KR880000149B1 - Preparation for ferric oxide - Google Patents

Preparation for ferric oxide Download PDF

Info

Publication number
KR880000149B1
KR880000149B1 KR1019850003208A KR850003208A KR880000149B1 KR 880000149 B1 KR880000149 B1 KR 880000149B1 KR 1019850003208 A KR1019850003208 A KR 1019850003208A KR 850003208 A KR850003208 A KR 850003208A KR 880000149 B1 KR880000149 B1 KR 880000149B1
Authority
KR
South Korea
Prior art keywords
reaction
iron sulfide
reactor
gas
external
Prior art date
Application number
KR1019850003208A
Other languages
Korean (ko)
Other versions
KR860008940A (en
Inventor
김상돈
Original Assignee
한국과학기술원
전학제
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원, 전학제 filed Critical 한국과학기술원
Priority to KR1019850003208A priority Critical patent/KR880000149B1/en
Publication of KR860008940A publication Critical patent/KR860008940A/en
Application granted granted Critical
Publication of KR880000149B1 publication Critical patent/KR880000149B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide (Fe2O3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/06Preparation of sulfur; Purification from non-gaseous sulfides or materials containing such sulfides, e.g. ores

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

The fluidization reactor for the invention consists of an external reactor tower and an internal reactor tower. The oxidation of the iron sulfide by air introduction in the external reactor generates SO2 gas with heat, which moves over in flow to the internal reactor to make endothermic reaction with the iron sulfide in the reactor, thus removing the necessity of supplying heat for the reactions. The SO2 gas from the external reactor is supplied in the amount of slightly more than the requirement for the reaction of SO2 an iron sulfide in internal reactor. The iron sulfide is fed in the particle sizes of about 0.05-0.15mm.

Description

원환 유동층을 이용한 황화철로 부터의 황과 산화철을 제조하는 방법Process for preparing sulfur and iron oxide from iron sulfide using toric fluidized bed

제1도는 황화철로부터 황과 산화철을 제조하는 원환 유동층 반응기의 공정도.1 is a process diagram of a toroidal fluidized bed reactor for producing sulfur and iron oxide from iron sulfide.

제2도는 원환의 외부 반응탑에서의 황화철 입자 크기와 황화철 산화반응 전환율과의 관계도표.2 is a graph of the relationship between the iron sulfide particle size and the conversion rate of iron sulfide oxidation reaction in the outer ring of the ring.

제3도는 원환의 외부 반응탑에서 반응온도 및 반응 시간과 황화철을 산화반응 전환율과의 관계도표.3 is a graph of the relationship between the reaction temperature and the reaction time and the conversion rate of iron sulfide oxidation reaction in the outer ring of the ring.

제4도는 공기유속과 황화철의 산화반응 전환율과의 관계도표.4 is a graph of the relationship between the air flow rate and the conversion rate of iron sulfide oxidation.

제5도는 반응 시간이 황화철과 이산화황과의 반응 전환율과의 관계도표.5 is a relation chart of the reaction time between the reaction conversion rate of iron sulfide and sulfur dioxide.

제6도는 원환의 내부 반응탑에서의 가스의 유속에 따른 황의 회수율.6 is the recovery rate of sulfur according to the flow rate of the gas in the inner reaction tower of the ring.

제7도는 원환의 외부 반응탑에서 생성된 열이 내부반응탑에서 유속에 따라 회수되는 율.7 is the rate at which heat generated in the external reaction tower of the ring is recovered according to the flow rate in the internal reaction tower.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 내부 반응탑 9 : 예열기1: internal reaction column 9: preheater

2 : 외부 반응탑 10 : 광석저장조2: external reaction column 10: ore storage tank

3 : 보온재 11 : 싸이크론3: heat insulating material 11: cyclone

4 : 열전대 12 : 황응축기4: thermocouple 12: sulfur condenser

5 : 가스분산판 13 : 황수용기5: gas dispersion plate 13: yellow water container

6 : 입자 배출구 14 : SO2수용기6 particle outlet 14 SO 2 receiver

7 : 공기압 조절기 15 : 벤츄리 메타7: air pressure regulator 15: venturi meta

8 : 유량계8: flow meter

본 발명은 황화철로부터 산화철과 황을 회수하여 고황 함량의 황화철을 제련에 사용할 수 있게 하는 방법에 관한 것이다. 황화철로부터 황을 회수하는 반응은 알려져 있으나 이제까지는 발열 반응인 황화철의 산화반응과 흡열 반응인 황화철과 이산화황 가스의 반응을 별개의 반응기내에서 진행시켰으므로 열의 공급및 회수에 많은 문제점이 있었다.The present invention relates to a method for recovering iron oxide and sulfur from iron sulfide so that high sulfur content iron sulfide can be used for smelting. The reaction for recovering sulfur from iron sulfide is known, but there have been many problems in the supply and recovery of heat since the oxidation reaction of iron sulfide, which is an exothermic reaction, and the reaction of iron sulfide, which is an endothermic reaction, with sulfur dioxide gas are carried out in separate reactors.

본 발명은 이 발열과 흡열반응을 원환 형태의 반응기에서 동시에 수행함으로써 한번 반응이 시작되면 발열과 흡열반응의 열수지로부터 전체 반응에 필요한 열이 제거 공급되므로서 전체 공정의 에너지 공급이 필요없는 새로운 방법이다. 즉, 외부반응탑에서 황화철을 산화반응시켜 생성되는 이산화황 가스를 내부반응탑에서 황화철과 SO2가스 반응에 필요한 양보다 조금많게 공급하여 이에 직접 순환시켜서 사용함으로써 연속 공정으로 반응을 진행시킬 수 있다.The present invention is a new method that does not need the energy supply of the entire process by performing the exothermic and endothermic reaction simultaneously in the ring-type reactor by removing the heat required for the entire reaction from the heat resin of the exothermic and endothermic reaction once the reaction is started . That is, the sulfur dioxide gas generated by oxidizing the iron sulfide in the external reaction tower may be supplied in a slightly larger amount than the amount required for the iron sulfide and SO 2 gas reaction in the internal reaction tower, and then circulated directly thereto to use the reaction in a continuous process.

황화철을 제1도의 원환 유동층 반응기를 이용하여 외부 반응탑에서의 산화반응과 내부반응탑에서의 FeS와 SO2반응의 버율을 일정하게 하여 즉, 외부 반응탑에서의 산화 반응의 전환율을 83%, 내부 반응탑에서의 SO2와의 황화철의 반응율을 69%로 하면 외부반응탑에서는 다음과 같이 황화철의 산화반응이 일어나서 산화철과 So2가 생성되는데 이때 일어나는 반응의 약 49%는 황화철의 직접산화이고, 약 44%는 황화철의 열분해이고, 나머지 반응은 열분해하여 생성된 피로타이트(Pyrrhotite)의 산화이다.Using iron sulfide in the ring-shaped fluidized bed reactor of FIG. 1, the conversion rate of the oxidation reaction in the external reaction tower and the FeS and SO 2 reactions in the internal reaction tower was constant, that is, the conversion rate of the oxidation reaction in the external reaction tower was 83%, When the reaction rate of iron sulfide with SO 2 in the internal reaction tower is 69%, the oxidation reaction of iron sulfide occurs in the external reaction tower as follows, and iron oxide and So 2 are generated. About 49% of the reactions occur are direct oxidation of iron sulfide, About 44% is pyrolysis of iron sulfide and the remaining reaction is the oxidation of pyrrhotite produced by pyrolysis.

Figure kpo00001
Figure kpo00001

내부 반응탑에서는 다음과 같이 황화철과 SO2가 반응하여 황과 산화철이 생성되는데 이때 일어나는 반응의 약 80%는 황화철의 열분해이고, 약 7%는 황화철과 SO2의 직접반응이고, 나머지 반응은 생성된 피로타이트와 황화철의 직접산화 및 피로타이트와 SO2와의 반응이다.In the internal reaction tower, iron sulfide and SO 2 react to produce sulfur and iron oxide as follows. About 80% of the reactions are pyrolysis of iron sulfide, about 7% are direct reaction of iron sulfide and SO 2 , and the remaining reactions are produced. Direct oxidation of pyrotite and iron sulfide and reaction of pyrotite with SO 2 .

Figure kpo00002
Figure kpo00002

이와 같은 본 발명방법을 제1도에 의하여 좀더 구체적으로 설명하면, 주반응기로 사용된 원환 형태의 반응기는 황과 SO2가스에 의한 부식을 방지하고 고온에 내열효과가 높은 스텐레스스틸 304로 제작되었으며 반응온도인 800-900℃정도까지 온도를 올리기 위하여 열선을 사용하였고, 주입 기체는 관형용광로를 통과시켜서 300℃까지 예열하여서 반응시킨다.Referring to the method of the present invention in more detail with reference to Figure 1, the ring-type reactor used as the main reactor was made of stainless steel 304, which prevents corrosion by sulfur and SO 2 gas and has a high heat resistance at high temperatures The heating wire was used to raise the temperature up to the reaction temperature of about 800-900 ° C, and the injection gas was preheated to 300 ° C through a tubular furnace to react.

유동화 가스는 공기압조절기(7)와 유량계(8)를 통과하여 가스예열기(9)를 지나 예열된 후 유동화 반응기의 외부반응탑(2)로 주입된다. 유동화 반응기의 외부반응탑에 원하는 양의 황화철 입자를 장입하여서 700-800℃까지 예열시킨 후 주입되는 공기양을 반응계수비보다 40-80%과량으로 주입하여 황화철을 산화시킨다. 외부 반응탑(2)에서 산소와 FeS2와의 반응에 의해 생성된 이산화황 가스는 싸이크론(11)을 거쳐 비말동반되는 입자를 회수하고 벤츄리메타(15)로 유량을 측정하여서 원하는 양의 예열기(9)로 보내서 원환 유동층의 내부반응탑(1)로 주입하면 황화철과 반응하여 황의 증기가 생성하게 된다. 외부 반응탑(2)의 밖에는 열손실을 방지하기 위해 보온제(3)로 보온하였다. 원료인 황화철은 분쇄하여서 원하는 입자경의 광석을 유동층 반응기 위의 저장조(10)에 장입한 후 원하는 양만큼 주입한다. 반응기내의 온도는 열전대(4)를 반응기 높이에 따라 설치하여서 높이에 따른 온도를 측정한다. 각각의 반응기 하단에는 예열기와 주반응기사이에 기체분산판(5)를 설치하여서 유동화를 원활히 하도록 하였다. 반응후의 산화철은 입자배출관(6)을 통하여 회수한다. 외부반응탑(2)에서 생성되어 다시 내부반응탑으로 순환되는 이산화황 가스는 예열기로 들어가기 전에 채취하여서 가스크로마토그라프를 사용하여서 농도를 측정한다. 또한, 내부반응탑에서 배출되는 황증기는 싸이크론(11)에서 비말동반된 입자를 제거한 후 황응축기(12)를 거쳐서 응축시킨후 수용기(13)에 회수하고 이에 부수적으로 수반되어 나오는 SO2가스는 SO2수용기(14)에 모아진다.The fluidizing gas is preheated through the air pressure regulator 7 and the flow meter 8, past the gas preheater 9, and then injected into the external reaction tower 2 of the fluidization reactor. After charging the desired amount of iron sulfide particles in the external reaction tower of the fluidization reactor and preheating to 700-800 ° C., the amount of air injected is injected in an amount of 40-80% over the reaction coefficient ratio to oxidize the iron sulfide. Sulfur dioxide gas produced by the reaction of oxygen and FeS 2 in the external reaction tower (2) recovers particles entrained via the cyclone (11) and measures the flow rate with a venturi meter (15) to preheat the desired amount of preheater (9). When it is sent to the inner reaction tower (1) of the toroidal fluidized bed and reacts with iron sulfide, sulfur vapor is generated. Outside of the external reaction tower (2) was insulated with a heat retainer (3) to prevent heat loss. Iron sulfide, which is a raw material, is pulverized and charged with ore having a desired particle size into a reservoir 10 on a fluidized bed reactor, and then injected as desired. The temperature in the reactor measures the temperature according to the height by installing the thermocouple (4) according to the height of the reactor. At the bottom of each reactor, a gas distribution plate 5 was installed between the preheater and the main reactor to facilitate fluidization. Iron oxide after the reaction is recovered through the particle discharge pipe (6). Sulfur dioxide gas generated in the external reaction tower (2) and circulated back to the internal reaction tower is collected before entering the preheater, and the concentration is measured using a gas chromatograph. In addition, the sulfur vapor discharged from the internal reaction tower removes particles entrained in the cyclone (11) and then condenses through the sulfur condenser (12) and then recovered in the receiver (13) and accompanying SO 2 gas that is accompanied by Collected in the SO 2 receptor 14.

즉, 본 발명에 의하면, 황화철을 원하는 크기로 분쇄한 후 이 원료광의 시료를 외부 및 내부 반응탑에 공급한 후 반응기를 700-800℃로 예열시킨다. 화학반응식에서 필요한 공기의 양보다 40-80%과잉으로 공기를 주입하여서 황화철을 유동화시킨다. 이때의 유속은 최소 유동화 속도의 1.5-10배 범위에서 조절한다. 내부 반응탑에서의 가스 유속 범위는 최소 유동화 속도의 3-20배 범위에서 적절한 유속을 사용한다.That is, according to the present invention, the iron sulfide is pulverized to a desired size, and then samples of the raw material ore are supplied to external and internal reaction towers, and then the reactor is preheated to 700-800 ° C. The iron sulfide is fluidized by injecting air in excess of the amount of air required in the chemical reaction. The flow rate at this time is adjusted in the range of 1.5-10 times the minimum fluidization rate. The gas flow rate range in the internal reaction tower uses an appropriate flow rate in the range of 3-20 times the minimum fluidization rate.

외부와 내부 반응탑에서 나오는 가스는 싸이크론을 거쳐서 미분황화철을 회수하고 내부반응탑에서 나와서 싸이크론을 거쳐서 나온 황증기는 냉각수로 응축시켜서 황을 회수하며 반응이 종료된 후의 산화철을 반응기로 부터 회수한다.The gas from the external and internal reaction tower recovers fine iron sulfide through the cyclone, and the sulfur vapor from the internal reaction tower through the cyclone is condensed with cooling water to recover sulfur and iron oxide from the reactor after the reaction is completed.

상기와 같은 본 발명에서의 입자의 크기, 반응온도, 유속, 반응시간의 영향은 다음과 같다.Influence of the particle size, reaction temperature, flow rate, reaction time in the present invention as described above is as follows.

외부 반응탑의 황화철 산화반응에서 황화철의 입자 크기가 반응전환율에 미치는 영향을 규명하기 위하여서 네가지 입자 크기를 사용하고 반응온도를 750-880℃에서 일정 공기 유속하에서 반응전환율을 보면 입자 크기가 증가함에 따라 전환율은 감소하나 그 감소율은 높은 온도에서는 크지 않다(제2도), 이는 높은 온도에서는 반응은 이 가스의 확산에 의하여 지배되며 열분해의 영향이 커지기 때문이다.In order to investigate the effect of iron sulfide particle size on the reaction conversion rate in the iron sulfide oxidation of the external reaction tower, the particle size increases as the reaction temperature is changed at a constant air flow rate at 750-880 ℃. The conversion rate decreases but the rate of decrease is not significant at high temperatures (Figure 2), because at high temperatures the reaction is governed by the diffusion of this gas and the effect of pyrolysis is greater.

황화철 산화반응에서의 반응온도가 전환율에 미치는 영향을 밝히기 위하여 반응시간의 변화에 따른 각 온도에서의 전환율을 제3도에 도시하였다. 반응초기에서의 온도의 영향은 초기의 열분해 반응에 의하여 그 영향이 크게 나타난다. 즉, 열분해에 의하여 생성된 FeS보다 황화철이 산소와 더 쉽게 반응한다.In order to clarify the effect of the reaction temperature on the conversion rate in the iron sulfide oxidation reaction, the conversion rate at each temperature is shown in FIG. The influence of temperature at the beginning of the reaction is largely affected by the initial pyrolysis reaction. That is, iron sulfide reacts with oxygen more easily than FeS produced by pyrolysis.

온도를 800-850℃로 변화시켰을 때의 전환율은 850-900℃로 변화시켰을 때의 전환율 보다 크다. 비교적 낮은 반응온도에서는 황화철의 산화반응은 반응속도 저항에 따르나 높은 온도에서는 이 저항이 온도에의 의존성이 크지 않게 된다.The conversion rate when the temperature is changed to 800-850 ° C is greater than the conversion rate when the temperature is changed to 850-900 ° C. At relatively low reaction temperatures, the oxidation of iron sulfide depends on the reaction rate resistance, but at higher temperatures the resistance is not dependent on temperature.

공기유속에 따른 황화철의 산화반응에 대한 영향을 880℃에서 조사한 결과를 제4도에 보여주고 있다. 일반적으로 가스유속 증가에 따라 전환율은 증가하는 추세를 보이나 그 증가율은 매우 적다 또한 유속이 6.5㎝/s보다크면 오히려 전환율은 감소한다. 즉, 유속의 증가는 유동층의 기포 크기를 증가시켜서 전환율의 감소를 가져온다. 그러나 반응시간의 증가에 따라 전환율은 증가한다.The effect of iron sulfide oxidation on air velocity at 880 ° C is shown in Figure 4. In general, the conversion rate increases with increasing gas flow rate, but the rate of increase is very small. Also, if the flow rate is larger than 6.5 cm / s, the conversion rate decreases. In other words, increasing the flow rate increases the bubble size of the fluidized bed, resulting in a decrease in conversion rate. However, as the reaction time increases, the conversion rate increases.

여러 입자크기의 황화철이 반응할때 반응시간에 따른 전체 반응전환을 미치는 영향을 제5도에서 볼 수 있다. 여기서 보듯이 입자 크기가 증가할수록 주어진 반응시간에서 전환율은 감소하며 초기 20분에서의 황분의 제거 반응은 초기 단계의 열분해 반응에 의하여 매우 급속히 일어난다. 그러나 20분 후의 반응은 시간에 거의 무관하게 일정하다.The effect of the overall reaction conversion with the reaction time on the reaction of various particle size iron sulfide can be seen in FIG. As shown here, as the particle size increases, the conversion decreases at a given reaction time, and the removal of sulfur in the initial 20 minutes occurs very rapidly by the initial pyrolysis reaction. However, the reaction after 20 minutes is almost constant regardless of time.

상기한 두반응이 발열반응인 황화철의 산화반응과 흡열반응인 황화철과 SO2가스와의 반응이므로 공기 유속에 따른 발열반응으로 부터의 흡열반응으로의 열회수 분율을 외부반응탑에서 발생된 열을 기준으로 하여서 내부반응탑에 공급한 열의 비로서 표시할때 가스유속이 5.1㎝/s보다 크면 이 열회수 분율이 급속히 감소한다(제7도), 이는 공기유속이 증가하면 가스가 가지고 나가는 현열이 증가하기 때문이다. 그 반면 일정 유속의 증가는 발열 산화반응을 증가 시키는 역할을 하므로 최적 유속의 조업이 필요하다.Since the above two reactions are oxidation of iron sulfide which is exothermic and iron sulfide which is endothermic, and SO 2 gas, the heat recovery fraction from the exothermic reaction to the endothermic reaction according to the air flow rate is based on the heat generated in the external reaction tower. When the gas flow rate is greater than 5.1 cm / s, the heat recovery fraction decreases rapidly (Fig. 7), which means that the sensible heat taken out by the gas increases as the air flow rate increases. Because. On the other hand, the increase in the constant flow rate increases the exothermic oxidation reaction, and therefore, the operation of the optimum flow rate is required.

상기 반응시의 황회수율과 가스유속과의 관계를 제6도에 보여주고 있다. 여기서 보듯이 최적의 황회수 가스유속은 5.1㎝/s 임을 알 수 있다. 그 이상의 공기유속은 SO2가스를 희석시키고 동시에 과잉산소는 내부 반응탑에서 외부 반응탑의 2차 반응을 일으킬수 있다.The relationship between the sulfur recovery rate and the gas flow rate in the reaction is shown in FIG. As seen here, it can be seen that the optimum sulfur recovery gas flow rate is 5.1 cm / s. Higher air flow rates dilute the SO 2 gas and at the same time excess oxygen can cause a secondary reaction of the external reaction tower in the internal reaction tower.

Claims (3)

외부반응탑과 내부반응탑으로 된 원환 유동층 반응기의 외부반응탑에서 황화철을 공기를 주입 산화반응시키고 여기서 생성된 이산화황과 황화철을 내부반응탑에서 반응시킴을 특징으로 하는 원환 유동층 반응기를 이용한 황화철로부터 황과 산화철을 제조하는 방법.Sulfur from iron sulfide using an annular fluidized bed reactor characterized by injecting and oxidizing iron sulfide with air in an external reaction tower of an annular fluidized bed reactor consisting of an external reaction tower and an internal reaction column and reacting sulfur dioxide and iron sulfide produced in the internal reaction tower. Method of producing iron oxide. 제1항에서, 공기 유입량을 이론양의 40-80% 과잉공급하는 방법.The method of claim 1 wherein the air inflow is over-provisioned 40-80% of theoretical amount. 제1항에서, 황화철의 입자의 크기를 0.05-0.15㎜로 하는 방법.The method of claim 1 wherein the size of the particles of iron sulfide is 0.05-0.15 mm.
KR1019850003208A 1985-05-11 1985-05-11 Preparation for ferric oxide KR880000149B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019850003208A KR880000149B1 (en) 1985-05-11 1985-05-11 Preparation for ferric oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019850003208A KR880000149B1 (en) 1985-05-11 1985-05-11 Preparation for ferric oxide

Publications (2)

Publication Number Publication Date
KR860008940A KR860008940A (en) 1986-12-19
KR880000149B1 true KR880000149B1 (en) 1988-03-12

Family

ID=19240870

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019850003208A KR880000149B1 (en) 1985-05-11 1985-05-11 Preparation for ferric oxide

Country Status (1)

Country Link
KR (1) KR880000149B1 (en)

Also Published As

Publication number Publication date
KR860008940A (en) 1986-12-19

Similar Documents

Publication Publication Date Title
JPS6071691A (en) Method of obtaining acetylene and synthetic or reductive gas from coal by arc process
US5618032A (en) Shaft furnace for production of iron carbide
CN105176594B (en) A kind of device and method for brown coal hydrogasification system also Primordial Qi
CN102762748A (en) Molten iron manufacturing apparatus for reducing emissions of carbon dioxide
US2560403A (en) Method for processing carbonaceous solids
CA1059065A (en) Arc reforming of hydrocarbons
KR100195306B1 (en) Shaft furnace for production of iron carbide
EP3360948A1 (en) Carbonaceous fuel gasification method, steel mill operation method, and gasified gas production method
GB2065709A (en) Gaseous reduction of metal ores using reducing gas produced by gasification of solid or liquid fossil fuels
EP3378921A1 (en) Method for gasifying carbonaceous fuel, method for operating iron mill, and method for producing gasified gas
US3356488A (en) Process for utilizing hydrocarbon injection into hot reducing gases in steelmaking
WO2010006464A1 (en) A process for producing carbon disulfide by circulating fluid bed
JP2784595B2 (en) Silicon smelting method and silicon smelting furnace
CN205035331U (en) A device that is used for brown coal gasification system reducing gas
KR880000149B1 (en) Preparation for ferric oxide
US2638414A (en) Process of recovering metals by gaseous reduction
US4248627A (en) Process for the manufacture and use of high purity carbonaceous reductant from carbon monoxide-containing gas mixtures
KR840002356B1 (en) Method for the direct reduction of iron in a shaft furnace using gas from coal
JPS60155627A (en) Metal compound reduction and apparatus therefor
JP5223054B2 (en) Carbon dioxide gas decomposition method
CN110054152A (en) A kind of online upgrading processing method of coal gas of converter
US4452772A (en) Method of producing sulfur from SO2 -containing gases
CN107043644A (en) A kind of technique of coal based synthetic gas and synthesizing natural gas from coke oven gas
CN107185462A (en) One kind is suitable to high SO2Metallurgical gas also original production S fluidized-bed reactor and technique
JP2001520310A (en) Method and apparatus for controlling carburization of DRI

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19970828

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee