KR800001275B1 - Process for removing nox and so2 from waste gas - Google Patents

Process for removing nox and so2 from waste gas Download PDF

Info

Publication number
KR800001275B1
KR800001275B1 KR7401090A KR740001090A KR800001275B1 KR 800001275 B1 KR800001275 B1 KR 800001275B1 KR 7401090 A KR7401090 A KR 7401090A KR 740001090 A KR740001090 A KR 740001090A KR 800001275 B1 KR800001275 B1 KR 800001275B1
Authority
KR
South Korea
Prior art keywords
concentration
nox
exhaust gas
gas
amount
Prior art date
Application number
KR7401090A
Other languages
Korean (ko)
Inventor
수에 오 마찌
와이찌로오 가와가미
쇼오지 하시모또
게이이찌 요쯔모또
히로미 수나가
류우이찌 다나까
무라 게이따 가와
신지 아오끼
Original Assignee
마쯔 나미 나오 히데
가부시기가이샤 기바라세이사구쇼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 마쯔 나미 나오 히데, 가부시기가이샤 기바라세이사구쇼 filed Critical 마쯔 나미 나오 히데
Priority to KR7401090A priority Critical patent/KR800001275B1/en
Application granted granted Critical
Publication of KR800001275B1 publication Critical patent/KR800001275B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor

Abstract

The concn. ratio NO2/So2 of waste gas was adjusted to 0.1-0.3, and the gas was treated with radiations, ultrasound, to form aerosols of the NOx and SO2 which were removed from the gas by electrostatic precipitators. The sources of radiation and conditions of reactors were described.

Description

배기가스중에 함유되는 아황산가스 및/또는 질소산화물의 제거방법Method for removing sulfurous acid gas and / or nitrogen oxide contained in exhaust gas

제1도는 본 발명의 바람직한 상태를 나타내는 플루우 시이트(flow gheet)의 1예.1 is an example of a flow gheet showing a preferred state of the present invention.

제2도는 본 발명의 실시예 및 참고예에 있어서의 탈황률(.표) 및 탈초율(×표)을 나타내는 그래프이다.2 is a graph showing desulfurization rate (.Table) and denitrification rate (X table) in Examples and Reference Examples of the present invention.

본 발명은 배기가스에 함유되는 아황산가스 및/또는 질소산화물을 제거하는 방법에 관한 것이다.The present invention relates to a method for removing sulfur dioxide and / or nitrogen oxide contained in exhaust gas.

연료유, 석탄 등의 화석 연료를 사용하는 각종연료로(爐) 및 화학플랜트에서 생기는 배기가스중에는 유황산화물, 질소산화물 및 그밖의 유독가스가 함유되어 있다. 유황산화물, 주로 SO2, SO3는 1,000~2,000ppm. 질소산화물, 주로 NO, NO2는 300~3,000ppm.함유되어, 대기오염의 원흉이 되고 있다. 특히 질소산화물 NOx는 광화학스모그의 원인물질의 하나로 간주되어, 그 제거는 긴급을 요하고 있으나, 아직껏 그 방법이 확립되어 있지 않다.Sulfur oxides, nitrogen oxides and other toxic gases are contained in exhaust gases generated from various fuel furnaces and chemical plants using fossil fuels such as fuel oil and coal. Sulfur oxides, mainly SO 2 , SO 3 are 1,000 ~ 2,000ppm. Nitrogen oxides, mainly NO and NO 2, are contained in the range of 300 to 3,000 ppm, making them the main source of air pollution. In particular, nitrogen oxide NOx is regarded as one of the causative agents of photochemical smog, and the removal thereof is urgent, but the method has not yet been established.

본 발명자들은 배기가스에 함유되는 SO2및 NOx를 방사선조사에 의하여 비스트 또는 고형물로 변환하여, 이것을 집진기 또는 여과기로 제거하는 방법을 발명했으나 본 발명은 그 개량발명 내지 선택발명에 관한 것이다. 상기 발명을 기초로 다시 연구를 거듭한 결과, 조사실 입구에서의 배기가스에 함유되는 SO2농도와 NOx농도를 바람직한 비율로 유지하고, 방사선 또는 자외선을 조사하면, 탈황률 및 탈초율은 크게 향상하여, 배기가스에 흡수된 에너지가 효과적으로 이용되고 있다는 것이 판명되었다. 즉, 본 발명은 SO2및 NOx 또는 그 한쪽을 함유하는 배기가스를 적당한 방법으로 NOx농도와 SO2농도의 비(NOx/SO2)를 약 0.1 내지 0.3, 바람직하기로는 0.5-1.5로 조정한후, 방사선 또는 자외선을 조사하여, NOx 및 SO2를 효율적으로 미스트 또는 고형물로 변환시키는 것을 특징으로 한다.The present inventors have invented a method of converting SO 2 and NO x contained in exhaust gas into bees or solids by irradiation with radiation, and removing them with a dust collector or filter, but the present invention relates to the improved or selective invention. Based on the above-described invention, as a result, when the SO 2 concentration and the NOx concentration contained in the exhaust gas at the entrance of the irradiation chamber are maintained at a preferable ratio, and the radiation or ultraviolet rays are irradiated, the desulfurization rate and the denitrification rate are greatly improved. As a result, it has been found that the energy absorbed in the exhaust gas is effectively used. That is, according to the present invention, after adjusting the exhaust gas containing SO 2 and NOx or one of them, the ratio of NOx concentration and SO 2 concentration (NOx / SO 2 ) is adjusted to about 0.1 to 0.3, preferably 0.5 to 1.5. And by irradiating with radiation or ultraviolet rays, NOx and SO 2 are efficiently converted into mists or solids.

본 발명에 있어서의 방사선은 대표적으로는 α선, β선, X선, 전자선, 중성자선 등의 입자선이나, 전자파를 말한다. 또, 이들의 두종류 이상이 합친 혼합방사선도 사용 가능하다.Radiation in the present invention typically refers to particle beams such as α-rays, β-rays, X-rays, electron beams, neutron beams, and electromagnetic waves. Moreover, the mixed radiation which combined these two or more types can also be used.

그러나 처리가스량이 많을 경우에는, 고선률을 얻을 수 있고, 제어하기 쉽고, 또 γ선, X선에, 비해서 투과력이 작은등의 점을 고려하면, 입자선 가속기로부터의 전자선이 실용적이다. 또 처리가스량이 적고 저선량률이라도 될 경우에는 γ선, X선 등도 실용적이다.However, when the amount of the processing gas is large, the electron beam from the particle beam accelerator is practical in view of the fact that a high radiation rate can be obtained, it is easy to control, and the transmittance is small compared with γ-rays and X-rays. In addition, when the amount of processing gas is small and even a low dose rate is obtained, γ-rays, X-rays, and the like are also practical.

입자가속 기 이외의 방사선원으로서는, 방사선동위원소, 핵분열생성물, 사용이 끝난 핵연료, 원자로 등이 있다.Radiation sources other than particle accelerators include radioisotopes, fission products, spent nuclear fuel, and reactors.

또 본 발명에 있어서의 배기가스란 SO2및 NO, 또는 그 한쪽을 함유하는 가스를 말하고, 예를들면 화학플랜트, 제철소, 화력발전소 등에서 배출되는 배기가스가 포함된다.Also is the exhaust gas of the present invention to say the gas containing SO 2 and NO, or one of, for example, contains the exhaust gas discharged from chemical plants, steel mills, power plant.

그러나, 배기가스중의 NOx농도와 SO2농도의 비는 각공장, 사용연료, 사용조건등에 따라, 다르기 때문에 NOx 또는 SO2를 첨가하여, 조사실입구에서의 그 비율은 약 0.1~0.3, 바람직하기로는 약 0.5~1.5로 조정하여, 조사하는 방법이 사용된다. 또 연소로에 있어서 연소 온도 및 산소 공급량의 조절에 의하여, NOx 발생량이 변화하는 것은 주지하는 바와 같다.However, since the ratio of NO x concentration and SO 2 concentration in the exhaust gas varies depending on each plant, the fuel used, and the conditions of use, NOx or SO 2 is added, and the ratio at the entrance to the irradiation chamber is about 0.1 to 0.3. Is adjusted to about 0.5 to 1.5, and the method of irradiation is used. It is to be noted that in the combustion furnace, the amount of NOx generated changes by adjusting the combustion temperature and the amount of oxygen supply.

따라서 연소로로부터의 배기가스의 경우, 그 연소법의 조절, 예를들면 공급공기, 공급연료, 연소온도등의 조절에 의하여, NOx발생량을 조정하여, 조사실 입구에서의 배기가스의 NOx농도와 SO2농도의 비를 조정할 수가 있다. 한편, 질소 및 산소를 함유하는 가스에 방사선을 조사하면 방사선 화학반응에 의하여, NOx가 발생하고, 그 NOx발생량을 가스에 함유되는 N2및 O2량에 의존한다. 예를들면 동선량(同線量) 조사에 있어서는 N2및 O2량이 많을수록 NOx발생량은 많다. 따라서 배기가스중의 N2및 O2또는 어느 한 쪽의 함유량이 적을때, 공기, N2,O2,O3중 하나 또는 두 개 이상을 첨가하여, 조사에 의한 NOx발생량을 증가시킬 수가 있고, 조사입구의 배기가스의 NOx농도와 SO2농도의 비를 약 0.1~0.3, 바람직하기로는 0.5~1.5의 범위로 조절하여 조사한것과 동일한 결과를 얻을 수 있다. 또 N2및 O2를 함유하는 가스에 방사선을 조사할 경우, 선량률에 따라 NOx발생량은 변화한다. 따라서, 선량률의 조절에 의하여, 조사에 의한 NOx발생량을 조절할 수가 있고, 조사실 입구의 배기가스의 NOx농도와 SO2농도의 비가 약 0.1~3.0, 바람직하기로는 약 0.5~1.5의 범위로 조정하여 조사한것과 동일한 결과를 얻을 수 있다.Therefore, in the case of the exhaust gas from the combustion furnace, the NOx generation amount is adjusted by adjusting the combustion method, for example, supply air, feed fuel, combustion temperature, and the like, and the NOx concentration of the exhaust gas at the entrance of the irradiation chamber and SO 2. The ratio of concentration can be adjusted. On the other hand, when radiation is applied to a gas containing nitrogen and oxygen, NOx is generated by a radiochemical reaction, and the amount of NOx generation depends on the amount of N 2 and O 2 contained in the gas. For example, in the case of copper dose irradiation, the higher the amount of N 2 and O 2, the higher the amount of NOx generated. Therefore, when the content of N 2 and O 2 or one of the exhaust gases is low, one or two or more of air, N 2 , O 2 , and O 3 may be added to increase the amount of NOx generated by irradiation. In this case, the same result as that obtained by adjusting the ratio of NOx concentration and SO 2 concentration in the exhaust gas at the irradiation entrance in the range of about 0.1 to 0.3, preferably 0.5 to 1.5 can be obtained. Also upon irradiation of radiation to the gas containing N 2 and O 2, and the NOx emission amount is changed according to the dose rate. Therefore, by adjusting the dose rate, the amount of NOx generated by irradiation can be adjusted, and the ratio of NOx concentration and SO 2 concentration in the exhaust gas at the entrance of the irradiation chamber is adjusted to about 0.1 to 3.0, preferably about 0.5 to 1.5. The same result can be obtained.

이상 네방법의 두개 이상의 방법을 조합하는 것도 좋은 방법이라는 것은 물론이다. 또 현재 연소로에 있어서 공해원인 NOx의 발생량을 저감시키기 위하여, 연소온도를 낮추는 방법 및 배기재순환법 등의 열효과가 나쁜 불경제적인 연소법을 사용하고 있으나, 본 발명을 사용함으로써 그 필요가 없어지고 현저하게 연소율을 높일 수가 있어, 경제적이다. 조사하는 배기가스의 온도는 그 노점(露點)이상이 되고, 미스트 및 고형물의 분해온도 이하가 바람직하다.It goes without saying that it is also a good way to combine two or more of the above four methods. In addition, in order to reduce the amount of NOx that is a source of pollution in the combustion furnace, an uneconomical combustion method, which has a poor thermal effect such as a method of lowering the combustion temperature and an exhaust recirculation method, is used. It is possible to increase the combustion rate, which is economical. The temperature of the exhaust gas to be irradiated is equal to or higher than its dew point, and preferably below the decomposition temperature of the mist and the solid matter.

이하 본 발명의 구체적인 실시상태를 제1도의 플로우시이트에 따라 설명한다. 각중 연료로 및 화학공장(1)에서의 배기가스는 열교환기(2)에 의하여 조사실내에서의 최적온도로 조절되고, SO2농도 및 NOx농도측정장치(3)에 의하여 조사실입구의 배기가스의 SO2농도 및 NOx농도가 측정된다. SO2농도 및 NOx농도측정기(3)와 이하에 설명하는 각 장치는 연동되고 있고, SO2농도 및 NOx농도 측정기(3)의 신호에 의하여 가강 경제적이되도록 그들 장치의 하나 또는 둘 이상을 선택해서 가동시키고, 예를들면 첨가구(20)로부터중요한 가스의 공급에 의하여 언제나 조사실 입구의 NOx농도와 SO2농도의 비를 0.1-3.0, 바람직하기로는 0.5~1.5로 조절한다. 또는 방사선 또는 자외선 조사장치(22)에 의한 선량률의 조절에 의하여 그것과 같은 결과를 얻을 수 있는 상태로 제어되어 있다.Hereinafter, specific embodiments of the present invention will be described with reference to the flow sheet of FIG. The exhaust gas from each fuel furnace and the chemical plant 1 is adjusted to the optimum temperature in the irradiation chamber by the heat exchanger 2, and the SO 2 concentration and the NOx concentration measurement device 3 SO 2 concentration and NO x concentration are measured. Each device described below and the SO 2 concentration and NOx concentration measuring instrument 3 are linked to each other, and one or two or more of those apparatuses are selected so as to be economically economical by the signals of the SO 2 concentration and NOx concentration measuring instrument 3. The ratio of NOx concentration and SO 2 concentration at the entrance of the irradiation chamber is always adjusted to 0.1-3.0, preferably 0.5 to 1.5, by supplying important gas from the addition port 20, for example. Or by controlling the dose rate by the radiation or ultraviolet irradiation device 22, it is controlled in the state which can obtain the same result.

SO2농도 및 NOx농도측정기(3)과 연동되어 있는 장치는, (8)공기첨가장치, (10)산소공급장치, (12)오존공급장치, (14)N2공급장치, (6)NOx공급장치, (18)SO2공급장치, (22)방사선 또는 자외선 조사장치, (23)연소용공기 공급장치, (24)연료공급장치이다. (23),(24)는 연소로의 경우에 한한다. 또, 꼭 이들 전장치가 필요한 것은 아니다. SO2농도 및 NOx농도측정기(3)에 의하여 소정의 상태로 된 배기가스는 조사실(4)에 유도되어, 여기에서 방사선 또는 자외선이 조사되고, 배기가스중의 SO2및 NOx는 미스트 또는 고형물로 변환되어 집진 또는 여과장치(5)에 의하여 제거되어 청정하게 된 배기가스는 SO2농도 및 NOx농도감시장치(6)를 경유하여 연통(21)에서 방출된다. 또 SO2농도 및 NOx농도감시장치(6)와 상기 각 장치(8,10,12,14,16,18,22,23,24)를 연동시키는 것에 의하여 연통(21)으로부터 방출되는 배기가스의 SO2농도 및 NOx농도를 언제나 설정치 이하로 유지할 수가 있다. 여기에선 (7),(9),(11),(13),(15),(17),(19)는 첨가가스유량(流量)을 조절하는 밸브이다.The device linked to the SO 2 concentration and NOx concentration meter (3) includes (8) air adder, (10) oxygen supply, (12) ozone supply, (14) N 2 supply, (6) NOx Feeder, (18) SO 2 feeder, (22) radiation or UV irradiation, (23) combustion air supply, (24) fuel supply. (23) and (24) are limited to combustion furnaces. Moreover, not all these devices are necessary. The exhaust gas, which is brought to a predetermined state by the SO 2 concentration and the NOx concentration meter 3, is guided to the irradiation chamber 4, where radiation or ultraviolet rays are irradiated, and the SO 2 and NOx in the exhaust gas are mist or solids. The exhaust gas, which has been converted and removed by the dust collecting or filtration device 5, is purified and is discharged from the communication 21 via the SO 2 concentration and the NOx concentration monitoring device 6. In addition, the SO 2 concentration and NOx concentration monitoring device 6 and the respective devices 8, 10, 12, 14, 16, 18, 22, 23, 24 are connected to each other to exhaust gas discharged from the communication 21. The SO 2 concentration and the NOx concentration can always be kept below the set value. Here, (7), (9), (11), (13), (15), (17), and (19) are valves for adjusting the amount of additive gas flow.

[실시예 1~5][Examples 1-5]

콕크로포트·월튼형 전자가속기를 사용하여 선량률 6.45×105rad/sec 조사시간 4.5초, 즉 전 선량 3.5Mrad의 전자선을 가스온도 150℃, O2약 3%, SO2농도는 1,000ppm(일정), NOx농도를 100ppm에서 3,000ppm까지 변화시킨 B중유 연소배기가스 10m3/H에 조사한 경우의 탈황률 및 탈초율을 표-1 및 제2도에 중합해서 표시하였다.Using a Cockcroport-Walton type electron accelerator, an electron beam with a dose rate of 6.45 × 10 5 rad / sec for 4.5 seconds, that is, a total dose of 3.5 Mrad, was used at a gas temperature of 150 ° C, O 2 of about 3%, and SO 2 concentration of 1,000 ppm ( Constant and desulfurization rate and denitrification rate when irradiated with B heavy oil combustion exhaust gas 10 m 3 / H in which the NOx concentration was changed from 100 ppm to 3,000 ppm were shown by polymerization in Table-1 and FIG.

[표 -1]TABLE -1

Figure kpo00001
Figure kpo00001

[참고예 1-2][Reference Example 1-2]

(참고예 1-2) NOx농도와 SO2농도의 비가 0.05라는것 이외에는 실시예 1-5와 대략 같은 조건이다. 실시예 1-5와 함께 제2도에 표시하고 있다. (참고예 -2)NOx농도와 SO2농도의 비가 4.1이라는 것 이외는 실시예 1-5와 대략 동일조건이다. 실시예 1-5와 함께 제2도에 표시하고 있다. 참고예-1에 있어서는 탈황률이, 참고예-2에 있어서는 탈초율이 나쁘다는 것을 알 수 있다. 실시예 1-5 및 참고예 1-2를 비교하면 NOx농도와 SO2농도의 비(NOx/SO2)가 0.1이하에서는 탈황률이, 3.0이상에서는 탈초율이 특히 나쁘고, 0.1-3.1의 범위에서는 좋으며, 0.5-1.5의 범위에서는 특히 좋다는 것을 알 수 있다.(Reference Example 1-2) The conditions were substantially the same as those in Example 1-5 except that the ratio of NOx concentration and SO 2 concentration was 0.05. It shows in FIG. 2 with Example 1-5. Reference Example -2 The conditions are substantially the same as those of Example 1-5 except that the ratio of NO x concentration and SO 2 concentration is 4.1. It shows in FIG. 2 with Example 1-5. It is understood that the desulfurization rate is poor in Reference Example-1 and the denitrification rate is poor in Reference Example-2. Comparing Example 1-5 and Reference Example 1-2, the desulfurization rate is particularly bad when the ratio (NOx / SO 2 ) between NOx concentration and SO 2 concentration is 0.1 or less, and denitrification rate is particularly bad when 3.0 or more, and is in the range of 0.1-3.1. Is good, and it is particularly good in the range of 0.5-1.5.

[실시예 6]Example 6

중유전용보일러틀 B증유와 공기의 비, 즉 연료/공기를 0.9로 조절하여 연소시키고, 그 배기가스중의 O2농도 및 NOx농도를 측정한 결과, SO2농도 1020ppm, NOx농도 980ppm, 산소 2.9%가 함유되어 있었다. 이 배기가스 10m3/H에 4.3×105rad/sec로 4.5초 즉 전선량 2 Mrad의 전자선을 가스온도 150℃로 조사한 결과, SO2는 190ppm, NOx는 140ppm으로 감소되었다.Fuel oil-only boiler lubrication B was burned by adjusting the ratio of oil and air, that is, fuel / air to 0.9, and the O 2 concentration and the NOx concentration in the exhaust gas were measured. As a result, the SO 2 concentration was 1020 ppm, the NOx concentration 980 ppm, and the oxygen 2.9 % Was contained. An electron beam of 4.5 seconds, or 2 Mrad of electric wire, was irradiated to this exhaust gas 10 m 3 / H at 4.3 x 10 5 rad / sec at a gas temperature of 150 ° C. As a result, SO 2 was reduced to 190 ppm and NOx to 140 ppm.

[실시예 7]Example 7

실시예 6에서 사용한 중유전용보일러를 공기량만을 감소시켜서 연료/공기를 1.3으로 조절하여 건소시켜서 그 배기가스가 10m3/H에 200ℓ/H의 산소를 첨가하고 산소농도를 대략 3%로 조정하여, SO2농도 및 NOx농도를 측정한 결과, SO2농도 990ppm, NOx농도는 80ppm이었다. 이 배기가스 10m3/H에 4.3×105rad/sec로 4.5초, 즉 전선량 2 Mrad의 전자선을 가스온도 150℃로 조사한 결과 SO2280ppm, NOx는 거의 검출이 불능하였다.The heavy oil-only boiler used in Example 6 was reduced in air volume to dry the fuel / air to 1.3, and the exhaust gas was added to 200 l / H in 10 m 3 / H and the oxygen concentration was adjusted to about 3%, As a result of measuring the SO 2 concentration and the NO x concentration, the SO 2 concentration was 990 ppm and the NO x concentration was 80 ppm. This exhaust gas was irradiated with an electron beam having a wire temperature of 2 Mrad for 4.5 seconds at 4.3 × 10 5 rad / sec at a gas temperature of 150 ° C. for 10 m 3 / H. As a result, SO 2 280 ppm and NOx were almost undetectable.

[실시예 8]Example 8

실시예 6의 배기가스 10m3/H에 200ℓ/H의 O2를 첨가하여 O2농도를 약 5%로 조절한 배기가스를 실시예 6과 동일한 조건으로 동일 선량조사한 결과, SO2및 NOx가 다같이 거의 검출되지 않았다.Example 6 Exhaust gas 10m 3 / H to 200ℓ / addition of O 2 in H to review the same dose in the same conditions for the exhaust gas to adjust the O 2 concentration of 5% as in Example 6, the result of, SO 2 and NOx is Almost none were detected.

실시예 6 및 실시예 7에서 연소법의 조절에 의하여 배기가스중의 NOx농도와 SO2농도의 비를 조정할 수가 있고, NOx발생량을 감소시키도록하는 방법을 사용하지 않는 편이 유해선분의 제거율이 높다는 것을 알수 있다. 또, 발열량도 높고 경제적이라는 것을 쉽게 유추할 수가 있다.In Examples 6 and 7, by adjusting the combustion method, it is possible to adjust the ratio of NOx concentration and SO 2 concentration in the exhaust gas, and the removal rate of harmful ships is higher when the method of reducing NOx generation is not used. Able to know. It is also easy to infer that the calorific value is high and economical.

또 실시예 6 및 실시예 8에서 배기가스중에 함유되는 N2와 O2가 적은편을 첨가함으로서(이 경우는 중유연소 배기가스이기 때문에 O2량의 쪽이 N2량에 비해서 적다), 조사에 의한 NOx발생량을 조절하여 SO2및 NOx를 다같이 제거 가능하다는 것이 이해된다.In addition, in Examples 6 and 8, by adding less N 2 and O 2 contained in the exhaust gas (in this case, since the heavy oil combustion exhaust gas, the amount of O 2 is less than that of N 2 ). It is understood that SO 2 and NO x can be removed together by adjusting the amount of NO x generated by

이상 설명한 바와같이 본 발명은 배기가스증의 SO2와 NOx를 효율적으로 동시에 제거할 수 있다고 하는 우수한 효과가 있다.As described above, the present invention has an excellent effect of being able to efficiently remove SO 2 and NO x in the exhaust gas stream simultaneously.

Claims (1)

아황산가스, 및/또는 질소산화물을 함유하는 배기가스중의 질소산화물과 아황산가스와의 농도 비(NOx/SO2)0.1-3.0의 범위로 조정하여 방사선 또는 자외선을 조사하는 것을 특징으로 하는, 이 배기가스중의 아황산가스 및/또는 질소산화물의 제거방법.Characterized by irradiating radiation or ultraviolet rays by adjusting the concentration ratio (NOx / SO 2 ) of nitrogen oxides and sulfurous acid gas in the exhaust gas containing sulfurous acid and / or nitrogen oxides in the range of 0.1-3.0. Method for removing sulfurous acid gas and / or nitrogen oxides in exhaust gas.
KR7401090A 1974-01-01 1974-01-01 Process for removing nox and so2 from waste gas KR800001275B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR7401090A KR800001275B1 (en) 1974-01-01 1974-01-01 Process for removing nox and so2 from waste gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR7401090A KR800001275B1 (en) 1974-01-01 1974-01-01 Process for removing nox and so2 from waste gas

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR7901947A Division KR800001304B1 (en) 1979-06-15 1979-06-15 Process for removing nox and so2 from waste gas

Publications (1)

Publication Number Publication Date
KR800001275B1 true KR800001275B1 (en) 1980-10-26

Family

ID=19199540

Family Applications (1)

Application Number Title Priority Date Filing Date
KR7401090A KR800001275B1 (en) 1974-01-01 1974-01-01 Process for removing nox and so2 from waste gas

Country Status (1)

Country Link
KR (1) KR800001275B1 (en)

Similar Documents

Publication Publication Date Title
EP0474263B1 (en) Method of modifying a by-product of a waste gas treating process
EP0294658B1 (en) Process for treating effluent gas
US3997415A (en) Process for removing sulfur dioxide and nitrogen oxides from effluent gases
EP1077757A1 (en) Mercury removal from flue gas
RU2038131C1 (en) Method for treatment of exhaust gas containing impurities of nitrogen and sulfur oxides
US4004995A (en) Process for removing nitrogen oxides and sulfur dioxide from effluent gases
US4908194A (en) Method for baghouse brown plume pollution control
US4416748A (en) Process for reduction of the content of SO2 and/or NOx in flue gas
US5002741A (en) Method for SOX /NOX pollution control
US4954324A (en) Method of baghouse brown plume pollution control
EP0182791A1 (en) Process for treating flue gas with alkali injection and electron beam
Fuchs et al. Removal of NOx and SO2 by the electron beam process
KR800001275B1 (en) Process for removing nox and so2 from waste gas
ATE162544T1 (en) METHOD FOR OPERATING A COAL POWER PLANT
JPS6359729B2 (en)
CN208642267U (en) A kind of electron beam ammonia method system for desulfuration and denitration
CN207493496U (en) The experiment test system of NO and Hg in catalysis ozone simultaneous oxidation flue gas
KR102073342B1 (en) Apparatus for generating secondary inorganic aerosol
CN112403529A (en) Solid desulfurization and denitrification agent
DE3609763A1 (en) Process and apparatus for decreasing nitrogen oxides in exhaust gases
JPH01135519A (en) Exhaust gas treating process
JP2561998B2 (en) By-product fertilizer treatment method
Licki et al. Electron beam technology for multi-pollutant emissions control at a coal-fired boiler, current issues
SU1125030A1 (en) Method of cleaning flue gases
JPS5453666A (en) Method and apparatus for purifying gas of high temperature