KR820002155B1 - Method for preducing olefin polymers - Google Patents

Method for preducing olefin polymers Download PDF

Info

Publication number
KR820002155B1
KR820002155B1 KR7902129A KR790002129A KR820002155B1 KR 820002155 B1 KR820002155 B1 KR 820002155B1 KR 7902129 A KR7902129 A KR 7902129A KR 790002129 A KR790002129 A KR 790002129A KR 820002155 B1 KR820002155 B1 KR 820002155B1
Authority
KR
South Korea
Prior art keywords
solid product
transition metal
group
polymer
iii
Prior art date
Application number
KR7902129A
Other languages
Korean (ko)
Inventor
마사도 하라다
요시가쓰 이시가기
사다히꼬 야마다
아쓰시 스즈기
준 마스다
다다미쓰 하마자끼
도시아끼 요시다
기요도 후꾸다
Original Assignee
노기 사다오
짓소 가부시기 가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 노기 사다오, 짓소 가부시기 가이샤 filed Critical 노기 사다오
Priority to KR7902129A priority Critical patent/KR820002155B1/en
Application granted granted Critical
Publication of KR820002155B1 publication Critical patent/KR820002155B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

Solid catalyst components for olefin polymn. are prepd. by treating a trivalent metal halide with a divalent metal hydroxide, oxide, or carbonate, treating a Group IVA or VA metal compd. with this aduct in the presence of a siloxane, and finally treating with 2 transition metal compds.

Description

α-올레핀 중합체의 제조방범Preparation of α-olefin polymer

본 발명은 올레핀 중합체의 제조방법 및 여기에 사용되는 촉매의 고체촉매성분에 관한 것이다.The present invention relates to a process for preparing olefin polymers and to solid catalyst components of the catalysts used therein.

이하 본 발명에 있어서, 올레핀 중합 또는 중합체란,α-올레핀의 단독중합 또는 단독중합체외에,α-올레핀과 공중합 할 수 있는 다른 소량의 α-올레핀(디올레핀류도 포함한다)과 α-올레핀과의 중합 또는 공중합체도 포함시키는 것으로 한다.In the present invention, the olefin polymerization or polymer is, in addition to homopolymerization or homopolymerization of α-olefin, other small amounts of α-olefins (including diolefins) and α-olefins copolymerizable with α-olefins; The polymerization or copolymer of is also included.

종래, 에틸렌등의 α-올레핀 중합용 촉매로서, 염화마그네슘, 히드록시 염화마그네슘, 수산화마그네슘,산화마그내슘등의 마그내슘 화합물의 표면에 천이금속화합물(遷移金屬化合物)을 고정시키고, 유기 알루미늄 화합물과 화합(化合)시켜서 사용하는 것은 잘 알려져 있다.Conventionally, as a catalyst for α-olefin polymerization such as ethylene, a transition metal compound is fixed on the surface of magnesium compounds such as magnesium chloride, hydroxy magnesium chloride, magnesium hydroxide, magnesium oxide, and an organic aluminum compound. It is well known to use in combination with.

근년에, 압출성형(押出戌形)이나 속을 비게한 성형(中空成形)의 분야에 적합함 올레핀 중합체로서, 고분자량(저(低) 멜트인텍스(lower melt indexes))이고, 성형시에 유동성이 양호한 것이 특히 요구되고 있으나, 상기의 지글러(ziegler)촉매는, 예를들면 담지형(擔持形) 촉매성분과 혼합유기알루미늄 화합물의 화합에 의하여, 혹은 분자량이 현저하게 다른 올레핀 중합체의 혼합등에 의하여, 어느정도 유동성을 확대시키는 것은 가능하나, 실용상 만족할 수 있는 것은 아니었다.In recent years, it is suitable for the field of extrusion molding and hollow molding. As an olefin polymer, it has a high molecular weight (low melt melt indexes), and Although it is especially required to have good fluidity, the Ziegler catalyst is, for example, by mixing a supported catalyst component and a mixed organic aluminum compound or mixing an olefin polymer having a significantly different molecular weight. It is possible to expand the fluidity to some extent, but it was not practically satisfactory.

유동성을 개선하는 방법으로서, 분자량 분포를 확대시키는 수단이 취해지고 있다. 분자량 분포가 좁은 올레핀 중합체는, 사출(射出)성형 등에 적합하나, 한편, 압출성형이나 속을 비게한 성형, 기타 연신용(延伸用)으로 사용되는 중합체로서는, 분자량 분포가 넓은 것이 바람직하다. 분자량 분포가 좁은 중합체를 속을 비게한 성형등에 사용하였을 경우에는, 성형시의 압출압력이 너무 상승하여서 성형 불능이 되거나, 줄이나 곰보의 발생, 멜트 프랙쳐(melt fracture)의 발생등에 의하여, 성형물의 외관이 현저하게 손상된다. 압출성형의 경우에는, 압출압력의 지나친 상승, 성형의 불안정성의 증대등에 의해서, 치명적인 악영향을 받아, 상품가치를 현저하게 저하시킨다. 이들 결점을 개선하기 위하여, 중합체의 분자량 분포를 넓히고, 성형시의 유동성을 좋게하지 않으면 안된다. 개선의 결과는, 성형가공상의 생산성이 향상되고, 외관이 뛰어난 성형물을 얻을 수 있음과 동시에, 시대가 요구하는 복잡한 성형가공을 가능하게 한다.As a method of improving the fluidity, a means for expanding the molecular weight distribution has been taken. The olefin polymer having a narrow molecular weight distribution is suitable for injection molding and the like. On the other hand, a polymer having a wide molecular weight distribution is preferable as the polymer used for extrusion molding, hollow molding, or other stretching. When a polymer having a narrow molecular weight distribution is used for hollow molding, the molded product may not be formed due to excessively high extrusion pressure during molding, or may be formed due to the generation of strings or pegs, or melt fracture. The appearance of is markedly damaged. In the case of extrusion molding, the excessive increase in the extrusion pressure, the increase in the instability of the molding, etc. are severely affected, and the product value is significantly reduced. In order to improve these defects, it is necessary to widen the molecular weight distribution of the polymer and to improve the fluidity during molding. The result of the improvement is that the productivity in the molding process can be improved, a molded article having an excellent appearance can be obtained, and the complicated molding process required by the times is possible.

본 발명자들은, 종래,3가 금속할로겐 화물과 2가 금속의 수산화물, 산화물, 산화물, 탄산화물, 이들을 함유한 복염, 또는 2가 금속화합물의 수화물(이하 이들을 단지 2가 금속화합물이라고 총칭하는 열이 있다.)과의 반응생성물(이하 고체생성물(Ⅰ)이라고 하는 일이 있다.)의 담체(擔體)로 하는 촉매성분을 연구하여 왔다. 이 고체생성물(Ⅰ)에, 제4a족 또는 제5a족의 천이금속화합물중의 1종류의 천이금속화합물(예를들면,4염화티탄)을 반응시켜서 얻어지는 고체생성물과 유기알루미늄 화합물로서 행하는 통상의 화합으로서는, 실용상 만족할만한 분자량 분포가 넓은 에틸렌중합체는 얻어지지 않는다. 그러나, 본 발명자들은 촉매성분의 조제과정에 있어서 천이금속화합물로서 2종의 천이금속화합물을 화합시켜서 사용할 경우, 분자량 분포가 넓은 에틸렌 중합체를 얻는다고 하는 것을 발견하고, 더욱 연구를 거듭한 결과, 2종의 천이금속화합물을 특정한 2종류의 군(群)에서 선택하고, 또한 이것을 반응시키는 고체생성물로서, 다시 특정한 반응을 행한 것을 사용하는 것에 의해서 중합활성을 유지하면서 분자량 분포의 확대에 효과가 있는 것을 발견하여서 본 발명에 도달하였다.The present inventors have conventionally known trihydric metal halides and hydroxides of divalent metals, oxides, oxides, carbonates, double salts containing them, or hydrates of divalent metal compounds (hereinafter referred to as only divalent metal compounds). Has been studied as a catalyst component of a reaction product (hereinafter referred to as solid product (I)) as a carrier. The solid product obtained by reacting this solid product (I) with one kind of transition metal compound (e.g., titanium tetrachloride) in the transition metal compound of Group 4a or Group 5a is usually used as an organoaluminum compound. As compounding, a practically satisfactory ethylene polymer having a broad molecular weight distribution cannot be obtained. However, the present inventors have found that when two kinds of transition metal compounds are used as a transition metal compound in the preparation of a catalyst component, an ethylene polymer having a broad molecular weight distribution is obtained. It was found that the transition metal compound was selected from two specific groups and used as a solid product for reacting the same, which was effective in expanding the molecular weight distribution while maintaining polymerization activity. Thus, the present invention has been reached.

본 발명의 목적은, 중합체 수율이 크고, 또한 분자량 분포가 넓은 중합체를 얻을 수 있는 α-올레핀 중합체의 제조방법 및 거기에 사용되는 촉매의 고체촉매 성분을 제공하는 데에 있다.An object of the present invention is to provide a method for producing an α-olefin polymer capable of obtaining a polymer having a large polymer yield and a wide molecular weight distribution, and a solid catalyst component of the catalyst used therein.

본 발명은,3가 금속할로겐 화물과 2가 금속의 수산화물, 산화물, 탄산화물, 이들을 함유한 복염, 또는 2가 금속화합물의 수화물과의 반응생성물(고체생성물(Ⅰ))에, 폴리실록산의 존재하에서, 주기율표 제4a족 또는 제5a족의 천이금속화합물을 반응시켜서 얻어진 고체생성물(Ⅱ)에, 다시,(A군) 할로겐을 함유한 제4a족 또는 제5a족의 천이금속화합물(이하 할로겐함유 천이금속화합물이라고 하는 일이 있다) 및 (B군)할로겐을 함유하지 않는 제4a족 또는 제5a족의 천이금속화합물(이하 할로겐 비함유 천이금속화합물이라고하는 일이 있다)의 각각의 군으로부터 적어도 1종이 선택된 2종이상의 천이금속화합물을 반응시키는 것에 의해서 얻어진 고체생성물(Ⅲ)과 유기알루미늄 화합물을 화합시킨 촉매를 사용하는 것을 특징으로 하는α-올레핀 중합체를 제조하는 방법이며, 또 상기에 표시한 것과 같은 고체생성물(Ⅲ)으로서 된 고체촉매성분이다.The present invention provides a reaction product (solid product (I)) of a trivalent metal halide with a hydroxide, oxide, carbonate of a divalent metal, a double salt containing these, or a hydrate of a divalent metal compound in the presence of polysiloxane. The transition metal compound of Group 4a or Group 5a containing halogen (Group A) is further obtained from the solid product (II) obtained by reacting the transition metal compound of Group 4a or Group 5a of the periodic table (hereinafter referred to as halogen-containing transition). May be referred to as a metal compound) and (group B) at least 1 from each of the group 4a or 5a transition metal compound (hereinafter sometimes referred to as halogen-free transition metal compound) containing no halogen To prepare an α-olefin polymer characterized by using a catalyst obtained by reacting two or more kinds of transition metal compounds selected from a species with a solid product (III) and an organoaluminum compound. And a solid catalyst component as the solid product (III) as described above.

본 발명에 있어서 고체생성물(Ⅱ)로서 사용하는 것은, 본 발명자들에 의해서, 그 자체를 고체촉매성분으로서 유기알루미늄과 화합시켜서 α-올레핀의 중합에 사용되었든 것이며(일본국 특원소 53-21246, 동53-21247), 그경우, 중합활성은 높고, 부피비중이 큰 올레핀 중합체를 사용하는데, 중합체의 분자량의 분포는 좁은 것이었다. 그러나 여기에 특정한 2종의 천이금속화합물을 반응시킨 것은 고체촉매 성분으로서 사용하여 중합체의 분자량 분포의 폭을 크게 넓히는 효과를 나타내는 것이다.As the solid product (II) in the present invention, the inventors of the present invention used the compound of the present invention in combination with organoaluminum as a solid catalyst component to polymerize α-olefins (Japanese Patent Application No. 53-21246, 53-21247) In this case, an olefin polymer having a high polymerization activity and a large specific gravity is used, but the molecular weight distribution of the polymer is narrow. However, the two kinds of specific transition metal compounds reacted with each other are used as a solid catalyst component to greatly widen the width of the molecular weight distribution of the polymer.

올레핀 중합용 촉매의 조제에 있어서 할로겐함유 천이금속화합물과 폴리알킬티타네이트(할로겐 비함유천이금속화합물의 1종)를 사용한 고체촉매는 알려져 있다. 즉 일본국 특개소 51-100984에는 폴리알킬티타네이트릍 할로겐화제(4염화티탄 등을 포함)로 할로겐화하여서 얻은 담체를 필수 구성요소로 하지 않는 고체(촉매)와 유기금속화합물을 화합시킨 촉매가 제시되고 있다. 또 일본국 특개소 52-24292에는, 상기특개소 51-100984와 동일하게 하여서 얻은 고체와, 마그네슘을 함유한 여러가지의 고체(담체)를 티탄의 할로겐 화합물과 접촉시켜서 얻은 고체와, 유기알루미늄 화합물과를 화합시킨 촉매가 제시되고 있다.In preparing an olefin polymerization catalyst, a solid catalyst using a halogen-containing transition metal compound and a polyalkyl titanate (one of halogen-free transition metal compounds) is known. That is, Japanese Patent Application Laid-Open No. 51-100984 shows a catalyst in which a solid (catalyst) and an organometallic compound are combined with a carrier obtained by halogenation with a polyalkyl titanate 릍 halogenating agent (including titanium tetrachloride, etc.) as an essential component. It is becoming. In Japanese Patent Laid-Open No. 52-24292, a solid obtained in the same manner as in the above-mentioned Japanese Patent Laid-Open No. 51-100984, a solid obtained by contacting various solids (carriers) containing magnesium with a halogen compound of titanium, an organoaluminum compound, The catalyst which compounded is proposed.

본 발명은 이들 선행된 발명에 비교하여서, 적어도,3가 금속할로겐화물과 2가 금속화합물과를 반응시켜서 얻어지는 고체생성물(Ⅰ)에, 폴리실록산의 존재하에서 천이금속화합물을 반응시켜서 얻어지는 고체생성물(Ⅱ)라고 하는 그 자체가 높은 중합활성을 가지는 고체를 담체로 하여서 사용하는 점에서 다르다.The present invention provides a solid product obtained by reacting at least a solid product (I) obtained by reacting a trivalent metal halide and a divalent metal compound in the presence of a polysiloxane in a solid product (II). ) Is itself different from the point of using a solid having a high polymerization activity as a carrier.

본 발명을 좀더 상세하게 설명하면 다음과 갈다.The present invention will be described in more detail below.

3가 금속할로겐화물로서는, 염화알루미늄(무수),3염화철(무수)이 있다.Examples of the trivalent metal halide include aluminum chloride (anhydrous) and iron trichloride (anhydrous).

2가 금속화합물로서는, 예를들면, Mg(OH)2, Ca(OH)2, Ba(OH)2, Zn(OH)2, Mn(OH)2, Fe(OH)2, Co(OH)2, Ni(OH)2와 갈은 수산화물, MgO, CaO, BaO, ZnO, MnO, FeO와 갈은 산화물, MgAl2O4, Mg2SiO4, Mg6MnO8와 같은 2가 금속의 산화물을 함유한 복합산화물, MgCO3, CaCO3, BaCO3, MnCO3와 갈은 탄산화물, SnCI2·2H2O, MgCl2·6H2O, NiCI2·6H2O, MnCl2·4H2O, KMgCI2,6H2O와 같은 할로겐화물 수화물,3MgO·MgCI2·4H2O와 같 산화물과 할로겐화물로서된 복합화합물의수화들, 3MgO·2SiO2·2H2O와 갈은 2가 금속의 산화물을 함유한 복합산화물의 수화물,3MgCO3·Mg(OH)2·3H2O와 같은 탄산화물과 수산화물로서 된 복합화합물의 수화물 및 Mg6AI2(OH)16CO3·4H2O와 같은 2가 금속을 함유한 수산화탄산화물의 수화물 등을 들 수 있다.As the divalent metal compound, for example, Mg (OH) 2 , Ca (OH) 2 , Ba (OH) 2 , Zn (OH) 2 , Mn (OH) 2 , Fe (OH) 2 , Co (OH) 2 , oxides of divalent metals such as Ni (OH) 2 and ground hydroxides, MgO, CaO, BaO, ZnO, MnO, FeO and ground oxides, MgAl 2 O 4 , Mg 2 SiO 4 , Mg 6 MnO 8 Containing complex oxides, MgCO 3 , CaCO 3 , BaCO 3 , MnCO 3 and ground carbonate, SnCI 2 · 2H 2 O, MgCl 2 · 6H 2 O, NiCI 2 · 6H 2 O, MnCl 2 · 4H 2 O, Halide hydrates such as KMgCI 2 , 6H 2 O, hydrides of complex compounds as oxides and halides, such as 3MgO MgCI 2 4H 2 O, containing oxides of 3MgO 2SiO 2 2H 2 O and ground divalent metals Hydrates of complex oxides, hydrates of complex compounds consisting of carbonates and hydroxides such as 3 MgCO 3 · Mg (OH) 2 · 3H 2 O and divalent metals such as Mg 6 AI 2 (OH) 16 CO 3 · 4H 2 O The hydrate of the hydroxide containing hydroxide etc. are mentioned.

3가 금속할로겐화물과 2가 금속화합물을 반응시키는데는, 미리, 보을밀로서 5-100시간, 혹은 진동밀로서는 1-10시간, 혼합, 분쇄를 행하여, 충분히 혼합된 상태로 하는 것이 바람직하다. 혼합비율은, 3가 금속에 대한 2가 금속의 원자비에 의해서 표시하면, 통상 0.05-20으로 충분하며, 바람직하기는 0.1-5.0의 범위이다.In order to make a trivalent metal halide react with a divalent metal compound, it is preferable to mix and grind | pulverize for 5-100 hours as a bor mill or 1-10 hours as a vibration mill beforehand, and to make it fully mixed. When the mixing ratio is expressed by the atomic ratio of the divalent metal to the trivalent metal, 0.05-20 is usually sufficient, preferably in the range of 0.1-5.0.

반응온도는 통상,20-500℃, 바람직하기는 50-300℃이다. 반응시간은 30분-50시간이면 충분하다. 이렇게 하여서 고체생성물(Ⅰ)이 얻어진다.The reaction temperature is usually 20-500 ° C, preferably 50-300 ° C. The reaction time is sufficient for 30 minutes-50 hours. In this way, the solid product (I) is obtained.

이어서, 이 고체생성물(Ⅰ)에, 폴리실록산의 존재하에서 천이금속화합물을 반응시키고, 용매로 세정하여 미반응의 천이금속화합물 및 플리실록산을 제거하고, 건조시켜서 고체생성물(Ⅱ)를 얻는다.Subsequently, the solid product (I) is reacted with a transition metal compound in the presence of polysiloxane, washed with a solvent to remove the unreacted transition metal compound and plysiloxane, and dried to obtain a solid product (II).

사용하는 폴리실록산으로서는, 일반식-[-Si(R1, R2)-O-]n-(n=3-1,000)으로 표시되는 쇄상(鎖狀)또는 환상(環狀)의 실록산 중합물이고, 예를들면 쇄상의 것으로는 디메틸폴리실록산, 메틸에틸폴리실록산 등은 디알킬폴리실록산,메틸페닐폴리실록산등의 모노알킬모노아릴폴리실록산, 디페닐폴리실록산등의 디아릴폴리실록산, 수소화메 틸폴리실록산, 수소화페닐폴리실록산 등의 수소화폴리실록산등, 또 환상의 실록산 중합물로서는, 옥타메틸시클로테트라실록산, 옥타에틸시클로테트라실록산, 헥사페닐시클로트리실록산 등을 들 수 있다.Examples of the polysiloxane to be used, the general formula - A - [Si (R 1, R 2) -O-] siloxane polymer of a chain (鎖狀) or cyclic (環狀) represented by the n- (n = 3-1,000), For example, as the chain, dimethyl polysiloxane, methyl ethyl polysiloxane, and the like are monoalkyl monoaryl polysiloxanes such as dialkyl polysiloxane, methylphenyl polysiloxane, diaryl polysiloxanes such as diphenyl polysiloxane, hydrogenated polysiloxanes such as hydrogenated methyl polysiloxane, hydrogenated phenyl polysiloxane, and the like. As the cyclic siloxane polymer, octamethylcyclotetrasiloxane, octaethylcyclotetrasiloxane, hexaphenylcyclotrisiloxane and the like can be given.

천이금속화합물로서는, 티탄, 바나듐의 할라이드,옥시할라이드, 알코올레이트, 알콕시할라이드, 아세톡시할라이드 등이 있어서, 예를들면, 4염화티탄, 4취화티탄, 테트라에톡시티탄, 테트라이소프로폭시티탄, 디클로로디이소프로폭시티탄, 트리클로로모노이소프로폭시티탄, 트리클로로모노이소프로폭시티탄, 디클르로디부톡시티탄, 4염화바나듐, 옥시 3염화 바나듐, 트리이소프로폭시바나딜, 트리브톡시바나딜 등을 들수 있다.Examples of the transition metal compound include titanium, vanadium halides, oxyhalides, alcoholates, alkoxy halides, acetoxy halides, and the like. For example, titanium tetrachloride, tetrahedral titanium, tetraethoxytitanium, tetraisopropoxytitanium, Dichlorodiisopropoxytitanium, trichloromonoisopropoxytitanium, trichloromonoisopropoxytitanium, dichlorodibutoxytitanium, vanadium tetrachloride, oxy vanadium trichloride, triisopropoxyvananadyl, tributoxyvana Deals, etc.

폴리실록산의 존재하에서, 고체생성물(Ⅰ)에 천이금속화합물을 반응시키는 구체적인 방법으로서는,As a specific method of reacting the transition metal compound with the solid product (I) in the presence of polysiloxane,

(1) 고체생성물(Ⅰ)과 폴리실록산과 천이금속화합물을 동시에 혼합시킨 후 가열한다.(1) The solid product (I), polysiloxane, and transition metal compound are mixed at the same time and heated.

(2) 고체생성물(Ⅰ)과 폴리실록산을 혼합하고, 이어서 천이금속화합물을 가하며 가열한다.(2) The solid product (I) and polysiloxane are mixed and then heated with the transition metal compound.

(3) 폴리실록산과 천이금속화합물을 혼합하고, 거기에 고체생성물(Ⅰ)을 가하여서 가열한다.(3) The polysiloxane and the transition metal compound are mixed, and the solid product (I) is added thereto and heated.

(4) 고체생성물(Ⅰ)과 천이금속화합물을 혼합하고, 다음에 폴리실록산을 가하여 가열한다, 등의 제방법을 들 수가 있다.(4) A manufacturing method such as the solid product (I) and the transition metal compound is mixed, followed by heating by adding polysiloxane.

본 발명의 촉매조제에 있어서, 반응시나 반응후의 세척등에 사용하는 용매로서는, 헥산, 헵탄, 옥탄,노난, 데칸등의 지방족 탄화수소, 벤젠, 톨루엔, 키실렌, 에틸벤젠, 쿠멘등의 방향족 탄화수소, 클로로벤젠, 디클로로벤젠, 트리클로로벤젠 등의 할로겐화 방향족 탄화수소, 4염화탄소, 클로로포름, 디클로로에탄, 트리클로로에틸렌, 테트라클로로에틸렌, 4취화탄소 등의 할로겐화 탄화수소 등을 들 수 있다.In the catalyst preparation of the present invention, as a solvent used during the reaction or after the reaction, aliphatic hydrocarbons such as hexane, heptane, octane, nonane, decane, aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, cumene, chloro Halogenated aromatic hydrocarbons, such as benzene, dichlorobenzene, and trichlorobenzene, halogenated hydrocarbons, such as carbon tetrachloride, chloroform, dichloroethane, trichloroethylene, tetrachloroethylene, and tetrafluorocarbon, etc. are mentioned.

고체생성물(Ⅰ), 폴리실록산 및 천이금속화합물의 혼합비율은, 고체생성물(Ⅰ) 100g에 대하여, 폴리실록산은 10-10,000g, 바람직하기는 20-1,000g, 천이금속화합물은 1-1,000g, 바람직하기는 10g-500g이고, 또한 폴리실록산 100g에 대하여 천이금속화합물은 10-1,000g, 바람직하기는 30-500g이다.The mixing ratio of the solid product (I), the polysiloxane and the transition metal compound is 10-10,000 g, preferably 20-1,000 g, and the transition metal compound 1-1,000 g, with respect to 100 g of the solid product (I). The following is 10 g-500 g, and the transition metal compound is 10-1,000 g, preferably 30-500 g with respect to 100 g of polysiloxane.

고체성성물(Ⅱ)를 조제하기 위하여 상기 각 성분의 혼합, 반응에 있어서 용매를 사용하는 것은 반드시 필요한 것은 아니나, 균일한 반응을 위해서는 바람직하다.Although it is not necessary to use a solvent in the mixing and reaction of each said component in order to prepare solid substance (II), it is preferable for uniform reaction.

이 경우, 미리, 임의의 또는 모든 상기한 성분을 각각 따로따로 용매에 용해 또는 분산시켜 놓고 혼합한다. 용매사용량의 합계는 상기 각성분 합계량의 약 10배이하로서 충분하다.In this case, any or all of the above components are dissolved or dispersed in a solvent separately beforehand and mixed. The total amount of the solvent used is sufficient to be about 10 times or less of the total amount of each component.

혼합할때의 온도는 -50℃+40℃가 적당하나, 가장 보편적으로는 실온에서 혼합한다. 혼합 및 그후의 반응은 교반하면서 행하는 것이 바람직하다. 혼합후는,40-300℃, 바람직하기는 50-200℃에서,10분-30시간 반응시킨다.The temperature for mixing is -50 ° C + 40 ° C, but most commonly it is mixed at room temperature. It is preferable to perform mixing and subsequent reaction, stirring. After mixing, the mixture is reacted at 40-300 ° C, preferably at 50-200 ° C for 10 minutes to 30 hours.

반응후는 통상방법에 의하여 여별(濾別)하고, 지방족 탄화수소, 방향족 탄화수소 등의 용매로 세정하여서 미반응의 천이금속화합물 및 폴리실록산을 제거하고, 건조시킨다.After the reaction, the reaction mixture is filtered and washed with a solvent such as an aliphatic hydrocarbon or an aromatic hydrocarbon to remove unreacted transition metal compound and polysiloxane, followed by drying.

이렇게 해서 고체생성물(Ⅱ)을 얻는다.Thus, the solid product (II) is obtained.

이어서, 고체생성물(Ⅱ)에,(A군) 제4a족 또는 제5a족의 할로겐함유 천이금속화합물의 각각의 군에서 적어도 1종 선정된 적어도 합계 2종의 천이금속화합물을 반응시킨다.Subsequently, the solid product (II) is reacted with at least two transition metal compounds selected from at least one selected from each group of the halogen-containing transition metal compounds of Group 4a or 5a (Group A).

(A군)의 할로겐함유 천이금속화합물로서는, 티탄, 바나듐의 할라이드, 옥시할라이드, 알콕시할라이드,아세톡시할라이드 등의 화합물, 예를들면, 4염화티탄, 4취화티탄, 트리클로로모노이소프로폭시티탄, 디클로로디이소프로폭시티탄, 모노클로로트리이소프로폭시티탄, 트리클로로모노부톡시티탄, 디클로로디부톡시티탄, 모노클로로트리부톡시티탄, 4염화 바나듐, 옥시 3염화 바나듐 등이 있다. (B군)의 할로겐 비함유의 천이금속화합물로서는, 티탄, 바나듐의 알콕시드, 예를들면, 오르토티탄산 테트라메틸(테트라메톡시티탄), 오르토티탄산테트라에틸(테트라에톡시티탄), 오르토티탄산 테트라이소프로필(테트라이소프로폭시티탄), 오르토티탄산테트라n-부틸(테트라-n-부톡시티탄) 등의 오르토티탄산 테트라알킬(테트라알콕시티탄), 바나딜트리에틸레이트(VO(OC2H5)3), 바나딜트리이소프로필레이트(VO(OCH(CH3)2)3), 바나딜트리 n,-부틸레이트(VO(OC4H9)3) 등의 바나딜트리알코올레이트가 있다.Examples of the halogen-containing transition metal compound of Group (A) include compounds such as titanium, halides of vanadium, oxyhalides, alkoxy halides, and acetoxy halides, such as titanium tetrachloride, tetrahydrochloride titanium, and trichloromonoisopropoxytitanium. And dichlorodiisopropoxytitanium, monochlorotriisopropoxytitanium, trichloromonobutoxytitanium, dichlorodibutoxytitanium, monochlorotributoxytitanium, vanadium tetrachloride and oxy vanadium tetrachloride. Examples of the halogen-free transition metal compound of Group (B) include alkoxides of titanium and vanadium, for example, tetramethyl ortho titanate (tetramethoxy titanium), ortho titanate tetraethyl (tetraethoxy titanium), and ortho titanate tetra Ortho titanate tetraalkyl (tetraalkoxytitanium), such as isopropyl (tetraisopropoxytitanium), ortho titanate tetran-butyl (tetra-n-butoxytitanium), vanadil triethylate (VO (OC 2 H 5 )) 3 ), vanadil trialcoholates such as vanadil triisopropylate (VO (OCH (CH 3 ) 2 ) 3 ), vanadil tri n, -butylate (VO (OC 4 H 9 ) 3 ), and the like.

(B군)의 화합물로서는 상기의 것 외에 폴리티탄산에스테르를 사용할 수가 있다. 이것은 일반식 RO-[-Ti(OR)2-O-]n-R로 표시되며, m은 2이상의 정수(整數), 바람직하기는 2-10, R은 알릴기, 아릴기 또는 아랄킬기를 표시하며, 모든 R이 동일종류의 기(基)일 필요는 없다. R의 탄소수는 1-10이 바람직하나, 특히 제한되는 것은 아니다. 구체적으로는 폴리티탄산메틸, 폴리티탄산에틸, 폴리티탄산이소프로필, 폴리티탄산n-프로필, 폴리티탄산n-부틸, 폴리티탄산n-헥실등이 있다. 일반식중에서, 알콕시기의 일부가 수산기라도 좋다. (B군)의 화합물로서는 폴리티탄산에스테르보다도 상기한 것 쪽이 바람직하다.As the compound of group (B), polytitanic acid ester can be used in addition to the above. It is represented by the general formula RO-[-Ti (OR) 2 -O-] nR, m is an integer of at least 2, preferably 2-10, R represents an allyl group, an aryl group or an aralkyl group , Not all R's need to be the same kind of group. The carbon number of R is preferably 1-10, but is not particularly limited. Specific examples include methyl polytitanate, ethyl polytitanate, isopropyl polytitanate, n-propyl polytitanate, n-butyl polytitanate and n-hexyl polytitanate. In general formula, a part of an alkoxy group may be a hydroxyl group. As a compound of (B group), the said one is more preferable than polytitanic acid ester.

(A군)으로부터 적어도 1종,(B군)으로부터 적어도 1종의 천이금속화합물을 선택하여서 사용하면 좋고 따라서 동일 군에서 2종이상의 천이금속화합물을 선택하여서 다른 군에서 선택한 것과 함께 사용하는 것도 본 발명의 범위에 포함된다.At least one kind of transition metal compound may be selected from Group A and at least one kind of transition metal compound from Group B. Therefore, two or more kinds of transition metal compounds may be selected from the same group and used together with those selected from other groups. It is included in the scope of the invention.

고체생성물(Ⅱ)와 (A군),(B군)외 각각에서 선택된 천이금속화합물(이하 이들을 각각 (A군) 천이금속화합물,(B군) 천이금속화합물이라고 있는 일이 있고, 1개의 군으로부터 2종이상의 천이금속화합물이 선택될 때에는 그 전부를 포함한다)을 반응시키는 구체적인 방법으로서는,Transition metal compounds selected from solid products (II), (A group) and (B group), respectively (hereinafter, these may be referred to as (A group) transition metal compounds and (B group) transition metal compounds, respectively) As a specific method for reacting two or more kinds of transition metal compounds from the above, all are included).

(1) (A군) 천이금속화합물과 (B군) 천이금속화합물의 혼합물에, 고체생성물(Ⅱ)를 가하여서 가열한다.(1) A solid product (II) is added to a mixture of the transition metal compound (Group A) and the transition metal compound (Group B), followed by heating.

(2) 고체생성물(Ⅱ)에 (A군) 천이금속화합물을 혼합시킨 후,(B군) 천이금속화합물을 가하여서 가열한다.(2) After mixing the (A group) transition metal compound with the solid product (II), it is heated by adding the (B group) transition metal compound.

(3) 고체생성물(Ⅱ)에 (A군) 천이금속화합물을 가열반응시키고, 잇따라서 (B군) 천이금속화합들을 가하여서 가열한다.(3) The solid product (II) is heated by reacting the transition metal compound (Group A), followed by the addition of the transition metal compounds (Group B).

등의 제 방법을 들 수가 있다. 어느 반응방법도, 용매를 존재시켜도, 시키지 않아도 행할 수가 있다. 사용하는 용매는 먼저 본 발명의 촉매조제에 있어서 반응시나 반응후의 세척등에 사용하는 용매로서 상기한 용매와 동일하다.And other methods. Any reaction method can be carried out even if a solvent is present or not. The solvent to be used is the same as the solvent mentioned above as a solvent used for the washing | cleaning after reaction or after reaction in the catalyst preparation of this invention.

(A군),(B군) 각 천이금속화합물의 사용량(1개의 군으로부터 2종이상 사용할 경우에는 그 합계량)의 비율은 (A군) 천이금속화합물에 함유되는 천이금속원자수의 (B군) 천이금속화합물의 그것에 대한 비율(이하 단지 천이금속원자비라고한다)로서 10/1-l/10, 바람직하기는 5/1-1/5이다. 고체생성물(Ⅱ)와 천이금속화합물의 총중량의 비율은, 고체생성물(Ⅱ) 100g에 대하여,1-l,000g로서 충분하다. 반응온도는.30-500℃, 바람직하기는 50-300℃이고, 반응시간은 10분-50시간, 바람직하기는 30분-1시간이다. 용매를 사용할 경우는, 고체생성물(Ⅱ) 100g에 대하여, 0-1,000㎖로서 충분하다. 이렇게 하여서 고체생성물(Ⅱ)에 천이금속화합물이 담지된다.(A group), (B group) The ratio of the amount of each transition metal compound used (the total amount when using two or more from one group) is (Group B) (B group of the number of transition metal atoms contained in the transition metal compound). ) The ratio of the transition metal compound to it (hereinafter referred to simply as transition metal atomic ratio) is 10 / 1-l / 10, preferably 5 / 1-1 / 5. The ratio of the total weight of the solid product (II) and the transition metal compound is sufficient as 1-l, 000 g with respect to 100 g of the solid product (II). The reaction temperature is 30-500 ° C., preferably 50-300 ° C., and the reaction time is 10 minutes-50 hours, preferably 30 minutes-1 hour. When using a solvent, 0-1,000 ml is enough with respect to 100 g of solid products (II). In this way, the transition metal compound is supported in the solid product (II).

상기 반응의 종료후는 통상방법에 의하여 여별하고, 지방족 탄화수소, 방향족 탄화수소 등의 용매로서 상온 또는 바람직하기는 60℃이상에서 세정하여 이 반응의 천이금속화합물을 제거하고, 건조시켜서, 고체생성물(Ⅱ)을 얻는다.After completion of the reaction, the mixture is filtered by a conventional method, and washed with a solvent such as aliphatic hydrocarbon or aromatic hydrocarbon at room temperature or preferably at 60 ° C. or higher to remove the transition metal compound of the reaction, and dried to obtain a solid product (II). Get)

고체생성물(Ⅲ)은 유기알루미늄화합물과 화합시켜서 중합용 촉매로 한다.The solid product (III) is combined with an organoaluminum compound to form a catalyst for polymerization.

유기 알루미늄 화합물로서는, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리 헥실알루미늄 등의 트리알킬알루미늄, 디에틸알루미늄모노클로라이드 등의 디알킬알루미늄모노클로라이드, 에틸알루미늄세스키클로라이드 등 외에, 모노에톡시디에틸알루미늄,디에톡시모노에틸알루미늄 등의 알콕시 알킬알루미늄이 있다.As the organoaluminum compound, monoethoxydiethylaluminum, such as trialkylaluminum such as triethylaluminum, triisobutylaluminum and trihexyl aluminum, dialkylaluminum monochloride such as diethylaluminum monochloride, ethylaluminum sesquichloride, and the like And alkoxy alkyl aluminum such as diethoxy monoethyl aluminum.

이렇게해서 얻어진 촉매는,α-울레핀 중합체의 제조에 사용된다. α-올레핀으로서는, 에틸렌, 프로필렌, 부텐-1, 헥센-1, 옥펜-1, 디센-1, 기타의 직쇄(直鎖) 모노올레핀, 4-메틸-펜텐-1등의 분기상(分岐狀) 모노올레핀, 부타디엔 등의 디올레핀 등을 말하며, 본 발명은 이들의 단독중합 뿐만 아니라, 공중합 할 수 있는 상기의 2종이상의 α-올레핀의 공중합까지도 목적으로 한다.The catalyst obtained in this way is used for manufacture of the alpha- olefin polymer. Examples of the α-olefins include branched phases such as ethylene, propylene, butene-1, hexene-1, octane-1, dicene-1, other linear monoolefins, and 4-methyl-pentene-1. Diolefins, such as a monoolefin and butadiene, etc., are mentioned, This invention aims not only at the homopolymerization of these but also the copolymerization of said 2 or more types of alpha-olefins which can be copolymerized.

중합반응은, 통상 헥산, 헵탄, 옥탄 등의 산화수소 용매안에서 실시된다. 중합온도는 30-150℃, 바람직하기는 60-120℃, 중합압력은 상압 -50㎏/㎠, 바람직하기는 5-40㎏/㎠실시하는 것이좋다. 중합시에는, 중합계통에 수소의 적량을 첨가하고, 분자량의 조절을 행할 수가 있다.The polymerization reaction is usually carried out in a hydrogen oxide solvent such as hexane, heptane or octane. The polymerization temperature is 30-150 ° C., preferably 60-120 ° C., and the polymerization pressure is performed at atmospheric pressure of −50 kg / cm 2, preferably 5-40 kg / cm 2. At the time of superposition | polymerization, an appropriate amount of hydrogen is added to a superposition | polymerization system, and molecular weight can be adjusted.

본 발명의 제1의 효과는, 분자량 분포가 극히 넓은 올레핀 중합체를 얻을 수 있다고 하는 것이다.The first effect of the present invention is that an olefin polymer having an extremely wide molecular weight distribution can be obtained.

특히 에틸렌 중합체에서는

Figure kpo00001
w/
Figure kpo00002
n으로 20-32이고 중합체의 성형시는 유동특성이 양호하고, 성형시의 수지(樹脂)압력이 낮고, 멜트프랙쳐가 일어나지 않기 때문에 성형물의 외관이 양호하고, 성형성(戌形性)이 안정되어 있다. 또, 프로필렌 중합체에서는 입체규칙성(立體規則性)이 높은 것도 특색이다.Especially in ethylene polymers
Figure kpo00001
w /
Figure kpo00002
20-32 n, the flow characteristics are good at the time of molding of the polymer, the resin pressure at the time of molding is low, and no melt fracture occurs, so the appearance of the molding is good, and the moldability is good. It is stable. In addition, the propylene polymer is characterized by high stereoregularity.

본 발명의 제2의 효과는, 중합활성이 극히 높다는 것으로서, 에틸렌중합의 경우에는, 중합체수율(본 발명에 있어서 중합체수율이란, 다음식에 의한 값을 말하며, EP라고 약기(略記)하는 일이 있다. g(중합체)/{고체생성물(Ⅲ)(g)×중합시간(Hr)×올레핀압(壓)(㎏/㎠)}로서 1,100에 달한다. 따라서, 반응종료 후, 중합체중의 남은 촉매의 제거 즉 탈회공정(脫灰工程)을 없게하는 것이 가능하다.The second effect of the present invention is that the polymerization activity is extremely high, and in the case of ethylene polymerization, the polymer yield (in the present invention, the polymer yield means the value according to the following formula, and abbreviated as E P ) G (polymer) / {solid product (III) (g) x polymerization time (H r ) x olefin pressure (kg / cm 2)}, thus reaching 1,100. It is possible to eliminate the remaining catalyst, i.e. eliminate the deliming process.

본 발명의 제3의 효과는, 중합체입자의 형상이 극히 양호하다고 하는 것이다. 중합체형상의 양부(良否)는, 중합체분말의 부피비중(이하 BD로 약기함)의 측정에 의하여 판단할 수 있다. 중합체입자의 형상이 양호한 것에 의해서, 중합기(器)의 용적당, 시간당의 생산효율이 크고, 중합체의 배관수송상의 트러불의 발생이 없고, 중합체 분말의 조립(造粒)도 용이하다.The third effect of the present invention is that the shape of the polymer particles is extremely good. The conformation of the polymer shape can be judged by measuring the volume specific gravity (hereinafter abbreviated as BD) of the polymer powder. Due to the good shape of the polymer particles, the production efficiency per volume of the polymerizer and the hour are large, there is no occurrence of troubles in the pipe transportation of the polymer, and the granulation of the polymer powder is also easy.

본 발명에 의하여 얻어지는 BD는, 에틴렌중합체에서는 0.35-0.43, 프로필렌 중합체에서는 0.40-0.50이고, 다시 현미경 관찰에 의하면 입자는 구형이나 그에 가까운 형상이며, 입자표면도 미끄럽다.The BD obtained by the present invention is 0.35-0.43 in the ethylene polymer and 0.40-0.50 in the propylene polymer, and according to microscopic observation, the particles are spherical or close in shape, and the particle surface is slippery.

본 발명의 다른 효과는, 중합함에 있어서 중합기벽(器壁)에의 중합체 부착이 전혀 없거나 극히 적고, 동일 중합기에서 장기간의 안정된 연속중합을 행할 수가 있다고 하는 것이다. 또한 에틸렌 중합과 에틸렌이외의 α-올레핀 중합의 어느 것에도 사용할 수 있는 새로운 중합방법을 제공할 수 있었다고 하는 것이다. 이하 실시예를 표시한다.Another effect of the present invention is that there is no or very little adhesion of polymer to the polymerizer wall during polymerization, and that long-term stable continuous polymerization can be performed in the same polymerizer. In addition, a new polymerization method that can be used for any of ethylene polymerization and? -Olefin polymerization other than ethylene can be provided. Examples are shown below.

실시예, 비교예중,멘트인덱스(MI라고 약기한다)는 ASTMD-1238(E)에, 또 멜트플로우레이트(melt-flowrate)(MFR이라고 약기한다)는 ASTMD-1238(L)에 따랐다.

Figure kpo00003
w/
Figure kpo00004
N(
Figure kpo00005
w)는 중량평균 분자량이고,
Figure kpo00006
N은 수(數)평균분자량이다)은 겔퍼어 미에이션 크로마토그래피(gel pemeation chromatography)(Waters사제 GPC-200형)에 의해서 구하였다.In the Examples and Comparative Examples, the cement index (abbreviated as MI) was in accordance with ASTMD-1238 (E), and the melt-flowrate (abbreviated as MFR) was in accordance with ASTMD-1238 (L).
Figure kpo00003
w /
Figure kpo00004
N (
Figure kpo00005
w) is the weight average molecular weight,
Figure kpo00006
N is the number average molecular weight, and was calculated | required by gel pemeation chromatography (type GPC-200 by Waters).

[실시예 1]Example 1

(1) 고체생성물(Ⅱ)의 제조(1) Preparation of solid product (II)

수산화 마그네슘 58g과 3염화알루미늄(무수) 90g을, 미리 진동밀 안에서 5시간 혼합, 분쇄시킨후,150℃에서 5시간 반응시켰다. 그후 냉각시키고, 미분쇄(微粉碎)를 행하여, 고체생성물(Ⅰ)을 얻었다.58 g of magnesium hydroxide and 90 g of aluminum trichloride (anhydrous) were previously mixed and pulverized in a vibration mill for 5 hours, and then reacted at 150 ° C for 5 hours. Then, it cooled, it grind | pulverized and obtained the solid product (I).

톨루엔 100㎖중에 4염화티탄 173g 및 쇄상 디메틸폴리 실록산(도오시바 실리콘 오일 TSF450-100, 점도 100센티스토우크스) 100g을 가하여 혼합하고, 이어서 상기 고체생성물(Ⅰ) 100g을 가하고, 교반하면서 110℃에 2시간 반응시켰다.173 g of titanium tetrachloride and 100 g of chained dimethylpolysiloxane (Toshiba silicone oil TSF450-100, viscosity 100 centistokes) were added and mixed in 100 ml of toluene, and then, 100 g of the solid product (I) was added thereto, and stirred at 110 ° C. The reaction was carried out for 2 hours.

반응 종료후, 먼저 여과를 행하고, 남은 고체생성물을 여액중에 미반응 4염화티탄 및 미반응 폴리 실록산이 검출되지 않을 때까지 헥산으로 세정하고, 감압건조를 행하여, 고체생성물(Ⅱ)를 얻는다.After completion of the reaction, filtration is performed first, and the remaining solid product is washed with hexane until no unreacted titanium tetrachloride and unreacted polysiloxane is detected in the filtrate, and dried under reduced pressure to obtain a solid product (II).

다음에, 톨루엔 400㎖중에,4염화티탄 87g 및 오르토티탄산 테트라이소프로필 65g(천이금속원자비 2/1)을 가하여 혼합하고, 여기에 상기 고체생성물(Ⅱ) 100g을 가하여 교반하면서 110℃에서 3시간 반응시켰다. 반응 종료-는 통상방법에 의하여 여액중에 티탄화합물이 검출되지 않게 될때까지 헥산으로 세정을 반복한 후, 감압건조를 행하여, 고체생성물(Ⅲ)을 얻었다. 고체생성물(Ⅲ) 1g중의 티탄원자는 102mg이었다.Next, 87 g of titanium tetrachloride and 65 g of tetraisopropyl ortho titanate (transition metal atom ratio 2/1) were added and mixed in 400 ml of toluene, and 100 g of the solid product (II) was added thereto and stirred at 3O < 0 > C while stirring. The reaction was time. After completion of the reaction, washing was repeated with hexane until no titanium compound was detected in the filtrate by the usual method, followed by drying under reduced pressure to obtain a solid product (III). The titanium atom in 1 g of solid product (III) was 102 mg.

고체생성물(Ⅲ)을 제조할 때까지의 모든 조작은, 수분을 함유하지 않은 질소 가스분위기하에서 행하여 지지않으면 안된다. 이하의 실시예, 비교예에 있어서도 동일하다.All operations until the preparation of the solid product (III) must be performed under a nitrogen gas atmosphere containing no moisture. The same is true in the following Examples and Comparative Examples.

(2) 에틸렌의 중합(2) polymerization of ethylene

내용적 10ℓ의 스테인레스제 중합기를 질소가스 치환한 후, 헥산 7ℓ 트리이소부틸 알루미늄 397mg(2mmol) 및 고체생성물(Ⅲ) 50mg을 넣고, 중합기를 밀폐하고,85℃에 승은시키고, 수소를 게이지압(壓)으로 16㎏/㎠까지 도입하고, 전압(全壓)을 게이지 압으로 35㎏/㎠에 유지하도록 에틸렌을 추가시키면서, 85℃에서 1시간 중합을 행하였다. 반응 종료후, 탈회를 하지 않고 에틸렌중합체 슬러리를 여별하고, 건조시켜서 900g의 백색 중합체를 얻었다. 이 중합체의 MI는 0.25,BD는 0.40,

Figure kpo00007
w/
Figure kpo00008
N은 32이고, Ep(중합체 수율)는 1,000이었다.Subsequently, after replacing the nitrogen gas with a volume of 10 L of a polymerizer, 397 mg (2 mmol) of hexane 7 L triisobutyl aluminum and 50 mg of solid product (III) were added thereto, the polymerizer was sealed, and heated to 85 ° C. V) was introduced to 16 kg / cm 2, and polymerization was carried out at 85 ° C. for 1 hour while ethylene was added to maintain the voltage at 35 kg / cm 2 at the gauge pressure. After completion of the reaction, the ethylene polymer slurry was filtered off and dried without drying to obtain 900 g of a white polymer. MI of this polymer is 0.25, BD is 0.40,
Figure kpo00007
w /
Figure kpo00008
N was 32 and Ep (polymer yield) was 1,000.

[비교예 1]Comparative Example 1

실시예 1에서 얻어진 고체생성물(Ⅱ)를 고체생성물(Ⅲ)의 대신에 최종고체생성물(이하 비교예에 있어서 유기 알루미늄과 화합시켜서 촉매로서 사용하는 고체 촉매성분을 최종 고체생성물이라고 한다)로서 사용하는 이외는 실시예 1과 동일하게 하여서 에틸렌 중합체를 제조하였다.Instead of the solid product (III), the solid product obtained in Example 1 is used as a final solid product (hereinafter referred to as a final solid product, which is a solid catalyst component used as a catalyst by combining with organic aluminum in Comparative Examples). An ethylene polymer was produced in the same manner as in Example 1 except for the above.

[비교예 2]Comparative Example 2

실시예 1에 있어서, 고체생성물(Ⅱ)의 대신에 고체생성물(Ⅰ)을 사용하는것 이외에는 실시예 1과 동일하게 하여서 최종 고체생성물의 조제와 에틸렌 중합체의 제조를 행하였다.In Example 1, the preparation of the final solid product and the preparation of the ethylene polymer were carried out in the same manner as in Example 1 except that the solid product (I) was used instead of the solid product (II).

[비교예 3]Comparative Example 3

실시예 1에 있어서, 고체생성물(Ⅱ)를 제조할 때에 쇄상폴리 실록산을 사용하지 않은 것이외에는, 실시예 1과 동일하게 하여서 최종 고체생성물의 조제와 에틸렌 중합체의 제조를 행하였다.In Example 1, the preparation of the final solid product and the preparation of the ethylene polymer were carried out in the same manner as in Example 1, except that the chain polysiloxane was not used to prepare the solid product (II).

[비교예 4][Comparative Example 4]

실시예 1에 있어서, 고체생성물(Ⅱ)로 제조할 때에 4염화티탄을 사용하지 않은 것 이외에는, 설시예 1과 동일하게 하여서 최종 고체생성물의 제조와 에틸렌중합체의 제조를 행하였다.In Example 1, the final solid product and the ethylene polymer were produced in the same manner as in Example 1, except that titanium tetrachloride was not used in the preparation of the solid product (II).

[비교예 5][Comparative Example 5]

실시예 1에 있어서, 오르토 티탄산 테트라이소프로필을 사용하지 않은 것이외에는, 실시예 1과 동일하게 하여서 최종 고체생성물의 조제와 에틸렌 중합체의 제조를 행하였다.In Example 1, the preparation of the final solid product and the preparation of the ethylene polymer were performed in the same manner as in Example 1, except that ortho tetra titanate tetraisopropyl was not used.

[비교예 6]Comparative Example 6

실시예 1에 있어서, 고체생성물(Ⅱ)로부터 고체생성물(Ⅱ)을 제조할때 4염화티탄을 이용하지 않은 것이외는 실시예 1과 동일하게 하여서 최종 고체생성물의 조제 및 에틸렌중합체의 제조를 행하였다.In Example 1, the preparation of the final solid product and the preparation of the ethylene polymer were carried out in the same manner as in Example 1, except that titanium tetrachloride was not used to prepare the solid product (II) from the solid product (II). .

[비교예 7]Comparative Example 7

톨루엔 100㎖중에서,4염화티탄 87g과 오르토 티탄산 테트라이소프로필 65g을 혼합하고,110℃에시 3시간 반응시킨후, 냉각시키고, 헥산 500㎖을 가하여, 고체생성물을 석출시키고, 여별 건조시켜서 고체 생성물을 얻었다. 이 고체 생성물을 최종 고체생성물로서 사용한 이외는 실시예 1과 동일하게 하여서 에틸렌 중합체릍 제조하였다. 중합체 수율이 현저하게 저하됨과 동시에, 중합체 형상은 불량하고, 중합기벽에의 중합체 부착이 극히 많았다.In 100 ml of toluene, 87 g of titanium tetrachloride and 65 g of tetraisopropyl ortho titanate were mixed, reacted at 110 ° C. for 3 hours, cooled, and 500 ml of hexane was added to precipitate a solid product, which was dried by filtration. Got it. An ethylene polymer was prepared in the same manner as in Example 1 except that this solid product was used as the final solid product. At the same time, the polymer yield was significantly lowered, and the polymer shape was poor, and the polymer adhesion to the polymerizer wall was extremely high.

[비교예 8]Comparative Example 8

오르토 티탄산 테트라이소프로필 65g을 사용하는 대신에 이와 동일한 몰의 4염화바나듐 44g을 사용하는 이외는, 실시예 1과 동일하게 하여서, 최종 고체생성물의 조제와 에틸렌 중합체의 제조를 행하였다.The preparation of the final solid product and the preparation of the ethylene polymer were carried out in the same manner as in Example 1, except that 44 g of the same molar vanadium tetrachloride was used instead of 65 g of tetraisopropyl tetraisopropyl.

[비교예 9]Comparative Example 9

고체생성물(Ⅱ)에 반응시키는 4염화티탄 87g의 대신에 이와 동일한 몰의 오르트 티탄산 테트라 n-부틸 156g을 사용하는 이외는, 실시예 1과 동일하게 하여 최종 고체생성물의 조제와 에틸렌 중합체의 제조를 행하였다.Preparation of the final solid product and preparation of the ethylene polymer in the same manner as in Example 1, except that 156 g of the same mole of ort titanate tetra n-butyl was used instead of 87 g of titanium tetrachloride reacted with the solid product (II). Was performed.

[실시예 2]Example 2

톨루엔 100㎖중에서, 실시예 1에서 얻어진 고체생성물(Ⅰ) 100g, 4염화티탄 173g 및 디메틸 폴리 실록산(점도 50센티 스토우크스) 100g을 실온에서 동시에 혼합하고, 교반하면서 110℃에 2시간 반응시켰다.그 후는 실시에 1과 동일하게 하여서 고체생성물(Ⅱ)을 얻었다.In 100 ml of toluene, 100 g of solid product (I) obtained in Example 1, 173 g of titanium tetrachloride, and 100 g of dimethyl polysiloxane (50 centimeters of Stokes) were simultaneously mixed at room temperature, and reacted at 110 ° C for 2 hours with stirring. After that, in the same manner as in Example 1 to obtain a solid product (II).

다음에, 톨루엔 400㎖중에, 고체생성물(Ⅱ) 100g 및 4염화티탄 87g을 넣고, 교반하면서 110℃에 1시간 반응시킨후, 오르토 티탄산 테트라이소프로필 65g(천이금속원자비 2/1)을 가하고, 다시 110℃에서 2시간 반응시겼다. 그 후는 실시예 1과 동일하게 하여서 고체생성물(Ⅱ)을 얻었다. 이 고체생성물(Ⅲ)을 사용하여 실시예 1과 동일하게 하여서 에틸렌 중합체의 제조를 행하였다.Next, 100 g of solid product (II) and 87 g of titanium tetrachloride were added to 400 ml of toluene, and the mixture was reacted at 110 DEG C for 1 hour while stirring, followed by addition of 65 g of tetraisopropyl ortho titanate (2/1 atomic metal atom ratio). It was reacted again at 110 ° C. for 2 hours. Thereafter, a solid product (II) was obtained in the same manner as in Example 1. Using this solid product (III), it carried out similarly to Example 1, and manufactured the ethylene polymer.

[실시예 3]Example 3

산화마그네슘 75g 3염화알루미늄(무수) 80g을, 보올밀안에서 24시간 혼합, 분회시킨후, 50℃에 50시간 반응시켜, 고체생성물(Ⅰ)을 얻었다.80 g of magnesium oxide 75 g aluminum trichloride (anhydrous) was mixed and fractionated for 24 hours in a bowl mill, and then reacted at 50 ° C. for 50 hours to obtain a solid product (I).

헥산 150㎖중에, 상기 고체생성물(Ⅰ) 100g 및 쇄상디메틸폴리 실록산(점도 1,000센티 스토우크스)100g을 넣어서 혼합하고, 이어서 4염화티탄 130g을 첨가하고,60℃에 9시간 반응시켜, 고체생성물(Ⅱ)를 얻었다.In 150 ml of hexane, 100 g of the solid product (I) and 100 g of the chain dimethylpolysiloxane (1,000 centimeters of viscosity) were added and mixed. Then, 130 g of titanium tetrachloride was added and reacted at 60 ° C. for 9 hours to give a solid product ( II).

다음에, 키실렌 500㎖중에, 상기고 체생성물 100g 및 오르토 티탄산 테트라메틸 29g을 넣고, 이어서 4염화티탄 95g(천이금속원자비 3/1)을 가하고,140℃에 3시간 반응시켜, 고체생성물(Ⅲ)을 얻었다.Next, 100 g of the above solid product and 29 g of tetramethyl ortho titanate were added to 500 ml of xylene, and then 95 g of titanium tetrachloride (transition metal atom ratio 3/1) was added and reacted at 140 ° C. for 3 hours to give a solid product. (III) was obtained.

이 고체생성물(Ⅲ)을 사용하여, 실시예 1과 동일하게 하여서 에틸렌 중합체의 제조를 행하였다.Using this solid product (III), an ethylene polymer was produced in the same manner as in Example 1.

[실시예 4]Example 4

산화 알루미늄 마그네슘(MgA12O4) 40g과 3염화철(무수) 85g을, 진동밀 안에서 7시간 혼합, 분쇄시킨후100㎖에서 10시간 반응시켜, 고체생성물(Ⅰ)을 얻었다.40 g of aluminum magnesium oxide (MgA1 2 O 4 ) and 85 g of iron trichloride (anhydrous) were mixed and ground in a vibrating mill for 7 hours, and then reacted at 100 ml for 10 hours to obtain a solid product (I).

벤젠 100℃중에 실온에서 상기 고체생성물(Ⅰ) 100g과 4염화티탄 100g을 넣어 혼합하고, 즉시에 쇄상메틸에틸폴리 실록산 100g(점도 100센티스트우크스)을 가하고,78℃에서 7시간 반응시켜, 고체생성물(Ⅱ)를 얻었다.100 g of the solid product (I) and 100 g of titanium tetrachloride were added and mixed at room temperature in 100 ° C. of benzene, and immediately, 100 g of chain methylethylpolysiloxane (viscosity 100 centistokes) was added thereto, and reacted at 78 ° C. for 7 hours. Solid product (II) was obtained.

다음에, 벤젠 200㎖중에, 상기 고체생성물(Ⅱ) 100g 및 4염화티탄 114g을 넣고, 78℃에 5시간 반응시킨후, 오르토 티탄산 테트라 부틸 58g(천이금속원자비 35/1)을 가하고, 다시 78℃에 5시간 반응시켜, 고체생성물(Ⅲ)을 얻었다.Next, 100 g of the solid product (II) and 114 g of titanium tetrachloride were added to 200 ml of benzene, and the reaction was carried out at 78 ° C. for 5 hours, and then 58 g of tetrabutyl ortho titanate (35/1 atomic metal atom ratio) was added again. It reacted at 78 degreeC for 5 hours, and obtained solid product (III).

이 고체생성물을 사용하여 실시예 1과 동일하게 하여서 에틸렌 중합체의 제조를 행하였다.Using this solid product, it carried out similarly to Example 1, and manufactured the ethylene polymer.

[실시예 5]Example 5

탄산마그네슘 80g과 염화 알루미늄(무수)80g을, 보올밀안에서 10시간 혼합, 분쇄시킨후, 200℃에 1,5시간 반응시켜, 고체생성물(Ⅰ)을 얻었다.80 g of magnesium carbonate and 80 g of aluminum chloride (anhydrous) were mixed and pulverized in a bowl mill for 10 hours, and then reacted at 200 ° C for 1,5 hours to obtain a solid product (I).

옥타메틸 시클로테트라 실록산(점도 2센티 스토우크스) 500g과 4염화티탄 190g을 혼합하고, 여기에 상기 고체생성물(Ⅰ)을 가하고, 200℃에 30분간 반응시켜, 고체생성물(Ⅱ)을 얻었다.500 g of octamethyl cyclotetra siloxane (2 centimeters Stokes) and 190 g of titanium tetrachloride were mixed, the solid product (I) was added thereto, and the mixture was reacted at 200 ° C. for 30 minutes to obtain a solid product (II).

다음에, 톨루엔 250㎖중에서, 4염화티탄 127g과 바나딜 트리이소프로필레이 트[VO(OCH(CH3)2)3]81g(천이금속원자비 2/1)을 혼합하고, 여기에 상기 고체생성물(Ⅱ)100g을 첨가하고,110℃에 4시간 반응시켜,고체생성물(Ⅲ)을 얻었다.Next, in 250 ml of toluene, 127 g of titanium tetrachloride and 81 g of vanadil triisopropylate [VO (OCH (CH 3 ) 2 ) 3 ] (transition metal atom ratio 2/1) were mixed, and the solid was added thereto. 100 g of product (II) was added, and the mixture was reacted at 110 ° C for 4 hours to obtain a solid product (III).

이 고체생성물(Ⅲ)을 사용하여, 실시예 1과 동일하게 하여서 에틸렌 중합체의 제조를 행하였다.Using this solid product (III), an ethylene polymer was produced in the same manner as in Example 1.

[실시예 6]Example 6

염화마그네슘(MgC126H2O) 65g과 염화알루미늄(무수) 80g을, 진동밀 안에서 2시간 혼합, 분회시키고,65 g of magnesium chloride (MgC1 2 6H 2 O) and 80 g of aluminum chloride (anhydrous) are mixed and fractionated in a vibration mill for 2 hours,

150℃에 5시간 반응시켜서, 고체생성물(Ⅰ)을 얻었다.It was made to react at 150 degreeC for 5 hours, and solid product (I) was obtained.

톨루엔 100㎖에 상기 고체생성물(Ⅰ) 100g, 쇄상메틸페닐폴리실록산 100g(200센티 스토우크스) 및 4염화티탄 150g을 실온에서 동시에 혼합하고, 그후 100℃에 6시간 반응시켜, 고체생성물(Ⅱ)를 얻었고.100 g of the solid product (I), 100 g of the chain methylphenyl polysiloxane (200 cm Stokes) and 150 g of titanium tetrachloride were simultaneously mixed with 100 ml of toluene at room temperature, and then reacted at 100 ° C. for 6 hours to obtain a solid product (II). .

다음에, 트리클로로벤젠 300㎖중에 4염화바나듐 89g과 오르토 티탄산 테트라 이소프로필 65g(천이금속원자비 2/1)을 혼합하고, 여기서 상기 고체생성물(Ⅱ) 100g을 첨가하고, 200℃에 1시간 반응시켜서 고체생성물(Ⅲ)을 얻였다.Next, 89 g of vanadium tetrachloride and 65 g of tetraisopropyl tetraisopropyl (transition metal atom ratio 2/1) were mixed in 300 ml of trichlorobenzene, and 100 g of the solid product (II) was added thereto, and the mixture was stirred at 200 ° C for 1 hour. Reaction gave solid product (III).

이 고체생성물(Ⅲ)을 사용하여, 실시예 1과 동일하게 하여서 에틸렌 중합체의 제조를 행하였다.Using this solid product (III), an ethylene polymer was produced in the same manner as in Example 1.

[실시예 7]Example 7

마그네시아시멘트(MgC123MgO 4H2O) 110g과 염화알루미늄(무수) 95g을, 진동밀안에서 3시간 혼합, 분쇄시킨후, 130℃에서 4시간 반응시켜, 고체 생성물(Ⅰ)을 얻엇다.110 g of magnesia cement (MgC1 2 3MgO 4 H 2 O) and 95 g of aluminum chloride (anhydrous) were mixed and pulverized in a vibration mill for 3 hours, and then reacted at 130 ° C for 4 hours to obtain a solid product (I).

톨루엔 300㎖중에, 상기 고체생성물(Ⅰ) 100g 및 4염화티탄 50g을 실온에서 혼합하고, 여기에 수소화메틸 폴리 실록산(점도 100센티스토우크스) 100g을 가하고,110℃에 1시간 반응시켜, 고체 생성물(Ⅱ)를 얻었다.In 300 ml of toluene, 100 g of the solid product (I) and 50 g of titanium tetrachloride were mixed at room temperature, 100 g of methyl hydride polysiloxane (viscosity 100 centistokes) was added thereto, and the mixture was reacted at 110 ° C for 1 hour to give a solid product. (II) was obtained.

이 고체생성물(Ⅱ)를 사용하여, 실시예 2와 동일하게 하여서 4고체생성물(Ⅲ)의 조제와 에틸렌 중합체의 제조를 행하였다.Using this solid product (II), in the same manner as in Example 2, preparation of the fourth solid product (III) and preparation of the ethylene polymer were performed.

[실시예 8]Example 8

히드로마그네사이트(3MgCO3·Mg(OH)2·3H2O) 80g과 염화 알루미늄(무수) 120g을, 진동밀안에서 10시간 혼합, 분쇄시킨후,300℃에 30분간 반응시켜, 고체생성물(Ⅰ)을 얻였다.80 g of hydromagnesite ( 3 MgCO 3 · Mg (OH) 2 · 3H 2 O) and 120 g of aluminum chloride (anhydrous) were mixed and pulverized in a vibration mill for 10 hours, and then reacted at 300 ° C. for 30 minutes to obtain a solid product (I). Got.

키실렌 200㎖중에, 상기 고체생성물(Ⅰ) 100g, 디메틸폴리 실록산 100g(100센티 스토우크스), 및 4염화티탄 190g을 실온에서 동시에 혼합하고, 130℃에 1시간 반응시켜, 고체 생성물(Ⅱ)를 얻였다.In 200 ml of xylene, 100 g of the solid product (I), 100 g of dimethylpolysiloxane (100 cm Stokes), and 190 g of titanium tetrachloride were simultaneously mixed at room temperature, and reacted at 130 ° C. for 1 hour to give solid product (II). Got.

다음에, 키실렌 400㎖중에, 실온에서, 상기 고체생성물(Ⅱ) 100g, 4염화티탄 95g 및 오르토 티탄산 테트라에틸 57g(천이금속원자비 2/1)을 동시에 혼합하고,130℃ 에서 1시간 반응시켜, 고체생성물(Ⅲ )을 얻였다.Next, in 400 ml of xylene, 100 g of the solid product (II), 95 g of titanium tetrachloride, and 57 g of tetraethyl ortho titanate (2/1 atomic metal atom ratio) were simultaneously mixed at room temperature, followed by reaction at 130 ° C. for 1 hour. To give a solid product (III).

이 고체성성물(Ⅲ)을 사용하여, 실시예 1과 동일하게 하여서 에틸렌 중합체의 제조를 행하였다.Using this solid product (III), an ethylene polymer was produced in the same manner as in Example 1.

[실시예 9]Example 9

실시예 1에 있어서, 고체 생성물(Ⅱ)를 얻은후, 고체 생성물(Ⅱ) 100g을 톨루엔 400㎖중에서, 오르토티탄산이소프로필 32g, 오르토티탄산 테트라 n-부틸 39g, 및 4염화티탄 87g(천이금속원자비 2/1)과 혼합시킨후는, 실시예 1과 동일하게 하여서 고체생성물(Ⅲ)의 조제와 에틸렌 중합체의 제조를 행하였다.In Example 1, after obtaining the solid product (II), 100 g of the solid product (II) was dissolved in 400 ml of toluene, 32 g of isopropyl ortho titanate, 39 g of tetra n-butyl ortho titanate, and 87 g of titanium tetrachloride (transition metal source). After mixing with Zn 2/1), the solid product (III) was prepared and the ethylene polymer was produced in the same manner as in Example 1.

[실시예 10]Example 10

실시예 1에서 얻어진 고체생성물(Ⅱ) 100g에, 트리크로로모노이소프로폭시 티탄 53.4g 및 바나딜 트리에틸레이트 101g(천이금속원자비 1/2)을 반응시키는 이외는, 실시예 1과 동일하게 하여서 고체생성물(Ⅲ)의 조제와 에틸렌 중합체의 제조를 행하였다.100 g of the solid product (II) obtained in Example 1 was the same as in Example 1 except that 53.4 g of trichloromonoisopropoxy titanium and 101 g of vanadyl triethylate (1/2 of a transition metal atom ratio) were reacted. In this way, preparation of the solid product (III) and preparation of the ethylene polymer were carried out.

[실시예 11]Example 11

실시예 1에서 얻어진 고체생성물(Ⅱ) 100g에, 디크로로 디부톡시 티탄 53g 및 바나딜 트리 n-부틸레이트 172g (천이금속원자비 1/3)을 반응시키는 이외는, 실시예 1과 동일하게 하여서 고체생성물(Ⅲ)의 조제와 에틸렌 중합체의 제조를 행하였다.100 g of the solid product (II) obtained in Example 1 was subjected to the same procedure as in Example 1, except that 53 g of dibutoxy titanium and 172 g of vanadyl tri n-butylate were reacted with dichloro. Thus, solid product (III) was prepared and ethylene polymer was produced.

[실시예 12]Example 12

실시예 1에서 얻어진 고체생성물(Ⅲ)을 사용하여, 수소를 9㎏/㎠게이지 압)까지 도입하고, 전압을 게이지압으로 35㎏/㎠에 유지하도록 프로필렌을 8%(용량%) 함유하는 에틸렌을 추가시키는 것이외는, 실시예 1과 동일하게 하여서 에틸렌-프로필렌 공중합체를 제조하였다.Ethylene containing 8% (volume%) of propylene so as to introduce hydrogen up to 9 kg / cm 2 gauge pressure using the solid product (III) obtained in Example 1 and maintain the voltage at 35 kg / cm 2 at the gauge pressure Except for adding, the ethylene-propylene copolymer was prepared in the same manner as in Example 1.

[실시예 13]Example 13

실시예 1에서 얻어진 고체생성물(Ⅲ)을 사용하여 수소를 10㎏/㎠(게이지 압)까지 유도하고, 전압을35㎏/㎠ (게이지 압)에 유지하도록 부텐-1을 10%(용량 1%) 함유하 에틸렌을 추가 시키는 이외는, 실시예 1과 동일하게 하여서 에틸렌-부텐 공중합체를 제조하였다.The solid product (III) obtained in Example 1 was used to induce hydrogen up to 10 kg / cm 2 (gauge pressure) and to maintain the voltage at 35 kg / cm 2 (gauge pressure) butene-1 10% (capacity 1%) An ethylene-butene copolymer was prepared in the same manner as in Example 1 except that ethylene was added.

이상의 실시의 1-13, 비교에 1-9의 결과를 종합해서 제1표에 표시한다.The result of 1-9 is put together in the 1st table | surface of the above-mentioned implementation and comparison, and is shown in a 1st table | surface.

Figure kpo00009
Figure kpo00009

[실시예 14]Example 14

실시예 1에서 얻어진 고체생성물(Ⅲ)을 사용하여, 프로필렌의 중합을 행하였다. 내용적 5ℓ의 스티테인레스제 중합기에, 헥산 3.5ℓ, 디에틸 알루미늄 클로라이드 210mg, 고체생성물(Ⅲ) 50mg을 넣고, 수소분압(分壓) l㎏/㎠(게이지 압), 프로필렌 분압 10㎏/㎠게이지 압)으로,70℃에서 4시간 반응을 행하게 하였다.Using the solid product (III) obtained in Example 1, propylene was polymerized. Into a 5 L styrenic polymerizer, 3.5 L of hexane, 210 mg of diethyl aluminum chloride, and 50 mg of solid product (III) were added, and a hydrogen partial pressure of 1 kg / cm 2 (gauge pressure) and a propylene partial pressure of 10 kg / Cm 2 pressure), the reaction was carried out at 70 ° C for 4 hours.

얻어진 중합체의 MFR은 4.2, BD는 0,47,

Figure kpo00010
은 9, 아이소택틱인덱스(중합체를 비등하는n-헥탄중(98℃)에서 4시간 추출하고 남은 추출찌꺼기의 추출전의 중합체 중량에 대한 비율)은 0.92이고, 중합체) 수량(收量)은 고체생성물(Ⅲ) 1당(當) 5,900g이였다.MFR of the obtained polymer is 4.2, BD is 0,47,
Figure kpo00010
Silver 9, isotactic index (ratio of polymer residue before extraction of extracted residues left after extraction for 4 hours in n-hexane boiling polymer (98 DEG C)) was 0.92, and polymer) yield was solid It was 5,900 g per product (III).

[실시예 15]Example 15

프로필렌 대신에 부텐-1을 500g사용하는 것이외 에는, 실시예 12와 동일하게 하여서 부텐중합체의 제조를 행하였다. 중합체 수량은 고체생성물(Ⅲ) 1당 900g이였다.A butene polymer was produced in the same manner as in Example 12 except that 500 g of butene-1 was used instead of propylene. The polymer yield was 900 g per solid product (III).

이상의 실시예 1-15의 어느 경우에 있어서도, 중합기 벽에의 중합체의 부착은 볼 수 없었다.In any of the above Examples 1-15, adhesion of the polymer to the polymerizer wall was not seen.

[실시예 16]Example 16

(1) 고체생성물(Ⅲ)의 제조(1) Preparation of solid product (III)

톨루엔 100㎖중에, 4염화티탄 173g 및 쇄상 디메틸폴리 실록산(도오레이 실리콘 SH-200, 이어서 점도 100센티스트우크스) 100g을 가하여 혼합하고, 이어서 실시예 1과 동일하게 하여서 얻어진 고체생성물(Ⅰ)100g을 가하고, 교반하면서 110℃에 2시간 반응시켰다.In 100 ml of toluene, 173 g of titanium tetrachloride and 100 g of chained dimethylpolysiloxane (Toray Silicone SH-200, followed by viscosity 100 centistokes) were added and mixed, and the solid product obtained in the same manner as in Example 1 was obtained. 100 g was added and reacted at 110 degreeC for 2 hours, stirring.

반응종료후, 통상방법에 따라서 여과를 행하고, 여액중에 미반응 4염화 티탄 및 미반응 폴리 실록산이 검출되지 않게 될 때까지 남은 고체생성물을 헥산으로 세정하고, 감압건조후, 고체생성물(Ⅱ)를 얻었다.After completion of the reaction, filtration was carried out according to a conventional method, and the remaining solid product was washed with hexane until no unreacted titanium tetrachloride and unreacted polysiloxane was detected in the filtrate, and the solid product (II) was dried under reduced pressure. Got it.

다음에, 톨루엔 400㎖중에, 4염화 티탄 87g 및 폴리티탄산 이소프로필(5분자 중합체) 46.4g을 가하여 혼합하고 (천이금속원자비 2/1), 여기에 고체생성물(Ⅱ) 100g을 가하고, 교반하면서 110℃에 3시간 반응시켰다. 반응종료후는,80℃까지 가온 시켜서 여과하고, 남은 고체생성물을 여액중에 티탄화합물이 검출되지 않을 때까지 80℃로가온한 톨루엔으로 세정을 반복하고, 감압건조를 행하여, 고체 생성물(Ⅲ)150g을 얻였다·고체 생성물(Ⅲ) 1g중의 티탄원자는 95mg이였다. 고체생성물(Ⅲ)을 제조하기 까지의 모든 조작은, 수분을 함유하지 않은 질소가스 분위기하에서 행하여 지지 않으면 안된다.Next, 87 g of titanium tetrachloride and 46.4 g of polyisopropyl isopropyl (5-molecular polymer) were added and mixed in 400 ml of toluene (transition metal atom ratio 2/1), and 100 g of solid product (II) was added thereto, followed by stirring It was made to react at 110 degreeC for 3 hours. After completion of the reaction, the mixture was warmed up to 80 ° C. and filtered, and the remaining solid product was washed with toluene heated to 80 ° C. until no titanium compound was detected in the filtrate, and dried under reduced pressure to obtain 150 g of solid product (III). The titanium atom in 1 g of solid product (III) was 95 mg. All operations up to production of the solid product (III) must be performed in a nitrogen gas atmosphere containing no water.

(2) 에틸렌의 중합(2) polymerization of ethylene

상기 고체생성물(Ⅲ)을 바꿔넣어서 사용한 이외는, 실시예 1과 동일하게 하여서 에틸렌의 중합을 행하였다. 반응종료후는, 메탄올을 첨가하여서 중합을 정지시키고, 탈회를 하지 않고서 에틸렌 중합체 슬러리를 여별하고, 건조시켜서 810g의 백색 중합체를 얻었다.The polymerization of ethylene was carried out in the same manner as in Example 1, except that the solid product (III) was used after being replaced. After completion of the reaction, methanol was added to terminate the polymerization, and the ethylene polymer slurry was filtered off and dried without deliming to yield 810 g of a white polymer.

이 중합체의 MI 0.23, BD는 0.39, MW/MN은 30이고, 중합체 수율(EP)은 900이었다.MI 0.23 and BD of this polymer were 0.39, MW / MN was 30, and the polymer yield (EP) was 900.

[비교예 10]Comparative Example 10

실시예 16이서 얻어진 고체생성물(Ⅱ)를 고체생성물 (Ⅲ)대신에 최종 고체생성물로서 사용한 이외는 실시예 16과 동일하게 하여서 에틸렌 중합체를 제조하였다.An ethylene polymer was prepared in the same manner as in Example 16 except that the solid product (II) obtained in Example 16 was used as the final solid product instead of the solid product (III).

[비교예 11]Comparative Example 11

실시예 16에 있어서, 고체생성물(Ⅱ)대신에 고체 생성물(Ⅰ)을 사용한 것이외는, 실시예 16과 동일하게 하여서 최종 고체생성물의 조제와 에틸렌 중합체의 제조를 행하였다.In Example 16, the preparation of the final solid product and the preparation of the ethylene polymer were carried out in the same manner as in Example 16, except that the solid product (I) was used instead of the solid product (II).

[비교예 12]Comparative Example 12

실시예16에 있어서, 고체생성물(Ⅱ)를 제조할때 폴리 실록산을 사용하지 않은 것이외는 실시예 16과 동일하게 하여서 최종 고체생성물의 조제와 에틸렌 중합체의 제조를 행하였다.In Example 16, the preparation of the final solid product and the preparation of the ethylene polymer were carried out in the same manner as in Example 16, except that no polysiloxane was used to prepare the solid product (II).

[비교예13]Comparative Example 13

실시예 16에 있어서, 고체생성물을(Ⅱ)제조할때, 4염화 티탄을 사용하지 않은 것이외는, 실시예 16과 동일하게 하여서 최종 고체생성물의 조제와 에틸렌 중합체의 제조를 행하였다.In Example 16, the preparation of the final solid product was carried out in the same manner as in Example 16, except that titanium tetrachloride was not used in the preparation of the solid product (II), and the ethylene polymer was prepared.

[비교예 14]Comparative Example 14

실시예 16에 있어서, 폴리티탄산 이소프로필을 사용하지 않은 것이외에는, 실시예 16과 동일하게 하여서 최종 고체생성물의 조제와 에틸렌 중합체의 제조를 행하였다.In Example 16, the preparation of the final solid product and the preparation of the ethylene polymer were carried out in the same manner as in Example 16, except that isopropyl polytitanate was not used.

[비교예 15]Comparative Example 15

실시예 16에 있어서, 고체생성물(Ⅱ)로부터 고체생성물(Ⅲ)을 제조할 때 4염화 티탄을 사용하지 않은것 이외는, 실시예 16과 동일하게 하여서 최종 고체생성물의 조제 및 에틸렌 중합체의 제조를 행하였다.In Example 16, preparation of the final solid product and preparation of the ethylene polymer were carried out in the same manner as in Example 16, except that titanium tetrachloride was not used when preparing the solid product (III) from the solid product (II). It was done.

[비교예 16][Comparative Example 16]

실시예 16에 있어서, 폴리티탄산 이소프로필을 사용하는 대신에 이와 동일한 천이금속원자비로 되는 양의 옥시 3염화 바나듐 40g을 사용한 이외는, 실시예 16과 동일하게 하여서 최종 고체생성물의 조제와 에틸렌 중합체의 제조를 행하였다.The preparation of the final solid product and the ethylene polymer in the same manner as in Example 16 except that 40 g of vanadium oxytrichloride in an amount equivalent to the transition metal atom ratio thereof was used instead of isopropyl polytitanate. Was prepared.

[비교예 17][Comparative Example 17]

실시예 16에 있어서, 고체생성물(Ⅱ)에 반응시키는 4염화 티탄 대신에 그와 동일한 천이금속원자비로되는 양의 폴리티탄산 n-부틸(2분자 중합체) 126g을 사용한 이외는, 실시예 16과 동일하게 하여서 최종 고체생성물의 조제와 에틸린 중합체의 제조를 행하였다.In Example 16, the same procedure as in Example 16 was carried out except that 126 g of polytitanate n-butyl (two-molecular polymer) was used in an amount equivalent to the transition metal atom ratio instead of titanium tetrachloride reacted with the solid product (II). The preparation of the final solid product and preparation of the ethylenic polymer were carried out.

[비교예 18][Comparative Example 18]

톨루엔 100㎖ 중에서,4염화 티탄 87g과 폴리티탄산 이소프필(5분자 중합체) 46.4g(천이금속원자비 2/1)을 혼합하고,110℃에 2시간 반응시킨 후, 실온까지 강온시켜 가지고 헥산 400㎖를 가하여서 방치하면 고체생성물이 석출된다. 여별하여서 헥산인로 세정하고, 건조시켜서 고체생성물을 얻었다. 이것을 최종고체생성물로서 사용하여, 실시예 16파 동일하게 하여서 에틸렌 중합체를 제조하였다.In 100 ml of toluene, 87 g of titanium tetrachloride and 46.4 g of polytitanic isopropyl (5-molecular polymer) were mixed, reacted at 110 ° C. for 2 hours, and then cooled to room temperature, followed by hexane 400 If it is left to add ㎖, the solid product precipitates. Filtration, washing with hexane phosphorus and drying gave a solid product. Using this as the final solid product, an ethylene polymer was prepared in the same manner as in Example 16.

[비교예 19]Comparative Example 19

실시예 16에서 얻어진 고체생성물(Ⅱ)25mg 및 비교예 18에서 얻어진 고체생성물 76mg을 합하여서 최종 고체생성물로서 사용한 것 이외는, 실시예 16과 동일하게 하여서 에틸렌 중합체의 제조릍 행하였다.An ethylene polymer was produced in the same manner as in Example 16, except that 25 mg of the solid product (II) obtained in Example 16 and 76 mg of the solid product obtained in Comparative Example 18 were combined and used as the final solid product.

[비교예 20][Comparative Example 20]

실시예 16에 있어서, 고체생성물(Ⅱ)에 반응시키는 4염화 티탄 대신에 4염화 규소(SiC14) 78g을 사용한 이외는, 실시예 16과 동일하게 하여서 최종 고체생성물의 조제와 에틸렌 중합체의 제조를 행하였다.In Example 16, preparation of the final solid product and preparation of the ethylene polymer were carried out in the same manner as in Example 16, except that 78 g of silicon tetrachloride (SiC1 4 ) was used instead of titanium tetrachloride reacted with the solid product (II). It was done.

[비교예 21]Comparative Example 21

비교예 20에 있어서, 4염화 규소 대신에 3염화 알루미늄(무수) 61g을 사용한 이외는, 비교에 20과 동일하게 하여서 최종 고체생성물의 조제와 에틸렌 중합체의 제조를 행하였다.In Comparative Example 20, except that 61 g of aluminum trichloride (anhydrous) was used instead of silicon tetrachloride, the preparation of the final solid product and the production of ethylene polymer were carried out in the same manner as in Comparative 20.

[실시예 17]Example 17

실시예 16에 있어서, 고체생성물(Ⅱ),4염화 티탄 및 폴리티탄산 이소프로필의 반응을 톨루엔 100㎖중에서 행하게 한 후, 반응액을 실온까지 강온하고, 헥산 400㎖를 첨가하여서 방치하고, 그런 후에, 고체생성물을 여별하였다. 헥산으로 세정하여 건조시키고 고체생성물(Ⅲ) 180g을 얻었다. 이 고체생성물(Ⅲ)을 사용하여, 실시예 16과 동일하게 하여서 에틸렌 중합체를 제조하였다.In Example 16, the reaction of the solid product (II), titanium tetrachloride, and isopropyl polytitanate was carried out in 100 ml of toluene, and then the reaction solution was cooled to room temperature and left to stand by addition of 400 ml of hexane. , Solid product was filtered out. Washed with hexane and dried to obtain 180 g of solid product (III). Using this solid product (III), an ethylene polymer was produced in the same manner as in Example 16.

[실시예 18]Example 18

산화마그네슘 75g과 염화알루미늄(무수) 80g을, 보올밀 안에서 24시간 혼합, 분쇄시킨 후,100℃에서10시간 반응시켜, 고체생성물(Ⅰ)을 얻었다.75 g of magnesium oxide and 80 g of aluminum chloride (anhydrous) were mixed and pulverized in a bowl mill for 24 hours, and then reacted at 100 ° C for 10 hours to obtain a solid product (I).

벤젠 100㎖중에, 고체생성물(Ⅰ) 100g 및 쇄상 메틸페닐폴리 실록산(점도 500센티스토우크스) 100g을 넣어 혼합하고, 이어서 4염화 티탄 150g을 첨가하고, 80℃에 7시간 반응시켜, 고체생성물(Ⅱ)을 얻었다.In 100 ml of benzene, 100 g of solid product (I) and 100 g of chain methylphenyl polysiloxane (500 centistokes of viscosity) were added and mixed. Then, 150 g of titanium tetrachloride was added and reacted at 80 ° C. for 7 hours to give a solid product (II). )

다음에, 키실렌 400㎖ 중에, 고체생성물(Ⅱ) 100g 및 폴리티탄산 n-부틸(2분자 중합체) 69g을 넣고, 다음에 4염화 바나듐 96g을 가하고(천이금속원자비 3/1), 130℃에 3시간 반응시키고, 그 후는 실시예 16과 동일하게 하여서 고체생성물(Ⅲ)의 조제와, 에틸렌 중합체의 제조를 행하였다.Next, 100 g of solid product (II) and 69 g of n-butyl polytitanate (two-molecular polymer) were added to 400 ml of xylene, and then 96 g of vanadium tetrachloride was added (transition metal atomic ratio 3/1), and 130 ° C. The mixture was reacted for 3 hours, and then, in the same manner as in Example 16, preparation of the solid product (III) and preparation of the ethylene polymer were performed.

[실시예 19]Example 19

히드르 마그네사이트(3MgCO3·Mg(OH)2·3H2O) 65g과 3염화 철(무수)Hi deureu magnesite and iron trichloride (3MgCO 3 · Mg (OH) 2 · 3H 2 O) 65g ( anhydrous)

70g을, 진동밀 안에서 10시간혼합, 분쇄시킨 후, 300℃에 1시간 반응시켜, 고체생성물(Ⅰ)을 얻었다.After 70 g of the mixture was ground and mixed in a vibration mill for 10 hours, the mixture was reacted at 300 ° C for 1 hour to obtain a solid product (I).

키실렌 200㎖중에, 고체성성물(Ⅰ) 100g, 4염화 티탄 50g 및 수소화 메틸 폴리실록산(점도 50센티스토우크스) 100g을 가하여서, 130℃에 1시간 반응시켜, 고체생성물(Ⅱ)를 얻었다.In 200 ml of xylene, 100 g of solid product (I), 50 g of titanium tetrachloride and 100 g of hydrogenated methyl polysiloxane (50 centistokes of viscosity) were added thereto, and the mixture was reacted at 130 ° C for 1 hour to obtain a solid product (II).

다음에, 톨루엔 300㎖ 중에, 고체생성물(Ⅱ) 100g 및 옥시 3염화 바나듐 86g을 넣어 혼합하고, 이어서 폴리티탄산 에틸(6분자 중합체) 41g을 가하여(천이금속원자비 2/1),120℃에 4시간 반응시키고, 그 후는 실시예 16과 동일하게 하여서 고체생성물(Ⅲ)의 조제와 에틸렌 중합체의 제조를 행하였다.Next, 100 g of solid product (II) and 86 g of vanadium oxychloride were added and mixed in 300 ml of toluene, and then 41 g of ethyl polytitanate (6-molecular polymer) was added (transition metal atomic ratio 2/1) to 120 ° C. The mixture was reacted for 4 hours, and then, in the same manner as in Example 16, preparation of the solid product (III) and preparation of the ethylene polymer were performed.

[실시예 20]Example 20

실시예 16에서 얻어진 고체생성물(Ⅲ)을 사용하여, 수소릍 9㎏/㎠(게이지 압)까지 도입하고, 전압을 게이지 압으로 35㎏/㎠에 유지하도록 프로필렌을 8%(용량%) 함유한 에틸렌을 추가하는 것 이외는, 실시예 16과 동일하게 하여서 에틸렌-프로필렌 공중합체를 제조하였다. 공중합체 중의 프로필렌 함유량은3.1%이었다.The solid product (III) obtained in Example 16 was used to introduce hydrogen 릍 up to 9 kg / cm 2 (gauge pressure) and contain 8% (volume%) of propylene to maintain the voltage at 35 kg / cm 2 at the gauge pressure. Except adding ethylene, it carried out similarly to Example 16, and manufactured the ethylene propylene copolymer. Propylene content in the copolymer was 3.1%.

[실시예 21]Example 21

실시예 16에서 얻어진 고체생성물(Ⅲ)을 사용하여, 수소를 10㎏/㎠(게이지 압)까지 도입하고, 전압을65㎏/㎠(게이지 압)에 유지하도록 부텐-1을 10%(용량%) 함유하는 에틸렌을 추가하는것 이외는, 실시예 16과 동일하게 하여서 에틸렌-부텐 공중합체를 제조하였다. 공중합체 중의 부텐-1의 함유량은 5.2%이었다.Using the solid product (III) obtained in Example 16, hydrogen was introduced up to 10 kg / cm 2 (gauge pressure), and 10% (volume%) of butene-1 was maintained at 65 kg / cm 2 (gauge pressure). ) An ethylene-butene copolymer was prepared in the same manner as in Example 16 except that ethylene was added. The content of butene-1 in the copolymer was 5.2%.

이상의 실시예 16-21, 비교예 10-21의 결과를 종합해서 제2표에 표시한다.The result of Example 16-21 and Comparative Example 10-21 mentioned above is put together, and is shown in a 2nd table.

Figure kpo00011
Figure kpo00011

Figure kpo00012
Figure kpo00012

[실시 예 22]Example 22

실시예 16에서 얻어진 고체생성물(Ⅲ)을 사용하며, 프로필렌의 중합을 행하였다. 내용적 5ℓ의 중합기에 헥산 3.5ℓ, 트리에틸 알루미늄 228mg, 고체생성물(Ⅲ) 50mg을 넣고, 수소분압 1㎏/㎠(게이지 압), 프로필렌 분압 10㎏/㎠(게이지 압)에서,70℃로 4시간 반응을 행하였다. 얻어진 중합체의 MFR은 4.5,BD는 0.45, 아이소택틱 인덱스는 0.91이고, 중합체 수량은 고체생성물(Ⅲ) 1g당 5,800g이었다.Propylene was polymerized using the solid product (III) obtained in Example 16. Into a 5 L polymerizer, 3.5 L of hexane, 228 mg of triethyl aluminum and 50 mg of solid product (III) were added, and the hydrogen partial pressure of 1 kg / cm 2 (gauge pressure) and the propylene partial pressure of 10 kg / cm 2 (gauge pressure) were adjusted to 70 ° C. The reaction was carried out for 4 hours. Obtained polymer MFR was 4.5, BD was 0.45, isotactic index was 0.91, and the polymer yield was 5,800 g / g of solid product (III).

중합체의

Figure kpo00013
은 9.2었다.Polymer
Figure kpo00013
Was 9.2.

비교예 1과 10에 의하여, 고체생성물(Ⅱ) 그대로서는

Figure kpo00014
은 작고, 이것을고체생성물(Ⅲ)으로하는 것에 의해서 분자량 분포는 비약적으로 넓게 된다는 것을 알 수 있다. 비교예 2-4,11-13에 의하여, 본발명에 있어서 (A군) 및 (B군) 천이금속화합물을 반응시키는 대상의 고체생성물이 특정한 것(고체생성물(Ⅱ))이 아닌 경우에는, 중합체 수율이 현저하게 낮은 것이라고 하는 것을 알 수 있다.According to Comparative Examples 1 and 10, the solid product (II) as it is
Figure kpo00014
It is small and it turns out that molecular weight distribution becomes remarkably wide by making this as solid product (III). According to Comparative Examples 2-4 and 11-13, in the present invention, when the solid product to be reacted with the (Group A) and (B Group) transition metal compounds is not a specific one (solid product (II)), It can be seen that the polymer yield is remarkably low.

비교예 5,6,8,9,14-17에 의해서, 고체생성물(Ⅱ)에 반응시키는 천이금속화합물로서는 (A군),(B군)을 다같이 필요로 한다고 하는 것을 알 수 있다.Comparative Examples 5, 6, 8, 9, and 14-17 show that both (A group) and (B group) are required as the transition metal compound to be reacted with the solid product (II).

비교예 7,18,19에 의하여, 본 발명에 있어서의 (A군)과 (B군) 각 천이금속화합울을 고체생성물(Ⅱ)에 반응하는 것에 의해서 효과를 나타내는 것으르서 (A군) 천이금속화합물과 (B군) 천이금속화합물과의 반응 생성물의 혼재(混在)에 의해서 본 발명의 효과가 나오는 것이 아니라는 것을 알 수 있다.According to Comparative Examples 7,18 and 19, the transition metal cobalt (Group A) and Group (B) in the present invention exhibited an effect by reacting the solid product (II) with (Group A) It can be seen that the effect of the present invention is not caused by the mixing of the reaction product of the transition metal compound and the group B transition metal compound.

비교예 20과 21에 의해서 (B군) 천이금속화합물과 함께 고체생성물(Ⅱ)에 반응시키는 것은 할로겐을 함유한 화합물이기는 하지만, 동시에 천이금속도 함유한 것이 아니면 본 발명의 효과는 없다는 것을 알수 있다.In Comparative Examples 20 and 21, the reaction of the solid product (II) with the (B group) transition metal compound is a compound containing halogen, but at the same time, it does not have the effect of the present invention unless it also contains the transition metal. .

Claims (1)

주기율표 제4a족 또는 제5a족의 천이금속원자를 함유하는 고체생성물과 유기 알루미늄 화합물을 화합(化슴)시켜서 얻어지는 촉매를 사용하여서 α-울레핀을 단독중합 또는 공중합시켜서 올레핀 중합체를 제조하는 방법에 있이서, 이 고체생성물로서 3가 금속할로겐화물과 2가 금속의 수산화물, 산화물, 탄산화물 이들을 함유한 복염, 또는 2가 금속화합물의 수화물과를 반응시켜서 얻어진 고체생성물(Ⅰ)에, 폴리실록산의 존재하에서 제4a족 또는 제5a족의 천이금속화합물을 반응시키고, 이렇게 해서 얻어진 고체생성물(Ⅱ)에 다시 (A군) 할로겐을 함유한 제4a족 또는 제5a족의 천이금속화합물 및 (B군) 할로겐을 함유하지 않은 제4a족 또는 제5a족의 천이금속화합물의 각각의 군으로부터 적어도 1종씩 선택된 적어도 2종의 천이금속화합물을 반응시켜서 얻어지는 고체생성물(Ⅲ)을 사용하는 것을 특징으로하는, 올레핀 중합체의 제조방법.A method for producing an olefin polymer by homopolymerizing or copolymerizing α-urepin using a catalyst obtained by combining a solid product containing a transition metal atom of Group 4a or 5a of the periodic table with an organoaluminum compound. In addition, the presence of polysiloxane in the solid product (I) obtained by reacting a trivalent metal halide with a hydroxide, oxide or carbonate of a divalent metal, or a hydrate of a divalent metal compound as the solid product. Transition metal compound of Group 4a or Group 5a under the following reaction, and the transition metal compound of Group 4a or Group 5a containing (A) halogen again to the solid product (II) thus obtained and Group (B) Obtained by reacting at least two transition metal compounds selected from each group of the transition metal compounds of Group 4a or Group 5a containing no halogen. The process for producing an olefin polymer, characterized in that the use of solid product (III).
KR7902129A 1979-06-28 1979-06-28 Method for preducing olefin polymers KR820002155B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR7902129A KR820002155B1 (en) 1979-06-28 1979-06-28 Method for preducing olefin polymers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR7902129A KR820002155B1 (en) 1979-06-28 1979-06-28 Method for preducing olefin polymers

Publications (1)

Publication Number Publication Date
KR820002155B1 true KR820002155B1 (en) 1982-11-20

Family

ID=19212110

Family Applications (1)

Application Number Title Priority Date Filing Date
KR7902129A KR820002155B1 (en) 1979-06-28 1979-06-28 Method for preducing olefin polymers

Country Status (1)

Country Link
KR (1) KR820002155B1 (en)

Similar Documents

Publication Publication Date Title
CA1295780C (en) Process for preparing ultra-high molecular weight polyethylene
US3987233A (en) Method for producing ethylene polymers
GB2029424A (en) Catalysts for polymerizing -olefins
KR19980082807A (en) Catalysts for Olefin Polymerization and Copolymerization
JP2530618B2 (en) Catalyst component for olefin polymerization
US4656151A (en) Intermetallic compound
KR100496776B1 (en) Catalyst for polymerization and copolymerization of ethylene
JPS6119644B2 (en)
US3676414A (en) Process for polymerizing {60 -olefins
KR820002155B1 (en) Method for preducing olefin polymers
KR100430845B1 (en) Catalyst having high catalytic activity, increased average particle size and narrow particle size distribution for alpha-olefin polymerization and copolymerization
KR840000805B1 (en) Proce for producing polyethylene
JPH10292008A (en) Process for producing alpha-olefin
US4260723A (en) Method for producing olefin polymers
JP3752090B2 (en) Polypropylene production method
KR100435980B1 (en) Olefin polymerization and copolymerization method using solid complex titanium catalyst for producing polymer having high apparent density
JPH0610213B2 (en) Method for producing polyethylene
KR840000037B1 (en) Method for producing olefin polymers
KR790001047B1 (en) Manufacturing method of poly ethylene
KR820002052B1 (en) Method of producing -olefin polymer
KR790001345B1 (en) Method for producing ethylene polymers.
GB2030156A (en) Catalyst for preparating a polyolefin
JPS584926B2 (en) Method for producing olefin polymer
JPS6352643B2 (en)
KR830000358B1 (en) Process for producing α-olefin polymer