 형태가 아닌 유리질소(free N)가 존재하여 인성을 감소시키기 때문이다. 열간제어압연은 통상 적용되고 있는 950℃ 이하 누적압하율이 50 이상의 범위와 마무리 압연온도는 850% 이하로 하면 제어압연의 효과를 갖게된다. 누적압하율이 증가하고 마무리 압연온도가 낮을수록 결정입미세화 효과는 크지만 생산성이 저하하게 되므로 요구되는 품질수준에 따라 조정할 수 있다. 노말라이징 온도는 Ac3온도로부터 Ac3+50℃의 온도범위로서 앞에서 설명한 바와같이 V계 탄질화물은 고용시키고 Nb계 탄질화물은 석출한 상태로 존재시키는 중간온도 범위로서 고용도가 높은 오스테나이트 기지조직이어야 하기 때문에 Ac3온도를 하한으로 하였고 결정입 성장에 의한 조대화를 방지하기 위해 Ac3+50℃를 상한으로 하였다.The range of Ti addition was made into 0.01-0.2% range in consideration of the effect. Nitrogen is preferably in the range of 100-300ppm because the amount of nitride precipitates less than 100ppm, so the effect of precipitation strengthening is small, and when it is 300ppm or more, free nitrogen, not precipitate form, exists to reduce toughness. Because it is. Hot-rolled rolling has the effect of controlled rolling when the cumulative reduction ratio of 950 ° C. or lower, which is usually applied, is 50 or higher and the finish rolling temperature is 850% or lower. The higher the cumulative reduction ratio and the lower the finishing rolling temperature, the greater the grain refining effect, but the lower the productivity, so that it can be adjusted according to the required quality level. Normalizing temperature is the austenite matrix is employed high as the intermediate temperature range of V-carbonitride as described above as the temperature range of Ac 3 + 50 ℃ from the Ac 3 temperature is employed and Nb-based carbonitride is present in a precipitated state Ac 3 temperature was the lower limit because it must be a tissue, and Ac 3 + 50 ° C. was the upper limit to prevent coarsening due to grain growth.

이하 실시예를 통하여 본 발명을 설명한다.The present invention will be described through the following examples.

[실시예 1]Example 1

하기표 1과 같은 화학성분으로 제조한 강을 70ppm 두께의 스라브로 만들어 1200℃로 가열한 후 일반압연과 제어압연을 실시하여 12mm 두께의 후판을 제조하였다. 이때 질소의 량은 60ppm으로부터 340ppm까지 변화시켰다.A steel plate made of a chemical component as shown in Table 1 was made into a slab having a thickness of 70 ppm, heated to 1200 ° C., and then subjected to general rolling and control rolling to prepare a 12 mm thick steel plate. At this time, the amount of nitrogen was changed from 60ppm to 340ppm.

일반압연과 제어압연에 의해 제조한 후판을 2시간동안 노말라이징 열처리 하였다.The thick plates manufactured by the normal rolling and the control rolling were subjected to normal heat treatment for 2 hours.

노말라이징 온도는 800℃, 880℃, 950℃의 3가지 조건으로 변화시켰다. 제조된 모든 후판에 대하여 기계적 성질 및 석출물 분포를 조사하여 기계적 성질에 대해서는 표 2 및 3에 석출물 분포에 대해서는 제1도 및 제2도에 나타내었다.Normalizing temperature was changed to three conditions of 800 degreeC, 880 degreeC, and 950 degreeC. Mechanical properties and precipitate distributions were investigated for all the prepared plates, and the mechanical properties thereof are shown in Tables 2 and 3, and the precipitate distributions are shown in FIGS. 1 and 2.

[표 1]TABLE 1

Figure kpo00001
Figure kpo00001

[표 2]TABLE 2

Figure kpo00002
Figure kpo00002

[표 3]TABLE 3

Figure kpo00003
Figure kpo00003

상기 표 2와 표 3에 나타난 바와 같이, 질소의 량이 100-300ppm 범위내에 있는 발명강 B 및 C는 제어압연을 하였을때(발명재 a 및 b) 강도와 충격 인성이 우수하였으나, 발명강 B 및 C를 일반압연한 경우(비교재 2 및 3) 강도는 비슷한 수준을 나타내고 있으나 충격인성이 매우 나쁘게 나타났다.As shown in Table 2 and Table 3, the invention steels B and C in the amount of nitrogen in the range of 100-300 ppm were excellent in strength and impact toughness when controlled rolling (inventive materials a and b), but the invention steels B and When C was rolled in general (Comparative Materials 2 and 3), the strength was similar, but the impact toughness was very bad.

이는 제1도의 현미경조직으로부터 충분히 알 수 있다.This can be fully seen from the microstructure of FIG.

제1도는 발명강 B를 일반압연후 노말라이징한 경우와 제어압연후 노말라이징한 경우의 현미경 조직사진을 나타내는 것이다.FIG. 1 shows the microscopic picture of the invention steel B when normalized after normal rolling and when normalized after control rolling.

제1도에 나타난 바와같이, 제어압연한 경우는 결정입이 10㎛정도이고 일반 압연한 경우는 결정입이 25㎛ 정도로서 제어압연한 노말라이징강의 결정입이 미세한 것을 알 수 있다.As shown in FIG. 1, it can be seen that in the case of controlled rolling, the grain size is about 10 µm, and in the case of general rolling, the grain size is about 25 µm and the grain size of the normalized steel that has been controlled is fine.

한편, 상기 표 2에 나타난 바와같이, 질소의 함량이 각각 59ppm 및 340ppm인 비교강 A 및 D는 제어압연을 하여도 강도와 충격인성이 향상되지 않음을 볼수 있다.On the other hand, as shown in Table 2, the comparative steels A and D of the nitrogen content of 59ppm and 340ppm, respectively, can be seen that the strength and impact toughness does not improve even if controlled rolling.

제2도는 질소량이 A강과 질소량이 적당한 B강의 제어압연과 노말라이징 열처리후 석출물 분포를 나타낸 전자현미경 사진이다.FIG. 2 is an electron micrograph showing the distribution of precipitates after controlled rolling and normalizing heat treatment of steel A and nitrogen B having an appropriate amount of nitrogen.

제2도는 현미경사진에 나타난 바와같이, 질소량이 많은 발명강 B가 질소량이 적은 비교강 A보다 석출물량이 많고 골고루 분포하여 강도가 높음을 알 수 있다.2, as shown in the micrograph, it can be seen that the invention steel B having a large amount of nitrogen has a higher amount of precipitates and evenly distributed than the comparative steel A having a small amount of nitrogen.

상기 표 3은 본 발명에 부합되는 성분범위를 갖는 발명강 B 및 C를 제어압연후 노말라이징 열처리온도에 따른 기계적 성질 변화를 나타낸 것이다.Table 3 shows the mechanical properties change according to the normalized heat treatment temperature after the controlled rolling of the invention steels B and C having a component range consistent with the present invention.

상기 표 3에 나타난 바와같이, 기계적 성질에 미치는 노말라이징온도의 영향은 화학성분이나 제어압연의 효과만큼 나타나지는 않았지만 적정범위인 Ac3온도로부터 Ac3+50℃의 온도범위를 벗어났을때는 강도와 인성이 저하함을 알 수 있다.As shown in Table 3, the effect of normalizing temperature on the mechanical properties did not appear as much as the effect of chemical composition or controlled rolling, but the strength and strength when outside the temperature range of Ac 3 + 50 ° C from the appropriate range of Ac 3 temperature. It turns out that toughness falls.

상기 표 2 및 표 3에 나타난 바와 같이, 본 발명에 따라 100-300ppm의 질소를 첨가하고 제어압연후 적당한 온도에서 노말라이징 열처리를 하여 강도와 충격인성이 우수한 비정질 고장력강을 제조할 수 있었다.As shown in Table 2 and Table 3, according to the present invention was added to the nitrogen of 100-300ppm and subjected to normalized heat treatment at a suitable temperature after the control rolling to produce an amorphous high tensile strength steel excellent in strength and impact toughness.

[실시예 2]Example 2

상기 실시예 1에 제시된 표 1의 시료 강종중에서 본 발명강 B 및 C를 실시예 1의 표 2와 같은 방법으로 제어압연 및 노말라이징 한 발명재 a 및 b에 대하여 경판가공용으로 알맞는지 알아보기 위해 열간가공후의 기계적 성질의 변화를 측정하고 그 결과를 하기 표 4에 나타내었다.In order to find out whether the inventive steels B and C of the sample steels of Table 1 shown in Example 1 are suitable for hard plate processing with respect to the invention materials a and b controlled and rolled in the same manner as Table 2 of Example 1 The change in mechanical properties after hot working was measured and the results are shown in Table 4 below.

상기 열간경판가공은 실험용 압연기로 변형을 고 응력제거소둔을 하여 실제경우와 같은 조건으로 실시하였다.The hot plate processing was carried out under the same conditions as in the actual case by performing a high stress relief annealing deformation with an experimental rolling mill.

[표 4]TABLE 4

Figure kpo00004
Figure kpo00004

상기 표 4에 나타난 바와 같이, 본 발명강 B 및 C를 본 발명에 따라 제어압연후 노말라이징 열처리를 한 발명재 a 및 b는 열간 경판가공에 의해 강도는 증가하였고 충격인성변화는 5% 이내의 범위로서 열화정도가 극히 적어 경판가공용으로 알맞는 것임을 알 수 있다.As shown in Table 4, the invention materials a and b subjected to normalized heat treatment after control rolling of the inventive steels B and C according to the present invention, the strength was increased by hot hard plate processing and the impact toughness change was within 5%. As a range, the degree of deterioration is extremely small, and thus it is suitable for hard plate processing.

Claims (1)

중량%로 C : 0.3 이하, Mn : 0.5-2.0%, P 및 S : 각각 0.5% 이하 함유되어 있는 일반 저탄소강에 Nb 및 V이 각각 0.2% 이하로 복합첨가되고, 게다가, Ni, Mo, Cr 및 Cu로 이루어진 그룹중에서 적어도 1종 이상의 원소 : 1.0% 이하, Ti : 0.01-0.2% 및 N2: 100-300ppm 첨가된 저합금 고장력강을 열간 제어압연하여 결정립을 미세화시킨후, 이 강판을 Ac3온도로부터 Ac3+50℃의 온도범위로 가열유지하는 것을 특징으로 하는 노말라이징 열처리에 의한 비조질 고장력강의 제조방법.In general, low carbon steel containing C: 0.3 or less, Mn: 0.5-2.0%, P and S: 0.5% or less, Nb and V, respectively, is 0.2% or less, and Ni, Mo, Cr and at least one kind of element from the group consisting of Cu: 1.0% or less, Ti: 0.01-0.2% and N 2: after the low alloy high strength steel with 100-300ppm was added refinement to hot rolling to control the crystal grains, the steel sheet Ac 3 A method for producing an amorphous high tensile strength steel by normalizing heat treatment, characterized in that the heating is maintained in a temperature range of Ac 3 + 50 ° C. from the temperature.
KR1019860011714A 1986-12-31 1986-12-31 Making process for high-tensile steel KR900004848B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019860011714A KR900004848B1 (en) 1986-12-31 1986-12-31 Making process for high-tensile steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019860011714A KR900004848B1 (en) 1986-12-31 1986-12-31 Making process for high-tensile steel

Publications (2)

Publication Number Publication Date
KR880007754A KR880007754A (en) 1988-08-29
KR900004848B1 true KR900004848B1 (en) 1990-07-08

Family

ID=19254708

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019860011714A KR900004848B1 (en) 1986-12-31 1986-12-31 Making process for high-tensile steel

Country Status (1)

Country Link
KR (1) KR900004848B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100699133B1 (en) * 2005-10-07 2007-03-22 동부제강주식회사 Manufacturing method of normalizing-treated free-cutting steel wire rod excellent in working
KR101758484B1 (en) 2015-12-15 2017-07-17 주식회사 포스코 High strength steel sheet having excellent strain aging impact property and impact property in heat-affected zone and method for manufacturing the same

Also Published As

Publication number Publication date
KR880007754A (en) 1988-08-29

Similar Documents

Publication Publication Date Title
US5624504A (en) Duplex structure stainless steel having high strength and elongation and a process for producing the steel
KR100742930B1 (en) Non-aging type cold rolled steel sheet with high yield ratio and process for producing the same
CN113737087B (en) Ultrahigh-strength dual-phase steel and manufacturing method thereof
US3619302A (en) Method of heat-treating low temperature tough steel
KR20190077772A (en) Steel wire rod for cold forging, processed good using the same, and methods for manufacturing thereof
US20070289679A1 (en) High Strength Cold Rolled Steel Sheet Having Excellent Shape Freezability, and Method for Manufacturing the Same
EP2123780A1 (en) Processes for production of steel sheets for cans
US4584032A (en) Bolting bar material and a method of producing the same
EP4159887A9 (en) Electro-galvanized super-strength dual-phase steel resistant to delayed cracking, and manufacturing method therefor
KR101767762B1 (en) High strength cold-rolled steel sheet having excellent bendability and method for manufacturing the same
KR900004848B1 (en) Making process for high-tensile steel
JP2000219914A (en) Seamless steel pipe having fine grain structure and little unevenness of strength
KR20160138771A (en) Tmcp typed steel and method of manufacturing the same
JP2002173734A (en) Steel having excellent weldability and its production method
CN111647803B (en) Copper-containing high-strength steel and preparation method thereof
JPH0314898B2 (en)
JPS62199750A (en) Unrefined steel bar having superior toughness and its manufacture
KR100328051B1 (en) A Method of manufacturing high strength steel sheet
KR102487758B1 (en) Steel plate having excellent low temperature impact toughness and method for manufacturing the same
KR920005614B1 (en) Making process for black plate
CN111748678B (en) Low-compression-ratio large-thickness lamellar tearing-resistant steel plate and manufacturing method thereof
KR20110046640A (en) Soft hot-rolled steel sheet, and method for producing the same
JPH073327A (en) Production of metastable austenitic stainless steel sheet excellent in season cracking resistance at the time of production
JP3142975B2 (en) Manufacturing method of high strength cold rolled steel sheet with excellent deep drawability
CN117187680A (en) 1500 MPa-level low-yield-ratio ultrahigh-strength easy-welding protective steel plate and manufacturing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19960704

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee