KR790001938B1 - Process for preparing heteropoly-acids - Google Patents

Process for preparing heteropoly-acids Download PDF

Info

Publication number
KR790001938B1
KR790001938B1 KR7701159A KR770001159A KR790001938B1 KR 790001938 B1 KR790001938 B1 KR 790001938B1 KR 7701159 A KR7701159 A KR 7701159A KR 770001159 A KR770001159 A KR 770001159A KR 790001938 B1 KR790001938 B1 KR 790001938B1
Authority
KR
South Korea
Prior art keywords
acid
reaction
vanadium
molybdenum
catalyst
Prior art date
Application number
KR7701159A
Other languages
Korean (ko)
Inventor
다께루 오노다
마사유끼 오오다께
Original Assignee
스즈끼 에이지
미쓰비시가세이고오교 가부시기가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 스즈끼 에이지, 미쓰비시가세이고오교 가부시기가이샤 filed Critical 스즈끼 에이지
Priority to KR7701159A priority Critical patent/KR790001938B1/en
Application granted granted Critical
Publication of KR790001938B1 publication Critical patent/KR790001938B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • B01J27/199Vanadium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/65Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by splitting-off hydrogen atoms or functional groups; by hydrogenolysis of functional groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • C07C51/252Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/377Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

An aq. slurry of Mc, V, and P oxides or oxyacids, in the approx. ratio desired in product, was heated at 60-250OC and l atm-30kg/cm2 ; a heteropolyacid was crystd. out. The heteropolyacids are useful as dehydrogenation catalysts, e.g., in prepg. methacrylic acid from isobutyric acid. Thus, powd. MoO3 360, V2O5 63.8 and H3PO4 28.8g in 2l H2O were refluxed with air injection for 20 days, filtered, concd. to 300ml, to obtain red crystals of H5M10V2PO40.

Description

헤테로폴리산의 제조법Preparation of Heteropoly Acid

본 발명은 헤테로폴리산의 제조법에 관한 것이다. 더욱 상세히 말하자면, 본 발명은 몰리브덴 및 바나듐, 그리고 경우에 따라 텅스텐을 배위 원소로 하는 유리 헤테로폴리인산, 아울러 이것을 담체에 담지시켜서 되는 헤테로폴리산 촉매의 제조법에 관한 것이다.The present invention relates to a process for the preparation of heteropolyacids. More specifically, the present invention relates to a free heteropolyphosphoric acid containing molybdenum and vanadium, and optionally tungsten as a coordinating element, and a method for producing a heteropolyacid catalyst by carrying it on a carrier.

헤테로폴리 인산은 일반적으로 수용성 물질이고, 중심원소인 인 카티온 주위에 몰리브덴, 바나듐, 텅스텐 등의 배위 원소의 옥시아니온이 일정한 규칙성을 가지고 축합된 구조를 갖고 있다.Heteropolyphosphoric acid is generally a water-soluble substance, and has a structure in which coordination elements, such as molybdenum, vanadium, and tungsten, have condensed with regularity around the central element phosphorus.

몰리브덴 및 바나듐을 배위원소로하는 헤테로폴리인산, 즉 몰리브도바나도인산은 산화반응 등의 촉매로서 유용한데, 그 합성에는 문제점이 수반된다. 종래, 몰리브도바나도인산의 합성법으로서는 다음과 같은 방법이 알려져 있다.Heteropolyphosphoric acid containing molybdenum and vanadium as the isotope, i.e., molybdobanadophosphoric acid, is useful as a catalyst for oxidation reactions, but the synthesis involves problems. Conventionally, the following method is known as a method for synthesizing molybdobanadophosphoric acid.

① 알칼리 바나딘산염, 인산 및 몰리브덴산에서 수성슬러리를 조제하고, 이것을 가열한 후 염산을 가하고, 이어서 에테르 추출을 행하는 방법 〔Zh. obshch. Khim.24966 (1954)〕.(1) A method of preparing an aqueous slurry from alkali vanadate, phosphoric acid, and molybdate acid, heating it, adding hydrochloric acid, and then performing ether extraction [Zh. obshch. Khim. 24 966 (1954).

② 알칼리 바나딘산염, 알칼리인산염 및 알칼리 몰리브덴산염의 수용액에 황산을 가하고, 이어서 에테르 추출을 시행하는 방법 〔Inorg. Chem., 7, 437(1968)〕.(2) adding sulfuric acid to an aqueous solution of alkali vanadate, alkali phosphate and alkali molybdate, followed by ether extraction [Inorg. Chem., 7, 437 (1968)].

상기 ①~②의 방법은, 반응시간의 단축에는 유효하지만, 비나듐원으로서 바나딘산 알칼리를 사용하든지, 혹은 산화바나듐을 축합 반응에 앞서 알칼리에 균일하게 용해하는 조작이 필요하고 또 화학량론량보다도 대과잉의 바나듐을 사용할 필요가 있다. 또한, 상기의 알칼리를 제거하기 위하여 과잉의 광산을 첨가하여 강산성으로 한 다음, 에테르 등의 유기 용매로 추출하는 페산 처리 공정이 필요하기 때문에 공업적으로는 유리하지 않다.The above methods (1) to (2) are effective for shortening the reaction time, but it is necessary to use alkali vanadate as the vanadium source or to uniformly dissolve vanadium oxide in alkali prior to the condensation reaction, It is necessary to use excess vanadium. In addition, in order to remove said alkali, it is not industrially advantageous since the process of the acid treatment which adds excess photo acid, makes it strong acidic, and extracts it with organic solvents, such as an ether, is needed.

본 발명자중의 한 사람은 먼저 이들의 결점을 해결하기 위하여, 몰리브덴, 바나듐 및 인의 화합물의 균일한 혼합물을 산화분위기하에 고온으로 소성시킨 후 물로 추출하는 추출 방법을 제안하였는데(일본 특허 공개 공보 49-133, 298 호), 이 방법에 있어서는 느린 물 추출 속도의 해결이 충분하게는 해결되어 있지는 않았다.One of the inventors of the present invention first proposed an extraction method in which a homogeneous mixture of molybdenum, vanadium and phosphorus compounds was calcined at high temperature in an oxidizing atmosphere and then extracted with water (Japanese Patent Laid-Open No. 49-). 133, 298), the solution of slow water extraction rate was not sufficiently solved in this method.

한편, 바나딘산 알칼리, 인산 알칼리 및 산화몰리브덴을 함유하는 수성 슬러리를 가열하고 수산화알칼리를 첨가하여 용해시키고, 이어서 광산을 가함으로써 몰리브도바나도인산의 알칼리금속염을 얻는 방법이 제안되고 있다(영구 특허 제 1, 376, 432 호).On the other hand, a method of obtaining an alkali metal salt of molybdovanadophosphoric acid by heating an aqueous slurry containing alkali vanadate, alkali phosphate and molybdenum oxide, adding alkali hydroxide to dissolve, and then adding a photoacid is proposed ( Permanent Patent Nos. 1, 376, 432).

그러나, 이 방법으로는 산화촉매로서 유효한 유리 몰리브도바나도인산을 얻을 수는 없었다.However, this method was unable to obtain free molybdenum banadophosphoric acid effective as an oxidation catalyst.

본 발명은 이들 종래법의 결점이 개선되고 경제적으로 유리한 유리몰리브도바나도인산과 함께 이를 담체에 담지시켜서 되는 헤테로폴리산 촉매의 제조법을 제공하는 것을 목적으로 하는 것으로,It is an object of the present invention to provide a method for producing a heteropolyacid catalyst in which the disadvantages of these conventional methods are improved and economically advantageous, together with free molybdovanadoic acid, supported on a carrier.

(1) 몰리브덴, 바나듐 및 인의 산화물 및 (또는)옥시산을 함유하고 더우기 렁스텐의 산화물 및(또는) 옥시산을 함유할 수 있는 수성 슬러리를 수열반응시켜서 몰리브덴 및 바나듐을 배위 원소로 하고, 다시 몰리브덴의 일부가 텅스텐으로 치환 배위들 수 있는 헤테르폴리인산의 수용액을 생성시키는 것을 특징으로 하는 헤테로폴리산의 제조법, 및(1) an aqueous slurry containing oxides and / or oxyacids of molybdenum, vanadium and phosphorus and further containing oxides and / or oxyacids of rungsten, by hydrothermal reaction to form molybdenum and vanadium as coordinating elements, again A process for the preparation of heteropolyacids, characterized in that a part of the molybdenum produces an aqueous solution of heterpolyphosphoric acid that can be substituted with tungsten, and

(2) 몰리브덴, 텅나듐 및 인의 산화물 및 (또는) 옥시산을 함유하고, 또한 텅스텐의 산화물 및 (또는) 옥시산을 함유할 수 있는 수성 슬러리를 수열반응시켜서 몰리브덴 및 바나듐을 배워 원소로 하고, 더우기 몰리브덴의 일부가 텅스텐으로 치환 배위될 수 있는 헤테로폴리인산의 수용액을 생성시키고, 여기에 담체를 침지시켜서 담체 상에 헤테로폴리인산을 담지시키는 것을 특징으로 하는 헤테로폴리산 촉매의 제조법임을 요지로 하는 것이다.(2) an aqueous slurry containing oxides of molybdenum, tungsten and phosphorus and / or oxyacids, and which may also contain oxides of tungsten and / or oxyacids to hydrothermally react to learn molybdenum and vanadium as elements; In addition, a part of the molybdenum is to produce an aqueous solution of heteropolyphosphoric acid that can be substituted coordination with tungsten, and the method for producing a heteropolyacid catalyst characterized in that the heteropolyphosphoric acid is supported on the carrier by immersing the carrier.

이하에 본 발명에 관하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Below, this invention is demonstrated in detail.

본 발명의 방법에 의하여 제조되는 헤테로폴리산은 인을 중심 원소로 하고 몰리브덴 및 바나듐 및 경우에 따라 텅스텐을 배위 원소로하는 것이다. 전형적으로, 이와 같은 헤테로폴리산은 하기 일반식(A)에 의하여 표시된다.Heteropolyacids produced by the process of the invention are phosphorus as the center element and molybdenum and vanadium and optionally tungsten as the coordinating element. Typically, such heteropolyacids are represented by the following general formula (A).

H3+XM12-X-YWYVXPO40·nH2O (A) H 3 + X M 12-XY W Y V X PO 40 · nH 2 O (A)

식중, X, Y는 각각 정수이고, X=1~4, Y=0~3, X+Y=1~4이며, n은 결정수의 수를 나타내고 결정상태에서 통상 약 16~32의 값을 갖는다.Wherein X and Y are each an integer, X = 1 to 4, Y = 0 to 3, and X + Y = 1 to 4, n represents the number of crystals, and a value of about 16 to 32 is usually determined in the crystal state. Have

본 발명에 있어서는 몰리브덴, 바나듐, 인 및 텅스텐의 산화물 및(또는) 옥시산을 원료로하여 사용한다. 이들 원료 화합물의 구체적인 예로서는 각각 삼산화몰리브덴, 몰리브덴산, 오산화바나듐, 메타바나딘산, 인산, 오산화인, 삼산화 텅스텐, 텅스텐산 등을 들 수 있다.In the present invention, oxides of molybdenum, vanadium, phosphorus and tungsten and / or oxyacids are used as raw materials. Specific examples of these raw material compounds include molybdenum trioxide, molybdate acid, vanadium pentoxide, metavanadinic acid, phosphoric acid, phosphorus pentoxide, tungsten trioxide and tungstic acid.

이들 원료 화합물을 함유하는 수성 슬러리를 조제함에 있어서, 각 원료 화합물의 양비는 화학량론비, 즉 목적으로 하는 헤테로폴리산의 조성으로부터 계산된 비율과 거의 동등한 비율(최대 약 20%과잉)로 하는 것이 바람직하다.In preparing the aqueous slurry containing these starting compounds, the amount ratio of each starting compound is preferably set to a ratio (maximum about 20% excess) that is almost equal to the ratio calculated from the stoichiometric ratio, that is, the composition of the desired heteropolyacid.

원료 화합물은 가급적 미분말 상태인 것이 바람직하다. 이러기 위해서는, 예를 들어 삼산화몰리브덴, 오산화바나듐 등은 보올 분쇄기 및 기타 분쇄기를 사용하여 미분화해 두는 것이 바람직하다. 더욱 유리하게는, 예를 들어 삼산화몰리브덴의 경우에는 황화몰리브덴 광석을 공기 배소하여 얻어지는 산화몰리브덴 조품으로부터 승화정제하여 얻은 미분상 물질이고, 오산화바나듐의 경우에는 메타바나딘산 암모늄을 공기 배소하여 얻어지는 미분상 산화물 등의 원료가 사용된다. 분체의 입경은 작을수록 반응 속도의 점에서 유리하다. 초미세분으로서 수송이나 취급상 불편한 경우에는 적당한 양의 물을 첨가해 두는 것이 좋다.It is preferable that a raw material compound is in a fine powder state as much as possible. For this purpose, for example, molybdenum trioxide, vanadium pentoxide and the like are preferably micronized using a bowl mill and other mills. More advantageously, for example, in the case of molybdenum trioxide, it is a finely divided substance obtained by sublimation purification from a molybdenum oxide preparation obtained by air roasting molybdenum sulfide ore, and in the case of vanadium pentoxide, fine powder obtained by air roasting ammonium metavanadate Raw materials such as phase oxides are used. The smaller the particle size of the powder, the more advantageous in terms of reaction rate. If it is very fine and inconvenient for transportation or handling, it is better to add an appropriate amount of water.

수성 슬러리의 수열반응은 통상법에 따라 시행할 수 있다. 반응은 통상적으로 공기, 산소 등을 사용한 산화 분위기 위에서 시행된다. 슬러리 농도는 넓은 범위에서 선택할 수 있는데, 극단적인 저농도에서는 반응액을 농축하는 경우에 다대한 에너지가 소비되어 불리하게 되고, 반대로 극단적인 고농도에서는 교반에 지장을 초래하여 수열반응 속도가 늦어지는 우려가 있다. 그러므로, 원료 산화물/물의 중량비는 60/40~1/99정도로 조절하는 것이 좋다. 온도와 압력은 통상적으로 60°내지 250℃, 상압내지 30kg/㎠, 특히 60~220℃, 상압 내지 18kg/㎠의 범위가 사용된다. 반응은 슬러리 중의 고체의 대부분이 용해되기까지 계속된다. 용해의 속도는 온도나 압력에 의해 또한 원료 화합물의 입자의 크기에 따라 크게 변화하므로, 반응시간을 일률적으로 규정할 수 없지만 통상 1시간~20일간이다. 반응 속도를 향상시키기 위해서는 수성 슬러리는 충분히 교반하는 것이 바람직하다. 반응의 종결 무렵에 있어서는 불용물이 거의 소실되고 반응액은 특유의 밝은 적색을 나타낸다. 반응 종결 후, 불용성 잔사를 여별하면 목적으로 하는 헤테로폴리인산의 수용액이 얻어진다. 얻어진 헤테로폴리인산 수용액은 그대로, 또는 적당한 농도로 희석 또는 농축하여 각종 용도에 사용된다. 유리 헤테로폴리인산을 단리시키는 경우에는, 수용액을 농축 후 빙냉하면 헤테로폴리인산을 결정으로 얻을 수 있다.The hydrothermal reaction of the aqueous slurry can be carried out according to a conventional method. The reaction is usually carried out in an oxidizing atmosphere using air, oxygen or the like. Slurry concentration can be selected in a wide range, but at extreme low concentrations, a large amount of energy is consumed when the reaction liquid is concentrated, and on the contrary, at extreme high concentrations, it may cause agitation and slow down the hydrothermal reaction rate. have. Therefore, the weight ratio of raw material oxide / water is preferably adjusted to about 60/40 to 1/99. Temperature and pressure are typically in the range of 60 ° to 250 ° C., atmospheric pressure to 30 kg / cm 2, especially 60 to 220 ° C., and atmospheric pressure to 18 kg / cm 2. The reaction continues until most of the solids in the slurry are dissolved. The rate of dissolution varies greatly depending on the temperature and pressure, and also depending on the size of the particles of the starting compound, so that the reaction time cannot be defined uniformly, but is usually 1 hour to 20 days. In order to improve the reaction rate, the aqueous slurry is preferably stirred sufficiently. At the end of the reaction, insoluble matters are almost lost, and the reaction solution exhibits a characteristic bright red color. After completion of the reaction, the insoluble residue is filtered off to obtain an aqueous solution of the desired heteropolyphosphoric acid. The resulting aqueous solution of heteropolyphosphoric acid is used as it is, or diluted or concentrated to an appropriate concentration and used for various applications. In the case of isolating free heteropolyphosphoric acid, heteropolyphosphoric acid can be obtained as crystals by concentrating an aqueous solution and then ice-cooling.

상기 방법으로 얻어진 유리 헤테로폴리산도 각종 촉매로서 유용하지만, 상술한 헤테로폴리인산 수용액에 촉매 담체를 침지하여 헤테로폴리인산을 담지시킴으로써 용이하게 담체에 부착된 헤테로폴리인산 촉매를 얻을 수 있다. 촉매의 담체로서는 공업적으로 사용할 수 있는 통상의 촉매 담체를 사용할 수 있는데, 특히 고규산질의 화합물, 예를 들면 실리카, 실리카졸, 규조토 등이 바람직하다. 규조토는 통상 미분체이기 때문에 적당한 공지의 성형조제를 첨가하여 기계적 강도가 큰 성형체로서 사용하는 것이 좋다. 더우기, 촉매 활성을 높이기 위하여 필요에 따라 적당한 원소를 제 2 성분으로 첨가할 수가 있다. 그러기 위해서는, 헤테로폴리인산과 상기 원소의 화합물과 담체에 동시 또는 순차적으로 일일이 담지시켜서 건조하고, 필요하다면 공기 중에서 소성함으로서 목적으로 하는 촉매를 얻을 수도 있다.The free heteropolyacid obtained by the above method is also useful as various catalysts, but the heteropolyphosphoric acid catalyst attached to the carrier can be easily obtained by immersing the catalyst carrier in the above-mentioned aqueous solution of heteropolyphosphoric acid to support heteropolyphosphoric acid. As the catalyst carrier, a conventional catalyst carrier which can be used industrially can be used, and particularly, a high siliceous compound such as silica, silica sol, diatomaceous earth, or the like is preferable. Since diatomaceous earth is normally fine powder, it is good to add a suitable well-known shaping | molding adjuvant and to use it as a molded object with a large mechanical strength. Furthermore, in order to increase the catalytic activity, an appropriate element can be added as the second component as necessary. For this purpose, the target catalyst can be obtained by carrying out drying on the polypolyacid, the compound of the said element, and a support simultaneously or sequentially, and baking in air if necessary.

산화 촉매로서 사용하는 경우의 제 2 성분의 주기율표 제 Ⅰ족 내지 제 Ⅷ 족 원소의 화합물이며, 구체적으로는 제 1 표에 표시하는 바와 같은 화합물이다.Periodic table of the second component in the case of using it as an oxidation catalyst. It is a compound of Group I to Group VIII elements, and specifically, it is a compound as shown in a 1st table | surface.

[제 1 표][Table 1]

Figure kpo00001
Figure kpo00001

이들 제 2 성분의 첨가량은 통상 헤테로폴리인산에 대하여 제 2 성분 원소가 10배몰 이하의 범위에서 첨가된다.The addition amount of these 2nd components is normally added in the range of 10 times mole or less of a 2nd component element with respect to heteropolyphosphoric acid.

본 발명에 따라 얻어지는 헤테로폴리인산 촉매는 주로 산화반응에 사용되는데, 동종의 원소로 구성되는 촉매에 비하여 고체 산성이 강하고, 따라서 산촉매 반응으로서 알려져 있는 많은 유기 화학 반응, 예컨대 올레핀의 수화반응, 에스테르화반응 이성화반응 등에도 유리하게 사용할 수 있다. 그리고, 전술한 산화반응이라 함은 반응 기질과 분자상 산소와의 반응에 의하여 반응 기질에 산소 부가 및(또는) 산화탈수소가 생기게 되는 유기 화학 반응을 광범위하게 지칭하는 것인 바, 구체적으로는 이소부티르산으로 부터의 메타크릴산의 생성, 이소부티르산에스테르로부터의 메타크릴산에스테르의 생성, 이소부티르알데히드로부터의 메타크롤레인 및 메타크릴산의 생성, 이소부틸렌으로부터의 메타크롤레인 및 메타크릴산의 생성, 브텐으로부터의 무수 말레인산의 생성, 메틸이소프로필케톤으로부터의 메틸이소프로피닐 케톤의 생성 등을 들 수 있다.The heteropolyphosphoric acid catalysts obtained according to the present invention are mainly used for oxidation reactions, and have a high solid acidity compared to catalysts composed of the same kind of elements, and therefore many organic chemical reactions known as acid catalyst reactions, such as hydration and esterification of olefins. It can also be advantageously used for isomerization reaction. In addition, the aforementioned oxidation reaction broadly refers to an organic chemical reaction in which oxygen addition and / or oxidative dehydrogenation is generated in the reaction substrate by reaction of the reaction substrate with molecular oxygen. Production of methacrylic acid from butyric acid, production of methacrylic acid esters from isobutyric acid esters, production of methacrolein and methacrylic acid from isobutyric aldehydes Production, production of maleic anhydride from butene, production of methyl isopropynyl ketone from methyl isopropyl ketone, and the like.

이상 구체적으로 설명한 바와 같이, 본 발명에 의하면 목적으로 하는 헤테로폴리인산에 대해, 화학량론적으로 계산된 비율의 몰리브덴, 바나듐, 인 및 텅스텐의 각 화합물을 원료로 하고 고수율로 용이하게 또한 경제적으로 유리한 헤테로폴리인산을 얻을 수 있다.As specifically described above, according to the present invention, heteropolyphosphates, which are based on the stoichiometrically calculated proportions of molybdenum, vanadium, phosphorus and tungsten, as a raw material, are easily and economically advantageous in high yields. Phosphoric acid can be obtained.

이하에 본 발명의 구체적 태양을 실시예에 의하여 더욱 상세히 설명하겠는데, 본 발명은 그 요지를 넘지 않는 한, 이하의 실시예에 의해 한정되는 것은 아니다.The specific aspects of the present invention will be described in more detail with reference to the following Examples, but the present invention is not limited to the following Examples unless the gist thereof is exceeded.

[실시예 1]Example 1

삼산화몰리브덴(승화 정제하여 얻어지는 공업 순도품, 미분말) 360g, 오산화바나듐(미분말) 63.8g 및 인산(85%, 특급시약) 28.8g을 평량하고, 물 2ℓ를 가해서 황등색의 슬러리를 얻었다. (원료 원자비 Mo/V/P=10/2.4/1). 이것을 환류 냉각기가 구비된 플라스크에 넣고, 수세한 공기를 취입하여 교반하면서 맨틀 히터 상에서 가열하여, 약 2시간 후에 비등 상태에 이르게 하였다(액은 104℃). 이 상태로 20일간 자비(煮沸)를 계속하였던 바, 액은 맑은 적색으로 변화하고, 고체의 대부분은 용해되었다. 이 액을 정량용 여과지(일본국 동양 여과지 No. 5B)를 사용하여 여과하고, 불용성 잔사를 여별하여 헤테로폴리인산의 수용액을 얻었다. 이 수용액을 로터리 증발기를 사용하여 300mℓ로 농축하고, 실온에서 방치하였던 바, 농적색의 거대 결정이 생장하였다. 이 결정은 X선 회절에 의해 유리 10-몰리브도-2-바나도린산의 결정이라는 것이 확인되었다. 더우기, 이 결정을 수용액에서 재결정시켜 원소 분석을 한 결과, 원자비가 Mo/V/P=10/2.0/1.0으로서, 이론식(H5M10V2PO40)과 일치하였다. 불용성 잔사의 정량분석을 통상법에 따라 실시한 결과, 전체의 양은 11.26g이고, 그 98%이상이 V2O5였었다. 따라서, 수열 반응의 불용성 잔사는 다음의 헤테로폴리산 합성 시기에 바나듐 원료로서 사용할 수 있다.360 g of molybdenum trioxide (industrial purity product obtained by sublimation refining, fine powder), 63.8 g of vanadium pentoxide (fine powder) and 28.8 g of phosphoric acid (85%, special reagent) were weighed out, and 2 liters of water were added to obtain a yellow orange slurry. (Raw atomic ratio Mo / V / P = 10 / 2.4 / 1). This was placed in a flask equipped with a reflux condenser, and heated water was blown and heated on a mantle heater while stirring to reach a boiling state after about 2 hours (liquid was 104 ° C). After 20 days of boiling water in this state, the liquid turned to a clear red color and most of the solid was dissolved. This liquid was filtered using a filter paper for quantification (Japanese Oriental Filter Paper No. 5B), and the insoluble residue was filtered to obtain an aqueous solution of heteropolyphosphoric acid. The aqueous solution was concentrated to 300 ml using a rotary evaporator and left at room temperature to grow dark red large crystals. This crystal was confirmed by X-ray diffraction to be a crystal of free 10-molybdo-2-banadorinic acid. In addition, the crystals were recrystallized in an aqueous solution and subjected to elemental analysis. As a result, the atomic ratio was Mo / V / P = 10 / 2.0 / 1.0, which was consistent with the theoretical formula (H 5 M 10 V 2 PO 40 ). A quantitative analysis of the insoluble residue was carried out according to a conventional method, and the total amount was 11.26 g, and more than 98% of the insoluble residue was V 2 O 5 . Therefore, the insoluble residue of hydrothermal reaction can be used as a vanadium raw material at the next heteropoly acid synthesis | combination time.

[실시예 2]Example 2

시판용 삼산화몰리브덴(일본국 기시다가가꾸 특급품, 고도 결정화품) 228g과 오산화바나듐(동상) 43.6g을 취하여 물 80mℓ를 가하고, 보올 분쇄기 내에서 1시간 분쇄 혼합하여, 여기에 물 560mℓ, 85% 인산 23.0g을 가하여 황등색의 슬러리를 얻었다(원료 원자비 Mo/V/P=10/2.4/1). 이것을 유욕조 상에서 환류 냉각기를 부착한 플라스크내에서 가열하고, 20일간 자비환류시켰던 바고체의 대부분이 용해되었다. 이 액을 200mℓ로 농축하여 정량용 여과지(일본국 동양 여과지 No. 5C)를 사용하여 여과하고 불용성 잔사를 분리한 후, 빙냉한 즉 농적색의 거대 결정이 생장되고, 이것은 실시예 1과 같이 10-몰리브도-2-바나드린산이라는 것이 X선 회절에 의해 확인되었다. 결정의 수율은 정량적이었다. 불용성 잔사를 통상법에 의해 정량분석한 즉, 전체의 양은 7.2g이고, 그 99%가 오산화바나듐이었다. 따라서, 수열반응시의 불용성 잔사는 다음의 헤테로폴리산 합성 시기의 바나듐 원료로 직접 사용할 수 있다.Take 228 g of commercially available molybdenum trioxide (Kishitaga Chemical Co., Ltd., advanced crystallized product) and 43.6 g of vanadium pentoxide (copper phase), add 80 ml of water, and grind and mix in a bowl grinder for 1 hour, and add 560 ml of water and 85% phosphoric acid. 23.0 g was added to obtain a yellow orange slurry (raw material atomic ratio Mo / V / P = 10 / 2.4 / 1). This was heated in a flask attached with a reflux condenser on an oil bath, and most of the bar solids which had been refluxed for 20 days dissolved. The solution was concentrated to 200 ml, filtered using a quantitative filter paper (Japanese Oriental Filter Paper No. 5C), and the insoluble residues were separated. Then, ice-cold, or deep red, large crystals were grown. It was confirmed by X-ray diffraction that it was-molybdo-2- vanadic acid. The yield of the crystals was quantitative. The insoluble residue was quantitatively analyzed by a conventional method, that is, the total amount was 7.2 g, and 99% of it was vanadium pentoxide. Therefore, the insoluble residue in hydrothermal reaction can be used directly as a vanadium raw material at the next heteropoly acid synthesis time.

[실시예 3]Example 3

실시예 1과 같은 조작을 반복 실시하여, 불용성 잔사를 여별하여 얻어진 수용액을 600mℓ로 농축하여 헤테로폴리인산 수용액을 얻었다. 이것은 이하의 실시예에 있어서의 촉매의 조제에 사용하였다.The same operation as in Example 1 was repeated, and the aqueous solution obtained by filtering out the insoluble residue was concentrated to 600 ml to obtain an aqueous solution of heteropolyphosphoric acid. This was used for preparation of the catalyst in the following example.

[실시예 4]Example 4

실시예 3에서 얻은 헤테로폴리인산 수용액 10mℓ를 취하여 3g의 성형 규조로 담체를 침지하여 담지시킨 후, 이것을 건조하여 촉매 1을 조제하였다.10 ml of the aqueous solution of heteropolyphosphoric acid obtained in Example 3 was taken, and the carrier was immersed and supported by 3 g of molded diatom, and then dried to prepare Catalyst 1.

[실시예 5]Example 5

파라몰리브덴산암모늄 35.4mg을 2mℓ의 물에 용해하고, 이 수용액에 24~40메시로 스크리닝한 성형 규조토 담체 2g을 침지하였다. 이를 건조 후, 400℃공기 중에서 2시간 소성하였다. 이 소성물은 제 2 성분인 삼산화몰리브덴을 성형 규조토 담체 1g당 몰리브덴 원자로서 0.1m몰을 포함하는 것이다. 이어서, 실시예 3에서 조제한 헤테로폴리인산 수용액 2mℓ에 상기 소성물을 침지, 건조하여 촉매 2를 조제하였다.35.4 mg of ammonium paramolybdate was dissolved in 2 ml of water, and 2 g of the molded diatomaceous earth carrier screened with 24 to 40 mesh was immersed in this aqueous solution. This was dried and calcined for 2 hours in air at 400 ° C. The calcined product contains molybdenum trioxide, the second component, as the molybdenum atom per gram of molded diatomaceous earth carrier. Subsequently, the calcined product was immersed in 2 ml of a heteropolyphosphoric acid aqueous solution prepared in Example 3 and dried to prepare Catalyst 2.

[실시예 6]Example 6

0.05M수산바나딜 수용액 1mℓ에 물 1mℓ를 가하고, 여기에 실시예 5에서와 같이 성형 규조토 담체 2g을 침지하여 건조소성하였다. 이것은 제 2 성분인 바나듐을 성형 규조토 담체 1g당 바나듐 원자로서 0.05m몰을 포함하는 것이다. 이어서, 실시예 3에서 얻은 헤테로폴리인산 수용액 2mℓ에 상기 소성물을 침지, 건조해서 촉매 3을 조제하였다.1 ml of water was added to 1 ml of 0.05 M vanadium hydroxide aqueous solution, and 2 g of shaped diatomaceous earth carrier was immersed and dried-fired as in Example 5. This contains 0.05 mmol of vanadium as the second component as vanadium atoms per gram of shaped diatomaceous earth support. Subsequently, the calcined product was immersed in 2 ml of the aqueous heteropolyphosphoric acid solution obtained in Example 3 and dried to prepare Catalyst 3.

[실시예 7]Example 7

제 2 표에 나타내는 바와 같은 각종의 제 2 성분을 포함하는 헤테로폴리인산 촉매를 실시예 5의 방법에 준하여 조제하였다.A heteropolyphosphoric acid catalyst containing various second components as shown in the second table was prepared according to the method of Example 5.

[제 2 표][Table 2]

Figure kpo00002
Figure kpo00002

(

Figure kpo00003
1 소성하지 않았음)(
Figure kpo00003
1 not fired)

[실시예 8]Example 8

용적 200mℓ의 티탄 라이닝 오오트글레에브에 넣은 삼산화몰리브덴(실시예 1에서 사용한 것과 동일한 것)18.0g, 오산화바나듐 3.19g, 인사 (85%, 특급 시약) 1.44g 및 물 100g을 가열하여 200℃, 15.4kg/㎠로 하고, 혼합물을 격렬하게 교반(700rpm)하면서 11시간 동안 반응을 시행하였다. 얻어진 액을 여과하고 여액을 농축하여 농적색의 결정을 얻었다. 이 결정의 X선 회절의 패턴은 동일 구조의 H3Mo12PO40·3OH2O의 패턴 입방정계(立方晶系), pd 3m, a=±23.15Å(J.L. Hoard. Z. Krist.,84, 217 (1933)과 실질적으로 동일하였다. 결정의 수량은 거의 정량적이었다.18.0 g of molybdenum trioxide (the same as used in Example 1) in a 200-liter titanium-lined oatgleb, 3.19 g of vanadium pentoxide, 1.44 g of saline (85%, special reagent), and 100 g of water were heated to 200 ° C. , 15.4kg / cm 2, and the reaction was carried out for 11 hours with vigorous stirring (700rpm). The obtained solution was filtered and the filtrate was concentrated to give dark red crystals. The pattern of X-ray diffraction of this crystal is a pattern cubic system of H 3 Mo 12 PO 40 .3OH 2 O of the same structure, pd 3m, a = ± 23.15 kPa (JL Hoard. Z. Krist., 84 , 217 (1933), which was substantially the same as the quantity of crystals.

[실시예 9]Example 9

삼산화몰리브덴(실시예 1에서 사용한 것과 동일한 것) 14.40g, 오산화바나듐(일본국 니찌아가가꾸(주), 공업순도품 분말, 평균입경 1.5μ) 1.819g, 인산(85%특급) 1.140g 및 물 320mℓ를 혼합하여 황동색의 슬러리를 조제하였다(원료 원자비 Mo/V/P=10/2/1). 이것을 환류 냉각기, 교반기 및 온도계가 장비된 500mℓ의 플라스크에 넣고, 90℃로 20시간 가열한 후, 근소량으로 잔존하는 불용물(약 20mg)을 여거하였다. 여액을 농축하여 농적색의 유리 H5MO10V2PO40의 결정을 얻었다.Molybdenum trioxide (the same as used in Example 1) 14.40 g, vanadium pentoxide (Nichiagagaku Co., Ltd., industrial purity product powder, average particle diameter 1.5μ) 1.819 g, phosphoric acid (85% express) 1.140 g and 320 ml of water were mixed to prepare a brass colored slurry (raw material ratio Mo / V / P = 10/2/1). This was placed in a 500 ml flask equipped with a reflux condenser, a stirrer, and a thermometer, heated to 90 ° C. for 20 hours, and a small amount of remaining insoluble matter (about 20 mg) was filtered off. The filtrate was concentrated to give crystals of dark red free H 5 MO 10 V 2 PO 40 .

[실시예 10]Example 10

삼산화몰리브덴(실시예 1에서 사용한 것과 동일한 것) 20.15g, 오산화바나듐(기시다가가꾸 특급품, 고도 결정화품) 2.57g을 30mℓ의 물과 함께 1시간동안 보올 분쇄기로 분쇄한 것에 인산(85% 특급) 1.29g 및 물 1, 000mℓ를 혼가하여 슬러리를 조제하였다(원료 원자비 Mo/V/P=10/2/0.8). 이것을 환류 냉각기, 교반기 및 온도계가 장비된 1ℓ의 플라스크에 넣고 104℃로 3시간 동안 가열한 후, 다시 60~70℃로 40시간 가열하였다. 이어서, 반응 혼합물을 여과하여 불용성 잔사 5.7g을 제거하였다. 여액을 농축하여 헤테로폴리인산의 결정이 94.7%의 수율(인산에 기초산 이론 수량에 대한 양)로 얻어졌다.20.15 g of molybdenum trioxide (the same as that used in Example 1) and 2.57 g of vanadium pentoxide (Kishida Chemical Co., Ltd., high crystallization) were pulverized with a bowl mill for 30 hours with 30 ml of phosphoric acid (85% 1.29 g) and 1,000 ml of water were mixed to prepare a slurry (raw material atomic ratio Mo / V / P = 10/2 / 0.8). This was placed in a 1 L flask equipped with a reflux condenser, a stirrer and a thermometer, heated at 104 ° C. for 3 hours, and then heated at 60 ° C. to 70 ° C. for 40 hours. The reaction mixture was then filtered to remove 5.7 g of insoluble residue. The filtrate was concentrated to give a crystal of heteropolyphosphoric acid in a yield of 94.7% (amount based on phosphoric acid based on theoretical yield).

[사용예 1](이소부티르산의 산화 탈수소 반응)Usage Example 1 (oxidative dehydrogenation reaction of isobutyric acid)

실시예 4~7에서 조제한 촉매 1~18을 사용하여 이소부티르산의 산화 탈수소 반응의 검토를 하였다. 반응에는 종형 겸질 유리제기상 유통 반응관을 사용하고, 생성물은 산 적정, 가스크로마토그라피 등의 수단에 의하여 분석하였다. 반응 조건은 하기와 같았다.The oxidative dehydrogenation reaction of isobutyric acid was examined using the catalysts 1-18 prepared in Examples 4-7. In the reaction, a vertical mixed glass-phase flow reaction tube was used, and the product was analyzed by means of acid titration, gas chromatography, or the like. The reaction conditions were as follows.

원료 가스 : 이소부티트산/수증기/산소/질소=2/4/3/91(몰 %)Source gas: Isobutyric acid / water vapor / oxygen / nitrogen = 2/4/3/91 (mol%)

공간속도(GHSV) : 5, 000Space velocity (GHSV): 5,000

반응온도 : 310℃Reaction temperature: 310 ℃

반응 결과를 제 3 표에 요약되어 있다.The reaction results are summarized in the third table.

[제 3a 표][Table 3a]

Figure kpo00004
Figure kpo00004

[제 3b 표][Table 3b]

Figure kpo00005
Figure kpo00005

[사용예 2](이소부티르산메틸의 산화 탈수소 반응)[Use Example 2] (oxidative dehydrogenation reaction of methyl isobutyrate)

촉매 1을 15mℓ를 충전한 반응기에 이소부티르산메틸, 산소 및 질소의 혼합가스를 도입하였다. 반응관은 사용예 1에서 사용한 것과 같은 것이며 반응 조건은 아래와 같았다.A mixed gas of methyl isobutyrate, oxygen and nitrogen was introduced into a reactor filled with 15 ml of catalyst 1. The reaction tube was the same as that used in Example 1, and the reaction conditions were as follows.

원료 가스 : 이소부티르산메틸/산소/질소=3.2/2.7/94.1(몰 %)Source gas: methyl isobutyrate / oxygen / nitrogen = 3.2 / 2.7 / 94.1 (mol%)

공간속도(GHSV) : 1, 000Space velocity (GHSV): 1,000

반응온도 : 280℃Reaction temperature: 280 ℃

반응 결과는 제 4 표에 요약되어 있다.The reaction results are summarized in the fourth table.

[제 4 표][Table 4]

Figure kpo00006
Figure kpo00006

[사용예 3](이소부티르알데히드의 산화 탈수소 반응)[Example 3] (oxidative dehydrogenation reaction of isobutyraldehyde)

촉매 1을 15mℓ 충전한 반응기에 이소부티르알데히드, 산소 및 질소의 혼합 가스를 도입하였다. 반응관은 사용예 1에서 사용한 것과 같으며, 반응 조건은 다음과 같이 설정하였다.A mixed gas of isobutyraldehyde, oxygen and nitrogen was introduced into a reactor filled with 15 ml of catalyst 1. The reaction tube was the same as what was used in the use example 1, and reaction conditions were set as follows.

원료 가스 : 이소부티르알데히드/산소/질소=4.7/12.7/8.2(몰 %)Source gas: isobutyraldehyde / oxygen / nitrogen = 4.7 / 12.7 / 8.2 (mol%)

공간속도(GHSV) : 1, 000Space velocity (GHSV): 1,000

반응온도 : 290℃Reaction temperature: 290 ℃

반응 결과는 제 5 표에 요약되어 있다.The reaction results are summarized in the fifth table.

[제 5 표][Table 5]

Figure kpo00007
Figure kpo00007

[사용예 4](메타크롤레인의 산화 반응)[Example 4] (oxidation reaction of methacrolein)

메타크롤레인 4용량%, 산소 5용량%, 수증기 25용량% 및 질소 66용량%로 되는 반응 가스를 촉매 1을 충전한 반응관에 도입하여 반응시켰다. 공간속도(GHSV) 1, 000, 반응온도 320℃에서의 반응 결과는 제 6 표에 요약되어 있다.A reaction gas containing 4% by volume of methacrolein, 5% by volume of oxygen, 25% by volume of steam, and 66% by volume of nitrogen was introduced into the reaction tube filled with the catalyst 1 and reacted. The reaction results at the space velocity (GHSV) of 1, 000 and the reaction temperature of 320 ° C are summarized in Table 6.

[제 6 표][Table 6]

Figure kpo00008
Figure kpo00008

[사용예 5](메틸이소프로필케톤의 산화 탈수소 반응)[Example 5] (Oxidation dehydrogenation reaction of methyl isopropyl ketone)

메틸이소프로필케톤, 수증기, 산소 및 질소의 혼합 가스를 촉매 1이 2.0mℓ충전되어 있는 반응관에 도입하였다. 반응관은 사용예 1에서 사용한 것과 같은 것이며, 원료의 공급 속도는 다음과 같이 하였다.A mixed gas of methyl isopropyl ketone, water vapor, oxygen and nitrogen was introduced into a reaction tube filled with 2.0 ml of catalyst 1. The reaction tube was the same as that used in the use example 1, and the feed rate of the raw material was as follows.

메틸이소프로필케톤 10.9m 몰/시간Methyl Isopropyl Ketone 10.9m Mole / Hour

H2O 52.8H 2 O 52.8

O215.0O 2 15.0

N2234.9N 2 234.9

반응은 265℃ 및 285℃의 각 온도에서 시행하였다. 그 결과는 제 7 표에 요약되어 있다.The reaction was carried out at each temperature of 265 ° C and 285 ° C. The results are summarized in the seventh table.

[제 7 표][Table 7]

Figure kpo00009
Figure kpo00009

Claims (1)

수성 슬러리 중에서 몰리브덴, 바나듐 및 인의 산화물, 옥시산 또는 그의 혼합물을 상압 내지 30kg/㎠의 압력하 60°내지 250℃에서 수열 반응시켜서 상기 몰리브덴 및 바나듐이 배워 원자로서 함유된 헤테로폴리인산의 수용액을 생성시키고, 상기 슬러리 중의 몰리브덴, 바나듐 및 인의 슬러리 성분은 목적으로 하는 헤테로폴리산의 각 성분에 대하여 최대 20%의 과량의 화학론량으로 되게 하는 것을 특징으로 하는 헤테로폴리산의 제조법.In an aqueous slurry, an oxide of molybdenum, vanadium and phosphorus, an oxyacid or a mixture thereof is hydrothermally reacted at a temperature of from 60 ° to 250 ° C. under a pressure of from normal pressure to 30 kg / cm 2 to produce an aqueous solution of heteropolyphosphoric acid containing molybdenum and vanadium as atoms. And wherein the slurry components of molybdenum, vanadium and phosphorus in the slurry are in excess of a stoichiometric amount of up to 20% relative to each component of the desired heteropolyacid.
KR7701159A 1977-05-16 1977-05-16 Process for preparing heteropoly-acids KR790001938B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR7701159A KR790001938B1 (en) 1977-05-16 1977-05-16 Process for preparing heteropoly-acids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR7701159A KR790001938B1 (en) 1977-05-16 1977-05-16 Process for preparing heteropoly-acids

Publications (1)

Publication Number Publication Date
KR790001938B1 true KR790001938B1 (en) 1979-12-29

Family

ID=19204334

Family Applications (1)

Application Number Title Priority Date Filing Date
KR7701159A KR790001938B1 (en) 1977-05-16 1977-05-16 Process for preparing heteropoly-acids

Country Status (1)

Country Link
KR (1) KR790001938B1 (en)

Similar Documents

Publication Publication Date Title
US4146574A (en) Process for preparing heteropoly-acids
US3435069A (en) Oxidation of acrolein and methacrolein with a molybdenum polyvalent metaloxygen catalyst
US4180678A (en) Process for preparing methacrylic acid
US4280928A (en) Catalyst compositions and their use for the preparation of methacrolein
JPS5811416B2 (en) Method for producing methacrylic acid
CS229939B2 (en) Production method of catalyst on a base of mixed oxide vanadium and phosphorus
US5681790A (en) Catalyst for preparing methacrylic acid
US4024074A (en) Catalyst for the oxidation of methanol to formaldehyde and process for preparing the same
US4418007A (en) Preparation of mixed oxide catalysts comprising the oxides of molybdenum and/or tungsten
JPH0532323B2 (en)
US4306090A (en) Catalyst compositions and their use for the preparation of methacrolein
US4225466A (en) Catalytic oxide composition for preparing methacrylic acid
JPS5827255B2 (en) Method for producing unsaturated fatty acids
JPS5826329B2 (en) Seizouhou
KR840000985B1 (en) Bi-containing methacrolein oxidation catalyst
US4083805A (en) Preparation of methacrylic acid from methacrolein
US5349092A (en) Process for producing catalysts for synthesis of unsaturated aldehydes and unsaturated carboxylic acids
JP2001114726A (en) Production process for methacrylic acid
US4172051A (en) Catalyst for producing methacrylic acid
KR790001938B1 (en) Process for preparing heteropoly-acids
JPH05177141A (en) Preparation of methacrylic acid
US4388226A (en) Preparation of mixed oxide catalysts comprising the oxides of molybdenum and/or tungsten
JP3316881B2 (en) Method for producing catalyst for producing methacrylic acid
EP0221876B1 (en) Iron/lithium - promoted catalysts for the production of maleic anhydride and a process for the preparation thereof
US4136110A (en) Process for the preparation of unsaturated acids from unsaturated aldehydes