KR820001966B1 - Method for producing -olefin polymers - Google Patents

Method for producing -olefin polymers

Info

Publication number
KR820001966B1
KR820001966B1 KR7901317A KR790001377A KR820001966B1 KR 820001966 B1 KR820001966 B1 KR 820001966B1 KR 7901317 A KR7901317 A KR 7901317A KR 790001377 A KR790001377 A KR 790001377A KR 820001966 B1 KR820001966 B1 KR 820001966B1
Authority
KR
South Korea
Prior art keywords
solid product
reaction
hours
propylene
polymer
Prior art date
Application number
KR7901317A
Other languages
Korean (ko)
Inventor
아끼히로 사또오
마사미 다찌바나
가즈쓰네 기꾸다
Original Assignee
노기 샤다오
짓소 가부시기 가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 노기 샤다오, 짓소 가부시기 가이샤 filed Critical 노기 샤다오
Priority to KR7901317A priority Critical patent/KR820001966B1/en
Application granted granted Critical
Publication of KR820001966B1 publication Critical patent/KR820001966B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/02Carriers therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

내용 없음.No content.

Description

α-올레핀 중합체를 제조하는 방법How to prepare α-olefin polymer

본 발명은 높은 활성을 가진 촉매에 의한 고결정성(高結晶性)의 α-올레핀 중합체의 제조방법에 관한 것이다. α-올레핀 중합용의 촉매의 1성분으로서 전자공여체를 사용한 발명은 여러가지가 제시되고 있다. 예를들면 MgCl2(무수), Mg-Cl 결합을 갖는 고체, 탄산마그네숨, 주기율표의 Ⅱ 또는 Ⅶ족의 원소의 산화물 혹은 수산화물 등을 주된 구성성분으로 하고, 전자공여체를 1성분으로 하는 것을 사용한 것이있다.The present invention relates to a method for producing a highly crystalline α-olefin polymer by a catalyst having a high activity. Various inventions using an electron donor as one component of a catalyst for α-olefin polymerization have been proposed. For example, MgCl 2 (anhydrous), solids having Mg-Cl bonds, magnesium carbonate, oxides or hydroxides of elements of the II or Group VIII group of the periodic table are used as main components, and electron donors are used as one component. There is.

한편, 본 발명자들은 에틸렌 또는 α-올레핀 중합용 촉매로서 3가 금속인 할로겐화물과 2가 금속의 화합물과의 반응에 의하여 얻어지는 고체생성물(I)에 여러가지의 방법으로 천이금속 화합물을 담지(擔持)시켜서 사용하는 촉매를 개발하고 왔었다.On the other hand, the present inventors support the transition metal compound by various methods on the solid product (I) obtained by reaction of a halide which is a trivalent metal and a compound of a divalent metal as a catalyst for ethylene or α-olefin polymerization. Have been developing a catalyst for use.

예를들면 ① 상기한 고체생성물(Ⅰ)에 폴리 실록산 또는 전자 공여체를 반응시킨 후, 천이금속 화합물을 반응시켜 얻어지는 고체 생성물을 사용하는 방법(특공소52-13827호(특원소49-50994 한국출원75/919호), 특원소 52-127750호) ② 상기한 고체 생성물(1)에 폴리실록산 또는 전자공여체와 천이 금속화합물과를 동시에 첨가하든가, 미리 조제하여 둔 폴리실록산과 천이금속화합물의 착체(錯體) 또는 전자공여체와 천이금속화합물의 착체를 첨가하여 반응시키는 방법(특원소 53-21246호, 동 53-21247호, 등 53-32031호등) ② 상기한 고체생성물(I)에 천이금속화합물을 반응 후 일단 3가 금속 알코올레이트를 반응시킨 후, 재차 천이금속 화합물을 반응시키는 방법(특개소 52-19790호(특원소 50-96247호)) 등을 이미 출원했었다.For example, 1) a method of using a solid product obtained by reacting a polysiloxane or an electron donor with the solid product (I) described above and then reacting a transition metal compound (Ko 52-13827 (Ko 49-994) 75/919), Atomic Components 52-127750) (2) A polysiloxane or an electron donor and a transition metal compound are simultaneously added to the solid product (1), or a complex of polysiloxane and transition metal compound prepared in advance. Or by adding a complex of an electron donor and a transition metal compound (Special Elements 53-21246, 53-21247, etc. 53-32031, etc.) ② React the transition metal compound to the solid product (I) described above. After the reaction of the trivalent metal alcoholate, the method of reacting the transition metal compound again (Japanese Patent Application Laid-Open No. 52-19790 (Japanese Patent Application No. 50-96247)) and the like have already been filed.

본 발명자들은, 이들의 선원 발명의 개량에 관하여 여러가지로 연구한 결과, 고체생성물(I)에 대하여 전자공여체 및 전자수용체를 반응시키는 방법에 의하여 효과면에 커다란 차이가 있다는 것을 알았으며, 그 반응 방법에 대하여 여러가지로 검토한 결과, 본 발명에 까지 도달하였다.As a result of various studies on the improvement of these source inventions, the inventors found that the method of reacting the electron donor and the electron acceptor to the solid product (I) has a great difference in terms of effect. As a result of various studies, the present invention has been reached.

즉 본 발명은 3가금속의 할로겐화물과 2가금속의 수산화물, 산화물, 탄산화물, 이들을 함유한 복염(複鹽), 또는 2가금속 화합물의 수화물과를 반응시켜 얻어지는 고체생성물(I)에, 1종이상의 전자공여체와 1종이상의 전자수용체를 그 어느것인가 한쪽 또는 양쪽을 복수회로 나누어서 반응시키고, 더우기 그 전자수용체의 적어도 하나는 4염화 티단이며, 이렇게하여 얻어진 고체생성물(Ⅱ)과 유기알루미늄화합물과를 조합(組合)한 촉매의 존재하에 α-올레핀을 중합시키는 것을 특징으로 하는 α-올레핀 중합체의 제조 방법에 관한 것이다.In other words, the present invention relates to a solid product (I) obtained by reacting a halide of a trivalent metal with a hydroxide, oxide, carbonate of a divalent metal, a double salt containing these, or a hydrate of a divalent metal compound. Either one or both of the electron acceptors of the phase and one or more electron acceptors are reacted in a plurality of times, and at least one of the electron acceptors is thydan tetrachloride, and thus the solid product (II) and the organoaluminum compound The present invention relates to a method for producing an α-olefin polymer, wherein the α-olefin is polymerized in the presence of a combined catalyst.

이하에 본 발명의 중합 방법에 사용하는 촉매의 조정방법을 상세하지 설명하겠다. 우선 3가 금속의 할로겐화물과 2가금속화합물과를 반응시킴에 의하여 고체생성물(I)을 얻는다. 3가금속의 할로겐화물로서는 3염화알루미늄(무수), 3취화알루미늄(무수), 3염화철(무수) 등이 쓰여진다. 2가금속화합물로서는 예를들면 Mg(OH)2, Ca(OH)2, Zn(OH)2, Mn(OH)2와 같은 수산화물, MgO, CaO, ZnO, MnO와 같은 산화물, MgAlO4, Mg2SiO4Mg6AlnO8와 같은 2가금속을 함유한 복(複) 산화물, MgCO3, MnCO3, MgCO3. CaCO3와 같은 탄산화물, SnCl2·2H2O, MgCl2·nH2O(n=1∼6), NiCI2·6H2O, MnCl2·4H2O, KMgCl3·6H2O와 같은 할로겐 화물수화물, MgCl2·nMg(OH)2·mH2O(n=1∼3, m=1∼6)와 같은 할로겐화물과 수산화물과를 함유한 수화물, 3MgO·2SiO2·2H2O와 같은 산화물의 복염인 수화물, 3MgCO3·Mg(OH)23H2O와 같은 탄산화물과 수산화물의 복염인 수화물, 및 Ng6Al2(OH)16CO3·4H2O와 같은 2가 금속을 함유한 수산화탄산화물의 수화물 등을 들수가 있다.Below, the adjustment method of the catalyst used for the polymerization method of this invention is demonstrated in detail. First, the solid product (I) is obtained by reacting a halide of a trivalent metal with a divalent metal compound. As the halide of the trivalent metal, aluminum trichloride (anhydrous), aluminum trihydride (anhydrous), iron trichloride (anhydrous) and the like are used. As the divalent metal compound, for example, hydroxides such as Mg (OH) 2 , Ca (OH) 2 , Zn (OH) 2 , Mn (OH) 2 , oxides such as MgO, CaO, ZnO, MnO, MgAlO 4 , Mg Complex oxide containing a divalent metal such as 2 SiO 4 Mg 6 AlnO 8 , MgCO 3 , MnCO 3 , MgCO 3 . Carbonates such as CaCO 3 , SnCl 2 · 2H 2 O, MgCl 2 · nH 2 O (n = 1 to 6), NiCI 2 · 6H 2 O, MnCl 2 · 4H 2 O, KMgCl 3 · 6H 2 O Halides such as halide hydrates, MgCl 2 nMg (OH) 2 mH 2 O (n = 1 to 3, m = 1 to 6) and hydrates containing hydroxides, 3 MgO 2 SiO 2 2H 2 O and Hydrates are double salts of the same oxide, carbonates such as 3MgCO 3 .Mg (OH) 2 3H 2 O and hydrates are double salts of hydroxide, and divalent metals such as Ng 6 Al 2 (OH) 16 CO 3 4H 2 O And hydrates of carbonate hydroxide contained.

고체생성물(I)은, 다음과 같이하여 제조한다. 3가금속할로겐 화물과 2가금속화합물과를 보올밀로서 5∼50시간, 진동(振動) 밀로서는 1∼10시간 동안 분쇄하고, 충분히 혼합된 상태로 하는 것이 바람직하다. 혼합비율은, 3가금속할로겐 화물 1몰에 대하여, 2가금속화합물은 통상적으로 0.1∼20몰로서 충분하며, 바람직하게로는, 1∼10몰의 범위이다. 반응온도는, 통상적으르, 실온 (20℃)∼500℃이며, 바람직하게로는 50℃ ∼300℃이다. 반응시간은, 30분∼50시간이 알맞고, 반응온도가 낮은 경우에는 장시간 반응시키고, 미반응의 3가금속이 남지않도록 반응을 충분히 행하게 한다. 이와 같이하여 얻어진 고체생성물을 고체생성물(I)로 한다. 고체생성물(I)은 이어서 건자공여체(이하 ED라 약칭하는 수가 있다)및 전자수용체(이하 EA라 약칭하는 수가 있다)와 반응시킨다.Solid product (I) is manufactured as follows. It is preferable that the trivalent metal halide and the divalent metal compound are pulverized for 5 to 50 hours as a bowl mill and for 1 to 10 hours as a vibration mill, and the mixture is sufficiently mixed. The mixing ratio of the divalent metal compound is usually 0.1 to 20 mol, with respect to 1 mol of the trivalent metal halide, and is preferably in the range of 1 to 10 mol. The reaction temperature is usually room temperature (20 ° C) to 500 ° C, preferably 50 ° C to 300 ° C. 30 minutes-50 hours are suitable, and when reaction temperature is low, it is made to react for a long time, and reaction is made to fully perform so that unreacted trivalent metal may not remain. The solid product thus obtained is referred to as solid product (I). The solid product (I) is then reacted with a dry donor (hereinafter abbreviated as ED) and an electron acceptor (hereinafter abbreviated as EA).

이 반응에서 사용하는 ED란 산소, 질소, 유황, 인의 어느 것인가의 원자를 가진 유기 화합물, 즉 알코올류, 에테르류, 에스테르류, 알데히드류, 지방산류, 케톤류, 니트릴류, 아민류, 이소시아네이트튜, 아조화합물, 포스핀류, 포스페이트류, 포스피나이트류, 티오에테르류, 티오알코올류 및 플리실록산 등이다. 구체예로서는 메탄올, 에탄을, 프로판올, 부탄올, 펜타놀, 헥사놀, 옥타놀, 페놀, 크레졸, 키시레놀, 에틸페놀, 나프톨, 쿠밀알코올류, 디에틸에테르, 디 n-프로필에테르, 디 n-부틸에테르, 디 i-아밀에테르, 디 n-펜틸에테르, 디 n-헥실에테르, 디 n-옥틸에테르, 디 i-옥틸에테르, 에틸렌그리콜 모노메틸에테르, 디페닐에테르, 테트라히드로푸랑 등의 에테르류, 초산에틸, 개미산부틸, 초산아밀, 낙산비닐, 초산비닐, 안식향산메틸, 안식향산에틸, 안식향산프로필, 안식향산부틸, 안식향산 옥틸, 안식향산 2-에틸헥실, 톨루일산메틸, 톨루일산에틸, 톨루일산 2-에틸헥실, 아니스산(anisate)에틸, 아니스산프로필, 계피산에틸, 나프토산(naphthoate)메틸, 나프트산 에틸, 나프토산프로필, 나프토산부틸, 나프토산 2-에틸헥실, 페닐츠산에틸 등의 에스테르류, 아세토알데히드, 벤즈알데히드 등의 알데히드류, 개미산, 초산, 프로피온산, 낙산, 수산, 호박산, 아크릴산, 말레인산, 안식향산 등의 지방산류, 메틸에틸케톤, 메틸이소부틸케톤벤조페논 등의 케톤류, 아세트니트릴 등의 니트릴류, 메틸아민, 디에틸아민, 트리부틸아민, 트리에탄올아민, 피리딘, 아닐린 등의 아민류, 페닐이소시아네이트, 톨루일이소시아네이트 등의 이소시아네이트류, 아조벤젠 등의 아조화합물, 에틸포스핀트리에틸포스핀, 트리 n-부틸포스핀, 트리 n-옥틸포스핀, 트리페닐포스핀 등의 포스핀류, 디메틸포스파이트, 디 n-옥틸포스파이트, 트리 n-부틸포스파이트, 트리페닐포스파이트 등의 포스파이트류, 에틸디에틸포스피나이트, 에틸디부틸포스피나이트, 페닐디페닐포스피나이트 등의 포스피나이트류, 디에틸티오에테르, 디페닐티오에테르, 메틸페닐티오에테르, 에틸렌설파이드, 프로필렌설파이드 등의 티오에테르류, 에틸티오알코올, n-프로필티오알코올, 티오페놀 등의 티오알코올류를 예거할 수가 있다. 또 폴리실록산으로서는 일반식ED used in this reaction is an organic compound having an atom of any one of oxygen, nitrogen, sulfur and phosphorus, that is, alcohols, ethers, esters, aldehydes, fatty acids, ketones, nitriles, amines, isocyanates, azos Compounds, phosphines, phosphates, phosphinites, thioethers, thioalcohols, and polysiloxanes. Specific examples include methanol, ethane, propanol, butanol, pentanol, hexanol, octanol, phenol, cresol, chisylenol, ethylphenol, naphthol, cumyl alcohol, diethyl ether, di n-propyl ether, di n-butyl Ethers such as ether, di i-amyl ether, di n-pentyl ether, di n-hexyl ether, di n-octyl ether, di i-octyl ether, ethylene glycol monomethyl ether, diphenyl ether and tetrahydrofuran , Ethyl acetate, butyl formate, amyl acetate, vinyl butyrate, vinyl acetate, methyl benzoate, ethyl benzoate, propyl benzoate, butyl benzoate, octyl benzoate, 2-ethylhexyl benzoate, methyl toluate, ethyl toluate, 2-ethyl toluate Esters such as hexyl, ethyl aniseate, propyl aniseate, ethyl cinnamon, naphthoate methyl, ethyl naphthoate, propyl naphthoate, butyl naphthoate, 2-ethylhexyl naphthoate, ethyl phenylate , Acetoaldehyde Aldehydes such as aldehyde, benzaldehyde, formic acid, acetic acid, propionic acid, butyric acid, fish acid, succinic acid, acrylic acid, fatty acids such as maleic acid, benzoic acid, ketones such as methyl ethyl ketone, methyl isobutyl ketone benzophenone, and nitriles such as acetnitrile. , Amines such as methylamine, diethylamine, tributylamine, triethanolamine, pyridine and aniline, isocyanates such as phenyl isocyanate and toluyl isocyanate, azo compounds such as azobenzene, ethyl phosphine triethyl phosphine, tri n- Phosphines such as butyl phosphine, tri n-octylphosphine, triphenylphosphine, dimethyl phosphite, di n-octyl phosphite, tri n-butyl phosphite, phosphites such as tri n-butyl phosphite, and ethyl di Phosphinites such as ethyl phosphite, ethyl dibutyl phosphite and phenyl diphenyl phosphite, diethylthio ether, diphenylthio ether, and Thioethers such as butylphenylthioether, ethylene sulfide and propylene sulfide, thioalcohols such as ethylthioalcohol, n-propylthioalcohol and thiophenol can be cited. Moreover, as polysiloxane, general formula

Figure kpo00001
Figure kpo00001

로서 표시되는 쇄상(鎖狀( 또는 환상의 실록산 중합물이 사용되며, 그 중에서도 R1,R2가 수소, 알킬기, 등의 탄화수소잔기, 할로겐, 알콕시기 또는 아릴옥시기, 지방산잔기등 중의 1종으로된 것, 또는 2종 이상이 여러가지의 비율로서 분자내에 분포되어 결합하고 있는 것이 일반적으로 사용된다.A chain (鎖 狀 (or cyclic siloxane polymer is used), and R 1 , R 2 is a hydrocarbon residue such as hydrogen, alkyl group, halogen, alkoxy group or aryloxy group, fatty acid residue, etc. In general, those in which two or more kinds are distributed and bound in a molecule in various ratios are generally used.

통상적으로, 바람직하게 쓰여지는 것의 구체예로서는, 옥타메틸트리실록산 옥타에틸시크로테트라실록산 등의 저급중합물, 디메틸폴리실록산, 에틸폴리스크로실록산, 메틸에틸폴리실록산 등의 알킬실록산중합물, 헥사페닐시클로트리실록산, 디페닐 폴리실륵산 등의 아릴실록산 중합물, 또 디 페닐옥타메틸테트라실록산, 메틸페닐폴리실록산 등의 알킬아릴실륵산중합물 등을 예거할 수 있다. 이들 각종의 폴리실록산은 혼합하여 사용할 수도 있다. 또 이들의 폴리실록산은 반응시에는 액상상태에 있는 것이 중요하며, 폴리실록산 자신이 반응조건하에서 액상으로 있던지, 용매에 용해되어 있는 것이 필요하다. 이와 같은 폴리실록산의 점도는 25℃에서 10∼10,000센티스토오크스 더욱 바람직하게로는 10∼2,000센티스토오크스의 범위에 있다.Usually, as a specific example of what is preferably used, Lower polymers, such as octamethyl trisiloxane octaethyl cyclotetrasiloxane, Alkyl siloxane polymers, such as dimethyl polysiloxane, ethyl polycyclosiloxane, and methyl ethyl polysiloxane, hexaphenyl cyclotrisiloxane, di Aryl siloxane polymers, such as phenyl polysiloxane, Alkyl aryl silicate polymers, such as diphenyl octamethyl tetrasiloxane and methylphenyl polysiloxane, etc. can be mentioned. These various polysiloxanes can also be mixed and used. Moreover, it is important that these polysiloxanes are in a liquid state at the time of reaction, and it is necessary that the polysiloxane itself is in a liquid state under reaction conditions or dissolved in a solvent. The viscosity of such polysiloxane is in the range of 10 to 10,000 centistokes at 25 ° C, more preferably 10 to 2,000 centistokes.

이상과 같은 각종의 ED는 단독만으로서 뿐만 아니고 각종의 것을 혼합하여 사용할 수도 있다.Various ED as mentioned above can be used not only individually but in mixture of various things.

다음에 본 발명에 있어서 사용하는 EA란 주기율표 Ⅲ∼V족의 원소의 할로겐 화물로서 대표된다. 구체예로서는 AlCl3(무수), SiCl4, SnCl2, SnCl4, TiCl4, ZrCl4, PCl3, PCl5, VCl4, SbCl5, SCl2, NnCl2, FeCl2, NiCl2등을 예거할 수 있다. 이들도 혼합하여 사용하여도 좋다. 단 TiCl4는 반드시 1회는 사용하지 않으면 안된다.Next, EA used in this invention is represented as a halide of the element of group III-V of a periodic table. Specific examples include AlCl 3 (anhydrous), SiCl 4 , SnCl 2 , SnCl 4 , TiCl 4 , ZrCl 4 , PCl 3 , PCl 5 , VCl 4 , SbCl 5 , SCl 2 , NnCl 2 , FeCl 2 , NiCl 2, etc. Can be. You may mix and use these. However, TiCl 4 must be used only once.

고체생성물(I)에 ED 및 EA를 반응시키는 방법은, 후술하는 바와 같이 여러가지의 방법이 있으나, 어떠한 반응단계에 있어서도 용매의 존재 또는 부존재하에서 현탁상태로서 행하더라도 좋고, 또 진동 밀 또는 보올밀 등의 분쇄기를 사용하여 분쇄해가면서 반응을 행하여도 좋다.There are various methods of reacting ED and EA to the solid product (I), as described below. However, in any reaction step, the solid product (I) may be suspended in the presence or absence of a solvent. The reaction may be performed while grinding using a grinder.

고체생성물(I)에 ED 및 EA를 반응시킬 무렵, 그 어느것인가 한쪽 또는 양쪽을 복수회로 나누어 반응시키그, 더우기 그 ED 및 EA는 각각 복수종이더라도 좋지만 EA의 적어도 하나는 4염화티탄이라는 것이 본 발명에 있어서의 중요한 특징이지만, 그 반응시키는 순서의 구체적 또는 대표적인 것으로서는 다음과 같은 방법이 있다.At the time of reacting ED and EA to the solid product (I), either or both of them are reacted in a plurality of times. Furthermore, the ED and EA may be plural kinds, but at least one of the EA is titanium tetrachloride. Although it is an important feature in this invention, the following method is mentioned as a specific or representative thing of the reaction order.

① 고체생성물(I)에 ED 및 EA1을 반응 후 EA2(TiCl4)를 반응시키는 방법① Method of reacting EA 2 (TiCl 4 ) after ED and EA 1 reaction to solid product (I)

② 고체생성물(I)에 EA1를 반응 후, ED 및 EA2(TiCl4)를 1회 또는 2회 반응시키는 방법② Method of reacting ED and EA 2 (TiCl 4 ) once or twice after EA 1 is reacted with solid product (I).

③ 고체생성물(1)에 ED1및 EA1반응 후, 이번에는 ED2및 EA2(TiCl4)를 반응시키는 방법③ ED 1 and EA 1 reaction to the solid product (1), this time a method of reacting ED 2 and EA 2 (TiCl 4 ).

④ 고체생성물(I)에 ED1및 EA(TiCl4)를 반응 후, ED2를 반응시키는 방법.④ ED 1 and EA (TiCl 4 ) are reacted with the solid product (I), followed by ED 2 .

⑤ 고체생성물(I)에 ED1을 반응 후, ED2와 EA(TiCl4)를 반응시키는 방법⑤ After the reaction method of the ED 1 in the solid product (I), reacting a 2 ED and EA (TiCl 4)

⑥ 고체생성물(I)에 ED1을 반응후 ED2를 반응시키고 다시 EA(TiCl4)를 1회 또는 2회 반응시키는 방법⑥ After ED 1 is reacted with solid product (I), ED 2 is reacted and EA (TiCl 4) is reacted once or twice.

⑦ 고체생성물(I)에 ED1을 반응후 ED2를 반응시키고 다시 ED3와 EA(TiCl4)를 반응시키는 방법⑦ After ED 1 is reacted with solid product (I), ED 2 is reacted and ED 3 is reacted with EA (TiCl 4 ) again.

⑧ 고체생성물(I)에 ED를 반응 후, EA(TiCl4)를 2회 반응시키는 방법⑧ After ED reaction with solid product (I), EA (TiCl 4 ) reaction twice

⑨ 고체생성물(I)에 ED를 반응 후 EA1을 반응시키고, 다시 EA2(TiCl4)를 반응시키는 방법⑨ After reacting ED with solid product (I), EA 1 is reacted, and EA 2 (TiCl 4 ) is reacted again.

상기한 바와 같이 ED및 EA의 한쪽 또는 양쪽을 복수회로 나누어 반응시키는 것은, 통상적으로 ED 또는 EA를 각각 2∼3회정도로 나누는 것을 의미하며, 그 이상 세밀하게 나누더라도 조작이 번잡해지는 반면효과는 커지지 않는다. 또, 상기한 반응의 상태에서 예를 들면 고체생성물(I)에 ED 및 EA를 반응시킨다고 하는 것은 고체생성물(I)과 ED와 EA와의 공존하에서의 반응, 또는 고체생성물(I)과, ED와 EA와의 착체화합물과의 반응의 어느것이든 의미한다. 또 이들의 반응의 임의의 시기에 필요에 응하여 용매를 가하여도 좋고, 쓰여지는 용매는 n-펜탄, n-헥산, n-헵탄, n-옥탄, i-옥탄, n-노난, n-데칸 등의 지방족탄화수소, 벤젠, 톨루엔, 키실렌, 에틸벤젠, 쿠멘(cumen)등의 발향족 탄화수소, 4염화탄소, 클로로포름, 디클로로에탄, 트리클로로에틸렌, 테트라클로로에틸렌, 4취화탄소, 쿨로로벤젠, 오르토(ortho) 디클로로벤젠등의 할로겐화 탄화수소 등 소위 불활성 용매이다.As described above, reacting one or both of ED and EA by dividing into a plurality of times generally means dividing ED or EA into two or three times each, and even finer division further complicates the operation while increasing the effect. Do not. In the state of the reaction described above, for example, the reaction of ED and EA to the solid product (I) means the reaction in the presence of the solid product (I) and ED and EA, or the solid product (I), ED, and EA. It means any of the reaction with the complex compound. A solvent may be added as needed at any time of these reactions, and the solvent used may be n-pentane, n-hexane, n-heptane, n-octane, i-octane, n-nonane, n-decane, or the like. Aliphatic hydrocarbons such as aliphatic hydrocarbons, benzene, toluene, xylene, ethylbenzene, cumene, carbon tetrachloride, chloroform, dichloroethane, trichloroethylene, tetrachloroethylene, tetrafluorocarbons, coolobenzene, ortho (ortho) It is a so-called inert solvent, such as halogenated hydrocarbons, such as dichlorobenzene.

ED, EA, 용매의 사용량은 각 반응단계에서 고체생성물(Ⅰ) 100g에 대하여 ED 1∼5,000g, EA 1∼5,000g, 용매 0∼5,000ml의 범위가 바람직하다.The amount of ED, EA, and solvent used is preferably in the range of 1 to 5,000 g of ED, 1 to 5,000 g of EA, and 0 to 5,000 ml of solvent based on 100 g of solid product (I) in each reaction step.

반응조건은 제각기의 반응단계에서 반응온도 0∼500℃, 바람직하게로는 20∼200℃이며, 반응시간은 반응방법에 따라 적당한 범위는 바뀌며, 현탁상태에서의 반응은 1분∼10시간, 분쇄기에 의한 반응에 관해서는 보올밀로서 5∼200시간, 진동밀로서 10분∼50시간 정도이다.The reaction conditions are from 0 to 500 ° C, preferably from 20 to 200 ° C, in the reaction stages of the respective reaction stages. The reaction time varies depending on the reaction method, and the reaction in suspension is 1 minute to 10 hours, grinder. Reaction by is about 5 to 200 hours as a bowl mill and about 10 minutes to 50 hours as a vibration mill.

반응종료후 미반응의 ED 또는 EA를 함유한 반응액은 감압또는 상압 류거(溜去)로서 제거하든가, 여별 또는 데칸테이션(Decantation)에 의하여 액체부분을 분리하고, 다시 필요에 응하여 용매로서 세정건조하여 고체생성물(Ⅱ)을 얻는다. 이런 경우 고체로서 분리치 않고 용매를 가한 그대로의 현탁상인 그대로 하여 다음의 반응에 사용하여도 좋다. 또, 미반응물 등의 제거는 각 반응단계마다 행하는 것이 가장 바람직하다.After completion of the reaction, the unreacted reaction solution containing ED or EA is removed by reduced pressure or atmospheric pressure, or separated by filtration or decantation, and then washed and dried as a solvent if necessary. To obtain a solid product (II). In this case, it may be used in the next reaction without being separated as a solid and leaving it as it is in the suspended phase as it is added. Moreover, it is most preferable to remove unreacted material etc. for each reaction step.

이와 같이하여 얻어진 고체생성물(Ⅱ)은 이어서 유기 알루미늄 화합물과 조합(組合)되어서 α-올레핀중합용의 촉매로서 제공된다.The solid product (II) thus obtained is then combined with an organoaluminum compound to serve as a catalyst for α-olefin polymerization.

이 반응에 있어서 사용되는 유기 알루미늄화합물은 일반식 AlRnR'n'X3-(n+n') (식중 R, R'은 알킬기, 아릴기, 알킬릴기, 시클로알킬기 등의 탄화수소기 또는 알콕시기를 나타내며, X는 불소, 염소, 취소 및 옥소인 할로겐을 나타내며, 또 n, n'은 O<n+n'≤3의 임의의 수를 나타냄)로서 표시되는 것으로서, 그 구체예로서는 트리메틸알루미 늄, 트리에틸알루미늄, 트리 n-프로필알루미늄, 트리 n-부틸알루미늄, 트리 i-부틸알루미늄, 트리 n-헥실알루미늄, 트리 i-헥실알루미늄, 트리 2-메틸펜틸알루미늄, 트리 n-옥틸알루미늄, 트리 n-데실알루미늄 등의 트리알킬알루미늄, 류디에틸알루미늄 모노클로라이드, 디 n-프로필알루미늄 모노클로라이드, 디 i-부틸알루미늄 모노클로라이드, 디에틸알루미늄 모노플루오라이드 디에틸알루미늄 모노브로마이드, 디에틸알루미늄 모노아이오다이드 등의 디에틸알루미늄 모노할라이드튜, 디에틸알루미늄하이드라이드 등의 알킬알루미늄 하이드라이드류, 메틸알루미늄세스키클로라이드, 에틸알루미늄세스키 클로라이드, 에틸 알루미늄 디클로라이드, i-부틸알루미늄 디클로라이드 등의 알킬알루미늄 할라이드류 등을 예거할 수 있으며, 그밖에 모노에톡시디에틸 알루미늄, 디에톡시모노에틸 알루미늄 등의 알콕시 알킬알루미늄류를 사용할 수도 있다.The organoaluminum compound used in this reaction represents a general formula AlRnR'n'X 3- (n + n '), wherein R and R' represent a hydrocarbon group or an alkoxy group such as an alkyl group, an aryl group, an alkylyl group or a cycloalkyl group. , X represents a halogen which is fluorine, chlorine, cancellation and oxo, and n, n 'represents an arbitrary number of O <n + n' ≤ 3), and specific examples thereof include trimethylaluminum and triethyl Aluminum, tri n-propylaluminum, tri n-butylaluminum, tri i-butylaluminum, tri n-hexyl aluminum, tri i-hexyl aluminum, tri 2-methylpentyl aluminum, tri n-octyl aluminum, tri n-decyl aluminum Trialkylaluminum, leuthiethylaluminum monochloride, di n-propylaluminum monochloride, di i-butylaluminum monochloride, diethylaluminum monofluoride diethylaluminum monobromide, diethylaluminum Alkyl aluminum hydrides, such as diethyl aluminum monohalide tube, such as mono iodide, and diethyl aluminum hydride, methyl aluminum sesquichloride, ethyl aluminum sesquichloride, ethyl aluminum dichloride, i-butyl aluminum dichloride, etc. Alkyl aluminum halides, and the like, and alkoxy alkyl aluminums such as monoethoxydiethyl aluminum and diethoxy monoethyl aluminum may also be used.

이들의 유기 알루미늄 화합물과 고체생성물(Ⅱ)과의 량비(量比)는 고체생성물(Ⅱ) 100g에 대해, 유기알루미늄 화합물 50∼5,000g의 범위이며, 불활성 가스중에서, 양자를 혼합하는 것만으로서 즉시 α-올레핀의 중합촉매로서의 활성을 갖도록되며, 종래의 찌이글러(Ziegler), 낫타(Natta)형 촉매와 같도록하여 사용할 수가 있다.The amount ratio between these organoaluminum compounds and the solid product (II) is in the range of 50 to 5,000 g of the organoaluminum compound with respect to 100 g of the solid product (II), and is immediately mixed by mixing both in an inert gas. It has an activity as a polymerization catalyst of? -olefin, and can be used in the same manner as a conventional Ziegler and Natta type catalyst.

중합 반응은 n-헥산, n-헵탄, n-옥탄, 벤젠, 톨루엔 등의 탄화수소 용매중에서 실시되는 이외에, 용매를 쓰지 않고, 액화 프로필렌, 액화부텐-1등 액화 α-올레핀 모노머중에서 실시할 수도 있다. 중합온도는 실온 (20°)∼200℃, 중합압력은 상압(0kg/cm2G)∼50kg/㎠G로서 통상적으로 5분∼10시간 정도 실시된다. 중합할 무렵 분자량 제어를 위하여 알맞는 량의 수소를 첨가하는 것은 종래의 중합방법과 같은것이다.The polymerization reaction may be carried out in liquefied α-olefin monomers such as liquefied propylene and liquefied butene-1, in addition to being carried out in hydrocarbon solvents such as n-hexane, n-heptane, n-octane, benzene and toluene, without using a solvent. . The polymerization temperature is room temperature (20 °) to 200 ° C, and the polymerization pressure is normal pressure (0 kg / cm 2 G) to 50 kg / cm 2 G, which is usually performed for about 5 minutes to 10 hours. At the time of polymerization, adding an appropriate amount of hydrogen for molecular weight control is the same as in the conventional polymerization method.

본 발명의 방법에 있어서 사용에 제공되는 α-올레핀은 에틸렌, 프로필렌, 부텐-1, 헥센-1, 옥텐-1, 데센-1 등의 직쇄 모노 올레핀류, 4-메틸-펜텐-1, 2-메틸-펜텐-1, 3-메틸부텐-1 등의 지쇄(

Figure kpo00002
) 모노올레핀류, 부타디엔, 이소프렌, 클로로프렌 등의 디올레핀류, 스틸렌 등이며, 본 발명의 방법에서 이들 제각기의 단독중합뿐 만이 아니고 상호간에 다른 α-올레핀과 조합하여, 예를들면 프로필렌과 에틸렌, 부텐-1과 에틸렌, 프로필렌과 부텐-1과 같이 조합(組合)하여 공중합을 행하게 할 수도 있다.Α-olefins provided for use in the process of the present invention are linear monoolefins such as ethylene, propylene, butene-1, hexene-1, octene-1, decene-1, 4-methyl-pentene-1, 2- Branched chains such as methyl-pentene-1 and 3-methylbutene-1 (
Figure kpo00002
) Diolefins such as monoolefins, butadiene, isoprene, chloroprene, styrene, and the like, in the process of the present invention, not only homopolymerization of these groups, but also in combination with other α-olefins, for example, propylene and ethylene, Copolymerization may be performed in combination with butene-1 and ethylene and propylene and butene-1.

본 발명의 중합 방법에 의하여 얻어지는 제1의 효과는,α-올레핀의 중합체의 제조에 있어서 대단히 고결정성의 α-올레핀중합체가 얻어진다는 것이다. 예를들면, 프로필렌의 중합체의 제조에 있어서, 본 발명자들의 전기한 발명에 의한 방법에서는, 노르멀헵탄 불용물(不溶物)로서의 결정성인 아이소택틱폴리 프로필렌 함유량은, 75-96%이었으나, 본 발명에서는 92∼97%정도로 향상된다.The 1st effect obtained by the polymerization method of this invention is that the highly crystalline alpha-olefin polymer is obtained in manufacture of the polymer of alpha-olefin. For example, in the production of the polymer of propylene, in the method according to the inventors described above, the isotactic polypropylene content, which is crystalline as a normal heptane insoluble, was 75-96%. In the invention, it is improved to about 92 to 97%.

본 발명의 제2효과는, 특히 프로필렌의 중합체의 형상이 개량된다는 사실이다. 본 발명자들의 전기한 발명에 의한 방법에서는, 에틸렌 중합체의 입자의 형상은 좋고, 쌓인것의 겉보기비중(嵩比重)(BD)으로 0.45까지 달하는 것이었으나, 프로필렌중합체에서는 형상이 나쁘고, BD로서 0.08∼0.18밖엔 되지 않으며, 또, 입자도 갖추어지지 않았다. 본 발명에서는, BD는, 0.35에 까지 도달하였고, 입자 형상도 구상(球狀)에 가깝게 개선되고 있다.The second effect of the present invention is the fact that the shape of the polymer of propylene is improved in particular. In the method according to the present invention of the present inventors, the shape of the particles of the ethylene polymer was good and reached up to 0.45 in the apparent specific gravity (BD) of the accumulation, but in the propylene polymer, the shape was bad, and it was 0.08 to BD. It was only 0.18 and had no particles. In the present invention, BD has reached 0.35, and the particle shape is also improved to be almost spherical.

본 발명의 제3의 효과는, 고체생성물(Ⅱ)당의 α-올레핀 중합체의 수량(收量)이 충분히 높고, 특히, 프로필렌의 중합에 있어서, 통상적인 중합조건으로서 5×103∼2×104g(폴리머)/g(고체생성물(Ⅱ)에 달한다는 사실이며, 중합체중의 남은 촉매의 제거 즉 탈회(脫灰)공정을 생략하더라도, 폴리머의 착색이 없었고, 또, 폴리머의 물성을 손상시킨다든지, 폴리머의 성형시, 금형을 발청(發

Figure kpo00003
)시킨다든지하는 나쁜 영향이 보이지 않았다는 사실이다.The third effect of the present invention is that the amount of the α-olefin polymer per solid product (II) is sufficiently high, and in particular, in the polymerization of propylene, 5 × 10 3 to 2 × 10 as a general polymerization condition. 4 g (polymer) / g (solid product (II)), and even if the removal of the remaining catalyst in the polymer, that is, the deliming step, was omitted, the polymer was not colored and the physical properties of the polymer were damaged. Molds during the molding of polymers or
Figure kpo00003
The fact that there was no bad effect of letting it go.

본 발명의 제4의 효과는, 천이금속이 매우 유효하게 이용되고 있다는 사실이며, 통상적인 프로필렌의 중합으로서, 1×104∼5×606g(폴리머)/g(천이금속원자)에 달한다는 것이다. 이하, 실시예를 나타내는 것에 따라 본 발명을 더욱 상세하게 설명하겠다.The fourth effect of the present invention is the fact that the transition metal is very effectively used, and it is 1 × 10 4 to 5 × 60 6 g (polymer) / g (transition metal atom) as a polymerization of a typical propylene. Will. EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail as an Example is shown.

[실시예 1]Example 1

(1) 고체생성물(I)의 (Ⅱ)의 제조(1) Preparation of (II) of Solid Product (I)

3염화 알루미늄(무수) 80g과 수산화 마그네슘 58g을 진동밀로서 180℃로 10시간 분쇄해 가면서 반응시켰든 바, 염화수소가스의 발생을 동반해가면서 반응이 일어났다. 가열종료후, 질소기류 중에서 냉각하고, 고체생성물(I)을 얻었다.When 80 g of aluminum trichloride (anhydrous) and 58 g of magnesium hydroxide were pulverized at 180 ° C. for 10 hours, the reaction was carried out with the generation of hydrogen chloride gas. After completion of heating, the mixture was cooled in a nitrogen stream to obtain a solid product (I).

진동밀 중에, 고체생성물(I) 100g, EA인 4염화티탄 20g을 넣고, 120℃로서, 5시간 분쇄해가면서 반응시킨 후, 감압하에서, 미반응의 4염화티탄을 제거하고, 냉각하였다.In a vibrating mill, 100 g of solid product (I) and 20 g of titanium tetrachloride which were EA were added, and reacted while pulverizing at 120 ° C. for 5 hours, and under reduced pressure, unreacted titanium tetrachloride was removed and cooled.

다시, 4염화티탄과 ED인 안식향산 에틸과의 착체 [1:1(몰비, 이하같음)] 12.0g을 가하고, 진동밀로서 40℃에서 120시간 분쇄해가면서 반응을 행하고, 고체생성물(Ⅱ)을 얻었다. 고체생성물(Ⅱ) 1g중의 티탄원자의 함유량은 19.5mg이였다.Again, 12.0 g of a complex of titanium tetrachloride and ethyl benzoate as ED [1: 1 (molar ratio, equal to or less)] was added, and the reaction was carried out while grinding at 40 DEG C for 120 hours using a vibrating mill, and the solid product (II) was added. Got it. The content of titanium atom in 1 g of solid product (II) was 19.5 mg.

(2) 프로필렌 중합체의 제조(2) Preparation of Propylene Polymer

내용적 1.5ℓ의 스테인레스 반응기를 질소가스로서 치환한 후, n-헥 산 1ℓ, 트리이소부틸알루미늄 480mg, 전기한(I)에서 얻어진 고체생성물(Ⅱ) 12mg을 가하고, 수소 75ml, 프로필렌 분압 12kg/㎠G로서 60℃에서 5시간, 프로필렌의 중합반응을행하였다. 중합반응 종료후, 용매를 증발시켜서 제거하고, 폴리머를 얻었다. 얻어진 폴리머 5g을 n-헵탄 50ml을 사용하고, 속스렛(Soxhlet) 추출기로서, n-헵탄의 비점(98℃)로서 추출을 행하고, n-헵탄 가용분을 어택틱플로필렌으로 하고, 나머지를 이소택틱폴리프로필렌으로 하였다. 이소택딕인덱스는, 다음과 같이하여 구하였다. 이소택틱

Figure kpo00004
또, 얻어진 폴리머의 BD는 0.35이며, 형상은 대폭적으로 개성되고 있었다. 결과는, 종합하여 다른 실시예와 함께 제1표에 나타냄.After replacing the 1.5 liter stainless steel reactor with nitrogen gas, 1 liter of n-hexane, 480 mg of triisobutylaluminum, and 12 mg of solid product (II) obtained in the above-mentioned (I) were added, and 75 ml of hydrogen and 12 kg of propylene partial pressure were added. The polymerization reaction of propylene was carried out at 60 ° C. for 5 hours as cm 2 G. After the completion of the polymerization reaction, the solvent was evaporated to remove the polymer. 5 g of the obtained polymer was extracted with a boiling point (98 ° C.) of n-heptane using a Soxhlet extractor using 50 ml of n-heptane, the n-heptane soluble component was made into atactic flopylene, and the rest of the It was set as tactic polypropylene. Isotactic index was obtained as follows. Isotactic
Figure kpo00004
Moreover, BD of the obtained polymer was 0.35 and the shape was largely individualized. The results are collectively shown in the first table together with the other examples.

[실시예 2]Example 2

직경 100mm, 내용적 785ml의 보올밀(SUS 304제)에, 직경 10mm의 스테인레스 구(球) 80개를 넣고, 실시예 1에서 얻은 고체생성물(I) 20g, EA1으로서 4염화규소 3g, ED로서 계피산 에틸 4.0g을 넣고, 40℃로서 75시간 분쇄해가면서 반응시켰다. 반응종료후, 감압으로서 미반응물을 제거한 후, EA2로서 4염화티탄을 80g을 넣고, 다시, 80℃로서 40시간 분쇄해가면서 반응시켰다. 반응종료후, 질소치환된 드라이 박스중에서, 여별하고, n-헥산 I50ml로서 3회 세정한 후, 건조하는 것에 의하여, 고체 생성물(Ⅱ)을 얻었다.Into a ball mill (made of SUS 304) having a diameter of 100 mm and a volume of 785 ml, 80 stainless spheres having a diameter of 10 mm were placed, and 20 g of solid product (I) obtained in Example 1, 3 g of silicon tetrachloride as EA 1 , ED 4.0 g of ethyl cinnamon was added thereto, followed by reaction while grinding at 40 ° C. for 75 hours. After completion of the reaction, after removing the unreacted substances a reduced pressure, and the titanium tetrachloride as EA 2 Put 80g, it was going again, 40 hours milling a 80 ℃ reaction. After completion of the reaction, in a nitrogen-substituted dry box, the product was filtered off, washed three times with 50 ml of n-hexane I, and dried to obtain solid product (II).

고체생성물(Ⅱ)을 사용하고, 실시예 1과 같이하여, 프로필렌의 중합을 행하였다. 결과를 제1표에 나타냄Propylene was polymerized in the same manner as in Example 1 using solid product (II). Results shown in Table 1

[실시예 3]Example 3

보올밀에 EA1으로서의 3염화알루미늄 3g과 ED1으로서의 디메틸폴리실록산 1.7g을 혼합반응시켜 얻어진 착체를 넣고, 다시 실시예 1과 같은 고체생성물(Ⅰ) 20g을 넣어서, 30℃로서 48시간 분쇄반응 후, EA2로서 4염화티탄과 ED2로서 의 테트라히 드로푸란의 착제(1:2)를 8g 가하고, 다시 50℃로서 60시간 분쇄반응하는 것에 의하여 고체생성물(Ⅱ)을 얻었다.After adding 3 g of aluminum trichloride as EA 1 and 1.7 g of dimethylpolysiloxane as ED 1 to a bowl mill, a complex obtained by mixing and adding 20 g of solid product (I) as in Example 1 was further pulverized at 30 ° C. for 48 hours. , 8 g of a tetrahydrofuran complex (1: 2) as titanium tetrachloride as EA 2 and ED 2 were added, and the resultant was further subjected to pulverization reaction at 50 ° C. for 60 hours to obtain a solid product (II).

이 고체생성물(Ⅱ)을 사용하여, 실시예 1과 같이하여, 프로필렌중합을 행하였다. 결과를 제1표에 나타냄Using this solid product (II), propylene polymerization was conducted in the same manner as in Example 1. Results shown in Table 1

[실시예 4]Example 4

3염화 알루미늄(무수) 80g과 산화마그네슘 30g을, 보울밀로서 120℃에서 48시간 분쇄해가면서, 반응시키고 고체생성물(Ⅰ)을 얻었다.80 g of aluminum trichloride (anhydrous) and 30 g of magnesium oxide were pulverized for 48 hours at 120 ° C. with a bowl mill to react to obtain a solid product (I).

고체생성물(I) 20g과 EA인 4염화티탄과 ED인 페닐초산과의 착체(1:1) 5g과를, 진동밀로서, 실온(20。C)에서 30분간 분쇄해가면서, 반응시킨 후, n-햅탄 50ml과 4염화티탄 180g의 혼합용액중에 현탁시키고, 100℃에서 4시간 반응시켰다. 반응종료후, 드라이박스 중에서, 여별하고, n-헥산 150ml씩, 3회 세정한 후, 건조하는 것에 의해, 고체생성물(Ⅱ)을 얻었다.After reacting 20 g of a solid product (I) with 5 g of a complex (1: 1) of titanium tetrachloride (EA) and phenyl acetic acid (ED) with a vibrating mill while grinding for 30 minutes at room temperature (20 ° C.), It was suspended in the mixed solution of 50 ml of n-haptan and 180 g of titanium tetrachloride, and reacted at 100 degreeC for 4 hours. After completion of the reaction, the solid product (II) was obtained by filtration in a dry box, washing with 150 ml of n-hexane three times, and drying.

고체생성물(Ⅱ) 사용하여, 실시예 1과 같이하여, 프로필렌의 중합을 행하였다. 결과는 제1표에 나타냄Propylene was polymerized in the same manner as in Example 1 using solid product (II). The results are shown in the first table.

[실시예 5]Example 5

3염화 알루미늄(무수) 60g과 히드로탈사이트(Mg6Al2(OH)16CO3·4H2O) 20g을 100℃에서 2시간 가열한 것 40g을, 진동밀을 사용하고, 250℃에서 1시간 분쇄, 반응하는 것에 의하여, 고체생성물(Ⅰ)을 얻었다. n-헥산 200ml중에, ED1으로서 메틸수소 폴리실록산 20ml, 상기한 고체생성물(Ⅰ) 50g을 넣고, 40℃에서 1시간 반응시킨 후, 여별하고, n-헥산으로 세정하여 건조시켰다.60 g of aluminum trichloride (anhydrous) and 20 g of hydrotalcite (Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O) were heated at 100 ° C. for 2 hours, 40 g using a vibration mill, at 1,250 ° C. The solid product (I) was obtained by time pulverizing and reacting. In 200 ml of n-hexane, 20 ml of methylhydrogen polysiloxane and 50 g of the above-mentioned solid product (I) were added as ED 1 , reacted at 40 ° C for 1 hour, filtered, washed with n-hexane and dried.

이 건조고체 20g에, ED2로서의 톨루일산메틸 3g, EA로서의 4염화티탄 6g을 보올밀에 넣고, 80℃에서 20시간 분쇄반응 후, 80℃에서 2시간 감압하여 유지하고, 미반응물을 제거하고, 고체생성물(Ⅱ)을 얻었다.To 20 g of this dry solid, 3 g of methyl toluate as ED 2 and 6 g of titanium tetrachloride as EA were placed in a bowl mill, and after 20 hours of grinding reaction at 80 ° C., the mixture was kept at 80 ° C. under reduced pressure for 2 hours to remove unreacted product. , Solid product (II) was obtained.

고체생성물(Ⅱ)을 사용하고, 실시예 1과 같이하여, 프로필렌의 중합을 행하였다. 결과는 제1표에 나타냄.Propylene was polymerized in the same manner as in Example 1 using solid product (II). The results are shown in Table 1.

[실시예 6]Example 6

3염화철(무수) 60g과 산화알루미늄 마그네슘(MgAl2O4) 70g과를 320℃에서 5시간, 진동밀 중에서 반응시키고, 고체생성물(I)을 얻었다.60 g of iron trichloride (anhydrous) and 70 g of aluminum magnesium oxide (MgAl 2 O 4 ) were reacted in a vibration mill at 320 ° C. for 5 hours to obtain a solid product (I).

고체생성물(Ⅱ) 20g을 톨루엔 180ml 중에 현탁시켜두고, ED1으로서 에탄올 10g을 가하고, 30℃에서 1시간 반응후, 150ml의 톨루엔을 가하여 데칸트(Decantation:傾捨)하는 조작을 2회 반복하고 전량을 180ml로 한후, ED2로서 벤조페논 8g을 가하고, 60℃에서 30분 반응 후, 데칸트하고, 150ml 톨루엔을 가하여 데칸트하고, 전량을 60ml로 한 후, EA인 4 염화 티탄 100ml, ED3인 디 n-부틸에테르 20m工을 가하고, 130℃에서 1시간 반응시킨 후, 여별하고, n-헥산으로 세정하여, 건조하는 것에 의해 고체생성물(Ⅱ)을 얻었다.20 g of solid product (II) was suspended in 180 ml of toluene, 10 g of ethanol was added as ED 1 , and after 1 hour of reaction at 30 ° C., 150 ml of toluene was added to decantation twice. After making the total amount 180 ml, 8 g of benzophenone was added as ED 2 , reacted at 60 ° C. for 30 minutes, then decanted, decanted by adding 150 ml toluene, and the total amount was 60 ml. 100 ml of titanium tetrachloride, EA, ED 3-di n- butyl ether was added to 20m工, after 1 h at 130 ℃, separated by filtration, washed with n- hexane to give a solid product (ⅱ) by drying.

고체생성물(Ⅱ)을 사용하여, 실시예 1과 같이하여, 프로필렌의 중합을 행하였다. 결과를 제1표에 나타냄.Propylene was polymerized in the same manner as in Example 1 using solid product (II). The results are shown in Table 1.

[실시예 7]Example 7

3염화 알루미늄(무수) 80g과 염화마그네슘(6수염(水鹽))(MgCl2·6H2O) 6580 g of aluminum trichloride (anhydrous) and magnesium chloride (hexahydrate) (MgCl 2 · 6H 2 O) 65

g과를, 진동밀 중에서 80℃에서 20시간 분쇄해가면서 반응시키고, 고체생성물(I)을 얻었다.g was reacted while pulverizing at 80 DEG C for 20 hours in a vibration mill to obtain a solid product (I).

고체생성물(I) 20g에 n-부틸에테르(ED1) 3g을 가하여 40℃에서 30분간 진동밀로서 반응시킨 후, 안식향산(ED2) 2g을 가하여 다시 60℃에서 30분간, 진동밀로서 반응시켰다. 이를 4염화티탄 120g, n-헥산 30ml의 혼합액 중에 현탁시켜, 75℃에서 3시간 반응시켰다. 반응종료 후, 미반응물을, 감압하에 류거(溜去)하고, 고체생성물(Ⅱ)을 얻었다.3 g of n-butyl ether (ED 1 ) was added to 20 g of the solid product (I) and reacted for 30 minutes at 40 ° C., followed by 2 g of benzoic acid (ED2), followed by reaction at 60 ° C. for 30 minutes. This was suspended in a mixed solution of 120 g of titanium tetrachloride and 30 ml of n-hexane, and reacted at 75 ° C for 3 hours. After the completion of the reaction, the unreacted product was ligated under reduced pressure to obtain a solid product (II).

고체생성물(Ⅱ)을 사용하여, 실시예 1과 같이하여 프로필렌의 중합을 행하였다. 결과를 제1표에 나타냄.Using the solid product (II), propylene was polymerized in the same manner as in Example 1. The results are shown in Table 1.

[비교예 1]Comparative Example 1

실시예 1에 있어서 고체생성물(I)과 두번으르 나누어 반응시킨 4염화티탄을 동시에 반응시키는 이외는 실시예 1과 같은 실험을 행하였다.The same experiment as in Example 1 was carried out except that the solid product (I) and the titanium tetrachloride reacted in two separate portions were simultaneously reacted.

즉 실시예 1에서 얻은 고체 생성물(Ⅰ) 100g, 4염화티탄 20g 및 4염화티탄과 안식향산에틸과의 착체(1:1) 12g을 동시에 혼합하여 진동밀로서 120℃에서 5시간 분쇄반응 후, 다시 40℃에서 120시간 분쇄시켜가면서 반응을 행한 후, 감압하에서 미반응 4염화티탄을 제거하고 고체생성물(Ⅱ)을 얻었다. 이 고체생성물(Ⅱ)을 사용하고 그 다음은 실시예 1과 완전히 같이하여 프로필렌의 증합을 행하였다. 결과는 제1표에 나타낸 것처럼 중합체수량, 이소택틱 인덱스, BD의 어느 것에 있어서도 실시예 1에 비교하여 훨씬 뒤떨어지고 있다.That is, 100 g of solid product (I) obtained in Example 1, 20 g of titanium tetrachloride, and 12 g of a complex of titanium tetrachloride and ethyl benzoate (1: 1) were mixed at the same time. After the reaction was carried out while pulverizing at 40 ° C. for 120 hours, unreacted titanium tetrachloride was removed under reduced pressure to obtain a solid product (II). This solid product (II) was used, and propylene was then integrated in the same manner as in Example 1. As shown in the first table, the results are much inferior to those in Example 1 in terms of polymer amount, isotactic index, and BD.

[비교예 2]Comparative Example 2

실시예 6에 있어서 고체생성물(I)에 3종류의 ED를 3회로 나누어서 반응시키고 있던 것을 동시에 첨가반응시키는 이외는 실시예 6과 같은 실험을 행하였다.In Example 6, the same experiment as in Example 6 was conducted except that the solid product (I) was reacted by dividing three kinds of ED three times.

즉, 실시예 6에서 얻은 것과 같은 고체생성물(I) 200g을 톨루엔180ml중에 현탁시켜두고 여탄올 10g, 벤조페논 8g, 4염화티탄 100ml, 디-n 부틸에테르 20ml와 동시에 가하고, 30℃에서 1시간, 60℃에서 30분간, 130℃에서 1시간 반응시킨 후, 여별하고, n-헥산으르 세정하여, 건조하는 것에 의하여 고체 생성물(Ⅱ)을 얻었다.That is, 200 g of solid product (I) as obtained in Example 6 was suspended in 180 ml of toluene and added simultaneously with 10 g of ethanol, 8 g of benzophenone, 100 ml of titanium tetrachloride, and 20 ml of di-n butyl ether, and 1 hour at 30 ° C. After reacting at 130 degreeC for 30 minutes at 130 degreeC for 1 hour, it filtered, washed with n-hexane, and dried, and obtained solid product (II).

이 고체생성물(Ⅱ)을 사용하는 이외는 실시예 6과 같이하여 프로필렌의 중합을 행하였다. 그 결과를 제1표에 나타내겠으나, 거기에서 명확한 바와같이 이런 경우에도 모든 점에서 실시예 6과 비교하여 휠씬 뒤떨어지고 있다는 것은 명료하다.Propylene was polymerized in the same manner as in Example 6 except that this solid product (II) was used. The results are shown in the first table, but it is clear that even in this case, the results are much inferior to that of the sixth embodiment in all cases.

[제1표][Table 1]

Figure kpo00005
Figure kpo00005

[실시예 8]Example 8

실시예 1에서 얻어진 고체생성물(Ⅱ) 사용하여, 프로필렌-에틸렌의 공중합을 행하였다.Propylene-ethylene was copolymerized using the solid product (II) obtained in Example 1.

중합용기에 실시예 1에서 얻어진 것과 같은 고체생성물(Ⅱ) 10mg, 트리에틸 알루미늄 420mg을 사용하여, 수소 80ml을 넣고, 중합온도 60℃에서, 에틸렌 10g씩 30분 간격으로 8회 피이드(feeding) 해가면서, 프로필렌 분압 10kg/㎠에서 4시간 중합반응을 행하게 하였다. 반응후, 실시예 1과 같은 조작을 거쳐서, 프로필렌-에틸렌 공중합체를 얻었다. 고체생성물(Ⅱ) 1g당의 중합체 수량은 20,800g(중합체)이며, 이소택틱 인덱스는 92.0이었다.Into a polymerization vessel, 80 mg of hydrogen was added using 10 mg of solid product (II) as obtained in Example 1 and 420 mg of triethyl aluminum, and fed eight times at a polymerization temperature of 60 ° C. every 10 minutes at 10 g of ethylene. In the course of this, the polymerization reaction was carried out at a propylene partial pressure of 10 kg / cm 2 for 4 hours. After the reaction, a propylene-ethylene copolymer was obtained through the same operation as in Example 1. The polymer yield per 1 g of solid product (II) was 20,800 g (polymer), and the isotactic index was 92.0.

[실시예 9]Example 9

실시예 8과 같이하여 프로필렌-부텐-1의 공중합을 행하였다.In the same manner as in Example 8, copolymerization of propylene-butene-1 was performed.

실시예 8에 있어서 에틸렌을 사용하는 대신에, 부텐-120g을 사용하는 이외는, 실시예 8과 같이하여 프로필렌-부텐-1공중합을 행하였다. 고체생성물(Ⅱ) 1g당의 중합체 수량은 20,300g(중합체)이며, 이소택틱 인덱스는 91.0이었다.Instead of using ethylene in Example 8, except for using butene-120 g, propylene-butene-1 copolymerization was performed in the same manner as in Example 8. The polymer yield per 1 g of solid product (II) was 20,300 g (polymer), and the isotactic index was 91.0.

[실시예 10]Example 10

실시예 2에서 얻은 고체생성물(Ⅱ)을 사용하여, 에틸렌의 중합을 행하였다.Ethylene was polymerized using the solid product (II) obtained in Example 2.

실시예 2에서 얻어진 고체생성물(Ⅱ) 8mg, 트리이소부틸 알루미늄 480mg을 사용하고, 수소분압 5kg/2㎠G, 에틸렌분압 5kg/㎠, 85℃에서 5시간 중합반응을 행하게 하였다. 반응종료 후, 실시예 1과 같이하여 폴리머를 얻었다. 중합체 수량은, 18,800g(중합체)/g(고체생성물(Ⅱ))이었다. BD는 0.40, MI는 6.5이었다.Using 8 mg of solid product (II) obtained in Example 2 and 480 mg of triisobutyl aluminum, the polymerization reaction was carried out at a hydrogen partial pressure of 5 kg / 2 cm 2 G, an ethylene partial pressure of 5 kg / cm 2 and 85 ° C. for 5 hours. After completion of the reaction, the polymer was obtained in the same manner as in Example 1. The polymer yield was 18,800 g (polymer) / g (solid product (II)). BD was 0.40 and MI was 6.5.

[실시예 11]Example 11

실시예 3에서 얻어진 고체생성물(Ⅱ)을 사용하여, 부텐-1의 중합을 행하였다.The polymerization of butene-1 was carried out using solid product (II) obtained in Example 3.

실시예 3에서 얻어진 고체생성물(Ⅱ) 02g, 트리에틸알루미늄 380mg을 사용하고, 70℃에 있어서, 4시간 걸려, 부텐-1을 480g 연속적으로 피이드한 후 다시 2시간 중합반응을 행하게 하였다. 반응종료 후, 용매를 드라이엎하고, 폴리부텐 2.73g을 얻었 다. 중합체 수량은 13,650g(중합체 ) /g(고체생성물(Ⅱ ))이었다.02 g of solid product (II) obtained in Example 3 and 380 mg of triethylaluminum were used at 70 ° C. for 4 hours to feed 480 g of butene-1 continuously, followed by further polymerization for 2 hours. After completion of the reaction, the solvent was dried and 2.73 g of polybutene was obtained. The polymer yield was 13,650 g (polymer) / g (solid product (II)).

[실시예 12]Example 12

3염화 알루미늄(무수) 133g과 산화 마그네슘 40g을 보올밀로서 24시간 분쇄한 후,120℃에서 2시간 가열한 후, 냉각하고 다시 10시간 분쇄하여, 고체생성물(I)을 얻었다.133 g of aluminum trichloride (anhydrous) and 40 g of magnesium oxide were pulverized with a bowl mill for 24 hours, heated at 120 ° C. for 2 hours, cooled, and further ground for 10 hours to obtain a solid product (I).

안식향산에틸(ED) 12g과 4염화규소(EA1) 4.5g과를 및리 실온(20℃)에서 혼합반응시킨 것과, 고체생성물(I) 40g과를 보올밀로서 35℃로 48시간 분쇄 반응시키고, 얻어진 분체(粉體) 20g을 4염화티탄(EA2) 180g중에 현탁시키고, 80℃에서 2시 간 반응 후, 윗 부분 맑은액 (上澄液)을 데칸트로서 제거하그, 다시 4염화티탄 180g을 가하고, 80℃에서 1시간 반응 후, 윗부분 맑은액을 데칸트로서 제거한다. n-헥산 150ml을 가하여 테칸트로시 제거하는 조작을 2회 반북한 후, 드라이박스 중에서 여별하고 건조하는 것에 의하여 고체생성물(Ⅱ)을 얻었다.12 g of ethyl benzoate (ED) and 4.5 g of silicon tetrachloride (EA 1 ) were mixed at room temperature (20 ° C.), and 40 g of solid product (I) were pulverized at 35 ° C. for 48 hours with a boil mill, 20 g of the obtained powder was suspended in 180 g of titanium tetrachloride (EA 2 ), and after reacting at 80 ° C. for 2 hours, the upper clear solution was removed as decant, followed by 180 g of titanium tetrachloride. Was added and after 1 hour of reaction at 80 ° C., the clear upper liquid was removed as decant. 150 ml of n-hexane was added, and the operation of removing the cananthrosi was half-normized, followed by filtration and drying in a dry box to obtain a solid product (II).

이 고체생성물(Ⅱ)을 사용하여, 실시예 l과 같이하여, 프로필렌의 중합을 행하였다.결과는 제1표에 나타냄.Using this solid product (II), propylene was polymerized in the same manner as in Example 1. The results are shown in the first table.

[실시예 13]Example 13

실시예 12와 같은 조작으로서 얻은 고체생성물(I) 20g에, 2g의 쿠밀알코을(ED1) 및 5g의 안식향산에틸(ED2)를 브올밀로서 40℃로 48시간 분쇄반응시킨 후, 4염화규소(EA1) 9g을 가하고, 다시 24시간 보올밀로서 분쇄반응시켜 얻어진 분체 20g을,4염화티탄(EA2) 240g 중에 현탁시키고, 100℃에서 2시간 반응후, 윗부분 맑은액을 데칸트로서 제거한후, n-헥산 150ml을 가하여 윗부분 맑은액을 제거하는 조작을 2회 반복한 후, 드라이박스 중에서 여별하고, 건조하는 것에 의하여, 고체생성물(Ⅱ)을 얻었다. 이 고체생성물(Ⅱ)을 사용하고, 실시예 1과 같이하여 프로필렌의 중합을 행하였다. 결과는 제1표에 나타냄.To 20 g of solid product (I) obtained by the same operation as in Example 12, 2 g of cumyl alcohol (ED 1 ) and 5 g of ethyl benzoate (ED 2 ) were pulverized at 40 ° C. for 48 hours as a bromyl, followed by tetrachloride. 9 g of silicon (EA 1 ) was added thereto, and 20 g of the powder obtained by pulverization reaction as a bowl mill was further suspended in 240 g of titanium tetrachloride (EA2), and reacted at 100 ° C. for 2 hours, and then the clear liquid was removed as decant. Then, 150 ml of n-hexane was added, and the operation of removing the upper clear liquid was repeated twice, followed by filtration in a dry box and drying to obtain a solid product (II). Using this solid product (II), propylene was polymerized in the same manner as in Example 1. The results are shown in Table 1.

[실시예 14]Example 14

실시예 12와 같은 조작으로서 얻은 고체생성물(I) 40g에 안식향산 메틸(ED1) 12g을 보올밀로서 30℃로 24시간 분쇄 반응시킨 후, 4염화규소(EA1) 15g을 가하고, 다시 48시간 반응시켜서 얻은 분체 20g을, 4염화티탄(EA2) 350g에 현탁시킨 후, 80℃에서 2시간 반응시키고, 윗부분 맑은액을 데칸트로서 제거하고 200ml의 테트라클로로 에틸렌을 가하여 데칸트를 행한다. 다시, n-헥산 200ml을 가하여 데칸트하는 조작을 2회 반복한 후, 감압하에서 n-헥산을 류거(溜去)하는 것에 의하여 고체생성물(Ⅱ)을 얻었다.After 40 g of the solid product (I) obtained in the same manner as in Example 12, 12 g of methyl benzoate (ED 1 ) was pulverized at a temperature of 30 ° C. for 24 hours, followed by 15 g of silicon tetrachloride (EA 1 ), followed by 48 hours. After 20 g of the powder obtained by the reaction is suspended in 350 g of titanium tetrachloride (EA 2 ), the reaction is carried out at 80 ° C. for 2 hours, and the upper clear solution is removed as decant and 200 ml of tetrachloroethylene is added to decant. Then, 200 ml of n-hexane was added, and the operation of decanting was repeated twice, and then a solid product (II) was obtained by subjecting n-hexane to reduced pressure under reduced pressure.

고체생성물(Ⅱ)을 사용하여 실시예1과 같이하여 프로필렌의 중합을 행하였다. 결과는 제1표에 나타냄.Propylene was polymerized in the same manner as in Example 1 using the solid product (II). The results are shown in Table 1.

[실시예 15]Example 15

실시예 12와 같은 조작으로서 얻은 고체생성물(I) 40g에 안식향산 i-프로필(ED1) 16g을 보을밀로서 45℃로 48시간 분쇄 반응시켜서 얻어진 분말 20g을, 4염화티탄(EA) 190g중에 현탁시키고, 70℃에서 4시간 반응후, 여별에 의하여 반응액을 분리제거하고, 얻어진 고체를 재차 4염화티탄 220g 중에 현탁시키고, 90℃에서 1시간 반응후, 반응액을 데칸트로서 제거한다. n-헥산 250ml을 가하여 데칸트하는 조작을 2회 반복한 후, 감압하에서 n-헥산을 류거하는 것에 의하여 고체생성물(n)을 얻었다.20 g of the powder obtained by pulverizing and reacting 16 g of benzoic acid i-propyl (ED 1 ) at 45 ° C. for 48 hours with a bor mill in 40 g of the solid product (I) obtained by the same operation as in Example 12 was suspended in 190 g of titanium tetrachloride (EA). After 4 hours of reaction at 70 DEG C, the reaction solution is separated and separated by filtration, and the obtained solid is suspended again in 220 g of titanium tetrachloride. After the reaction at 90 DEG C for 1 hour, the reaction solution is removed as decant. 250 ml of n-hexane was added, and the operation of decanting was repeated twice, and the solid product (n) was obtained by distilling n-hexane under reduced pressure.

고체생성물(Ⅱ)을 사용하여 실시예 1과 같이하여 프로필렌의 중합을 행하였다. 결과는 제1표에 나타냄.Propylene was polymerized in the same manner as in Example 1 using the solid product (II). The results are shown in Table 1.

[실시예 16]Example 16

실시예 12에서 얻어진 고체생성물(Ⅱ) 12mg 및 트리이소부틸 알루미늄 480mg을 무용매하에, 액화프로필렌 500g중에 현탁시키고, 수소 90ml을 넣고, 중합온도 65℃에서 압력 26,5kg/㎠G로서 3시간 중합반응을 행하게 하였다. 중합반응 종료 후, 잔존 프로필렌을 제거하고, 프로필렌 중합체 l58g을 얻었다. 고체생성물(Ⅱ) 1g당의 중합체 수량(收量)은 13,170g이며, 티탄원자 1g당의 중합체 수량은 0.69×106이며 아이소택틱 인덱스 92.0, 폴리머 BD 0.30, MFR은 4.8이었다.12 mg of solid product (II) obtained in Example 12 and 480 mg of triisobutyl aluminum were suspended in 500 g of propylene without solvent, 90 ml of hydrogen was added, and polymerization was carried out at a polymerization temperature of 65 ° C. under a pressure of 26,5 kg / cm 2 G for 3 hours. The reaction was carried out. After the completion of the polymerization reaction, the remaining propylene was removed to obtain 58 g of propylene polymer. The polymer yield per 1 g of solid product (II) was 13,170 g, the polymer yield per 1 g of titanium atom was 0.69 × 10 6, and the isotactic index 92.0, polymer BD 0.30, and MFR were 4.8.

Claims (1)

3가금속의 할로겐화물과, 2가금속의 수산화물, 산화물, 탄산화물, 이들을 함유한 복염, 또는 2가금속화합물의 수산화물과를 반응시켜서 얻어지는 고체생성물(I)에, 1종 이상의 전자 공여체와 1종 이상의 전자수용체를 반응시켜서 고체생성물(Ⅱ)을 얻는데 있어서, 적어도 전자공여체 또는 전자수용체의 어느 것인가 한쪽 또는 양쪽을 여러번 나누어서 반응시키고, 더우기 그 전자수용체의 적어도 하나는 4염화티탄이며 이렇게하여 얻어진 고체생성물(Ⅱ)과 유기 알루미늄 화합물과를 조합(組合)한 촉매의 존재하여 α-올레핀을 중합시키는 것을 특징으로 하는 α-올레핀 중합체의 제조방법.The solid product (I) obtained by reacting a halide of a trivalent metal with a hydroxide, oxide, carbonate, a double salt containing these, or a hydroxide of a divalent metal compound, at least one electron donor and at least one species In obtaining the solid product (II) by reacting the electron acceptor, at least one of the electron donor or the electron acceptor is reacted by dividing one or both times several times, moreover, at least one of the electron acceptor is titanium tetrachloride and the solid product thus obtained ( A method for producing an α-olefin polymer characterized by polymerizing an α-olefin in the presence of a catalyst combining II) and an organoaluminum compound.
KR7901317A 1979-04-30 1979-04-30 Method for producing -olefin polymers KR820001966B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR7901317A KR820001966B1 (en) 1979-04-30 1979-04-30 Method for producing -olefin polymers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR7901317A KR820001966B1 (en) 1979-04-30 1979-04-30 Method for producing -olefin polymers

Publications (1)

Publication Number Publication Date
KR820001966B1 true KR820001966B1 (en) 1982-10-22

Family

ID=19211486

Family Applications (1)

Application Number Title Priority Date Filing Date
KR7901317A KR820001966B1 (en) 1979-04-30 1979-04-30 Method for producing -olefin polymers

Country Status (1)

Country Link
KR (1) KR820001966B1 (en)

Similar Documents

Publication Publication Date Title
US4287328A (en) Method for producing α-olefin polymers
CA1190989A (en) Propylene-ethylene copolymers for high-rigidity molded products and process for producing the same
US4368304A (en) Process for producing α-olefin polymers
US4277372A (en) Solid catalyst component for olefin polymerization
US4321345A (en) Method for producing α-olefin polymers
US4304891A (en) Process for producing α-olefin polymers
GB2037786A (en) Polymerization catalyst and process
US4363901A (en) Process for producing α-olefin polymers
EP0250225B1 (en) Catalyst component for polymerization of olefin
US4387198A (en) Process for producing α-olefin polymers
EP0086288B1 (en) Process for producing olefin polymers
KR820001966B1 (en) Method for producing -olefin polymers
KR20020096589A (en) Catalyst for polymerization and copolymerization of ethylene
NL7904189A (en) PHYSICALLY MIXED PROPENE POLYMER MATERIAL.
GB2028843A (en) alpha -olefin polymerization, catalysts therefor and components for such catalysts
JPH0822890B2 (en) Method for producing propylene polymer
KR830000358B1 (en) Process for producing α-olefin polymer
KR820002051B1 (en) Method of producing - olefin polymer
KR840000805B1 (en) Proce for producing polyethylene
KR820001950B1 (en) Method for producing - olefin polymers
US4403081A (en) Method for producing α-olefin polymers
KR850000108B1 (en) Process for producing alpha-olefin polymers
KR820002053B1 (en) Method of producing olefin polymer
KR810001603B1 (en) Manufacturing method of polypropylene
JPS63238110A (en) Production of alpha-olefin polymer