KR890001982B1 - Gas detector for alpha-fe2o3 gas - Google Patents

Gas detector for alpha-fe2o3 gas Download PDF

Info

Publication number
KR890001982B1
KR890001982B1 KR1019860004560A KR860004560A KR890001982B1 KR 890001982 B1 KR890001982 B1 KR 890001982B1 KR 1019860004560 A KR1019860004560 A KR 1019860004560A KR 860004560 A KR860004560 A KR 860004560A KR 890001982 B1 KR890001982 B1 KR 890001982B1
Authority
KR
South Korea
Prior art keywords
gas
sensitivity
specimen
mol
resistance
Prior art date
Application number
KR1019860004560A
Other languages
Korean (ko)
Other versions
KR880000790A (en
Inventor
고재귀
노경호
Original Assignee
대성산업 주식회사
김의근
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대성산업 주식회사, 김의근 filed Critical 대성산업 주식회사
Priority to KR1019860004560A priority Critical patent/KR890001982B1/en
Publication of KR880000790A publication Critical patent/KR880000790A/en
Application granted granted Critical
Publication of KR890001982B1 publication Critical patent/KR890001982B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/122Circuits particularly adapted therefor, e.g. linearising circuits
    • G01N27/123Circuits particularly adapted therefor, e.g. linearising circuits for controlling the temperature
    • G01N27/124Circuits particularly adapted therefor, e.g. linearising circuits for controlling the temperature varying the temperature, e.g. in a cyclic manner
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/129Diode type sensors, e.g. gas sensitive Schottky diodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector

Abstract

A gas detecting element having an alpha-ferric oxide sintered body is made by (i) adding 15-35 mol.% metal ions to ferric salt containing sulphate ions, (ii) hydrolysing in distilled water keeping the regular temperature of 50 deg.C, (iii) adding liquid ammonia to the generated solution at 50 deg.C up to pH 7.2, (iv) drying the resulting precipitate at 110 deg.C for 16 hours, and (v) sintering the dried powder under 500 kg/cm2 pressure for 1 hour.

Description

α-Fe2O3계 가스 검지 소자α-Fe2O3-based gas detection element

제1도-제3도는 첨가제의 농도에 따른 각 시편별의 저항치 변화를 나타낸 그래프이며,1 to 3 are graphs showing the change in resistance of each specimen according to the concentration of the additive,

제4도-제6도는 첨가제의 농도에 따른 가 시편별의 감응성 변화를 나타낸 그라프이며,4 to 6 are graphs showing the change in sensitivity of each specimen according to the concentration of additives.

제7도-제9도는 가스 농도에 따른 시편의 저항치 변화를 나타낸 그라프이며,7 to 9 are graphs showing the change in resistance of the specimen according to the gas concentration,

제10도-제12도는 가스 농도에 따른 시편의 감응성 변화를 나타낸 그라프이며,10 to 12 are graphs showing the change in the sensitivity of the specimen according to the gas concentration,

제16도-제18도는 주변 온도 변화에 따른 각 시편의 감응성 변화를 나타낸 그라프이다.16 to 18 are graphs showing the change in sensitivity of each specimen with the change of ambient temperature.

본 발명은 α-Fe2O3세라믹 가스 검지 소자에 관한 것이다. 특히 본 발명은 부탄가스, 도시가스, LPG 그리고 메탄가스등을 검지하게 위하여 황산 이온을 포함하는 철염에 금속이온을 첨가하여 제조한 α-Fe2O3계 가스 검지 소자에 관한 것이다.The present invention relates to an α-Fe 2 O 3 ceramic gas detection element. In particular, the present invention relates to an α-Fe 2 O 3 -based gas detection device prepared by adding metal ions to iron salts containing sulfate ions in order to detect butane gas, city gas, LPG and methane gas.

일반적으로 산화철계 가스 검지 소자의 문제점은 사용중 가스 검지 능력이 없는 α-Fe2O3로 서서히 변하는 것으로 알려져 왔으나, 최근에는 가수분해와 침점습식을 통하여 황산이온을 내포하는 철염으로부터 제조된 α-Fe2O3를 이용하는 방법이 연구되고 있다. 그러나 현재 제안된 것 모두 측정 대상 가스의 선택성이 불량할 뿐 아니라 감응온도 또한 모두 높다는 단점을 지니고 있다. 따라서 본 발명의 목적은 가스 선택이 불량할 뿐 아니라 감응온도 또한 모두 높다는 단점을 지니고있다. 따라서 본 발명의 목적은 가스 선택성이 대단히 양호하고 감응온도가 비교적 저온이며, 장시간에 걸쳐 안정된 특성을 유지하는 새로운 α-Fe2O3계 가스 검지 소자에 관한 것이다.In general, the problem of the iron oxide gas detection element has been known to gradually change to α-Fe 2 O 3 without the gas detection capability in use, but recently, α-Fe prepared from iron salt containing sulfate ions through hydrolysis and wet-wetting method A method using 2 O 3 has been studied. However, all of the current proposals have the disadvantage of not only poor selectivity of the gas to be measured but also high response temperature. Therefore, the object of the present invention has the disadvantage that not only poor gas selection but also high response temperature. Accordingly, an object of the present invention is to provide a novel α-Fe 2 O 3 -based gas detecting element which has a very good gas selectivity, has a relatively low temperature, and maintains stable properties for a long time.

본 발명은 황산이온을 포함하는 철염에 금속이돈 첨가제 15 내지 25몰%를 첨가하여 제조한 α-Fe2O3세라믹 가스 검지 소자에 관한 것이다.The present invention relates to an α-Fe 2 O 3 ceramic gas detecting device prepared by adding 15 to 25 mol% of a metalldon additive to an iron salt containing sulfate ion.

본 발명에 따른 가스 검지 소자는 황산이온을 포함하는 철 염에 금속이온 첨가제를 첨가한 다음, 50℃로 일정하게 유지되는 증류수로 가수분해하고, 생성된 용액을 50℃에서 pH가 7.2로 될때까지 암모니아수(NH4OH)를 가하며, 여기에서 형성된 침전물을 증류수로 여러번 세척산 후 16시간동안 110℃에서 건조기키고 미분말로 만들며, 공기중에서 400℃로 1시간 동안 가소한 후 이 미분말에 한쌍의 백금선을 넣고 500kg/cm²의 압력을 가해 반경 1.5mm, 두께 4.5mm인 원통형으로 만든 다음 이를 다시 공기중에 1시간동안 소결 할 수있다. 본 발명에서는 황산이온을 포함하는 철염으로 Fe2(SO4)3또는 그의 수화물을 사용할 수 있으나 Fe2(SO4)3·9H2O(Junsei Chemical Co. 제품)를 사용하였다. 금속이온 첨가제로서는 Sn, Ti, Zr, Zn, Mn 또는 Mg이온을 사용하였는데, 각각 SnCl4·5H2O, Ti(SO4)2·4H2O, ZrOCl2·3H2O, ZnCl2, MnCl4·4H2O 또는 MgCl2·6H2O의 형태로 사용하였다. 이러한 금속이온은 황산이온을 포함하는 철명을 기준으로하여 약 15내지 35몰%를 첨가하였다.The gas detection device according to the present invention is added to the iron salt containing sulfate ion, and then hydrolyzed with distilled water maintained at 50 ℃ constant, and the resulting solution at 50 ℃ until the pH is 7.2 Ammonia water (NH 4 OH) is added, and the precipitate formed therein is washed several times with distilled water, dried at 110 ° C. for 16 hours, and made into fine powder. It can be put into a cylindrical cylinder with a radius of 1.5 mm and a thickness of 4.5 mm by applying a pressure of 500 kg / cm² and then sintered in air for 1 hour. In the present invention, Fe 2 (SO 4 ) 3 or a hydrate thereof may be used as the iron salt containing sulfate ion, but Fe 2 (SO 4 ) 3 · 9H 2 O (manufactured by Junsei Chemical Co.) was used. Sn, Ti, Zr, Zn, Mn or Mg ions were used as metal ion additives, respectively, SnCl 4 · 5H 2 O, Ti (SO 4 ) 2 · 4H 2 O, ZrOCl 2 · 3H 2 O, ZnCl 2 , MnCl It was used in the form of 4 · 4H 2 O or MgCl 2 · 6H 2 O. Such metal ions were added in an amount of about 15 to 35 mol% based on iron name including sulfate ion.

본 발명에 있어서의 측정 가스는 일반 가정용의 LPG 및 도시가스와 가연성 제조가스의 주성분인 부탄가스 그리고 메탄가스이다.The measurement gas in this invention is LPG of general household use, butane gas and methane gas which are main components of city gas and combustible manufacturing gas.

본 발명에 따른 검지소자에 대한 제반 성실을 살펴보면 다음과 같다.Looking at the integrity of the detection device according to the invention as follows.

1. 첨가제의 농도에 따른 가스 감응도의 변화1. Changes in gas sensitivity depending on the concentration of additives

다음의 표 1은 환산철염에 각 첨가제를 일정한 몰%로 혼합한 시편의 조성을 나타낸다.Table 1 below shows the composition of the specimens in which each additive was mixed in a fixed mol% to the iron salt.

[표 1]TABLE 1

Figure kpo00001
Figure kpo00001

* (1) SnCl4·5H2O, (2)Ti(SO4)2·4H2O, (3)ZrOCl2·3H2O, (4)ZnCl2, (5)MnCl4·4H2O (6) MgCl2·6H2O.* (1) SnCl 4 · 5H 2 O, (2) Ti (SO 4 ) 2 · 4H 2 O, (3) ZrOCl 2 · 3H 2 O, (4) ZnCl 2 , (5) MnCl 4 · 4H 2 O (6) MgCl 2 · 6H 2 O.

제1도, 제2도, 제3도 표1에 나타난 바와같은 첨가제의 첨가량에 따른 저항치의 변화를 나타내며 제4도-제6도는 이에 따른 감응도를 표시하고 있다.FIG. 1, FIG. 2, and FIG. 3 show the change in resistance value according to the amount of the additive added as shown in Table 1, and FIGS. 4 to 6 show the sensitivity accordingly.

제1도-제3도를 보면 첨가제를 추가하면 첨가제를 혼합하지 않은 경우보다 전체적으로 RA의 변화율과는 조금 다른 양상을 보이고 있음을 알 수 있으며, 첨가제의 첨가량에 따라 RG(가스중 저항) 는 RA의 변화율과는 조금 다른 양상을 보이고 있음을 알 수 있다. 아울러 시편(제1도)와 C(제2도)는 20몰%까지는 저항이 증가하다가 20몰%에서 60몰%까지는 감소함을 나타냈으며, 60몰%이상이 되면 다시 저항치도 증가하게 됨을 알 수 있었다. 이와는 달리 시편 D(제33도)는 20몰%가지는 저항치가 증가하다가 35몰%까지 감소하게 되며 첨가제가 더 증가함에 따라 저항치도 증가함을 보인다.Figures 1 to 3 show that the addition of additives is slightly different from the rate of change of R A as a whole, compared to the case where no additives are mixed, and R G (resistance in gas) depends on the amount of additives added. Shows a slightly different pattern from the change rate of R A. In addition, the specimens (figure 1) and C (figure 2) showed that the resistance increased to 20 mol% and then decreased from 20 mol% to 60 mol%, and the resistance increased again after 60 mol%. Could. In contrast, specimen D (FIG. 33) shows that the resistance increased by 20 mol% and then decreased to 35 mol%, and the resistance increased as the additive increased.

한편, 제6도에 나타난 바와같이 시편 D는 35몰%에서 감응도가 좋으며, 나머지 시편들은 첨가제를 20몰%추가 했을때 가장 감응도가 우수함을 확인했다.On the other hand, as shown in Figure 6, the specimen D has a good sensitivity at 35 mol%, the rest of the specimen was confirmed that the most sensitive when added 20 mol% of the additive.

2. 가스의 농도 및 종류에 따른 감응도 변화2. Change in sensitivity according to gas concentration and type

가스 농도에 따른 시편의 저항치(RA, RG)는 제7도-제9도에 표시되었으며, 그에 따른 가스 감응도는 제10도-제12도에 나타나 있다.The resistance values (R A , R G ) of the specimens according to the gas concentrations are shown in FIGS. 7 to 9, and the resulting gas sensitivity is shown in FIGS. 10 to 12.

제7도-제9도에서 알 수 있는 바와같이 RG값은 거의 일정하게 감소하는데 그에 따른 감응도는 일정하게 증가한다. 가스의 종류별 감응도는 부탄 프로판, 도시가스, 메탄의 순으로 감응도가 우수하게 나타났다. 제조된 각 시편들은 대체로 프로판 가스나 도시가스의 시편들에 대한 감응도는 비슷하지만 부탄 프로판 및 메탄의 감응도는 뚜렷한 차이를 보인다. 따라서 부탄, 프로판 및 메탄사스 선택성이 우수함을 알 수 있고 특히 시편 C는 4종류의 가스에 대해서 선택성이 가장 우수하게 나타났다.As can be seen from FIGS. 7 to 9, the R G value decreases almost uniformly, and thus the sensitivity increases constantly. The sensitivity of each gas was excellent in the order of butane propane, city gas, and methane. The prepared specimens generally have similar sensitivity to those of propane or city gas, but the sensitivity of butane propane and methane is notable. Therefore, it can be seen that the selectivity of butane, propane and methanesas is excellent. Particularly, specimen C showed the best selectivity with respect to four types of gases.

3. 주변온도 변화에 따른 시편의 저항치 변화3. Changes in the resistance of specimens with changes in ambient temperature

시편의 주변 온도를 히터인가 전압을 조절하여 변화시키면서 공기중 시편의 저항(RA)와 가스중에서의 정항(RG)을 측정하였다. 이때 첨가제를 섞은 시편은 20몰%를 혼합한 시편이고 주변온도의 변화는 150℃-150℃사이였다. 측정 가스의 종류는 부탄가스, 도시가스, LPG 및 메타가스이며, 공기중 가스농도는 2000ppm으로 측정했다. 각 시편의 온도에 대한 RA, RG의 변화와 가스 감응도의 변화를 제13도-제18도에 각각 나타냈으며, 감응도는 RA/RG(0.2)로 표시했는데 RG(0.2)는 2000ppm의 가스농도증 저항치미여 RB, RC, EL, RM는 각각 부탄가스, 도시가스, LPG 및 메탄가스중으 저항치로 표시했다.The resistance (R A ) of the specimen in air and the constant term (R G ) in the gas were measured while changing the ambient temperature of the specimen by controlling the voltage applied to the heater. At this time, the specimen mixed with the additive was a specimen mixed with 20 mol% and the change of the ambient temperature was between 150 ℃-150 ℃. The types of gas to be measured were butane gas, city gas, LPG and meta gas, and the gas concentration in air was measured at 2000 ppm. The change in R A, change in the R G and the gas sensitivity of the temperature of each specimen claim 13 degrees - naeteumyeo each appear to Claim 18 degrees, sensitivity is tried represented by R A / R G (0.2) R G (0.2) is gas concentration increased resistance miyeo B R, C R, E L, R M of 2000ppm was shown as coming from the resistance value of each of butane gas, city gas, LPG and methane gas.

제13도-제18도에서 알수 있는 바와같이 온도가 상승하며 전체적으로 저항치가 감소하는 데 값은 어느 일정온도 부근에서 감소율이 커지는 현상을 알 수 있고 이와같은 온도에서 RA와 RG값이 큰 차이를 보이며 동시에 가스 감응성은 가장 우수했다.As can be seen from FIG. 13 to FIG. 18, the temperature rises and the resistance decreases as a whole. The value decreases at a certain temperature, and there is a large difference between R A and R G at such a temperature. At the same time, gas sensitivity was the best.

제15도 제18도에 표시한 바와같이 시편에 따라 감응성이 좋은 온도은 각각 다르나 황산철염에 첨가제를 혼합하지 않은 시편A(제16도)가 측정시편중 가장 높은 365℃에서 감응도가 좋았으며 첨가제를 혼합한 시편들은 대체로 낮은 온도에서 좋은 감응도를 보였고 시편 B(제17도)는 가장 낮은 주변온도 218℃에서 가스 감응성이 우수함을 알아냈다.As shown in FIG. 15 and FIG. 18, the sensitive temperature varies depending on the specimen, but Specimen A (FIG. 16) without the addition of ferric sulfate is sensitive at 365 ° C, the highest among the specimens. The mixed specimens generally showed good sensitivity at low temperatures, and specimen B (Fig. 17) was found to have good gas sensitivity at the lowest ambient temperature of 218 ° C.

다음의 표2는 가장 우수한 감응도을 보이는 첨가제의 몰%와 주변 온도를 나타낸다.Table 2 below shows the mole percent and ambient temperature of the additive with the best sensitivity.

[표 2]TABLE 2

Figure kpo00002
Figure kpo00002

4. 소결온도에 따른 시편의 저항변화와 가스 감응 특성 황산철염으로 제조된 시편A를 소결온도 변화에 공기증에서의 저항(RA)와 가스중에서 저항(RG를 측정하여 가스 감응성을 비교하였다. 이때 사용한 가스농도는 2000ppm이었고 감응체 주변온도는 25℃에서 큰 저항치를 보였고 600℃에서 크게 감소하다가 700℃이상에서 증가함을 나타내었다.4. Resistance Change and Gas Sensitivity Characteristics of Specimen with Different Sintering Temperatures Specimen A made of ferrous sulfate was compared with gas sensitivity by measuring the resistance (R A ) in air vapor and the resistance (R G ) in gas at the sintering temperature. The gas concentration used was 2000ppm and the ambient temperature of the sensitizer showed high resistance at 25 ℃, and it decreased greatly at 600 ℃ and increased above 700 ℃.

[표 3]TABLE 3

소결온도에 따른 저항변화Resistance change with sintering temperature

Figure kpo00003
Figure kpo00003

소결온도에 따른 가스 감응도는 600℃에서 양호한 가스 감응도를 보이며 소결온도가 증가하면 감응도는 감소하였다. 소결온도가 500℃에서 큰 저항치를 가지며 감응도가 작은것은 전극 부착상태의 불량에 기인한 것으로 생각된다. 소결온도600℃에서 가스 감응도가 가장 좋으며 온도가 높아짐에따라 감응도가 떨어지는 것은 α-Fe2O3의 결정화에 따른 황산이온의 감소에 기인하는 것이라 추측된다. 다른 분야에서의 연구결과에 의하면 소결온도 600℃와 700℃사이에 황산염이 분해하여 α-Fe2O3로 급속히 결정화 된다고 보고되고 있다. 가스 감응도가 감소하는 이유는 소결온도가 증가함에 따라 α-Fe2O3의 입자 크기는 증가하고 시편에 가스 접촉하는 비표면적이 감소하기 때문으로 생각된다.The gas sensitivity with sintering temperature showed good gas sensitivity at 600 ℃ and the sensitivity decreased with increasing sintering temperature. It is considered that the sintering temperature at 500 ° C. has a large resistance and a low sensitivity due to the poor electrode attachment state. The gas sensitivity is the best at the sintering temperature of 600 ° C, and the decrease in the sensitivity as the temperature is increased may be due to the decrease of sulfate ion due to the crystallization of α-Fe 2 O 3 . In other fields, it is reported that sulfates are rapidly crystallized to α-Fe 2 O 3 between 600 ° C and 700 ° C. The decrease in gas sensitivity is thought to be due to the increase in particle size of α-Fe 2 O 3 and the decrease in specific surface area of gas contact with the specimen as the sintering temperature increases.

5. X-선 회절 및 미세조직 분석.5. X-ray diffraction and microstructure analysis.

X-선 회절 패턴으로 황산철염으로 제조된 침전물은 무결정 상임을 확인하였고 이를 600℃에서 소결시킨 시편은 α-Fe2O3의 결정 상임을 확인하였다. α-Fe2O3로 확인된 시편은 SEM(Scanning Electron Microsceope, JMS-T200)을 사용하여 20,000배로 본 미세조직은 황산철염만으로 제조된 시편A가 입자크기가 작음을 확인할 수 있었다.이런 현상은 황산이온(SO-2 4)이 입자 성장을 억제한다고 설명할 수 있으며 이는 다른 분야의 연구 결과와도 일치하고 있다. Fe2O3에 있어서 황산이온의 역활에 대한 연구가 최근에 연구되고 있는데 이들의 연구에 의하면 황산이온은 Fe2O3입자 표면에 극소화 되어 있다고 말한다. 이처럼 황산이온에 의해 입자 성장이 억제된 시편A가 다공질적이며 가스 감응성이 더 좋음을 알 수가 있다. 또한 황산철염에 첨가제 Sn, Ti, Zr, Mn, Mg를 각각 20몰% 혼합한 시편B, C, D, E, F 및 G의 미세조직을 보면 시편 A보다 더욱 입자크기가 작음을 확인하였다. 가장 가스 감응성이 우수한 시편 B가 입자 크기가 가장 작으며 첨가제를 20몰%를 혼합한 경우 감응도가 적은 시편 D는 입자 크기가 비교적 큼을 확인하였다.이런 점으로보아 홍산이온이 입자 성장을 억제하고 첨가제(Sn, Ti, Zr, Mn, Mg)가 더욱 입자 성장을 방해함을 확인했으며 크기가 작아짐에 따라 가스 감응도는 더욱 좋아짐을 확인했다. 각가가의 첨가제가 더욱 α-Fe2O3의 입자를 작게하는 것은 침전시에 첨가제 α-Fe2O3의 입자를 둘러싸서 입자성을 억제하는 것으로 생각된다.The X-ray diffraction pattern confirmed that the precipitate prepared with iron sulfate was an amorphous phase and the specimen sintered at 600 ° C. was a crystalline phase of α-Fe 2 O 3 . The specimen identified as α-Fe 2 O 3 was 20,000 times using SEM (Scanning Electron Microsceope, JMS-T200), and the microstructure of the specimen A prepared only with iron sulfate was found to have a small particle size. It can be explained that sulfate ions (SO- 2 4 ) inhibit particle growth, which is consistent with findings from other fields. The study of the role of sulfate ions in Fe 2 O 3 has recently been studied, which suggests that sulfate ions are minimized on the surface of Fe 2 O 3 particles. As described above, it can be seen that Specimen A in which particle growth is suppressed by sulfate ion is porous and gas sensitivity is better. In addition, the microstructures of specimens B, C, D, E, F and G, each of which added 20 mol% of additives Sn, Ti, Zr, Mn, and Mg to iron sulfate, confirmed that the particle size was smaller than that of specimen A. Specimen B, which has the highest gas sensitivity, has the smallest particle size, and when 20 mol% of the additive is mixed, it is confirmed that specimen D, which has little sensitivity, has a relatively large particle size. It was confirmed that (Sn, Ti, Zr, Mn, Mg) further interfered with grain growth, and as the size decreased, gas sensitivity was improved. The smaller the particles of the additive of the Angular more α-Fe 2 O 3 is thought to surround the particles of the additive α-Fe 2 O 3 at the time of suppressing the precipitation of particulate.

지금까지 설명한 바와같이 황산이온을 포함하고 있는 첨염을 습식으로 제조한 α-Fe2O3세라믹은 가스 감응성이 우수하며 이는 황산이온의 입자 성장 억제로 인한 것음을 밝혀 냈으며, 여기에 Sn, Ti, Zr, Zn, Mn 또는 Mg의 금속이온을 첨가하여 습식으로 제조된 α-Fe2O3는 가스 감응성이 더욱 우수함을 알아냈다. 또한 주변온도 250-350℃에서 첨가제의 농도는 대체로 20몰%에서 감응성이 우수했으며 첨가제 Sn을 20몰% 혼합한 시편이 가장 감응성이 양호했다.As described so far, α-Fe 2 O 3 ceramics prepared by wet preparation of sulfuric acid-containing salts have been found to have excellent gas sensitivity, which is due to the suppression of particle growth of sulfate ions. It was found that α-Fe 2 O 3 prepared by wet addition of metal ions of Zr, Zn, Mn or Mg was more excellent in gas sensitivity. In addition, the concentration of the additive at the ambient temperature of 250-350 ° C. was excellent at 20 mol%, and the specimens containing 20 mol% of the additive Sn were the most sensitive.

Claims (2)

황산이온을 포함하는 철염에 금속이온인 Mg, Mn 및 Zn을 5-50mol% 첨가하여 제조한 α-Fe2O3게 검지소자.An α-Fe 2 O 3 crab detecting device prepared by adding 5-50 mol% of metal ions Mg, Mn and Zn to an iron salt containing sulfate ion. 제1항에 있어서 황산 이온을 포함하는 철염은 Fe2(SO4)3또는 그의 수화물이며, 첨가제는 ZnCl2, MnCl4및 MgCl2또는 그의 수화물인 형태로 첨가되는 가스 검지소자.The gas detector according to claim 1, wherein the iron salt containing sulfate ion is Fe 2 (SO 4 ) 3 or a hydrate thereof, and the additive is added in the form of ZnCl 2 , MnCl 4 and MgCl 2 or a hydrate thereof.
KR1019860004560A 1986-06-09 1986-06-09 Gas detector for alpha-fe2o3 gas KR890001982B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019860004560A KR890001982B1 (en) 1986-06-09 1986-06-09 Gas detector for alpha-fe2o3 gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019860004560A KR890001982B1 (en) 1986-06-09 1986-06-09 Gas detector for alpha-fe2o3 gas

Publications (2)

Publication Number Publication Date
KR880000790A KR880000790A (en) 1988-03-29
KR890001982B1 true KR890001982B1 (en) 1989-06-05

Family

ID=19250381

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019860004560A KR890001982B1 (en) 1986-06-09 1986-06-09 Gas detector for alpha-fe2o3 gas

Country Status (1)

Country Link
KR (1) KR890001982B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101652663B1 (en) 2016-01-27 2016-09-01 대원전기 주식회사 Underground cable sheath cutter cutting method using the cutting device for underground cables

Also Published As

Publication number Publication date
KR880000790A (en) 1988-03-29

Similar Documents

Publication Publication Date Title
US5114702A (en) Method of making metal oxide ceramic powders by using a combustible amino acid compound
Saruhan et al. Effect of Al doping on NO2 gas sensing of TiO2 at elevated temperatures
Sun et al. High temperature quantum paraelectricity in perovskite-type titanates Ln1/2 Na1/2 TiO3 (Ln= La, Pr, Nd, Sm, Eu, Gd and Tb)
Abderrazik et al. Relation between impurities and oxide-scale growth mechanisms on Ni-34Cr and Ni-20Cr alloys. I. Influence of C, Mn, and Si: I. Influence of C, Mn, and Si
Nakatani et al. Enhancement of Gas Sensitivity by Controlling Microstructure of α–Fe2O3 Ceramics
Gildo-Ortiz et al. Synthesis, characterization and sensitivity tests of perovskite-type LaFeO3 nanoparticles in CO and propane atmospheres
EP0095313B1 (en) Combustible gas-detecting element and its production
Lin et al. Hydrogen sulfide detection by nanocrystal PT doped TiO2-based gas sensors
KR890001982B1 (en) Gas detector for alpha-fe2o3 gas
US5351029A (en) Sensor for determining carbon monoxide
US4359709A (en) Combustible gas sensor
AU632054B2 (en) Metal oxide ceramic powders and thin films and methods of making same
Bae et al. Characterization of Yttria‐Stabilized Zirconia Thin Films Prepared by Radio Frequency Magnetron Sputtering for a Combustion Control Oxygen Sensor
KR20190136437A (en) Gas Detection Complex, Method for Manufacturing the Complex, Gas Sensor Including the Complex and Method for Manufacturing the Sensor
Zou et al. Solution combustion synthesis and enhanced gas sensing properties of porous In 2 O 3/ZnO heterostructures
KR101939904B1 (en) Gas detection material with high sensitivity and selectivity for methyl benzene, method for preparing the same, and gas sensor comprising the gas detection material
Rickerby et al. Nanostructured Metal Oxides for Sensing Toxic Air Pollutants
Thiemann et al. Chemical modifications of Au-electrodes on YSZ and their influence on the non-nernstian behaviour
Reddy et al. Influence of La2O3 loading on SnO2 based sensors
Liu et al. Highly sensitive mixed-potential type ethanol sensors based on stabilized zirconia and ZnNb 2 O 6 sensing electrode
Racheva et al. Humidity-sensitive characteristics of SnO 2-Fe 2 O 3 thin films prepared by spray pyrolysis
Samarasekara et al. Effect of PEG binder on gas sensitivity of ferric oxide films synthesized by spin coating and doctor blade methods
Grygar et al. Electrochemical reactivity of Li–Mn–O and Li–Fe–Mn–O spinels
CN116621222B (en) Preparation method of tungsten-vanadium doped niobium oxide, tungsten-vanadium doped niobium-based material and application
JPH10274633A (en) Electrode material

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee