KR830002841B1 - Process for extraction of alumina from alumina-containing ore - Google Patents

Process for extraction of alumina from alumina-containing ore Download PDF

Info

Publication number
KR830002841B1
KR830002841B1 KR7903031A KR790003031A KR830002841B1 KR 830002841 B1 KR830002841 B1 KR 830002841B1 KR 7903031 A KR7903031 A KR 7903031A KR 790003031 A KR790003031 A KR 790003031A KR 830002841 B1 KR830002841 B1 KR 830002841B1
Authority
KR
South Korea
Prior art keywords
alum
alumina
solution
added
soln
Prior art date
Application number
KR7903031A
Other languages
Korean (ko)
Other versions
KR830001134A (en
Inventor
신병식
Original Assignee
신병식
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신병식 filed Critical 신병식
Priority to KR7903031A priority Critical patent/KR830002841B1/en
Publication of KR830001134A publication Critical patent/KR830001134A/en
Application granted granted Critical
Publication of KR830002841B1 publication Critical patent/KR830002841B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/04Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/06Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom by treating aluminous minerals or waste-like raw materials with alkali hydroxide, e.g. leaching of bauxite according to the Bayer process
    • C01F7/0686Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom by treating aluminous minerals or waste-like raw materials with alkali hydroxide, e.g. leaching of bauxite according to the Bayer process from sulfate-containing minerals, e.g. alunite

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

High-purity alumina is extracted from alimina-containing ores as follows. The ores are kneaded with 70-95% H2SO4 soln. and the mixture is baked at 100-200≰C. Water-insoluble SiO2 in the mixture is separated through filtration; Al scrap is introduced to thd filtrate to reduce Fe+3 ions to Fe+2 ions. (NH4)2SO4 is added to the soln. to crystallize alum, which is hydrolyzed to produce Al2O33H2O under NH3 atmosphere, Fe in the soln. is changed to Fe2o3 XB2o under and air atmosphere; effluent (NH4)SO4 soln. is then concentrated and recirculated to the crystallization step. By-products, such as Na2SO4 or gypsum, are obtained and the separated NH3 is re cycled.

Description

반토질 광물로부터 Al2O3를 추출하는 방법Extraction of Al2O3 from Alumina Minerals

제1도는 본 발명 방법의 실시계통도.1 is an embodiment of the method of the present invention.

제2도는 본 발명 용해공정에서의 황산농도와 가열온도에 따른 Al2O3의 추출관계도로서,2 is an extraction relationship diagram of Al 2 O 3 according to the sulfuric acid concentration and heating temperature in the dissolution process of the present invention,

제2(a)도는 고령토의 경우.Figure 2 (a) is kaolin.

제2(b)도는 명반석의 경우.Figure 2 (b) is for alum.

본 발명은 고반토질 광물로부터 고순도 알루미나(Al2O3)를 경제적으로 추출하는 방법에 관한 것으로 고반토질 광물 예로서, 고령토, 회장석, 명반석 등을 농황산과 반죽하여 가열에서 100-200℃에 베이킹(Backing)한 후 물로 추출하여 불용성 SiO2를 여과 분리제거하고 여과액에 Al 스크랩을 투입 Fe+++의 전부를 Fe++으로 환원시켜 Fe++와 Al+++공존하에 (NH4)2SO4를 첨가하여 알루미늄 명반(Alum)을 정출하여 이 명반을 NH3가스 공급하에 가수분해하여 Al2O33H2O를 얻으며 또 명반분리용액에는 NH3가스와 공기를 주입시켜 액중에 함유된 Fe을 Fe2O3·xH2O로 탈철분리하며 여과액인 (NH4)2SO4는(용액과가수분해 공정에서 Al2O33H2O을 분리한 (NH4)2SO4용액을 합하고) 농축하여 일부는 전기명반 정출공정에 순환시키며 일부는 NaOH 또는 Ca(OH)2를 첨가하여 부산물로서 망초 Na2SO4또는 석고 CaSO4xH2O를 얻으며, 이때 유리된 NH3가스는 탈철공정과 명반가스 분해공정에 순환토록 하는 것이다.The present invention relates to a method for economically extracting high purity alumina (Al 2 O 3 ) from high alumina minerals, for example, kaolin, feldspar, alum and the like kneaded with concentrated sulfuric acid and baking at 100-200 ° C. under heating. (Backing) by one after extraction and removal by filtration of insoluble SiO 2 with water, separated and put into the Al scrap filtrate reduction of all of the Fe +++ ++ to Fe ++ and Fe under coexistence Al +++ (NH 4) 2 SO 4 is added to determine aluminum alum and hydrolyze the alum under NH 3 gas supply to obtain Al 2 O 3 3H 2 O. In addition, NH 3 gas and air are injected into the alum separation solution and contained in the liquid. Iron was separated by Fe 2 O 3 · xH 2 O and the filtrate (NH 4 ) 2 SO 4 ((NH 4 ) 2 SO 4 separated from Al 2 O 3 3H 2 O in the solution perhydrolysis process). Mix the solution) was concentrated to sikimyeo portion is circulated to the electric alum extrusion process is the addition of some NaOH or Ca (OH) 2 Obtained as a by-product over a Glauber's salt Na 2 SO 4 or gypsum CaSO 4 xH 2 O, wherein the third gas free NH is to ever in circulation talcheol process gas and alum decomposition process.

종래전해용 알루미나(Al2O3)를 제조함에 있어서는 보오키사이트(Bouxite)를 원료로 하는 바이야프로세스(Bayer Process)가 주류를 이루고 있으며, 이 방법은 NaOH로 Al2O3를 추출하므로 광석중의 불순물인 Fe와 SiO2중 Fe의 제거는 용이하나 SiO2의 일부는 알루미나와 반응하여 불용성인 소듐알미늄시리케이트(Sodium Alumi mium Silicate)를 생성하게 되어 Al2O3와 NaOH의 손실을 초래하므로 SiO2의 함량이 적은 보오키사이트에 적용된다.In the manufacture of conventional electrolytic alumina (Al 2 O 3 ), the Bayer Process (Bouxite) as a raw material is the mainstream, this method extracts Al 2 O 3 with NaOH, ore Fe and SiO 2 impurities are easily removed, but a part of SiO 2 reacts with alumina to form insoluble sodium aluminum silicate, resulting in loss of Al 2 O 3 and NaOH. Therefore, it is applied to bokisite having low content of SiO 2 .

따라서 SiO2가 다량 함유된 보오키사이트를 원료로 사용할 때는 석회석과 소오다회를 혼합하여 1200℃의 고온으로 소성하여 SiO2를 NaOH에 불용성인 규산칼슘으로 변화시킨후 바이야 프로세스를 적용하는 시도를 한 바 있으나 경제적면에서 채용되지 못하고 있는 실정이다.Therefore, when using bokisite containing a large amount of SiO 2 as a raw material, limestone and soda ash are mixed and calcined at a high temperature of 1200 ° C. to convert SiO 2 into calcium silicate insoluble in NaOH, and then apply a baiya process. Although it has been, but is not employed in terms of economics.

또한 고반토질 광물을 희황산으로 처리하여 Al를 용출시켜 불용선인 SiO2를 여과 제거하고 용액에 (NH4)2SO4또는 K2SO4를 가하여 암모늄 명반 (NH4)2)SO4Al2(SO4)324H2O 또는 카리명반 K2SO4Al2(SO4)324H2O을 정출시켜 가수분해하여 Al(OH)3침전을 얻어 여과 분리하고, (NH4)2SO4용액은 명반정출공정에 순환시키며 일부는 폐기하거나 또는 가열분해하여 NH4HSO4로 하여 H2SO4과 같이 광석 용해공정에 순환시키는 등의 방법이 시도되었으나, 황산 추출액중에는 철분의 일부가 Fe+++로 존재하므로 명반정출시 같이 공침하여 Fe가 높아 제품을 불순케 하는 결점이 있고 명반 정출을 위하여 약 10%과잉 투입한 (NH4)2SO4는 폐기하므로 경제성이 없어 채용되지 못하고 있는 것이다.In addition, high alumina minerals were treated with dilute sulfuric acid to elute Al to remove insoluble SiO 2 , and (NH 4 ) 2 SO 4 or K 2 SO 4 was added to the solution to add ammonium alum (NH 4 ) 2 ) SO 4 Al 2 ( SO 4 ) 3 24H 2 O or Cary Alum K 2 SO 4 Al 2 (SO 4 ) 3 24H 2 O was determined and hydrolyzed to give Al (OH) 3 precipitate, which was then separated by filtration, (NH 4 ) 2 SO 4 solution Silver was circulated in the alum removal process, and part of it was discarded or thermally decomposed to NH 4 HSO 4 to circulate in an ore dissolving process such as H 2 SO 4. However, a part of iron in the sulfuric acid extract was Fe ++. Since it exists as + , co-precipitating as alum is impure, and the product has a defect that it is impure, and about 10% excess (NH 4 ) 2 SO 4 which is overinjected for alum removal is discarded and it is not adopted because it is not economical.

또한 명반석(Alunite)을 NH4OH로 가압분해하여 Al(OH)3와 명반석의 K와 SO4를 K2SO4를 (NH4)2SO4의 혼합용액으로 추출하여 농축 건조하여 비료로 회수하는 방법이 제 2차 대전중에 시도되었으나 Al의 추출율이 (50-60%) 낮고 SiO2의 분리가 불완전하여 생성 Al2OH3중에 혼입되어 질을 저하시켜 고순도 전해 Al 생산에는 부적당한 등의 결점이 있는 것이다.In addition, Alunite was decomposed under pressure with NH 4 OH to extract K and SO 4 from Al (OH) 3 and Alumite with a mixture of K 2 SO 4 and (NH 4 ) 2 SO 4 , and concentrated to dryness to recover as a fertilizer. how this second attempt, but the extraction of charged Al is lower (50-60%) is the separation of SiO 2 are incomplete and mixed into the generated Al 2 OH 3 to lower the quality of high purity Al electrolytic production has drawback of inadequate such as Is there.

또한 반토질 광물을 아황산, 질산, 또는 염산 등으로 처리하고져 시도한 바도 있으나, 아황산법은 아황산이 약산이고 물에 대한 용해도가 낮으며 온도가 높아지면 더욱 감소되어 가압할 필요가 있고 Al의 용출이 극히 낮어 50%정도이어서 공업적 가치가 없으며 질산법과 염산법은 처리가 복잡하고 시설이 내산재료로 되어야 하므로 시설비가 높아질 뿐 아니라 용출액중의 Fe를 제거하기 곤란하여 미리 자력선광 등으로 탈철을 할 필요가 있는 등의 경제적으로 채용될 수 없고 단지 실험실적 연구에 불과한 것이다.In addition, attempts have been made to treat aluminate minerals with sulfurous acid, nitric acid, or hydrochloric acid.However, the sulfurous acid method is a weak acid with sulfurous acid, low solubility in water, and it needs to be further reduced and pressurized when the temperature is high. It is low, so it is about 50%, so it has no industrial value. Since the process of nitric acid and hydrochloric acid is complicated and the facility must be made of acid-resistant materials, the facility cost is high and it is difficult to remove Fe in the eluate. It cannot be employed economically, but it is only a laboratory study.

본 발명은 바이야 방법에 의하여 처리될 수 없는 Fe와 SiO2를 다량히 함유하는 반토광물을 원료로하여 연구실험 결과 Al의 추출율이 높고 부산물로서 석고 CaSO4xH2O 또는 망초 Na2SO4를 생산하므로서 경제적으로 유리하게 실시 가능한 방법을 창안한 것으로 공정에 따라 상세히 설명하면 다음과 같다.The present invention is based on alumina minerals containing a large amount of Fe and SiO 2 that can not be treated by the Baya method as a raw material, the extraction rate of Al and gypsum CaSO 4 xH 2 O or forget-me-not Na 2 SO 4 as a byproduct Invented a method that can be implemented economically advantageous by producing a detailed description according to the process as follows.

교반토광물 a 즉 카오린, 반토혈압, 희장석 명반석 등을 혼합조 b에서 농황산 7095% H2~SO4으로 스러리 상태로 혼합하여 가열로 C에서 100-200℃로 1시간 정도 베이킹(Backing)하고 이를 침출조 d에서 물로 추출하여 여과기 e에서 SiO2를 불용성 잔사로서 여과분리한다.Mixed agitated mineral a, i.e. kaolin, alumina blood pressure, rare stone alum, etc. in mixing tank b mixed with concentrated sulfuric acid 7095% H 2 ~ SO 4 in a slurry state for 1 hour at 100-200 ℃ in the furnace C (Backing) This is extracted with water in the leaching tank d and the SiO 2 is filtered off as an insoluble residue in the filter e.

용액은 환원조 f에서 Al 스크랩을 투입하여 Fe+++로 존재하는 철분을 Fe++로 환원시킨다음 가열조 g에서 통상의 (NH4)2SO4를 넣어 반응시켜 냉각조 h에서 10℃로 냉각시켜 알루미늄 명반 (NH4)2SO4Al2(SO4)324H2O을 Al성분의 실수율 95% 이상으로 여과기에서 정출 분리하고 용액은 (NH4)2SO4와 약간의 Fe이 함유되어 있음으로 철분 제거조 m에서 공기와 NH3가스를 혼합 주입하면서 가열하면 철분은 Fe2O3xH2O로 침전됨으로 여과기로 분리 제거하고 (NH4)2SO4액은 농축조 n에서 농축 또는 결정시켜 명반정출공정에 순환시킨다.The solution was added with Al scraps in a reducing tank f to reduce the iron present in Fe +++ to Fe ++ , and then reacted by adding ordinary (NH 4 ) 2 SO 4 in a heating bath g to 10 ° C. in a cooling bath h. After cooling with aluminum, aluminum alum (NH 4 ) 2 SO 4 Al 2 (SO 4 ) 3 24H 2 O was separated from the filter by more than 95% of the real ratio of Al, and the solution was (NH 4 ) 2 SO 4 and some Fe When contained is that the heating and injection mixing the air and the NH 3 gas in the removal of iron jo m iron powder is separated off in filters doemeuro precipitated as Fe 2 O 3 xH 2 O and (NH 4) 2 SO 4 solution is concentrated in a concentration tank n Or it is determined and circulated in the alum removal process.

분리한 명반(Alum)은 용출조에서 용출하고 가수분해조 J1.J2및 감압조 K에서 순차(Alum)가스를 주입하여 가수분해하면 Al은 알루미나 수화물인 Gibbsite Al2O33H2O로 되고 여과기에서 여과 분리하여 키루로 ℓ에서 1100℃정도로 가열하여 고순도의 α-Al2O3를 얻는다.The separated alum is eluted in the elution tank and hydrolyzed by injecting alum gas in the hydrolysis tank J 1 .J 2 and the decompression tank K. Al is converted into Gibbsite Al 2 O 3 3H 2 O The filtrate was separated by a filter and heated to about 1100 ° C. with Kiru to obtain high purity α-Al 2 O 3 .

일반 생성된 (NH4)2SO4용액은 전기한 명반을 분리한 순환 (NH4)2SO4용액과 합하여 농축 순환시키고 과잉의 (NH4)2SO4는 NaOH 혹은 Ca(OH)3를 첨가하여 분해하여 망초 (Na2SO4) 또는 석고 CaSO4xH2O를 부산물로 얻게하고 이때 발생된 NH3가스는 명반의 가수분해와 탈철에 이용된다.The resulting (NH 4 ) 2 SO 4 solution was concentrated and circulated in combination with the circulation (NH 4 ) 2 SO 4 solution in which the alum was separated, and the excess (NH 4 ) 2 SO 4 contained NaOH or Ca (OH) 3 . It is added to decompose to obtain manganese (Na 2 SO 4 ) or gypsum CaSO 4 xH 2 O as a by-product, and the NH 3 gas generated is used for hydrolysis and de-ironing of alum.

이와 같이 본원 방법은 종래의 반토광물을 희황산으로 처리한 용출액에 함유된 Fe를 SO2, H2S 또는 (NH4)2S 등의 유화물로 처리하여 FeS로서 일단 분리 제거하고 (NH4)2SO4를 가하여 명반을 정출시키므로서 귀중한 용출액의 손실로 인한 실수율의 저하를 가져오나 본원방법에서는 황산 추출액중의 3가의 철분을 Al스크랩을 사용하여 Fe+++

Figure kpo00001
Fe++2가의 철로 환원시켜 가용성으로 하여 액중의 Al와 용존하여서 Al만을 (NH4)2SO4를 첨가명반을 정출시키므로 정출된 명반에는 거의 Fe가 함유되지 않으며 실험분석 결과는 명반중 Fe2O3/Al2O3: 0.0013, CaO/Al2O3: 0.0001, MgO/Al2O3=0. 0002의 고순도 명반을 얻을 수 있는 것이다.As described above, the present method treats Fe contained in the eluate obtained by treating the conventional alumina mineral with dilute sulfuric acid with an emulsion such as SO 2 , H 2 S or (NH 4 ) 2 S, and then separates and removes it as FeS (NH 4 ) 2 The crystallization of alum by the addition of SO 4 leads to a decrease of the real rate due to the loss of valuable eluate. In this method, Fe +++ is used for the trivalent iron in the sulfuric acid extract using Al scrap.
Figure kpo00001
Fe + ++ divalent iron is reduced to soluble and dissolved with Al in the liquid only Al (NH 4 ) 2 SO 4 to determine the addition alum, so the crystal alum containing almost no Fe 2 O 3 / Al 2 O 3 : 0.0013, CaO / Al 2 O 3 : 0.0001, MgO / Al 2 O 3 = 0. You can get a high purity alum of 0002.

또 본원방법은 명반정출을 위하여 과잉 첨가되는 (NH4)2SO4는 정출명반을 분리한 용액에 오게 되며 명반의 가수분해공정에서 생성된 (NH4)2SO4와 농축하여 명반 정출공정에 순환시키는 바 과잉량은 Ca(OH)2또는 NaOH를 첨가 분해하여 석고와 망초를 부산물로 생산하게 되며 명반석을 원료로 할때는 Ca(OH)2를 가하여 석고와 K2SO4를 얻게되어 본원방법의 경제성을 일층 부여하게 되는 것이며, 이때 생성된 NH3가스는 명반의 가수분해 공정에 주입하여 Al2O33H2O의 생성을 촉진하게 된다.In addition, the method of the present method is that (NH 4 ) 2 SO 4 which is added excessively for alum determination comes to the solution in which the alum is separated and concentrated with (NH 4 ) 2 SO 4 generated in the hydrolysis process of alum to perform the alum determination process. bar excess amount of circulation by digesting the addition of Ca (OH) 2 or NaOH, and to produce gypsum with Glauber's salt as a by-product was added to halttaeneun Ca (OH) 2 the myeongbanseok as a raw material is obtained gypsum and K 2 SO 4 in the present method Economics will be further given, and the generated NH 3 gas is injected into the alum hydrolysis process to promote the production of Al 2 O 3 3H 2 O.

또한 명반정출 분리용액인 (NH4)2SO4용액에는 2가의 Fe가 용존되어 있으므로 전기한 부산물 생성공정에서 발생한 NH3가스와 공기를 주가하여 Fe2O3xHO 로 하여 탈철 정화하여 재순환 사용하게 되므로 종전과 같이 황산 추출 공정에서 용출된 Fe는 명반정출에 공침하는 일이 없이 명반분리 후에 NH3가스와 공기로 효과적으로 탈철을 가능케 하는 것이다.In addition, since divalent Fe is dissolved in the (NH 4 ) 2 SO 4 solution, which is an alum separation solution, the NH 3 gas and air generated in the by-product generation process are added to Fe 2 O 3 xHO to purify the iron and purify it for recycling. Therefore, Fe eluted in the sulfuric acid extraction process as before, it is possible to effectively degassed with NH 3 gas and air after alum separation without coprecipitation in alum crystallization.

또한 본원방법은 규산질 반토광물을 종전과 같이 산화배소함이 없이 직접 70-95%의 농황산으로 스라리 상태로 하여 200℃정도에서 베이킹하여 반응케하므로 Al2O3+3H2SO4→ Al2(SO4)3+3H2O 제 2 도에서 보는 바와 같이 알루미늄이 95%이상 거의 전량이 용출되게 되어 실수율이 종래의 다른 방법에 비하여 높은 등의 이점이 있는 것이다.In addition, the present method allows the siliceous alumina mineral to be reacted by baking at about 200 ° C. with 70-95% of concentrated sulfuric acid without oxidizing and oxidizing as before. Al 2 O 3 + 3H 2 SO 4 → Al 2 (SO 4 ) 3 + 3H 2 O As shown in FIG. 2, almost all of aluminum is eluted by 95% or more, and thus, there is an advantage that the error rate is higher than other conventional methods.

[실시예 1]Example 1

100멧슈의 고령토(Al2O339.2%, SiO243.60%, Fe2O33.5%, CaO 1.4%, MgO 1.0%, Jg loss 13.8%) 100g를 자기제 접시에 취하고 75% H2SO493㎖를 넣어 혼합한 것을 전기로에서 200℃로 1시간 베이킹 한 후 증류수로 추출하여 불용성 SiO2를 분리하였다.100 g of kaolin (Al 2 O 3 39.2%, SiO 2 43.60%, Fe 2 O 3 3.5%, CaO 1.4%, MgO 1.0%, Jg loss 13.8%) was taken in a ceramic dish and 75% H 2 SO 4 93 ml of the mixture was baked in an electric furnace at 200 ° C. for 1 hour, and extracted with distilled water to separate insoluble SiO 2 .

여과액에 0.5g을 Al 스크랩을 넣어 가열하여 Fe+++를 Fe++로 환원한 후 증류수로 희석하여 500㎖로 하였다. 이 용액에 (NH4)2SO482g을 넣어 가열용해시킨다음 10℃로 냉각하여 암모늄 명반을 석출시켰다 생성된 암모늄 명반을 다음과 같다.0.5 g of the Al filtrate was added to the filtrate, and Fe +++ was reduced to Fe ++ . Then, the mixture was diluted with distilled water to obtain 500 ml. 82 g of (NH 4 ) 2 SO 4 was added to the solution to dissolve it, and then cooled to 10 ° C. to precipitate ammonium alum. The resulting ammonium alum was as follows.

암모늄 명반의 량 314g (NH4)2O함유량 18gAmmonium alum content 314 g (NH 4 ) 2 O content 18 g

Al2O3〃 35g Fe2O3〃 0.0075gAl 2 O 3 〃 35g Fe 2 O 3 〃 0.0075g

위에서 만들어진 명반 100g을 Al2O32% 용액으로 하여 86℃로 장시간 가열 교반하면서 NH3가스를 주입하여 가수분해시킨 결과 얻어진 Gibbsite는 17.2g이 되었다.Gibbsite obtained as a result of hydrolysis by injecting 100 g of the alum prepared above as a 2% Al 2 O 3 solution by injecting NH 3 gas with heating and stirring at 86 ° C. for a long time was 17.2 g.

[실시예 2]Example 2

200멧슈의 명반석(분석치 ; Al2O333.70%, Fe2O30.2%, K2O 6.40%, SiO221.03%, SO325.60%)100g을 자기제 접시에 취하고 85% H2SO4을 화학당량보다 1.0% 과잉으로 넣어 혼합한 것을 전기로 중에서 200℃로 1시간 가열후 증류수로 추출 여과하여 SiO2를 분리하였다. 여과액에 0.3g의 Al으로 스크랩을 넣어 가열하고 제 2 철을 제 1 철로 환원후 Al2O3농도가 약 7% 되도록 증류수를 주가하여 500㎖로 하였다.200 g of Alumite (analytical value: Al 2 O 3 33.70%, Fe 2 O 3 0.2%, K 2 O 6.40%, SiO 2 21.03%, SO 3 25.60%) was taken in a ceramic dish and 85% H 2 SO 4 Was mixed with 1.0% excess of the chemical equivalent, and the mixture was heated at 200 ° C. for 1 hour in an electric furnace, and extracted with distilled water to separate SiO 2 . Scrap with 0.3 g of Al was added to the filtrate, and the ferrous iron was reduced to ferrous iron, and distilled water was added thereto so as to have an Al 2 O 3 concentration of about 7%.

이 용액에 (NH4)2SO472g을 넣어 가열 용해시켜 10℃로 냉각하여 카리 암모늄 명반을 석출시켰다.72 g of (NH 4 ) 2 SO 4 was added to the solution, dissolved in heat, cooled to 10 ° C. to precipitate a carammonium alum.

이때 얻어진 카리암모늄 명반량과 분석치는 다음과 같다.The amount of ammonia and the analysis value obtained at this time are as follows.

카리암모늄 명반 331.8g K2O 6.9gCariammonium Alum 331.8g K 2 O 6.9g

Al2O3함유량 36.9g Fe2O3-Al 2 O 3 Content 36.9 g Fe 2 O 3-

(NH4)2O " 14.9g(NH 4 ) 2 O "14.9g

위에서 만들어진 카리암모늄 명반 100g을 Al2O32% 용액으로 하여 실시예 1에서와 같은 방법으로 가수분해시킨 결과 Gibbisite 17.5g이 되었다.As a result of hydrolysis in the same manner as in Example 1, using 100 g of the cariammonium alum prepared above as an Al 2 O 3 2% solution, Gibbisite was 17.5 g.

Claims (1)

명세서에 상술한 바와 같이 반토질 광물의 황산추출 용액에 (NH4)2SO4을 가하여 명반을 석출시켜 수산화알미늄을 얻는 공지방법에 있어서, 원료광물을 70-95%H2SO4로 혼합하여 약 200℃에서 약 1시간 베이킹하여 물로 추출하고 이 추출액에 Al스크랩을 가하여 철분을 가용성 제1 철 형태로 환원시킨 후, 이 환원용액에 (NH4)2SO4를 가하여 암모늄 명반을 정출시켜 NH3가스를 주입 가수분해하여 짐사이트(Gibbsite)의 결정을 얻으며, 명반분리 용액은 NH3가스와 공기를 주입 탈철하여 반응기에 순환시킴을 특징으로 하는 반토질 광물에서 Al2O3를 추출하는 방법.In the known method for obtaining aluminum hydroxide by adding (NH 4 ) 2 SO 4 to the sulfuric acid extraction solution of the semi-earth mineral as described above in the specification, to obtain aluminum hydroxide, by mixing the raw minerals with 70-95% H 2 SO 4 Baking at about 200 ℃ for about 1 hour, extracted with water, Al scraps were added to the extract to reduce the iron to soluble ferrous form, and (NH 4 ) 2 SO 4 was added to the reducing solution to determine the ammonium alum. 3 gas to obtain a injection hydrolysis by Jim site decision (Gibbsite), alum separate solution is how to extract the Al 2 O 3 in the half soil minerals, characterized by circulating Sikkim the reactor talcheol injection of NH 3 gas and the air .
KR7903031A 1979-09-05 1979-09-05 Process for extraction of alumina from alumina-containing ore KR830002841B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR7903031A KR830002841B1 (en) 1979-09-05 1979-09-05 Process for extraction of alumina from alumina-containing ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR7903031A KR830002841B1 (en) 1979-09-05 1979-09-05 Process for extraction of alumina from alumina-containing ore

Publications (2)

Publication Number Publication Date
KR830001134A KR830001134A (en) 1983-04-29
KR830002841B1 true KR830002841B1 (en) 1983-12-27

Family

ID=19212805

Family Applications (1)

Application Number Title Priority Date Filing Date
KR7903031A KR830002841B1 (en) 1979-09-05 1979-09-05 Process for extraction of alumina from alumina-containing ore

Country Status (1)

Country Link
KR (1) KR830002841B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100388028B1 (en) * 1998-12-21 2003-09-19 주식회사 포스코 Method for producing high purity gamma alumina from kaolinite

Also Published As

Publication number Publication date
KR830001134A (en) 1983-04-29

Similar Documents

Publication Publication Date Title
CN101734698B (en) Method for preparing aluminum oxide from aluminiferous material
EP1097247B1 (en) A method for isolation and production of magnesium based products
CN102424391B (en) Method for comprehensive utilization of aluminum-containing material
CN102421707B (en) Process for simultaneous production of potassium sulphate, ammonium sulfate, magnesium hydroxide and/or magnesium oxide from kainite mixed salt and ammonia
US7090809B2 (en) Production of aluminum compounds and silica from ores
US3862293A (en) Process for the continuous acid treatment of crude clays and schists
US4668485A (en) Recovery of sodium aluminate from Bayer process red mud
CA1191698A (en) Treatment of aluminous materials
EP0024131B1 (en) A method of obtaining alumina from clay and other alumino-silicates and alumina obtained by this method
US3642437A (en) Production of alumina and portland cement from clay and limestone
KR830002841B1 (en) Process for extraction of alumina from alumina-containing ore
CN107200342A (en) A kind of flyash chlorination electrolytic preparation aluminum oxide and the method for comprehensive utilization
US3436176A (en) Process of producing high purity alumina from aluminum-bearing,acidic,sulfate solutions
US2250186A (en) Manufacture of cement, alkali metal aluminate, and sulphur dioxide
US2567544A (en) Process for the manufacture of sodium aluminum fluoride
RU2090509C1 (en) Method of system processing of leucoxene concentrate
US3387921A (en) Process for the selective recovery of alumina from ores
KR830000019B1 (en) Method of manufacturing alumina
GB1569033A (en) Production of metallurgically pure alumina
SU1761671A1 (en) Method for producing potassium sulfate and alumina from cynnyrite
RU2232716C1 (en) Method of conversion of bauxites into alumina
US2163466A (en) Process for the extraction of alkali hydrates or carbonates and of aluminum hydroxide from the double silicates of alkali and alumina
RU2753109C1 (en) Method for processing synnyrite
US1930271A (en) Manufacture of aluminates
US2388983A (en) Procedure of extracting aluminum hydrate from clay