KR860000993B1 - Preparation for silans - Google Patents
Preparation for silans Download PDFInfo
- Publication number
- KR860000993B1 KR860000993B1 KR1019840002678A KR840002678A KR860000993B1 KR 860000993 B1 KR860000993 B1 KR 860000993B1 KR 1019840002678 A KR1019840002678 A KR 1019840002678A KR 840002678 A KR840002678 A KR 840002678A KR 860000993 B1 KR860000993 B1 KR 860000993B1
- Authority
- KR
- South Korea
- Prior art keywords
- catalyst
- reaction
- silane
- quaternary ammonium
- trichlorosilane
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/04—Hydrides of silicon
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Silicon Compounds (AREA)
Abstract
Description
본 발명은 실리카, 제올라이트, 실리콘 수지등의 무기물에 3차 아민과 4차 암모늄염을 결합시킨 촉매를 사용하여 삼염화실란을 이염화실란으로 전환시키고, 이 염화실란은 다시 실란으로 불균화시키는 새롭고도 진보된 실란의 제조방법이다.The present invention uses a catalyst in which tertiary amines and quaternary ammonium salts are bonded to inorganic substances such as silica, zeolites, silicone resins, and the like. It is a manufacturing method of.
규소의 수소의 결합(Si-H)을 가지고 있는 염화실란들은 불포화결합을 가지고 있는 유기화합물에 부가반응을 일으킬 수 있으므로 여러가지 유기염화실란들을 합성하는 데 사용되고 있는 매우 유용한 규소 화합물이다. (E.Y. Lukevits & M.G. Voronkov, "Organic Insertion Reactions of Group Ⅳ Elements" Consultants Bureau, New York, 1966)Chlorinated silanes with hydrogen-bonded silicon (Si-H) are very useful silicon compounds that can be used to synthesize various organochlorinated silanes because they can cause side reactions to organic compounds with unsaturated bonds. (E.Y. Lukevits & M.G. Voronkov, "Organic Insertion Reactions of Group IV Elements" Consultants Bureau, New York, 1966)
공업용 금속규소에서 반도체 실리콘을 제조하는 공정에서도 삼염화실란은 중간물질로 널리 알려져 있는데 고순도인 반도체 실리콘을 제조하기 위하여 불순물이 많은 공업용 금속규소를 염화수소와 반응시키 삼염화실란으로 전환시키고, 이를 정제한 후에 다시 환원시켜 고순도의 반도체 실리콘을 얻는다. (F.A. Padovani, 미국특허 4092466) 반도체 공업이 발달함에 따라 반도체 실리콘의 수요가 증가하여 그 제조공정의 개선에 대한 관심이 높아져 삼염화실란을 환원하기 쉽고 정제하기 쉬운 이염화실란이나 실란으로 전환하여 반도체 실리콘을 얻는 방법으로 개선되었다. (L.M. Coleman, 미국특허 4340574)In the process of manufacturing semiconductor silicon from industrial metal silicon, trichlorosilane is widely known as an intermediate material.In order to produce high-purity semiconductor silicon, industrial metal silicon containing impurities is converted to trichlorosilane by reacting with hydrogen chloride, and then purified. Reduction to obtain high purity semiconductor silicon. (FA Padovani, U.S. Patent No. 4092466) As the semiconductor industry develops, the demand for semiconductor silicon increases and interest in improving the manufacturing process increases, thereby converting the semiconductor silicon into a dichlorosilane or silane which is easy to reduce and purify trichlorosilane. The way of getting it was improved. (L.M. Coleman, US Patent 4340574)
그러므로, 염화실란들의 공업적인 중요도는 날로 더해 간다고 볼 수 있다.Therefore, the industrial importance of chlorinated silanes can be seen as adding day by day.
삼염화실란은 불균등화 반응을 시키면 이염화실란과 사염화실란으로 전환되고, 이염화실란으로 부터 같은 반응에 의하여 실란을 얻을 수 있다. (C.J. Litteral, 미국특허 4113845)When trichlorosilane is disproportionated, it is converted into dichlorosilane and tetrachloride silane, and silane can be obtained by the same reaction from dichlorosilane. (C.J. Litteral, US Patent 4113845)
불균등화 반응은 규소에 결합된 수소는 수소대로 모으고, 염소는 염소대로 모아 한쪽은 수소가 많아지고, 다른쪽은 염소가 많아지는 화합물로 분리하는 반응으로, 이 반응은 반드시 촉매를 필요로 하는 데 종래 여러가지 종류의 촉매가 사용되었으나, 그 중에서 공업적으로 중요한 것은 많지 않다.The disproportionation reaction is a reaction in which hydrogen bonded to silicon collects as hydrogen, chlorine collects as chlorine, and one side becomes hydrogen-rich and the other is separated into compounds that increase chlorine. This reaction requires a catalyst. Various kinds of catalysts have been used in the past, but many of them are not industrially important.
즉, 불균등화 반응촉매로 니트릴이나 아민화합물이 보고 되었으나(D.L. Bailey, G.H. Wagner, 미국특허 2732282)이 방법은 150~200℃의 높은온도를 필요로 하므로 이 촉매를 사용하면 염화실란들의 끊는 점이 높지 않기 때문에 고압 반응기를 사용해야 하고, 얼마 사용하지 못하여 촉매의 활성이 저하되는 단점이 있다. 더구나 반응후에는 촉매를 분리하기 위한 증류공정을 필요로 하므로 이 방법은 연속공정에는 적합치 않다.In other words, nitrile or amine compounds have been reported as disproportionation catalysts (DL Bailey, GH Wagner, U.S. Patent 2732282), but this method requires a high temperature of 150-200 ° C. Because it does not have to use a high-pressure reactor, there is a disadvantage in that the activity of the catalyst is lowered not much. Moreover, this method is not suitable for continuous processes since a distillation step for separating the catalyst is required after the reaction.
위에서와 같이 균일계 촉매의 단점을 보완하고, 비교적 낮은 온도에서 반응이 일어나는 촉매로는 3차아민이 결합된 폴리비닐피롤리딘이 있으며, 이는 고분자이므로 반응물질에 녹아 들어가지 않은 불균일계 촉매이고, 반응온도도 비교적 낮아 50~100℃에서 사용할 수 있는 것으로 알려져 있고, (K.K. Seth, 미국특허 4395389) 이와 비슷한 촉매로는 4차암모늄염이 결합된 이온교환 수지가 사용된다. (C.J. Litteral, 미국특허 4113845)이 이온교환 수지를 사용하여도 100℃ 이하에서 반응이 일어나는 불균일계 촉매로서 미국의 톰엔드 하스 회사에서 Amberyst A-21 등의 상표로 생산되고 있다.As described above, a catalyst that reacts at a relatively low temperature, and the reaction occurs at a relatively low temperature is a polyvinylpyrrolidine combined with a tertiary amine, which is a heterogeneous catalyst that does not dissolve in the reactant because it is a polymer. It is known that the reaction temperature is relatively low and can be used at 50 to 100 ° C. (KK Seth, US Patent 4395389) As a similar catalyst, an ion exchange resin having a quaternary ammonium salt is used. (C.J. Litteral, U.S. Pat.No. 4113845) is a heterogeneous catalyst in which a reaction takes place below 100 ° C even with ion exchange resins, and is produced under the trademark Amberyst A-21 by Tom End Haas, USA.
이와 같은 유기수지로 된 촉매는 유기물인 관계로 비중이 가벼워 연속공정에서 반응조에 충전하면 반응물질에 휩쓸리기 쉬우므로 특별한 주의를 요한다. 더구나 반응물질이 무기물인 관계로 친화력이 약하고 장시간 사용하기 어렵다.Since the catalyst made of such an organic resin is an organic material, the specific gravity is light, and therefore, special care needs to be taken because it is easily swept away by the reactants when it is charged to the reactor in a continuous process. Moreover, since the reactants are inorganic, they have low affinity and are difficult to use for a long time.
이와 같은 단점을 보완하기 위하여 본 발명자들은 3차아민이나 4차암모늄염을 실리카나 제올라이트 혹은 실리콘 수지에 결합시키 무기물 촉매를 제조하는 방법을 개발한 바 있다.In order to compensate for the above disadvantages, the present inventors have developed a method of preparing an inorganic catalyst by combining tertiary amine or quaternary ammonium salt with silica, zeolite or silicone resin.
본 발명은 3차 아민과 4차 암모늄염이 결합된 무기물 촉매를 사용하여 삼염화실란을 불균등화시켜 이염화실란을 합성하고 같은 촉매를 사용하여 이염화실란을 불균등화 반응으로 실란으로 전환시키는 진보된 방법에 관한 것이다.The present invention relates to an advanced process for disproportionating trichlorosilane using an inorganic catalyst in which tertiary amine and quaternary ammonium salts are combined to synthesize dichlorosilane and converting the dichlorosilane into a silane disproportionation reaction using the same catalyst. will be.
본 발명에 사용된 촉매는 무기물에 3차 아민과 4차 암모늄염이 동시에 결합되어 있는 형태로 회분식이나 연속식 모두 적합하나 연속식에 특히 유리하다.The catalyst used in the present invention is suitable for both batch and continuous forms in which tertiary amines and quaternary ammonium salts are simultaneously bonded to the inorganic substance, but are particularly advantageous for the continuous type.
이와 같은 본 발명에서 사용하는 촉매는 비중이 크므로 반응조에 충전하기 쉽고 염화실란들을 통과시킬때 휩쓸려 가지 않기 때문이다.Since the catalyst used in the present invention has a high specific gravity, it is easy to fill the reaction tank and is not swept away when passing the chloride silanes.
본 발명에서 사용하는 촉매로 삼염화실란을 불균등화 반응으로 이염화실란을 제조하는 반응은 0℃에서 200℃ 사이의 반응온도에서 이루어질 수 있으나 상온에서 부터 100℃까지가 적당한 온도이다.The reaction for preparing the dichlorosilane by disproportionation of the trichlorosilane with the catalyst used in the present invention may be performed at a reaction temperature between 0 ° C and 200 ° C, but from room temperature to 100 ° C is a suitable temperature.
반응압력은 상압이나 고압 모두 가능하나, 상압에서는 반응물질이나 생성물의 끊는 점이 낮으므로 기상반응이 되므로 반응속도속도가 느리고, 고압에서는 액상반응이 되므로 반응속도면에서 유리하다.The reaction pressure can be both atmospheric pressure and high pressure, but at low pressure, the breakage point of the reactants or products is low, so the reaction rate is low because the gas phase reaction is low, and the liquid phase reaction at high pressure is advantageous in terms of reaction rate.
그러나 반응온도와 반응압력이외에 또 한가지 유의해야 할 사항은 촉매와 반응물질과의 충분한 접촉시간을 주어야 한다. 이는 회분식 반응에서는 촉매의 양을 늘리고 반응시간을 충분히 함으로써 해결할 수가 있므며, 연속공정에서는 촉매를 충전한 반응조의 길이를 늘리고 반응물질의 유속을 늦추어 맞출 수 있다. 출발물질을 삼염화실란 대신에 이염화실란을 사용하고 같은 촉매를 사용하여 반응시키면 실란을 얻을 수 있다.However, besides the reaction temperature and reaction pressure, one thing to be aware of should give sufficient contact time between catalyst and reactant. This can be solved by increasing the amount of catalyst and sufficient reaction time in a batch reaction, and in a continuous process, it is possible to increase the length of the reactor filled with the catalyst and to slow down the flow rate of the reactants. Silane can be obtained by reacting the starting material with dichlorosilane instead of trichlorosilane and using the same catalyst.
[실시예 1]Example 1
약간의 압력에 견디는 테프론 발브를 주둥이에 부착한 300ml들이 유리관 반응조에 3차 아민과 4차 암모늄염을 실리카나 제올라이트 혹은 실리콘수지에 결합시킨 무기물촉매 100g을 넣고, 150ml의 SiHCl3을 넣은후, 테프론발브를 잠그고 100℃로 1시간동안 가열한 후, 기체크로마토그라피로 분석하였더니 HSiCl3가 80.9%, SiCl4가9. 52%, SiH2Cl2가 8.81%, SiH3Cl이 0.24%씩 얻어졌다.In a 300 ml glass tube reactor with a slight pressure-resistant Teflon valve attached to the spout, 100 g of an inorganic catalyst in which tertiary amines and quaternary ammonium salts were bonded to silica, zeolite, or silicone resin was added, followed by 150 ml of SiHCl 3 , followed by Teflon Valve. The mixture was heated to 100 ° C. for 1 hour, and analyzed by gas chromatography. HSiCl 3 was 80.9% and SiCl 4 was 9. 52%, 8.81% of SiH 2 Cl 2 and 0.24% of SiH 3 Cl were obtained.
[실시예 2]Example 2
실시예 1에서와 같은 촉매를 사용하여 SiH2Cl2을 반응시켰더니 SiH4가 10.6%, SiHCl3가 32.2%, SiH4가 0.1% 생성되었으며, 나머지는 출발물질이 회수되었다.Example 1 using the catalyst as in the SiH 2 Cl 2 was reacted to produce sikyeotdeoni SiH 4 is 10.6%, SiHCl 3 is 32.2%, SiH 4 is 0.1%, and the remainder was recovered starting material.
[실시예 3]Example 3
실시예에 1에서와 같은 촉매의 300g을 staninless Steel 316형으로 만든 반응조에 채우고 반응조 밖에는 열선을 감아 자동온도 조절기로 80℃가 유지되도록 하였다. 반응조밑에는 SiHCl3를 주입할 수 있는 펌프와 연결하고 반응조 위에는 압력을 조절할 수 있는 발브를 부착하였으며, 발브밖에는 기체크로마토그라피와 연결하여 생성물의 조성을 분석할 수 있도록 하였다. SiHCl3가 반응조에 체류하는 시간이 20~30분이 되도록 SiHCl3의 주입속도를 조절하여 반응시켰더니 4~8%의 SiH2Cl2가 생겼고, 6~12%의 SiCl4그리고 0.02~0.03%의 SiH3Cl이 얻어졌다.300g of the catalyst as in Example 1 was filled in a reaction tank made of staninless Steel 316 type, and the heating wire was wound around the reaction tank to maintain 80 ° C with a thermostat. The reactor was connected to a pump capable of injecting SiHCl 3 and a valve was installed to control the pressure on the reactor. The outside of the valve was connected to gas chromatography to analyze the composition of the product. SiHCl 3, the time is 20 to to 30 minutes sikyeotdeoni reaction by controlling the injection rate of SiHCl 3 looked is 4-8% of the SiH 2 Cl 2 to stay in the reaction tank, 6-12% of SiCl 4 and 0.02 ~ 0.03% of SiH 3 Cl was obtained.
Claims (2)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019840002678A KR860000993B1 (en) | 1984-05-17 | 1984-05-17 | Preparation for silans |
US06/733,883 US4613491A (en) | 1984-05-17 | 1985-05-14 | Redistribution catalyst and methods for its preparation and use to convert chlorosilicon hydrides to silane |
US06/895,139 US4701430A (en) | 1984-05-17 | 1986-08-11 | Hydrogenation catalyst and methods for its preparation and use to convert silicon tetrachloride to chlorosilane and silane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019840002678A KR860000993B1 (en) | 1984-05-17 | 1984-05-17 | Preparation for silans |
Publications (2)
Publication Number | Publication Date |
---|---|
KR850008465A KR850008465A (en) | 1985-12-18 |
KR860000993B1 true KR860000993B1 (en) | 1986-07-26 |
Family
ID=19233877
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019840002678A KR860000993B1 (en) | 1984-05-17 | 1984-05-17 | Preparation for silans |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR860000993B1 (en) |
-
1984
- 1984-05-17 KR KR1019840002678A patent/KR860000993B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR850008465A (en) | 1985-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0278368B1 (en) | A method for producing chlorosilanes | |
US5654459A (en) | Process for preparing alkylhydrogenchlorosilanes | |
US4613491A (en) | Redistribution catalyst and methods for its preparation and use to convert chlorosilicon hydrides to silane | |
CA2025864C (en) | Removal of hydrogen-containing silanes from organosilane mixtures | |
US5177236A (en) | Process for the preparation of 3-chloropropyl-silanes | |
US3627501A (en) | Process for the disproportionation of chlorosilanes and organosilanes | |
KR860000993B1 (en) | Preparation for silans | |
US6242630B1 (en) | Process for the continuous preparation of 3-halopropylorganosilanes | |
US4701430A (en) | Hydrogenation catalyst and methods for its preparation and use to convert silicon tetrachloride to chlorosilane and silane | |
JPH0416476B2 (en) | ||
KR100795317B1 (en) | Process for the production of propyl silanes functionalised in 3-position | |
US5777145A (en) | Removal of chlorocarbons from organochlorosilanes | |
JPS63303807A (en) | Production of hydrohalogenated silane | |
JPS6218483B2 (en) | ||
DE69907511T2 (en) | METHOD FOR PRODUCING ALKYL HYDROGEN HALOSILANES BY MEANS OF CATALYTIC HYDRATION | |
US5869017A (en) | Method of producing trichlorosilane having a reduced content of dichlorosilane | |
US4222953A (en) | Method of preparing organosiloxanes and methylchloride | |
JPH05202074A (en) | Method of catalytic alakylaton | |
KR900004714B1 (en) | Process for the preparation of silicon catalyst | |
KR20040096628A (en) | Preparation of Mixed-Halogen Halo-Silanes | |
JP2000218166A (en) | Catalyst for disproportionation reaction of silane compound | |
JP3821922B2 (en) | Method for producing silicon tetrachloride | |
SU865790A1 (en) | Method of producing dichlorosilane | |
SU1766925A1 (en) | Method for synthesis of hydrogen-containing chloro- and organochlorosilanes | |
RU2100362C1 (en) | Method for production of methylchlorosilanes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
G160 | Decision to publish patent application | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 19970829 Year of fee payment: 13 |
|
LAPS | Lapse due to unpaid annual fee |