KR890002035B1 - Leaching method of ni from the low fineness ore - Google Patents

Leaching method of ni from the low fineness ore Download PDF

Info

Publication number
KR890002035B1
KR890002035B1 KR1019850000353A KR850000353A KR890002035B1 KR 890002035 B1 KR890002035 B1 KR 890002035B1 KR 1019850000353 A KR1019850000353 A KR 1019850000353A KR 850000353 A KR850000353 A KR 850000353A KR 890002035 B1 KR890002035 B1 KR 890002035B1
Authority
KR
South Korea
Prior art keywords
nickel
ore
leaching
sulfuric acid
low
Prior art date
Application number
KR1019850000353A
Other languages
Korean (ko)
Other versions
KR860005896A (en
Inventor
이동휘
윤경석
오종기
이화영
Original Assignee
한국과학기술원
전학제
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원, 전학제 filed Critical 한국과학기술원
Priority to KR1019850000353A priority Critical patent/KR890002035B1/en
Publication of KR860005896A publication Critical patent/KR860005896A/en
Application granted granted Critical
Publication of KR890002035B1 publication Critical patent/KR890002035B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/06Electrolytic production, recovery or refining of metals by electrolysis of solutions or iron group metals, refractory metals or manganese
    • C25C1/08Electrolytic production, recovery or refining of metals by electrolysis of solutions or iron group metals, refractory metals or manganese of nickel or cobalt

Abstract

Extraction of nickel from the low quality laterite ore is effected by leaching electrochemically in the electrolysis bath with a separator between cathod chamber and anode chamber. Nickel is recovered from 0.01-10.0 mol. sulfuric acid solution with blowing the sulfurous acid gas. Also anode chamber consists of 0.01-10.0 mol. sulfuric acid solution including source ore powder under 10 mesh.

Description

저품위 라레라이트광으로부터 니켈의 침출방법Leaching of nickel from low grade larelite

본 발명은 세계적으로 다량 부존되어 있는 니켈원광인 저품의 라레라이트로부터 습식 제련에 의하여 니켈을 침출 회수하는 방법에 관한 것으로서 저품위 원광을 효율적으로 처리하고자 함에 그 목적이 있다.The present invention relates to a method of leaching and recovering nickel by wet smelting from a low-grade lareite, which is a nickel ore, which is largely present in the world, and an object thereof is to efficiently process low-grade ore.

일반적으로 니켈원광으로부터 니켈을 침출시키는 방법은 원광의 종류와 품위에 따라 달리하여야 하나, 점차 고품위광의 고갈로 인하여 니켈 품위가 낮은(니켈 함유량 2%이하) 저품위 라레라이트광의 처리 방법에 대하여 큰 관심이 집중되고 있다.In general, the method of leaching nickel from nickel ore should be different depending on the kind and grade of ore. However, due to the depletion of high grade light, there is a great interest in the treatment of low quality larelite ore with low nickel quality (less than 2% nickel content). It is concentrated.

현재까지 저품위 라레라이트광을 처리하는 몇가지 방법이 개발되어 실험적인 단계에 있거나, 또는 실제 공장에서 응용되고 있다.To date, several methods of treating low quality larelite have been developed and are in experimental stages or have been applied in actual plants.

그중 대표적인 방법으로는 황산 침출법과 환원배소-암모니아 침출법이 있다.Representative methods include sulfuric acid leaching and reducing roast-ammonia leaching.

황산침출법(E.T.carlson and C.S.Simons, Jom. Mar., 1960, P 206-213참조)은 쿠바의 모아베이(Moa Bay)에서 실용화하고 있는 것으로 이방법은 철분 함량이 많은 라테라이트원광을 미분쇄하여 약 240℃에서 황산으로 가압 압출하여 니켈을 용출시키고. 철분은 침철광이나 적철광으로 만든다.Sulfuric acid leaching (ETcarlson and CSSimons, Jom. Mar., 1960, pp. 206-213) is being used in Moa Bay, Cuba, which pulverizes laterite ores with high iron content. The nickel was eluted by pressure extrusion with sulfuric acid at about 240 ℃. Iron is made of goethite or hematite.

그러나, 이 방법은 원광중에 마그네슘이 다량 함유되어 있을 경우 황산의 소모가 증가하고, 니켈의 선택 침출 효과가 떨어지며, 또한 침출광액의 후 처리가 간단치 않기 때문에 마그네슘의 함량이 적은 광석에 국한 적용된다.However, this method is limited to ore with a low magnesium content because the consumption of sulfuric acid in the ore increases the consumption of sulfuric acid, the selective leaching effect of nickel is poor, and the post-treatment of the leaching liquor is not easy.

암모니아 침출법은 전기한 황산침출법과는 달리 원광의 종류에 관계없이 적용되는 방법으로, 현재 쿠바의 니카로(Nicaro) (M.M.Caron.Trans.AIME, 188 P 67, 1950 참조), 필리핀의 노녹(Nonoc) (T.Harada etal., JMMI of Japan, 98, P 105, 1981 참조), 호주의 노드퀸스랜드(North Queensland) (J.G.Reid, International Laterite Symp., AIME, P 368, 1979참조)등에서 실용화되어 있다.Unlike sulfuric acid leaching, the ammonia leaching method is applied regardless of the kind of ore. Currently, Nicaro, Cuba (see MMCaron.Trans.AIME, 188 P 67, 1950), and Nonock, Philippines ( Nonoc) (see T. Harada et al., JMMI of Japan, 98, P 105, 1981), and North Queensland (Australia, JGReid, International Laterite Symp., AIME, P 368, 1979). have.

이 방법은 미쇄분한 라테라이트등과 같은 비황화 니켈원광을 소량의 탄소입자와 섞어 환원성 기체로 700-800℃에서 환원시켜 얻어진 미립의 금속니켈을 암모니아 용액으로 침출한다.In this method, fine metallic nickel obtained by mixing non-sulfide nickel ore such as finely divided laterite with a small amount of carbon particles and reducing it at 700-800 ° C. with a reducing gas is leached into an ammonia solution.

그 외에 실험적 단계에 있는 기술로 세그리게이션(sogregation)법이 개발되어 있으나, 이 방법은 아직 실용화 단계에는 이르지 못하고 있다.In addition, as a technique at an experimental stage, a segmentation method has been developed, but this method has not yet reached the practical stage.

이 방법은 라레라이트를 5-10% 염화물(Nacl, CaCl2)등과 4-8%의 탄소입자를 섞어 850-1000℃에서 불활성 내지 환원성 분위기에서 배소하여 탄소입자 표면에 금속니켈을 선택적으로 석출시켜 부선이나 자선등의 물리적 선별방법으로 니켈 정광을 회수한 다음 암모니아 용액으로 금속니켈을 침출시키는 방법이다.This method mixes 5-10% chloride (Nacl, CaCl 2 ) with 4-8% carbon particles and roasts them in an inert or reducing atmosphere at 850-1000 ℃ to selectively deposit metal nickel on the surface of carbon particles. It is a method of recovering nickel concentrate by physical screening method such as barge or charity and then leaching metal nickel with ammonia solution.

이 방법은 원광중에 철분이나 마그네슘이 함유되어 있어도 니켈을 선택 침출할 수 있는 장점이 있으나 저품위 원광을 전량 고온 배소하는 공정, 농축공정 및 침출공정등 그 처리 단계가 복잡할 뿐만 아니라, 막대한 연료비가 소요되는 단점이 있다.This method has the advantage of selectively leaching nickel even if iron or magnesium is contained in the ore, but the processing steps such as the process of roasting low-grade ore at high temperature, concentration process and leaching process are not only complicated, but also require enormous fuel costs. There is a disadvantage.

이상에서 살펴본 바와같이 종래의 라테라이트 처리방법인 고온, 고압하에서의 습식처리 방법이나 고온에서 환원배소-암모니아 침출방법 모두 저품위 라테라이트광 처리에 있어서는 아직가지 경제성이 거의없는 것으로 밝혀져있다.As described above, both conventional wet treatment methods such as high temperature and high pressure, and reduction roasting-ammonia leaching at high temperature have been found to have almost no economic feasibility in low-grade laterite light treatment.

따라서, 본 발명은 특히 저품위 니켈 라레라이트광 처리에 있어서 종래의 비효율적인 처리방식을 지양라고 저품위 라레라이트 원광을 직접 전기화학적인 방법으로 원광중의 니켈을 용액중에 침출시켜 회수하는 것으로서 종래의 방법과 비교해볼때 저품위 라레라이트를 매우 간단한 공정으로 처리하여 경제적으로 니켈을 침출 회수할 수 있다.Therefore, the present invention avoids the conventional inefficient treatment method, especially in the low-grade nickel larerite ore treatment, in which the low-grade larerite ore is directly leached and recovered by recovering nickel in the ore in the solution by electrochemical method. In view of this, the low quality larelite can be treated in a very simple process to economically leach and recover nickel.

본 발명을 구체적으로 설명하면 다음과 같다.The present invention will be described in detail as follows.

원광품위 약 1.0-2.0% Ni인 저품위 라레라이트 원광을 -100메쉬(mesh)로 마광한 다음 0.01-10.0M황산용액으로 만들어 분리격막(separator)이 설치되어 있는 전해조의 음극실에 채운후 음극실에 아황산(S02) 가스를 포화용액이 되게 주입하면서 10-100분간 전해하여 니켈을 침출시킨다.The low-grade Larerite ore, which is about 1.0-2.0% Ni, is polished with -100 mesh, made into 0.01-10.0M sulfuric acid solution, and filled in the cathode chamber of the electrolytic cell with a separator. While sulfuric acid (S0 2 ) gas is injected into a saturated solution, it is electrolyzed for 10-100 minutes to leach nickel.

이때 양극전해액으로는 0.01-10.0M 황산용액을 사용한다. 전해 침출시의 조건으로서는 상온하에서 아황산 가스를 충분히 주입시키며,. 또한 음극전위(Potential)는 기준전극(Saturated calomel electrode)에 대하여 -0.1~5.0볼트로 유지시킨다.In this case, 0.01-10.0 M sulfuric acid solution is used as the positive electrolyte. As the conditions at the time of electrolytic leaching, sulfite gas is sufficiently injected at room temperature. In addition, the potential of the cathode is maintained at -0.1 to 5.0 volts with respect to the saturated calomel electrode.

이와같이 음극실에서 라테라이트를 전해침출하면 광석의 주성분인 니켈함유 수산화철[(Fe, Ni)O(OH), nH2O]이 산성용액 SO2에 의해 3가철이 2가철로 용이하게 환원 침출될때 니켈이 산에 의해 이온화되어 침출회수된다.Thus when leaching deliver the laterite in the cathode chamber containing a main component of the ores of nickel hydroxide [(Fe, Ni) O ( OH), nH 2 O] The acidic solution when three gacheol is easily reduced leaching in two gacheol by SO 2 Ni The acid is ionized and leached.

위에서 설명한 바와같이 본 발명은 저품위 니켈라테라이트의 광액을 직접 전해 침출하는 간단한 방법으로서, 종래의 고온, 고압하에서의 황산침출법이나, 700-800℃에서 배소환원-암모니아 침출법에 비하여 그 처리비가 매우 적어 경제적이다.As described above, the present invention is a simple method of directly electrolytic leaching of a low-grade nickel laterite mineral liquid, and has a very low treatment cost compared to the conventional sulfuric acid leaching at high temperature and high pressure or the roasting reduction-ammonia leaching at 700-800 ° C. It is economical.

실제 소요되는 전기량은 140-200kwh/원광석톤으로써 전기로 재련에서 필요로 하는 전기량(600-800kwh/원광분톤)에 비하면, 월등히 경제적임을 알 수 있다.The actual amount of electricity consumed is 140-200 kwh / raw ore tons, compared to the electricity required in the furnace refining (600-800 kwh / raw ore ton), it can be seen that it is significantly economical.

[실시예 1 ]Example 1

표 1과 같은 화확성분을 가진 인도네시아산 저품위 라레라이트 원광 200gr.을 취하여 약 -100매쉬로 마광한 다음 0.5M 황산용액 1리터에 혼합한 KI 83gr.을 용해시켜 전해조의 음극실에 넣은 후 음극실에 아황산 가스를 약 100ml/min.의 유속으로 30분간 통과시킨다.Take 200gr. Of low-grade Indonesian Larelite ore with the chemical composition as shown in Table 1, polish it with about -100 mesh, dissolve KI 83gr. Mixed in 1 liter of 0.5M sulfuric acid solution, put it in the cathode chamber of the electrolytic cell, and then Sulfurous acid gas is passed through at a flow rate of about 100 ml / min. For 30 minutes.

이때 양극실에는 0.5M 황산용액 1리터를 채운다.The anode chamber is filled with 1 liter of 0.5 M sulfuric acid solution.

[표 1 ]TABLE 1

Figure kpo00001
Figure kpo00001

이상과 같이 양극액 및 음극액이 채워진 전해조에 백금전극을 설치하고, 음극실에 아황산 가스를 주입시키면서 음극전위를 -1.0볼트(S.C.E)로 유지시키고, 90분간 침출하였다. 이때 원광중의 니켈 침출율은 약 66.3%이었다.A platinum electrode was installed in the electrolytic cell filled with the anolyte and the catholyte as described above, and the cathode potential was kept at -1.0 volts (S.C.E) while injecting sulfurous acid gas into the cathode chamber, and leached for 90 minutes. At this time, the leaching rate of nickel in ore was about 66.3%.

[실시예 2 ]Example 2

표 2와 같은 화학성분을 가진 인도네시아산 저품위 라레라이트 원광 20gr을 취하여 약 -100매쉬로 마광한 다음 0.25M 황산용액 200ml에 혼합하여 건해조의 음극실에 채운후 음극실에 아황산 가스를 약 80ml/min의 유속으로 주입시킨다.Take 20gr of Indonesian low-grade Larerite ore with chemical composition as shown in Table 2, and grind it to about -100 mesh, mix it with 200ml of 0.25M sulfuric acid solution, fill it in the cathode chamber of the drying tank, and then dissolve sulfuric acid gas in the cathode chamber about 80ml / Inject at a flow rate of min.

이때 양극실에는 0.25M 황산용액 200ml를 채운다.At this time, the anode chamber is filled with 200 ml of 0.25M sulfuric acid solution.

[표 2 ]TABLE 2

Figure kpo00002
Figure kpo00002

이상태에서 실시예 1과 같은 방법으로 음극전위 -0.8볼트(S.C.E)에서 60분간 침출하였을때 니켈의 침출율은 약 63.4%이었다.In this state, in the same manner as in Example 1, when leaching at the negative electrode potential of −0.8 volts (S.C.E) for 60 minutes, the leaching rate of nickel was about 63.4%.

[실시예 3 ]Example 3

표 3과 같은 화학성분을 가진 인도네시아산 저품위 라테라이트 원광 20gr.을 취하여 실시예 2과 같은 방법으로 음극저위 -0.7볼트(S.C.E)에서 50분간 전해 침출하였으며, 이때dml 니켈침율은 52.9%이었다.20g of low-grade laterite ore from Indonesia having the chemical composition shown in Table 3 was taken and electrolytic leached at the negative electrode low -0.7 volts (S.C.E) for 50 minutes in the same manner as in Example 2, where the dml nickel sedimentation rate was 52.9%.

[표 3 ]TABLE 3

Figure kpo00003
Figure kpo00003

본 발명에 의한 방법과 종래의 세그리게이션(segregation) 배소-부유선광-암모니아 침출법에 의한 저품위 라레라이트 광의 처리방법에 따라 동일한 시료로 실험하였을때의 니켈의 회수율을 보면 표 4과 같다. 이 표에서 알 수 있는 바와같이 시료에 따라 회수율은 두 방법이 서로 높게 혹은 낮게 나타나고 있으나, 처리공정 단계에 있어서는 종래방법이 3단계 공정임에 비해 본 발명방법은 단일공정으로 처리과정이 간단할뿐만 아니라, 상온에서 조업하므로 처리비가 매우 절감될 수 있어 본 발명으로 저품위 라레라이트를 효과적으로 경제적으로 처리할 수 있다.Table 4 shows the recoveries of nickel when tested with the same sample according to the method according to the present invention and the treatment method of low-grade larerite light by the conventional aggregation roasting-floating light-ammonia leaching method. As can be seen from the table, the recovery rate of the two methods is high or low depending on the sample. However, in the treatment step, the method of the present invention is simple in one step compared to the conventional method in the three step step. In addition, since operating at room temperature, the treatment cost can be very reduced, and the present invention can effectively and economically treat low-grade larerite.

[표 4 ]TABLE 4

Figure kpo00004
Figure kpo00004

Claims (2)

격막으로 분리된 전해조의 음극실에는 저품위 라레라이트를 -10메쉬로 마광하여 농도 0.01-10.0M의 황산으로 광액을 만들어 넣고 양극실에는 농도 0.01-10.0M의 황산을 넣은 다음 음극실에 아황산 가스를 불어 넣으면서 음극전위 -0.1~0.5볼트로 전해하는 라테라이트 광으로부터 니켈의 침출방법.In the cathode chamber of the electrolytic cell separated by the diaphragm, low-grade larerite is mined with -10 mesh to make a mineral solution with sulfuric acid with a concentration of 0.01-10.0M, and sulfuric acid with a concentration of 0.01-10.0M is placed in the anode chamber. A method of leaching nickel from laterite light that is electrolyzed at negative electrode potential -0.1 to 0.5 volts while blowing. 제1항에 있어서, 음극실에 아황산 가스를 포화 용액이 되게 불어 넣음을 특징으로 하는 방법.The method according to claim 1, wherein sulfurous acid gas is blown into the cathode chamber to be a saturated solution.
KR1019850000353A 1985-01-22 1985-01-22 Leaching method of ni from the low fineness ore KR890002035B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019850000353A KR890002035B1 (en) 1985-01-22 1985-01-22 Leaching method of ni from the low fineness ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019850000353A KR890002035B1 (en) 1985-01-22 1985-01-22 Leaching method of ni from the low fineness ore

Publications (2)

Publication Number Publication Date
KR860005896A KR860005896A (en) 1986-08-16
KR890002035B1 true KR890002035B1 (en) 1989-06-08

Family

ID=19239456

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019850000353A KR890002035B1 (en) 1985-01-22 1985-01-22 Leaching method of ni from the low fineness ore

Country Status (1)

Country Link
KR (1) KR890002035B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007092994A1 (en) * 2006-02-15 2007-08-23 Andreazza Consulting Pty Ltd Processing of laterite ore
WO2010022480A1 (en) * 2008-08-28 2010-03-04 Hydronickel Engineering Ood Method for nickel and cobalt extraction from oxide ores
WO2010022481A1 (en) * 2008-08-28 2010-03-04 Stoian Borissov Mitov Electrochemical method for nickel and cobalt extraction from oxide ores

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007092994A1 (en) * 2006-02-15 2007-08-23 Andreazza Consulting Pty Ltd Processing of laterite ore
WO2010022480A1 (en) * 2008-08-28 2010-03-04 Hydronickel Engineering Ood Method for nickel and cobalt extraction from oxide ores
WO2010022481A1 (en) * 2008-08-28 2010-03-04 Stoian Borissov Mitov Electrochemical method for nickel and cobalt extraction from oxide ores

Also Published As

Publication number Publication date
KR860005896A (en) 1986-08-16

Similar Documents

Publication Publication Date Title
AU2006298625B2 (en) Processing of nickel sulphide ore or concentrates with sodium chloride
CN106191477B (en) Method for separating and recovering rare earth from seabed cobalt-manganese multi-metal oxidized ore
CN101698904B (en) Method for extracting sulfide minerals of nonferrous metals and method for recycling sulfur in extracted filtered residues thereof
US8003064B2 (en) Controlled copper leach recovery circuit
MXPA04000750A (en) Method for improving metals recovery using high temperature pressure leaching.
JP2007297717A (en) Method for recovering copper from sulfide ore material using high temperature pressure leaching, solvent extraction and electrowinning
Sun et al. Electrochemistry during efficient copper recovery from complex electronic waste using ammonia based solutions
CN101956081A (en) Process for strengthening ammonia leaching nickel cobalt from low-grade laterite-nickel ore
KR890002035B1 (en) Leaching method of ni from the low fineness ore
US4435369A (en) Hydrometallurgical process for extraction of nickel
CN110564961B (en) Method for reducing leached hydrocobaltite
Flett Solvent extraction in scrap and waste processing
CN114703385B (en) Technological method for extracting phosphorus and rare earth from rare earth-containing low-grade phosphorite
CN105567992A (en) Method for reducing neutralization cost of refractory gold ore hot-pressing oxidation acid
US3681056A (en) Process for winning metals
CN112718230B (en) Copper oxide ore recovery method
US9410224B2 (en) Pre-treatment for conventional cyanidation for silver recovering from manganese-argentiferous ores containing occluded silver
CN113621837A (en) Rare earth extraction method for low-grade fine-fraction rare earth ore
AU701811B2 (en) Recovery of nickel
CN105728199A (en) Method for recovering silver from silver-containing vanadium ore through chemical activation flotation
US3681055A (en) Copper recovery process
US1456784A (en) Process of treating ores containing galena
Scheiner Extraction of silver from refractory ores
CN103816989A (en) Mineral processing process for removing arsenic and sulfur in tin concentrate
US1284910A (en) Process for recovering metals from ores.

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19961204

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee