KR840000720B1 - Process for the preparation of novel triamine - Google Patents

Process for the preparation of novel triamine Download PDF

Info

Publication number
KR840000720B1
KR840000720B1 KR1019800001968A KR800001968A KR840000720B1 KR 840000720 B1 KR840000720 B1 KR 840000720B1 KR 1019800001968 A KR1019800001968 A KR 1019800001968A KR 800001968 A KR800001968 A KR 800001968A KR 840000720 B1 KR840000720 B1 KR 840000720B1
Authority
KR
South Korea
Prior art keywords
reaction
triamine
solvent
catalyst
mol
Prior art date
Application number
KR1019800001968A
Other languages
Korean (ko)
Other versions
KR830002678A (en
Inventor
이찌로오 미나도
이쓰오 후루오야
고오이찌 시바다
Original Assignee
다께다 야꾸힝 고우교 가부시기 가이샤
다쓰오까 스에오
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 다께다 야꾸힝 고우교 가부시기 가이샤, 다쓰오까 스에오 filed Critical 다께다 야꾸힝 고우교 가부시기 가이샤
Priority to KR1019800001968A priority Critical patent/KR840000720B1/en
Publication of KR830002678A publication Critical patent/KR830002678A/en
Application granted granted Critical
Publication of KR840000720B1 publication Critical patent/KR840000720B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/24Preparation of compounds containing amino groups bound to a carbon skeleton by reductive alkylation of ammonia, amines or compounds having groups reducible to amino groups, with carbonyl compounds
    • C07C209/26Preparation of compounds containing amino groups bound to a carbon skeleton by reductive alkylation of ammonia, amines or compounds having groups reducible to amino groups, with carbonyl compounds by reduction with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/16Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of a saturated carbon skeleton containing rings other than six-membered aromatic rings
    • C07C211/18Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of a saturated carbon skeleton containing rings other than six-membered aromatic rings containing at least two amino groups bound to the carbon skeleton

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The aine II, useful as epoxy resin and corrosion inhibitor, was prepd. and hydrogenated to the cyclohexane analog I and converted to triiosocyanate IV by COC12. Thus, a mixt. of 15g 1,3,5-(NC)3C6H3 and 15g Raney Ni-Cr in MeOH-m-xylene was heated at 100≰C and 100kg/cm2 H to give 12.8g II, which (30g) was hydrogenated over 3g 5% Ru-Al2O3 at 115≰C and 120kg/cm2 H to give 26.8g I. CO2 was introduced to 90.0g II followed y COCl2 at 10-130≰C to give 112.9g IV, which was formulated in a coating compn.

Description

신규트리아민의 제조방법Method for preparing new triamine

제1도는 실시예 1에서 얻어진 H6MTA의 IR스펙트럼1 is an IR spectrum of the H 6 MTA obtained in Example 1

본원 발명은 플라스틱류, 특히 폴리우레탄수지의 제조원료로서 유용한 신규라이트아민의 제조법에 관한 것이다.The present invention relates to a process for the production of novel lightamines useful as raw materials for the production of plastics, in particular polyurethane resins.

우레탄수지를 얻기 위한 중간원료인 톨루엔디아민, 디아미노디페닐메탄 등의 폴리아민 및 이들에서 유도되는 톨리렌디이소시아네이트(TDI) 디페닐메탄디이소시아네이트(MDI) 등의 대응폴리이소시아네이트는 폴리우레탄수지의 원료외에도 많은 용도를 가지며, 공업적으로도 매우 중요한 재료로 되어 잇다. 그러나, 이들 폴리이소시아네이트 화합물에서 제조되는 폴리우레탄화합물은 내후성(耐候性)의 불량, 즉 시간의 경과와 더불어 황변(黃變)해 간다고 하는 커다란 결점을 지니고 있고, 이 결점이 이들 이소시아네이트화합물의 용도상의 제약의 하나로 되어 있다.Polyamines such as toluenediamine and diaminodiphenylmethane, which are intermediate raw materials for obtaining urethane resins, and corresponding polyisocyanates such as tolylene diisocyanate (TDI) and diphenylmethane diisocyanate (MDI) derived from them are used in addition to the raw material of polyurethane resin. It has many uses and is an industrially important material. However, the polyurethane compounds produced from these polyisocyanate compounds have a great drawback of poor weather resistance, that is, yellowing with time, and this drawback is due to the use of these isocyanate compounds. It is one of the restrictions.

내후성이 개선된 폴리우레탄 화합물을 얻기 위해 지금까지 많은 시험이 이루어져, 이미 헥사메틸렌디아민, 크실렌디아민 물을 첨가한 크실렌디아민, 이소프로디아민 등의 폴리아민류 및 폴리아민류에서 얻어지는 헥사메틸렌디이소시아네이트 (HDI), 크실렌디이소시아네이트(XDI), 물을 첨가한 크실렌디이소시아네이트(H6XDI), 이소포론디이소시아네이트(IPDI) 등의 폴리이소시아네이트 화합물의 제조도 공업화되고, 폴리우레탄수지에의 응용이 여러가지도 시험되고 있다. 그러나 이들은 1분자당의 관능기가 적고, 상온에서의 증기압도 높기 때문에 도료등으로서 적용할 경우에는 다관능알코올류와의 부가체나 이소시아네이트 상호의 부가체 등으로 할 필요가 있다. 이들 부가체는 이용할 수 있는 이소시아네아트기 함량이 더욱 낮아져 있는데다가 점도(粘度)가 높은 것이기 때문에, 근래, 공해규칙면에서 강력히 요망되고 있는 무용매 또는 하이소리드도료로 하는 것은 매우 곤란하다. 또 부가체제조시에 있어서, 이들 수지를 사용하는 작업현장에서 위생상 커다란 문제가 되는 단량체함량을 내리기 위해, 복잡한 제조공정이나 고가의 제조설비가 필요해진다.Many tests have been conducted to obtain a polyurethane compound with improved weather resistance, and hexamethylene diisocyanate (HDI) obtained from polyamines and polyamines such as xylenediamine and isoprodiamine, which have already added hexamethylenediamine and xylenediamine water. The production of polyisocyanate compounds, such as xylene diisocyanate (XDI), xylene diisocyanate (H 6 XDI), water isophorone diisocyanate (IPDI), etc., has been industrialized, and various applications to polyurethane resins have been tested. have. However, since these have few functional groups per molecule and have high vapor pressure at room temperature, they need to be used as adducts with polyfunctional alcohols, adducts with isocyanate or the like when used as paints. Since these adducts have a lower content of isocyanate art group and higher viscosity, it is very difficult to use a solvent-free or high-sound paint which is strongly demanded in terms of pollution regulations in recent years. In addition, in the production of adducts, in order to lower the monomer content, which is a major problem in hygiene at work sites using these resins, complicated manufacturing processes and expensive manufacturing equipment are required.

이와 같이, 현재 사용되고 있는 여러원료와 같은 결점을 지니지 않으며, 폴리우레탄수지에 응용했을 경우, 내후성에 뛰어나고, 무용매 또는 하이소티드화가 가능한 폴리이소시아네이트를 부여하는 중간원료가 절실히 요망되고 있다.As such, there is an urgent need for an intermediate raw material that does not have the same drawbacks as the various raw materials currently used, and is applied to a polyurethane resin to provide a polyisocyanate that is excellent in weather resistance and that can be solvent-free or high-sorted.

본원 발명자들은 공업적으로 얻기 쉽고, 비교적 값이 저렴한 소원료(素原料)에서 단순하고 간단한 공정으로 이와 같은 요건을 구비한 중간원료를 얻는 것을 목적으로 하여 예의 연구한 결과, 본원 발명을 완성하기에 이르렀다.The inventors of the present invention have made a thorough study for the purpose of obtaining an intermediate raw material having such a requirement in a simple and simple process from industrial raw materials and relatively inexpensive small raw materials. Reached.

즉 본원 발명은 식(Ⅱ)로 표시되는 1,3,5-토리스(아미노메틸)벤젠(이후, 트리아민(Ⅱ) 또는 MAT라고 칭할때가 있음)을 촉매의 존재하에서 수소화하는 것을 특징으로 하는 트리아민(Ⅰ)의 제조방법.In other words, the present invention is a tree characterized by hydrogenating 1,3,5-toris (aminomethyl) benzene (hereinafter sometimes referred to as triamine (II) or MAT) represented by formula (II) in the presence of a catalyst. Method for preparing amine (I).

Figure kpo00001
Figure kpo00001

에 관한 것이다. 방향환을 갖는 트리아민(Ⅱ)은 트리니트릴(Ⅲ)의 수소화에 의해 용이하게 얻어지는 것이다.It is about. Triamine (II) having an aromatic ring is easily obtained by hydrogenation of trinitrile (III).

이 원료가 되는 트리니트릴(Ⅲ)은 석유유분중(石油留分中)에 많이 존재하는 메시틸렌의 암모산화반응에 의해서 얻을 수 있다. 즉 파나듐, 크롬, 우란, 바륨, 게르마늄, 하프늄, 테늄, 토륨의 산화물등을 포함하는 촉매를 통상의 고정층반응기에 충전하고, 반응온도를 300∼500℃로 유지하여, 0.1∼3몰%의 메시틸렌 0.3∼20몰%의 암모니아, 80∼99몰%의 공기로 이루어지는 혼합가스를 상압에서 공간속도 300∼3,000hr-1로 암모산화반응을 행함으로써 얻어진다. 사용하는 촉매는 반드시 상기에 한정되는 것은 아니며, 조건에 응해서 다른암모산화반응에 적합한 촉매를 사용할 수 있다. 또 그것에 응해서 반응속도, 혼합가스조성도 조합된 반응조건중에서 가장 바람직한 것을 선택할 수 있다.Trinitrile (III) serving as this raw material can be obtained by the ammoxidation reaction of mesitylene which is present in a large amount of petroleum oil. That is, a catalyst including vanadium, chromium, uranium, barium, germanium, hafnium, tenium, and thorium oxides is charged into a conventional fixed bed reactor, and the reaction temperature is maintained at 300 to 500 ° C to provide 0.1 to 3 mol% of A mixed gas consisting of 0.3-20 mol% ammonia and 80-99 mol% air of mesitylene is obtained by carrying out ammoxidation reaction at a space velocity of 300-3,000 hr −1 at normal pressure. The catalyst to be used is not necessarily limited to the above, and a catalyst suitable for other ammoxidation reaction can be used depending on the conditions. In addition, the most preferable one can be selected from the reaction conditions which combined reaction rate and mixed gas composition also accordingly.

본원 발명에 있어서의 출원원료인 방향환을 갖는 트리아민(Ⅱ)을 얻기 위해서는 트리니트릴(Ⅲ)을 수소화하는 방법이 바람직하다. 수소화함에 있어서는 액상하(液相下)수소의 존재로 행하고, 용매를 사용하는 것이 보다 좋은 결과를 부여한다.In order to obtain triamine (II) which has an aromatic ring which is an application raw material in this invention, the method of hydrogenating trinitrile (III) is preferable. In the hydrogenation, it is carried out in the presence of hydrogen under liquid phase and using a solvent gives better results.

용매로서는 예컨데, 벤젠, 톨루엔, 크실렌 등의 방향족탄화수소류, 예컨대 메타놀, 에타놀, 프로파놀, 이소프로파놀, 이소부타놀 등의 알코올류, 예컨데 디옥산, 테트라히드로프란 등의 에에테르류 기타, 액체 암모니아, 물등, 반응조건하에서 불활성용매를 단독 또는 2종류이상 혼합해서 사용할 수 있지만, 알코올계 또는 방향족탄화수소-알코올혼합계 용매가 가격이 저렴한 촉매를 사용하거나, 촉매량을 감소시킨 경우에도 수율의 저하가 적으므로, 보다 바람직한 용매라고 할 수 있다.Examples of the solvent include aromatic hydrocarbons such as benzene, toluene, and xylene, for example, alcohols such as methanol, ethanol, propanol, isopropanol, and isobutanol, and ethers such as dioxane and tetrahydrofran. Although inert solvents can be used alone or in combination of two or more kinds under reaction conditions such as ammonia, water, etc., the yield decreases even when an alcohol-based or aromatic hydrocarbon-alcohol-based solvent uses an inexpensive catalyst or reduces the amount of catalyst. Since it is few, it can be said that it is a more preferable solvent.

용매의 사용량에 대해서는 특별한 제한은 없지만 원료트리니트릴(Ⅲ)에 대해서, 50∼1000V/W %,바람직하게는 100∼600V/W%가 양호한 결과를 부여하는 범위이다. 물론이 이상의 용매를 사용해도 반응에 커다란 지장은 없지만, 공업적견지에서 보면 용매를 대량으로 사용하는 것은 불경제적이다. 또 LiOH, NaOH,KOH,NaOCH3, NaOC2H5등의 알칼리금속의 수산화물이나 알코라아트를 원료트리니트릴(Ⅲ)에 대해서 0.05∼40중량%, 바람직하게는 0.5∼20중량% 첨가함으로써 보다 바람직한 결과를 얻는다. 수소화는 수소가스를 사용하고, 바람직하게는 오오토크레이프와 같은 내압용기중에서 행하면 좋다. 반응압력은 30∼300kg/cm2G, 바람직하게는 30∼150kg/cm2G, 반응온도는 -10∼150℃, 바람직하게는 40∼12℃이다. 수소화에 있어서는 통상 촉매를 사용하는 것이 바람직하다. 촉매의 예로서는 라니코발트, 라니니켈, 라니니켈·크롬 , 백금, 파라듐, 루테늄, 로듐 등을 들 수 있으며, 이들은 단독 또는 2종류이상을 혼합해서 사용되지만, 그중에서도 라니니켈·크롬이 보다 바람직한 결과를 준다. 또 적당한 용매 계 및 알칼리첨가량을 선택함으로써 보다 저렴한 라니니켈촉매를 사용하거나 촉매량을 감소시켜도 수율저하가 비교적 적은 조건을 얻을 수 있다.Although there is no restriction | limiting in particular about the usage-amount of a solvent, 50-1000V / W% and preferably 100-600V / W% with respect to raw material trinitrile (III) give a favorable result. Of course, using the above solvent does not significantly affect the reaction, but from an industrial standpoint, it is uneconomical to use a large amount of the solvent. Further, by adding hydroxides of alkali metals such as LiOH, NaOH, KOH, NaOCH 3 , NaOC 2 H 5 , and Alcoaart to 0.05 to 40% by weight, preferably 0.5 to 20% by weight, based on the raw material trinitrile (III), Desirable results are obtained. Hydrogenation is carried out using hydrogen gas, preferably in a pressure-resistant vessel such as auto crepe. The reaction pressure is 30 to 300 kg / cm 2 G, preferably 30 to 150 kg / cm 2 G, and the reaction temperature is -10 to 150 ° C, preferably 40 to 12 ° C. It is preferable to use a catalyst normally in hydrogenation. Examples of the catalyst include Rani cobalt, Ra nickel, Ra nickel Nickel, Platinum, Palladium, Ruthenium, Rhodium, etc. These may be used alone or in combination of two or more of them, of which Ra nickel Nickel results in more preferable results give. In addition, by selecting an appropriate solvent system and an alkali addition amount, even if a cheaper nickel nickel catalyst is used or the amount of catalyst is reduced, a relatively low yield decrease can be obtained.

이와 같이 해서 얻어지는 방향환을 갖는 트리아민(Ⅱ)는 상온에서 무색의 결정이며 약 50℃로 가열함으로써 무색투명한 액체로 된다.Triamine (II) having an aromatic ring thus obtained is colorless crystals at room temperature, and becomes colorless and transparent liquid by heating to about 50 ° C.

본원 발명의 트리아민(Ⅰ)을 얻기 위해서는 트리아민(Ⅱ)를 수소화하는 방법이 취해진다.In order to obtain the triamine (I) of this invention, the method of hydrogenating a triamine (II) is taken.

방향환을 갖는 트리아민(Ⅱ)의 수소화는 통상 액상하수소의 존재로 행하고, 필요에 응해서 적당한 용매를 사용한다. 용매로서는 예를들어 물, 메탄올, 에탄올, 프로판올, 이소프로판올, 디옥산, 초산, 테트라히드로프란 등을 단독 또는 2종류이상을 혼합해서 사용할 수 있지만, 물이 염가인 점에서 유리하며, 또 알코올수혼합용매가 촉매량을 감소시켰을 경우에도 수율의 저하가 적다고 하는 점에서 바람직하다. 용매는 선택하는 반응조건중에서 반드시 필요로 하는 것은 아니지만, 사용할 경우는 원료트리아민(Ⅱ)에 대해서, 0.05∼10배용량, 바람직하게는 0.1∼5배용량이 양호한 결과를준다. 또 수산화리튬, 수산화나트륨, 수산화칼륨, 수산화칼슘, 수산화바륨, 탄산소오다 등과 같은 알칼리금속수산화물이나 알칼리토류금속산화물 또는 그들의 탄산염을 원료아민(Ⅱ)에 대해서 0.05∼20중량%, 바람직하게는 0.1∼10중량 % 첨가함으로써 보다 바람직한 결과를 얻을 수 있다. 수소화는 수소가스를 사용하고, 반응용기는 대응하는 반응조건에 견디는 것이라면 특별한 제한은 없지만, 반응압력이 높을 경우에는 오오토클레이브와 같은 내압용기중에서 반응을 행하는 것이 좋다. 반응압력은 5∼300kg/cm2G, 바람직하게는 5∼150kg/cm2G이며, 반응온도 -10∼200℃, 바람직하게는 50∼150℃이다. 수소화에 있어서는 통상 촉매를 사용하는 것이 바람직하다. 촉매의 예로서는 라니니켈, 크롬, 파라듐, 백금, 로듐, 루테늄 등을 들 수 있으며, 이들은 단독 또는 2종류이상 혼합해서 사용되며, 경우에 따라서 활성탄, 실리카겔, 알루미나, 규조토, 경석(輕石) 등의 담체(擔體)위에 담지(擔持)시킴으로써 보다 바람직한 성질을 얻을 수 있다. 이들 중에서도, 루테늄촉매가 특히 소량의 알칼리금속의 수산화물 또는 탄산염을 함유하는 물, 알코올 또는 양자의 혼합물을 용매로서 사용했을 경우, 촉매의 첨가량을 감소시켜도 수율의 저하가 적으므로 매우 바람직한 것이라고 할 수 있다.The hydrogenation of triamine (II) having an aromatic ring is usually carried out in the presence of liquid hydrogen, and an appropriate solvent is used as necessary. As a solvent, for example, water, methanol, ethanol, propanol, isopropanol, dioxane, acetic acid, tetrahydrofran and the like can be used alone or in combination of two or more. However, it is advantageous in that water is inexpensive, and alcohol-water mixing. It is preferable at the point that the fall of a yield is small also when a solvent reduces the amount of catalyst. The solvent is not necessarily required among the reaction conditions to be selected, but when used, 0.05 to 10 times the volume, preferably 0.1 to 5 times the volume of the raw material triamine (II), gives good results. In addition, alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, barium hydroxide, sodium carbonate, alkaline earth metal oxides or their carbonates are 0.05 to 20% by weight, preferably 0.1 to 20%, based on the raw material amine (II). A more preferable result can be obtained by adding 10 weight%. Hydrogenation uses hydrogen gas, and the reaction vessel is not particularly limited as long as it withstands the corresponding reaction conditions. However, when the reaction pressure is high, the reaction vessel is preferably carried out in a pressure resistant container such as an autoclave. The reaction pressure is 5 to 300 kg / cm 2 G, preferably 5 to 150 kg / cm 2 G, and the reaction temperature is -10 to 200 ° C, preferably 50 to 150 ° C. It is preferable to use a catalyst normally in hydrogenation. Examples of the catalyst include ranickel, chromium, palladium, platinum, rhodium, ruthenium, and the like, which are used alone or in combination of two or more kinds, and in some cases activated carbon, silica gel, alumina, diatomaceous earth, pumice, etc. More preferable properties can be obtained by supporting on a carrier. Among these, when a ruthenium catalyst especially uses a small amount of alkali metal hydroxide or carbonate, water, alcohol, or a mixture of both as a solvent, even if the addition amount of a catalyst is reduced, it can be said that it is very preferable because there is little fall of a yield. .

본원 발명에 의한 트리아민(I)은 상온에서 무색투명한 액체이며, 0℃로 냉각해도 고화하거나, 석출물(析出物)이 생기거나 하는 일은 없다. 이트리아민(I)은 자체공지의 수단에 의해 포스겐과 반응시킴으로써 대응하는 트리이소시아네이트(V) (H6MTI라고 칭할 때가 있음)로 유도할 수 있다.Triamine (I) by this invention is a colorless and transparent liquid at normal temperature, and it hardens even if it cools to 0 degreeC, and a precipitate does not arise. Itriamine (I) can be derived to the corresponding triisocyanate (V) (sometimes referred to as H 6 MTI) by reacting with phosgene by means known per se.

Figure kpo00002
Figure kpo00002

트리아민(I)의 포스겐화는 자체공지의 방법에 따라서 행할 수 있다. 그중의 하나는 이른바 코올드. 홋포스겐화라고 불리우고 있는 방법으로, 냉각한 액체포스겐 또는 포스겐의 유기용매용액중에 트리아민(I) 또는 이 트리아민의 유기용매용액을 교반하에 적하(滴下)하고, 이어서 포스겐의 공급하에 반응온도를 상승시켜, 반응을 진행, 완료시키는 방법이다. 또하나의 방법은 원료트리아민의 염을 유기용매에 가해서 슬러리상으로 하거나 또는 트리아민의 유기용매용액중에 산을 가해서 트리아민염의 슬러리를 얻고, 이것에 포스겐을 공급하면서 서서히 승온시켜 포스겐화반응을 진행, 완결시키는 방법이다.The phosgenation of triamine (I) can be performed according to a method known per se. One of them is the so-called Could. In a method called hot phosgenation, triamine (I) or an organic solvent solution of this triamine is added dropwise to the cooled liquid solvent of organic phosgene or phosgene under stirring, and then the reaction temperature is increased under the supply of phosgene. It is a method of advancing and completing reaction. In another method, the salt of the raw material triamine is added to an organic solvent to form a slurry, or an acid is added to the triamine organic solvent solution to obtain a slurry of the triamine salt, and gradually heated up while supplying phosgene to the phosgenation reaction. It is a way to complete it.

트리아민은 순도가 높은 것을 사용해도 좋지만 이 트리아민의 제조시에 부생(副生)하는 불순물을 소량 함유하는 원료일지라도 마찬가지로 사용할 수 있다.Although triamine may use a high purity, even if it is a raw material containing a small amount of the by-products impurity at the time of manufacture of this triamine, it can be used similarly.

포스겐화반응의 경우에 사용되는 유기용매로서는 방향족탄화수소, 할로겐화방향족탄화수소, 할로겐화지방족탄화수소, 할로겐화지환탄화수소 등을 들 수 있지만, 특히 클로로벤젠, 0-디클로르벤젠 등의 할로겐화방향족 탄화수소가 바람직하다. 또 트리아민의 염으로서는 초산염, 염산염, 황산염, 카르바민산염 등을 사용할 수 있지만, 그중에서도 바람직한 것은 트리아민과 탄산가스를 반응시킨 카르바민산염이다. 포스겐은 가스상 및 액상의 어느 것으로도 사용할 수 있고, 또 당업계에서 공지의 포스겐의 전구체(前軀體)로 간주되는 포스겐다이머(트리클로로메틸클로로포오메이트)를 포스겐 대신에 사용할 수도 있다.Examples of the organic solvent used in the case of the phosgenation reaction include aromatic hydrocarbons, halogenated aromatic hydrocarbons, halogenated aliphatic hydrocarbons, halogenated alicyclic hydrocarbons, and the like, but halogenated aromatic hydrocarbons such as chlorobenzene and 0-dichlorobenzene are particularly preferable. As the salt of the triamine, acetate, hydrochloride, sulfate, carbamate and the like can be used. Among them, carbamate salts of triamine and carbon dioxide are preferred. The phosgene can be used in any of a gas phase and a liquid phase, and a phosgene dimer (trichloromethylchloroformate), which is considered as a precursor of phosgene known in the art, may be used in place of the phosgene.

포스겐화의 반응온도에 대해서는 지나친 고온에서는 부생물(副生物)이 많고, 또 지나친 저온에서는 반응속도가 낮으므로 -20∼180℃의 사이에서 선택하는 것이 바람직하다. 이와 같이 해서 포스겐화를 종료한 반응액에서 과잉의 포스겐 및 반응용매를 제거하고, 이어서 진공증류를 행함으로써 대응하는 이소시아네이트(IV)를 얻을 수 있다. 이와 같이 해서 얻어진 트리이소시아네이트(IV)는 종래 알려져 있는 폴리이소시아네이트에 비해서 여러가지 이점을 갖고 있다. 즉, 상온에 있어서 무취(無臭)이며, 자극성이 없고, 매우 점도가 낮은 무색투명한 액체이므로, 특히 무용매 또는 하이소리드우레탄 도료용 성분으로서 유용성이 높고, 또 소원료가 비교적염가이며, 제조법도 단순하기 때문에 공업적 가치는 매우 높다.Regarding the reaction temperature of phosgenation, it is preferable to select between -20 and 180 ° C because the reaction temperature is low at excessively high temperatures and the reaction rate is low at excessively low temperatures. Thus, the corresponding isocyanate (IV) can be obtained by removing excess phosgene and a reaction solvent from the reaction liquid which complete | finished phosgenation, and then performing vacuum distillation. Thus obtained triisocyanate (IV) has various advantages compared with the conventionally known polyisocyanate. That is, it is a colorless, transparent liquid that is odorless, non-irritating, and very low viscosity at room temperature, and thus is particularly useful as a solvent-free or high-sound urethane paint component, and has a relatively low cost of raw materials, and a simple manufacturing method. The industrial value is very high.

이 트리이소시아네이트(IV)는 당업계에서 공지된 이소시아네이트와 다른 활성수소화합물과의 반을을 이용해서 각종의 중부가 프로세스에 의해 여러가지 폴리우레탄수지를 만들 수 있다. 이 트리이소시아네이트는 그대로의 형태로 이용할 수 있음은 물론이지만, 당업계에서 공지의 각종변성체(다이머, 트리머,카아보디이미드등로서도 이용할 수 있고, 또 폴리올폴리아민, 아미노알코올, 물 등과 반응시킨 프레폴리머의 형태로서도 사용할 수 있다. 또 가열압착도료 등의 용도의 경우에는 이것도 공지의 각종 블록제를 사용할 이른바 마스크드이소시아네이트의 형태로도 사용할 수 있다. 이 트리이소시아네이트와 통상 우레탄도료로 사용되는 폴리올성분과의 반응에 의해 도막을 형성시킬 경우, 그 작업성은 매우 양호하며, 얻어지는 경화도막의 물성 및 내후성도 매우 뛰어난다.This triisocyanate (IV) can make various polyurethane resins by various heavy addition processes using half of the isocyanate and other active hydrogen compounds known in the art. This triisocyanate can be used as it is, but of course, it can also be used as various modifications known in the art (dimer, trimer, carbodiimide, etc.), and a prepolymer reacted with polyol polyamine, amino alcohol, water, and the like. In the case of applications such as heat-compression coating, it can also be used in the form of so-called masked isocyanate using various known blocking agents. When the coating film is formed by the reaction of, the workability is very good, and the physical properties and weather resistance of the resulting cured coating film are also excellent.

또한 본원 발명의 목적물에서 유도되는 상기 트리이소시아네이트는 우레탄도료의 용도에 특히 적합하지만, 그 당업계에서 알려져 있는 접착제, 폼, 인조피혁, 충전제등 각종의 이소시아네이트 이용물에 응용할 수 있다.In addition, the triisocyanate derived from the object of the present invention is particularly suitable for the use of urethane paint, but can be applied to various isocyanate uses such as adhesives, foams, artificial leather, fillers and the like known in the art.

참고예 1Reference Example 1

33% 수산수용액 150부에 5산화바나듐 18.2부를 가하고 탕욕상(湯浴上)에서 약 100℃로 가열, 5산화바나듐을 용해시킨 것을 A액으로 하고, 마찬가지로 33% 수산수용액 150부에 산화크롬(VI) 20부를 용해한 용액을 B액으로 하여, A,B양액을 균일하게 혼합한다.18.2 parts of vanadium pentoxide was added to 150 parts of 33% aquatic solution, heated to about 100 ° C. in a bath, and dissolved in vanadium pentoxide as A solution. Similarly, 150 parts of 33% aquatic solution of chromium oxide ( VI) The solution which melt | dissolved 20 parts was made into B liquid, and A and B nutrient solution are mixed uniformly.

이 혼합액에 800℃로 소성(燒成)한 아나타아제무산화티탄분말 300부를 가하고, 혼합하면서 수분을 증발시켜 페이스트상으로 하고, 4mm경×5mm길이로 습식압출성형(濕式押出型)했다. 얻어진 성형물을 100℃로 15시간 건조 후 500℃로 4시간 공기중에서 소성해서 촉매로 했다.300 parts of anatase titanium anoxide powder calcined at 800 ° C. was added to the mixed solution, and water was evaporated while mixing to form a paste, and wet extrusion was performed with a 4 mm diameter × 5 mm length. . The obtained molded product was dried at 100 ° C. for 15 hours and then calcined at 500 ° C. in air for 4 hours to obtain a catalyst.

촉매 200ml를 통상의 고정층반응장치에 충전하고, 반응관욕온(反應管浴溫)을 360℃로 유지하면서, 메시티렌 0.5몰%, 암모니아 7몰%, 공기 92.5몰%로 이루어지는 혼합가스를 상압에서 공간속도 1,000hr-1(NTP환산)의 조건으로 반응시켰더니 1,3,5-트리시아노벤젠(MTN)이 51.2몰%의 수율로 얻어졌다.200 ml of the catalyst was charged to a conventional fixed bed reactor, and the mixed gas consisting of 0.5 mol% of mesitylene, 7 mol% of ammonia, and 92.5 mol% of air was kept at atmospheric pressure while maintaining the reaction tube bath temperature at 360 ° C. The reaction was carried out under the conditions of a space velocity of 1,000 hr −1 (in terms of NTP) to give 1,3,5-tricyanobenzene (MTN) in a yield of 51.2 mol%.

참고예 2Reference Example 2

참고예 1에서 얻어진 1,3,5-트리시아노벤젠 15g을 상법(常法)으로 전개된 라니니캘. 크롬(원자비 Ni:Cr=49:1)15g, 메탄올 27ml,m-크실렌 63ml, 가성소오다 0.18g과 함께 용량 300ml의 전자교반식 오오토클레이브안에 봉입하고 초압 100kg/cm2G로 고압수소를 압입하고, 100℃로 반응을 행했더니, 35분으로 0.59몰의 수소흡수가 일어났다. 촉매를 여별(

Figure kpo00003
別)하고, 용매를 유거후 감압증착했더니 1,3,5-토리스(아미노메틸)벤젠(MTA) 12.8g이 얻어졌다.Ranikal which developed 15 g of 1,3,5-tricyanobenzene obtained by the reference example 1 by the conventional method. 15 g of chromium (atomic ratio Ni: Cr = 49: 1), 27 ml of methanol, 63 ml of m-xylene, and 0.18 g of caustic soda were enclosed in a 300 ml electronic stirring autoclave with high pressure hydrogen at an initial pressure of 100 kg / cm 2 G. Was pressed and reacted at 100 ° C., whereby 0.59 mol of hydrogen was absorbed in 35 minutes. By catalyst
Figure kpo00003
Viii), and the solvent was distilled off under reduced pressure, and then 12.8 g of 1,3,5-toris (aminomethyl) benzene (MTA) was obtained.

[실시예 1]Example 1

참고예 2에서 얻어진 1,3,5-토리스(아미노메틸)벤젠(MTA) 30g을 5% 루테늄-알루미나촉매(일본 엔겔하르트사 제품), 3g, 물 60g, 가성소오다 0.75g과 함께 용량 300ml의 전자교반식 오오토클레이브에 봉입하고 초암 120kg/cm2G의 고압수소를 압입하여, 115℃로 25분간 반응시켰더니 0.61몰의 수소흡수가 일어났다.30 g of 1,3,5-Toris (aminomethyl) benzene (MTA) obtained in Reference Example 2 was mixed with 5% ruthenium-alumina catalyst (manufactured by Engelhardt, Japan), 3 g, water 60 g, and sodium hydroxide 0.75 g. It was enclosed in the electronic stirring autoclave of and the high pressure hydrogen of 120 kg / cm <2> of ultracancer was indented, and it was made to react at 115 degreeC for 25 minutes, and the hydrogen absorption of 0.61 mol occurred.

촉매를 여별하고, 용매를 유거 후 감압증류에 의해, 1,3,5-토리스(아미노메틸) 시크로헥산(H6MTA) 26.8g을 얻었다. 이 H6MTA는 비점 127∼8℃/1mmHg의 무색투명한 저점도의 액체이며, 그 IR스펙트럼을 제1도에 나타낸다.The catalyst was filtered off, and the solvent was distilled off, and then distilled under reduced pressure to obtain 26.8 g of 1,3,5-Toris (aminomethyl) cyclohexane (H 6 MTA). This H 6 MTA is a colorless, transparent, low viscosity liquid having a boiling point of 127 to 8 ° C./1 mmHg, and the IR spectrum thereof is shown in FIG. 1.

이와 같이 해서 얻어진 H6MTA 145mg을 약 20ml의 에틸에에테르에 용해하고, 무수초산을 적하하였더니 즉시 백색결정이 석출되었다. 새로운 결정의 생성을 볼수 없게되면, 적하를 중지하고, 결정을 여별건조하였더니 248mg의 트리아세틸유도체가 얻어졌다. 이것의 융점은 278∼9.5℃이며 원소분석치는 다음에 나타낸 바와 같이 토리스(아세틸아미노메틸)시클로헥산으로서의 C15H27N3O3에 일치했다.145 mg of H 6 MTA thus obtained was dissolved in about 20 ml of ethyl ether, and acetic anhydride was added dropwise to precipitate white crystals immediately. When no new crystals were observed, dropping was stopped and the crystals were dried separately to obtain 248 mg of triacetyl derivative. Its melting point was 278 to 9.5 ° C and the elemental analysis value was consistent with C 15 H 27 N 3 O 3 as toris (acetylaminomethyl) cyclohexane as shown below.

C15H27N3O3로서As C 15 H 27 N 3 O 3

계산치 : C 60.58% H 9.15% N 14.13%Calculated Value: C 60.58% H 9.15% N 14.13%

실측치 : C 60.66% H 9.22% N 14.03%Found: C 60.66% H 9.22% N 14.03%

다음에 에탄올 20ml과 35% 염산 1ml과의 혼합액에 H6MTA 176mg 함유하는 10ml의 에탄올용액을 적하하고, 약 1시간 교반했다. 결정을 여별 후, 건조시켰더니 195mg의 염산염이 얻어졌다. 이것의 융점은 300℃이상이며, 원소분석치는 다음에 나타낸 바와 같이 3염산염으로서의 계산치 C9H24N3Cl3와 일치했다.Next, a 10 ml ethanol solution containing 176 mg of H 6 MTA was added dropwise to a mixed solution of 20 ml of ethanol and 1 ml of 35% hydrochloric acid, followed by stirring for about 1 hour. After filtration, the crystals were dried to give 195 mg of hydrochloride. Its melting point was 300 ° C. or higher, and the elemental analysis value was consistent with the calculated value C 9 H 24 N 3 Cl 3 as the trihydrochloride as shown below.

C9H24N3Cl3로서As C 9 H 24 N 3 Cl 3

계산치 : C 38.51% H 8.62% N 14.97% Cl : 37.89%Calculated Value: C 38.51% H 8.62% N 14.97% Cl: 37.89%

실측치 : C 38.39% H 8.83% N 14.73% Cl : 37.94%Found: C 38.39% H 8.83% N 14.73% Cl: 37.94%

또, H6MTA 210mg을 25ml의 에탄올에 용해하고, 탄산가스를 통하게 했더니 결정이 석출됐다. 새로운 결정의 생성이 보이지 않게될 때까지, 탄산가스를 통하게 한후, 여별 상온에서 감압건조시켰더니 284mg의 백색결정(융점 85∼86.5℃)이 얻어졌다.In addition, 210 mg of H 6 MTA was dissolved in 25 ml of ethanol, and carbon dioxide was passed through it to precipitate crystals. It was passed through carbon dioxide gas until the formation of new crystals was not seen, and the resultant was dried under reduced pressure at room temperature to give 284 mg of white crystals (melting point 85 to 86.5 ° C).

[실시예 2 ]Example 2

1,3,5-토리스(아미노메틸)벤젠 100g을 시판의 5% 루테늄카아본(담체)촉매 5g, 물 200ml, 가성칼리 3g과 함께 내용적 500ml의 전자교반식 오오토클레이브에 봉입하고, 120kg/cm2G의 고압수소를 압입 후, 115℃로 3시간 반응시켰더니 1.82몰의 수소흡수가 일어나고, 84.7몰%의 수율로 H6MTA가 얻어졌다.100 g of 1,3,5-Toris (aminomethyl) benzene was charged into a 500 ml electrostirring autoclave together with 5 g of a commercially available 5% ruthenium carbon (carrier) catalyst, 200 ml of water, and 3 g of caustic, and weighed 120 kg. / cm 2 G of high-pressure hydrogen was reacted at 115 ° C. for 3 hours, whereby 1.82 mol of hydrogen was absorbed and H 6 MTA was obtained at a yield of 84.7 mol%.

[실시예 3∼10][Examples 3 to 10]

1,3,5-토리스(아미노메틸)벤젠 20g을 다음의 조건하에 내용적 300ml의 전자교반식 오오토클레이브에중서 핵환원하고, 각각 다음의 수율로 H6MTA를 얻었다.20 g of 1,3,5-Toris (aminomethyl) benzene was nuclear-reduced in an internal volume 300ml electronic stirring autoclave under the following conditions, and H 6 MTA was obtained in the following yields, respectively.

[표 1]TABLE 1

Figure kpo00004
Figure kpo00004

* 1 A : 시판의 5% 루테늄 알루미나촉매 * 2 : 용매량은 모두 90ml* 1 A: Commercial 5% ruthenium alumina catalyst * 2: 90 ml of solvent

B : 시판의 5% 루테늄 카아본촉매B: commercially available 5% ruthenium carbon catalyst

[참고예 3]Reference Example 3

실시예 1에서 얻어진 1,3,5-토리스(아미노메틸)시클로헥산 70.0g을 2l 4구(四口)프라스코중에서 1200ml의 0-디클로로벤젠에 용해했다. 얻어진 아민용액에 탄산가스를 중량증가가 보이지 않게 될때까지 통하게 하였더니 무색결정의 슬러리를 얻었다. 이 슬러리상물질에 교반하, 포스겐가스를 불어 넣으면서 10℃이하로 30분간 유지한 후에 포스겐공급을 계속하면서 6시간으로 120℃까지 승온시키고, 다시 120℃로 6시간 포스겐화반응을 했다. 반응의 진행과 더불어 슬러리는 용액으로 되고, 최종적으로는 균일한 약간 황색을 띤 투명용액이 되었다.70.0 g of 1,3,5-Toris (aminomethyl) cyclohexane obtained in Example 1 was dissolved in 1200 ml of 0-dichlorobenzene in 2 L four-necked Frasco. Carbon dioxide gas was passed through the obtained amine solution until no increase in weight was obtained, thereby obtaining a slurry of colorless crystals. After stirring for this slurry-like substance and holding phosgene gas for 30 minutes at 10 degrees C or less, it heated up to 120 degreeC for 6 hours, continuing supplying phosgene, and further phosgenation reaction at 120 degreeC for 6 hours. As the reaction proceeded, the slurry became a solution and finally a uniform slightly yellowish transparent solution.

포스겐화반응종료후, 질소가스를 불어넣고 용해되어 있는 포스겐을 제거한 다음 감압하에 용매를 유거했다. 얻어진 조(粗)이소시아네이트를 감압증류했더니 비점 170∼174℃/0.53mmHg의 1,3,5-토리스(이소시아나아트메틸)시클로헥산(VI) (H6MTI) 91.80g을 얻었다(몰수율 90.1%). 이것은 5℃에서도 저점도의 액체로서 무취(無臭)이엇다. 아민당량의 실측치는 84.71(이론치 83.08)이었다.After completion of the phosgenation reaction, nitrogen gas was blown to remove dissolved phosgene, and then the solvent was distilled off under reduced pressure. The obtained crude isocyanate was distilled under reduced pressure to obtain 91.80 g of 1,3,5-Toris (isocyana artmethyl) cyclohexane (VI) (H 6 MTI) having a boiling point of 170 to 174 ° C / 0.53 mmHg (molar yield). 90.1%). It was odorless as a low viscosity liquid even at 5 ° C. Found amine equivalents was 84.71 (theoretical 83.08).

실험예 1Experimental Example 1

참고예 3에서 얻어진 1,3,5-토리스(이소시아나아트메틸)시클로헥산(H6MTI)을 사용하여, 고불휘발형(高不揮發型)의 2액형우레탄도료를 조제했다.Highly volatile two-component urethane paint was prepared using 1,3,5-Toris (isocyana artmethyl) cyclohexane (H 6 MTI) obtained in Reference Example 3.

성분 A : ① 아크릴폴리올(스티렌 50%, 메타크릴산 2-히드록시에틸Component A: ① Acrylic polyol (50% of styrene, 2-hydroxyethyl methacrylate)

23, 2%, 아크릴산 n-부틸 26.8를 톨루엔-초산부틸(1:1)23, 2%, n-butyl acrylate 26.8 toluene-butyl acetate (1: 1)

중에서 공중합 시킨것으로 불휘발분 65% OH 65] 863부Non-volatile content 65% OH 65 copolymerized in 863 parts

② 산화티탄분말 430.4부② 430.4 parts titanium oxide powder

③ 초산에틸/초산부틸/셀로솔프아세테이트(1/1/1) 277.4부③ 277.4 parts of ethyl acetate / butyl acetate / cellosol acetate (1/1/1)

성분 B : H6MTI 84.7부Component B: H 6 MTI 84.7 parts

보올밀로 충분히 안료분산을 한 A성분과, B성분을 NCO/OH=1/1이 되도록 상기의 비율로 혼합했다. 이 혼합물의 불휘발분은 65%이며 그점도(25℃)는 포오드컵 #4로 26초였다.The component A and the component B, which were sufficiently dispersed in a bowl mill, were mixed at the above ratio so that NCO / OH = 1/1. The nonvolatile content of this mixture was 65% and its viscosity (25 ° C) was 26 seconds with Pood Cup # 4.

이것을 즉시 표면인산처리를 한 연강판(軟鋼板)에 도막(塗膜)두께가 30∼40/μ가 되도록 스프레이도장 했다. 25℃로 7일간의 양생(養生)을 한후에 도막의 물성평가와 내후성시험을 행했다.This was spray-coated on a mild steel plate subjected to surface phosphate treatment immediately so as to have a coating film thickness of 30 to 40 / μ. After curing for 7 days at 25 ° C., the physical properties of the coating film and the weather resistance test were performed.

Figure kpo00005
Figure kpo00005

실험예 2Experimental Example 2

실시예 1에서 얻어진 H6MTI와 폴리올을 사용하여, 실험예 1과 마찬가지고 고불휘발형의 2액형 우레탄도료의 조제를 행하고, 그 도막물성 및 내후성을 살펴보았다. 그 결과를 제2표에 나타냇다.Using the H 6 MTI obtained in Example 1 and a polyol, a high volatile two-component urethane paint was prepared in the same manner as in Experimental Example 1, and the coating film properties and weather resistance were examined. The results are shown in the second table.

[표 2]TABLE 2

Figure kpo00006
Figure kpo00006

* 폴리에스테르폴리올 : 아지핀산 2몰, 디에틸렌글리코올 1몰, 트리메티로올프로판 2몰, 야자유지방산 1몰의 공축합물(共縮合物)이며, 불휘발문(NV) 100%, OH가 230* Polyester polyol: 2 mol of azipic acid, 1 mol of diethylene glycol, 2 mol of trimetholol propane, 1 mol of palm oil fatty acid, 100% nonvolatile matter (NV), OH value 230

Claims (1)

1,3,5-토리스(아미노메틸)벤젠을 촉매의 존재하에 수소화하는 것을 특징으로 하는 1,3,5-토리스(아미노메틸)시클로헥산의 제조방법.A process for producing 1,3,5-toris (aminomethyl) cyclohexane, wherein the 1,3,5-toris (aminomethyl) benzene is hydrogenated in the presence of a catalyst.
KR1019800001968A 1980-05-20 1980-05-20 Process for the preparation of novel triamine KR840000720B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019800001968A KR840000720B1 (en) 1980-05-20 1980-05-20 Process for the preparation of novel triamine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019800001968A KR840000720B1 (en) 1980-05-20 1980-05-20 Process for the preparation of novel triamine

Publications (2)

Publication Number Publication Date
KR830002678A KR830002678A (en) 1983-05-30
KR840000720B1 true KR840000720B1 (en) 1984-05-24

Family

ID=19216530

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019800001968A KR840000720B1 (en) 1980-05-20 1980-05-20 Process for the preparation of novel triamine

Country Status (1)

Country Link
KR (1) KR840000720B1 (en)

Also Published As

Publication number Publication date
KR830002678A (en) 1983-05-30

Similar Documents

Publication Publication Date Title
US20040097752A1 (en) Method for synthesis of aliphatic isocyanates from aromatic isocyanates
CA2558722A1 (en) Preparation of amines from compounds having carbodiimide groups from hydrolysis with water
US5254738A (en) Preparation of 1,4-alkylenediamines
US5093528A (en) Process for the production of secondary amine terminated polyethers and their use
US4597909A (en) Process for the production of polyisocyanates
KR840000720B1 (en) Process for the preparation of novel triamine
US4338256A (en) Triisocyanates
EP0019893B1 (en) Novel triamines and method for production thereof
CA1320955C (en) Preparation of primary aralkyl urethanes and ureas and isocyanates derived therefrom
KR840001719B1 (en) Process for the preparation of triamine
CN114644576A (en) 1, 3-cyclohexanedimethylene dicarbamate and preparation method and application thereof
CA1149418A (en) Triamines and method for production thereof
US4299766A (en) Process for preparing alicyclic isocyanates
US4849544A (en) 1,3-Diaminocyclohexanes
US3148202A (en) Diisocyanato tricyclodecane
US4879409A (en) Cycloaliphatic diisocyanates, optionally in the form of isomeric mixtures and a process for their preparation
JPH07309828A (en) New diisocyanate,its production,and its use
US3644459A (en) Isomeric mixtures of methylcyclohexylene diisocyanate
CA1140145A (en) Triisocyanates and their production and use
KR950006901B1 (en) Preparation of a novel aliphatic diisocyanate from styrene
KR840001344B1 (en) Process for the preparation of triisocyanates
US4276228A (en) 1,6,11-Undecane triisocyanate
US3631201A (en) 1 2-di(4-cyanomethylphenyl)-1-cyanoethane
US4304731A (en) Method for producing an aliphatic triisocyanate
US3539611A (en) 1,2-di(4-(2-isocyanatoethyl)phenyl)-3-isocyanatopropane