KR20240112619A - A bimetal catalyst for aromatic polymer containing an ester group decomposition reaction and method for producing alkyl aromatic hydrocarbons in high yield and high selectivity from aromatic polymer containing an ester group using the catalyst - Google Patents

A bimetal catalyst for aromatic polymer containing an ester group decomposition reaction and method for producing alkyl aromatic hydrocarbons in high yield and high selectivity from aromatic polymer containing an ester group using the catalyst Download PDF

Info

Publication number
KR20240112619A
KR20240112619A KR1020230004859A KR20230004859A KR20240112619A KR 20240112619 A KR20240112619 A KR 20240112619A KR 1020230004859 A KR1020230004859 A KR 1020230004859A KR 20230004859 A KR20230004859 A KR 20230004859A KR 20240112619 A KR20240112619 A KR 20240112619A
Authority
KR
South Korea
Prior art keywords
catalyst
functional group
aromatic polymer
ester functional
polymer containing
Prior art date
Application number
KR1020230004859A
Other languages
Korean (ko)
Inventor
홍도영
황동원
황영규
윤광남
장하오샹
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020230004859A priority Critical patent/KR20240112619A/en
Publication of KR20240112619A publication Critical patent/KR20240112619A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8966Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/10Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of aromatic six-membered rings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 에스테르 작용기를 포함하는 방향족 고분자 분해반응용 2금속 촉매 및 상기 촉매를 이용한 에스테르 작용기를 포함하는 방향족 고분자로부터 선택적으로 알킬방향족 탄화수소를 제조하는 방법에 관한 것으로서, 상세하게는, 특정한 2종의 활성금속을 포함하는 2금속 촉매를 이용하여 에스테르 작용기를 포함하는 방향족 고분자로부터 알킬방향족 탄화수소를 효율적으로 제조할 수 있는 에스테르 작용기를 포함하는 방향족 고분자 분해반응용 2금속 촉매 및 상기 촉매를 이용한 에스테르 작용기를 포함하는 방향족 고분자로부터 고수율 및 고선택성으로 알킬방향족 탄화수소를 제조하는 방법에 관한 것이다.The present invention relates to a bimetallic catalyst for the decomposition reaction of an aromatic polymer containing an ester functional group and a method for selectively producing alkyl aromatic hydrocarbons from an aromatic polymer containing an ester functional group using the catalyst. In detail, it relates to two specific types of alkyl aromatic hydrocarbons. A bimetallic catalyst for the decomposition reaction of an aromatic polymer containing an ester functional group capable of efficiently producing alkylaromatic hydrocarbons from an aromatic polymer containing an ester functional group using a bimetallic catalyst containing an active metal, and an ester functional group using the catalyst. It relates to a method of producing alkyl aromatic hydrocarbons with high yield and high selectivity from aromatic polymers containing the same.

Description

에스테르 작용기를 포함하는 방향족 고분자 분해반응용 2금속 촉매 및 상기 촉매를 이용한 에스테르 작용기를 포함하는 방향족 고분자로부터 고수율 및 고선택성으로 알킬방향족 탄화수소를 제조하는 방법{A bimetal catalyst for aromatic polymer containing an ester group decomposition reaction and method for producing alkyl aromatic hydrocarbons in high yield and high selectivity from aromatic polymer containing an ester group using the catalyst}A bimetal catalyst for the decomposition reaction of an aromatic polymer containing an ester functional group and a method for producing alkyl aromatic hydrocarbons with high yield and high selectivity from an aromatic polymer containing an ester functional group using the catalyst {A bimetal catalyst for aromatic polymer containing an ester group decomposition reaction and method for producing alkyl aromatic hydrocarbons in high yield and high selectivity from aromatic polymer containing an ester group using the catalyst}

본 발명은 에스테르 작용기를 포함하는 방향족 고분자 분해반응용 2금속 촉매 및 상기 촉매를 이용한 에스테르 작용기를 포함하는 방향족 고분자로부터 고수율 및 고선택성으로 알킬방향족 탄화수소를 제조하는 방법에 관한 것으로서, 상세하게는, 특정한 2종의 활성금속을 포함하는 2금속 촉매를 이용하여 에스테르 작용기를 포함하는 방향족 고분자로부터 알킬방향족 탄화수소를 효율적으로 제조할 수 있는 에스테르 작용기를 포함하는 방향족 고분자 분해반응용 2금속 촉매 및 상기 촉매를 이용한 에스테르 작용기를 포함하는 방향족 고분자로부터 고수율 및 고선택성으로 알킬방향족 탄화수소를 제조하는 방법에 관한 것이다.The present invention relates to a bimetallic catalyst for the decomposition reaction of an aromatic polymer containing an ester functional group and a method for producing alkyl aromatic hydrocarbons with high yield and high selectivity from an aromatic polymer containing an ester functional group using the catalyst, specifically, A bimetallic catalyst for the decomposition reaction of an aromatic polymer containing an ester functional group capable of efficiently producing alkylaromatic hydrocarbons from an aromatic polymer containing an ester functional group using a bimetallic catalyst containing two specific types of active metals, and the catalyst It relates to a method for producing alkyl aromatic hydrocarbons with high yield and high selectivity from an aromatic polymer containing an ester functional group.

석유자원으로부터 손쉽게 대량생산되어 온 플라스틱은 구조적 다양성에 기인한 물성 조절이 용이하여 이를 소재로 하는 제품은 산업적 요구에 부응하였고, 실생활에서도 편의를 제공해왔다. 그러나, 플라스틱은 사용량에 비례하여 폐기량도 급증함에 따라, 플라스틱을 재사용 가능한 자원으로 순환시키는 재활용 기술이 필요성이 대두되고 있다. Plastics, which have been easily mass-produced from petroleum resources, are easy to control physical properties due to their structural diversity, so products made from these materials have met industrial needs and provided convenience in everyday life. However, as the amount of plastic discarded increases rapidly in proportion to the amount used, the need for recycling technology that circulates plastic into a reusable resource is emerging.

소비 후 버려지는 플라스틱 중 에스테르 작용기를 포함하는 방향족 고분자는 에스테르 작용기의 분해나 교환과 같이 비교적 간단한 화학적 반응경로를 통해 합성 이전의 원료로 되돌릴 수 있는 특징을 갖고 있어서, 해중합 (depolymerization) 기반 화학적 재활용을 통해 반복적인 재사용이 가능한 소재로 주목을 받고 있다. 특히, 상기 에스테르 작용기를 포함하는 방향족 고분자 중에서도 폴리에틸렌테레프탈레이트(PET)는 전기전자 부품 및 디스플레이용 소재부터 일회용 포장 용기까지 다양한 용도로 사용되고 있으며, 저부가가치 제품군부터 고부가가치 제품군까지 다양한 포트폴리오를 가지고 있어 산업계에서 중요성이 높은 고분자이다. 또한, 에스테르 작용기를 포함하는 방향족 고분자의 다른 예로 폴리부틸렌테레프탈레이트(PBT)는 저온에서의 충격강도가 우수하여, 유리섬유와 같은 보강재로 사용되거나 강화된 복합재료 제품을 제조할 수 있으며, 내아크성, 절연내력, 내트래킹성 등 전기적 특성이 우수하여 전기 제품에 사용되고 있다. 이들의 중요성을 고려하면, 지속가능한 산업 발전 및 자원의 선순환을 위해서는 에스테르 작용기를 포함하는 방향족 고분자 재활용 기술을 확보하는 것이 필수적이다.Among plastics discarded after consumption, aromatic polymers containing ester functional groups have the characteristic of being able to be returned to the raw material before synthesis through a relatively simple chemical reaction route such as decomposition or exchange of the ester functional group, and thus can be used for chemical recycling based on depolymerization. It is attracting attention as a material that can be repeatedly reused. In particular, among aromatic polymers containing the ester functional group, polyethylene terephthalate (PET) is used for a variety of purposes, from materials for electrical and electronic components and displays to disposable packaging containers, and has a diverse portfolio ranging from low-value-added products to high-value-added products, making it a valuable It is a polymer of high importance. In addition, polybutylene terephthalate (PBT), another example of an aromatic polymer containing an ester functional group, has excellent impact strength at low temperatures and can be used as a reinforcing material such as glass fiber or to manufacture reinforced composite products. It is used in electrical products because it has excellent electrical properties such as arc resistance, dielectric strength, and tracking resistance. Considering their importance, it is essential to secure recycling technology for aromatic polymers containing ester functional groups for sustainable industrial development and a virtuous cycle of resources.

이를 해결하고자, 플라스틱을 단량체로 분해하였다가 고분자로 재가공하는 화학적 재활용 기술이 연구개발되고 있으며, 재중합된 고분자의 물성이 유지되는 이점으로 인해 이상적인 자원순환 기술로 지목되고 있다. 이러한 화학적 재활용의 예로서, 포장재로서 널리 사용되고 있는 에스테르 작용기를 포함하는 방향족 고분자의 일종인 PET를 단량체로 분해하는 반응이 수행될 수 있다. 상기 PET 분해반응은 반응물 종류에 따라 글리콜리시스(glycolysis), 암모놀리시스(ammonolysis), 메탄올리시스(methanolysis), 가수분해(hydrolysis) 등이 있으며, 이들을 조합하여 공정별 장점을 활용하는 복합 공정에 이르기까지 다양한 화학적 분해반응이 널리 이용되고 있다.To solve this problem, chemical recycling technology that decomposes plastic into monomers and then reprocesses it into polymers is being researched and developed, and is being pointed out as an ideal resource recycling technology due to the advantage of maintaining the physical properties of the repolymerized polymer. As an example of such chemical recycling, a reaction can be performed to decompose PET, a type of aromatic polymer containing an ester functional group that is widely used as a packaging material, into monomers. The PET decomposition reaction includes glycolysis, ammonolysis, methanolysis, and hydrolysis depending on the type of reactant, and is a complex process that utilizes the advantages of each process by combining them. Various chemical decomposition reactions are widely used.

상기 열거된 PET 분해반응 중 메탄올리시스는 분해산물로서 디메틸테레프탈레이트(DMT) 및 에틸렌글리콜(EG)이 생성되며, 글리콜리시스는 분해산물로서 비스(2-히드록시에틸렌테레프탈레이트)(BHET)가 생성된다. 상기 분해산물의 전환기술과 관련하여, 비특허문헌2 및 비특허문헌3은 각각 RuPtSn/Al2O3 촉매 존재하에 수소화(hydrogenation) 반응물로서 DMT 또는 BHET를 이용하여 시클로헥산디메탄올(CHDM)을 제조하는 기술이 개시되어 있다. Among the PET decomposition reactions listed above, methanolysis produces dimethyl terephthalate (DMT) and ethylene glycol (EG) as decomposition products, and glycolysis produces bis(2-hydroxyethylene terephthalate) (BHET) as a decomposition product. is created. Regarding the conversion technology of the decomposition product, Non-Patent Document 2 and Non-Patent Document 3 each convert cyclohexanedimethanol (CHDM) using DMT or BHET as a hydrogenation reactant in the presence of a RuPtSn/Al 2 O 3 catalyst. Manufacturing technology is disclosed.

또한, PET 분해반응의 다른 일 종인 가수분해는 분해산물로서 테레프탈산(TPA) 및 에틸렌글리콜(EG)가 생성되며, 상기 TPA의 전환기술과 관련하여, 비특허문헌1에서 Ru/Nb2O5 촉매 존재하에 PET를 가수분해하여 BTX 등의 방향족을 포함하는 탄화수소로 전환하는 기술이 개시되어 있다. 그러나, 상기 비특허문헌1에서 가수분해 생성물 TPA의 추가분해 반응은 속도결정단계로서 수소첨가분해 반응(hydrogenolysis) 및 탈카복실화 반응(Decarboxylation)이 경쟁적으로 일어나며, 그 결과 상기 방향족을 포함하는 탄화수소 중 자일렌보다 벤젠 및 톨루엔의 선택성이 높은 현상이 나타났다.In addition, hydrolysis, another type of PET decomposition reaction, generates terephthalic acid (TPA) and ethylene glycol (EG) as decomposition products. In relation to the conversion technology of TPA, in Non-Patent Document 1, Ru/Nb 2 O 5 catalyst A technology has been disclosed to hydrolyze PET in the presence of PET and convert it into hydrocarbons containing aromatics such as BTX. However, in the non-patent document 1, the further decomposition reaction of the hydrolysis product TPA is a rate-determining step in which hydrogenolysis and decarboxylation occur competitively, and as a result, among the hydrocarbons containing the aromatic A phenomenon showing higher selectivity for benzene and toluene than for xylene was observed.

방향족을 포함하는 탄화수소에 속하는 화합물 중 BTX(벤젠, 톨루엔 및 자일렌)는 석유화학 분야에서 중요한 물질이나, 특히, 자일렌(xylene)은 가죽, 고무, 인쇄 분야의 용제로 광범위하게 사용될 뿐만 아니라, 파라자일렌(p-xylene)을 산화시키는 경우에는 PET의 단량체인 테레프탈산(TPA)의 수득이 가능한 점에서 자일렌 등의 알킬방향족 탄화수소 제조기술을 확보하는 것이 자원의 선순환 측면에서 절실히 필요한 실정이다.Among the compounds belonging to hydrocarbons containing aromatics, BTX (benzene, toluene, and xylene) are important substances in the petrochemical field, but in particular, xylene is not only widely used as a solvent in the leather, rubber, and printing fields. In the case of oxidizing p-xylene, it is possible to obtain terephthalic acid (TPA), a monomer of PET, so securing technology for producing alkyl aromatic hydrocarbons such as xylene is urgently needed in terms of a virtuous cycle of resources.

Shenglu Lu et al., H2-free Plastic Conversion: Converting PET back to BTX by Unlocking Hidden Hydrogen, ChemSusChem, 2021, 14, pp.1-10Shenglu Lu et al., H2-free Plastic Conversion: Converting PET back to BTX by Unlocking Hidden Hydrogen, ChemSusChem, 2021, 14, pp.1-10 Xuefeng Li et al., One-Pot Conversion of Dimethyl Terephthalate into 1,4-Cyclohexanedimethanol with Supported Trimetallic RuPtSn Catalysts, Industrial & Engineering Chemistry Research, 2014, 53, pp.619-625Xuefeng Li et al., One-Pot Conversion of Dimethyl Terephthalate into 1,4-Cyclohexanedimethanol with Supported Trimetallic RuPtSn Catalysts, Industrial & Engineering Chemistry Research, 2014, 53, pp.619-625 RSC Advance, 2016, 6, pp.48737-48744 RSC Advance, 2016, 6, pp.48737-48744

본 발명은 에스테르 작용기를 포함하는 방향족 고분자 분해반응용으로 적합한 2금속 촉매를 제공하고, 상기 촉매 및 최적화된 반응 조건하에서 분해반응을 수행함으로서 에스테르 작용기를 포함하는 방향족 고분자로부터 고수율 및 고선택성으로 알킬방향족 탄화수소를 제조하는 방법을 제공하는 것을 목적으로 한다.The present invention provides a bimetallic catalyst suitable for the decomposition reaction of an aromatic polymer containing an ester functional group, and performs the decomposition reaction under the catalyst and optimized reaction conditions to produce an alkyl alkyl catalyst in high yield and high selectivity from an aromatic polymer containing an ester functional group. The purpose is to provide a method for producing aromatic hydrocarbons.

상기 문제를 해결하고자, 본 발명의 에스테르 작용기를 포함하는 방향족 고분자 분해반응용 2금속 촉매는 활성금속으로 Pt 및 Sn을 포함하는 것을 특징으로 할 수 있다. In order to solve the above problem, the bimetallic catalyst for aromatic polymer decomposition reaction containing an ester functional group of the present invention may be characterized by containing Pt and Sn as active metals.

상기 본 발명에 따른 Pt-Sn 활성금속은 산성 지지체에 담지되어 사용될 수 있다.The Pt-Sn active metal according to the present invention can be used while supported on an acidic support.

상기 Pt:Sn의 몰 비는 1:0.05 내지 1:3.0 인 것을 특징으로 할 수 있다.The molar ratio of Pt:Sn may be 1:0.05 to 1:3.0.

상기 촉매내 활성금속의 담지량은 촉매 총 중량 대비 1.0 내지 20 wt% 인 것을 특징으로 할 수 있다.The amount of active metal supported in the catalyst may be 1.0 to 20 wt% based on the total weight of the catalyst.

상기 촉매는 온도 200 내지 800 ℃ 범위에서 소성될 수 있다.The catalyst may be calcined at a temperature ranging from 200 to 800 °C.

또한, 본 발명은 에스테르 작용기를 포함하는 방향족 고분자로부터 고수율 및 고선택성으로 알킬방향족 탄화수소를 제조하는 방법에 있어서, (A) 상기 에스테르 작용기를 포함하는 방향족 고분자 분해반응용 2금속 촉매를 환원시키는 단계; (B) (A)단계의 환원된 촉매와 에스테르 작용기를 포함하는 방향족 고분자를 접촉시켜 분해반응을 수행하는 단계; 및 (C) (B)단계의 에스테르 작용기를 포함하는 방향족 고분자 분해반응으로부터 알킬방향족 탄화수소를 수득하는 단계;를 포함하는 것을 특징으로 할 수 있다.In addition, the present invention relates to a method for producing alkyl aromatic hydrocarbons with high yield and high selectivity from an aromatic polymer containing an ester functional group, comprising the steps of (A) reducing a bimetallic catalyst for the decomposition reaction of an aromatic polymer containing an ester functional group; ; (B) performing a decomposition reaction by contacting the reduced catalyst of step (A) with an aromatic polymer containing an ester functional group; and (C) obtaining an alkyl aromatic hydrocarbon from the decomposition reaction of the aromatic polymer containing an ester functional group in step (B).

상기 (A)단계에서 촉매의 환원 온도는 200 내지 800 ℃ 범위일 수 있다.In step (A), the reduction temperature of the catalyst may be in the range of 200 to 800 °C.

상기 (B)단계에서 에스테르 작용기를 포함하는 방향족 고분자 분해반응은 수소첨가 분해반응 및 수소첨가 탈산소화반응을 포함할 수 있다.In step (B), the decomposition reaction of the aromatic polymer containing an ester functional group may include a hydrogenation decomposition reaction and a hydrogenation deoxygenation reaction.

상기 (B)단계의 에스테르 작용기를 포함하는 방향족 고분자 분해반응은 200 내지 350 ℃ 범위에서 수행될 수 있다.The decomposition reaction of the aromatic polymer containing the ester functional group in step (B) may be performed in the range of 200 to 350 ° C.

상기 (B)단계의 에스테르 작용기를 포함하는 방향족 고분자 분해반응은 수소 압력 10 내지 300 bar 범위에서 수행될 수 있다.The decomposition reaction of the aromatic polymer containing the ester functional group in step (B) may be performed at a hydrogen pressure in the range of 10 to 300 bar.

본 발명에 따르면, 최적의 2금속 촉매 및 에스테르 작용기를 포함하는 방향족 고분자 분해반응용 반응 조건을 제공하며, 상기 촉매 및 반응조건 하에 에스테르 작용기를 포함하는 방향족 고분자로부터 선택적으로 고수율의 알킬방향족 탄화수소를 제조할 수 있다.According to the present invention, an optimal bimetallic catalyst and reaction conditions for the decomposition reaction of an aromatic polymer containing an ester functional group are provided, and a high yield of alkyl aromatic hydrocarbons is selectively produced from an aromatic polymer containing an ester functional group under the catalyst and reaction conditions. It can be manufactured.

상기 촉매 및 이를 이용한 알킬방향족 탄화수소 제조방법을 이용하여 에스테르 작용기를 포함하는 방향족 고분자로부터 고범용성의 알킬방향족 탄화수소 회수가 가능하다.It is possible to recover highly versatile alkyl aromatic hydrocarbons from aromatic polymers containing ester functional groups using the catalyst and the method for producing alkyl aromatic hydrocarbons using the same.

특히, 에스테르 작용기를 포함하는 방향족 고분자가 PET일 경우, 본 발명의 분해 반용용 반응 조건에서 자일렌이 선택적으로 생성될 수 있으며, 상기 자일렌의 산화생성물은 PET의 단량체인 테레프탈산(TPA)인 점에서 석유 유래 자원에 의존하지 않고도 친환경적으로 PET 재생산이 가능한 이점이 있다.In particular, when the aromatic polymer containing an ester functional group is PET, xylene can be selectively produced under the decomposition reaction conditions of the present invention, and the oxidation product of xylene is terephthalic acid (TPA), a monomer of PET. There is an advantage in that PET can be reproduced in an environmentally friendly manner without relying on petroleum-derived resources.

도 1은 PET로부터 BTX를 제조하는 단계를 나타낸 도면이다.
도 2는 본 발명의 일 실시예로서 PtSn/Al2O3 촉매의 TEM 측정 사진이다.
도 3은 본 발명의 일 실시예로서 촉매내 활성금속의 종류 및 활성금속간 몰비가 상이한 촉매들의 XRD 측정 결과이다.
도 4는 본 발명의 일 실시예로서 촉매내 활성금속 종류에 따른 PET 전환율 및 BTX 수율을 나타낸 그래프이다.
도 5는 본 발명의 일 실시예로서 촉매내 Pt 및 Sn의 몰비에 따른 PET 전환율 및 BTX 수율을 나타낸 그래프이다.
도 6은 본 발명의 일 실시예로서 Pt:Sn 몰비가 1:0.5인 PtSn/Al2O3 촉매내 Pt 및 Sn의 금속담지량에 따른 PET 전환율 및 BTX 수율을 나타낸 그래프이다.
도 7은 본 발명의 일 실시예로서 제조예4 촉매 존재하 반응시간에 따른 PET 전환율 및 BTX 수율을 나타낸 그래프이다.
도 8은 본 발명의 일 실시예로서 제조예4 촉매 존재하 반응시간에 따른 BTX외의 생성물(a:BTX외의 알킬 방향족계 및 지환족계, b: 벤조에이트계 및 테레프탈레이트계, c: 이량체 생성물)의 수율을 나타낸 그래프이다.
Figure 1 is a diagram showing the steps for manufacturing BTX from PET.
Figure 2 is a TEM measurement photo of a PtSn/Al 2 O 3 catalyst as an example of the present invention.
Figure 3 shows the XRD measurement results of catalysts with different types of active metals and molar ratios between active metals in the catalyst as an example of the present invention.
Figure 4 is a graph showing the PET conversion rate and BTX yield according to the type of active metal in the catalyst as an example of the present invention.
Figure 5 is a graph showing the PET conversion rate and BTX yield according to the molar ratio of Pt and Sn in the catalyst as an example of the present invention.
Figure 6 is a graph showing the PET conversion rate and BTX yield according to the metal loading amount of Pt and Sn in a PtSn/Al 2 O 3 catalyst with a Pt:Sn molar ratio of 1:0.5 as an example of the present invention.
Figure 7 is a graph showing PET conversion rate and BTX yield according to reaction time in the presence of catalyst in Preparation Example 4 as an example of the present invention.
Figure 8 shows an example of the present invention, showing products other than BTX (a: alkyl aromatic and cycloaliphatic other than BTX, b: benzoate and terephthalate, c: dimer product) according to reaction time in the presence of catalyst in Preparation Example 4 of the present invention. ) This is a graph showing the yield.

다른 식으로 정의하지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless otherwise defined, all technical and scientific terms used in this specification have the same meaning as commonly understood by a person skilled in the art to which the present invention pertains. In general, the nomenclature used herein is well known and commonly used in the art.

본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 “포함”한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification of the present application, when a part “includes” a certain component, this means that it may further include other components rather than excluding other components, unless specifically stated to the contrary.

도 1은 본 발명에 따른 제조방법에 의한 일 실시예로서 PET로부터 BTX를 제조하는 단계를 나타낸 도면이다. 용융 상태 에스테르 작용기를 포함하는 방향족 고분자의 일종인 폴리에틸렌테레프탈레이트(PET)의 사슬은 수소첨가 분해반응(hydrogenolysis)에 의해 BHET(bis-hydroxyethyl terephthalate) 및 HEMBA(2-Hydroxyethyl 4-methylbenzoate)로 분해되고, 부산물로 에틸렌클리콜(EG)과 물이 생성된다. 또한, 상기 BHET는 수소첨가 분해반응을 통해 HEMBA로 전환되거나 수소첨가 탈산소화반응(Hydrodeoxygenation)을 통해 DET(Diethyl terephthalate)를 거쳐 EMBA(Ethyl 4-methylbenzoate)로 전환된다.Figure 1 is a diagram showing the steps of manufacturing BTX from PET as an example of the manufacturing method according to the present invention. The chain of polyethylene terephthalate (PET), a type of aromatic polymer containing an ester functional group in the molten state, is decomposed into BHET (bis-hydroxyethyl terephthalate) and HEMBA (2-Hydroxyethyl 4-methylbenzoate) by hydrogenolysis. , ethylene glycol (EG) and water are produced as by-products. In addition, the BHET is converted into HEMBA through a hydrogenation decomposition reaction or converted into EMBA (Ethyl 4-methylbenzoate) through DET (diethyl terephthalate) through hydrogenation and deoxygenation.

생성된 HEMBA와 EMBA는 수소첨가 분해반응을 거쳐 자일렌으로 전환되거나 톨루익산(Toluic acid)을 거쳐 자일렌 또는 톨루엔으로 전환된다. 벤젠은 수첨 분해 생성물인 테레프탈산(Terephthalic acid)로부터 탈카르복실화 반응(Decarboxylation)의 단독 반응으로부터 생성된다. 자일렌을 선택적으로 제조하기 위해서는 PET의 수소첨가 분해반응 이후에 BHET 및 HEMBA의 수소첨가 분해반응이 수행되어야 하나, 속도결정 단계로서 수소첨가 분해반응 및 수소첨가 탈산소화 반응은 경쟁적으로 수행되며, 상기 두 반응의 경쟁관계에서 촉매내 활성금속 종류가 영향을 미칠 수 있다.The produced HEMBA and EMBA are converted to xylene through hydrogen decomposition reaction or converted to xylene or toluene through toluic acid. Benzene is produced through a single decarboxylation reaction from terephthalic acid, a hydrocracking product. In order to selectively produce xylene, the hydrogenation decomposition reaction of PET must be followed by the hydrogenation decomposition reaction of BHET and HEMBA. However, as the rate-determining step, the hydrogenation decomposition reaction and the hydrogenation deoxygenation reaction are performed competitively. The type of active metal in the catalyst can have an effect on the competition between the two reactions.

본 발명은 최적의 활성금속종을 갖는 에스테르 작용기를 포함하는 방향족 고분자 분해반응용 촉매와 상기 촉매를 이용하여 알킬방향족 탄화수소를 선택적으로 제조하는 방법을 제공한다. 본 발명에 따르는 촉매계는 활성금속으로서 Pt-Sn 2금속 촉매는 Pt 또는 Sn의 1금속을 가지거나 혹은 Pt-Sn에 1종이 추가된 3금속을 갖는 촉매 대비 알킬 방향족의 생성을 선택적으로 향상시킬 수 있으며, 상기 에스테르 작용기를 포함하는 방향족 고분자가 테레프탈레이트 혹은 이소프탈레이트 계열일 경우, 생성되는 알킬 방향족 중에서 산업상 유용성이 뛰어난 자일렌의 생성율이 월등히 높게 나타나는 효과를 가진다.The present invention provides a catalyst for aromatic polymer decomposition reaction containing an ester functional group with optimal active metal species and a method for selectively producing alkyl aromatic hydrocarbons using the catalyst. The catalyst system according to the present invention is an active metal, and the Pt-Sn two-metal catalyst can selectively improve the production of alkyl aromatics compared to the catalyst having one metal of Pt or Sn or a three metal added to Pt-Sn. In addition, when the aromatic polymer containing the ester functional group is a terephthalate or isophthalate series, the production rate of xylene, which has excellent industrial utility, is significantly higher among the alkyl aromatics produced.

아울러, 상기 Pt-Sn 2금속을 갖는 경우에 금속의 혼합 몰비 및 담지량 등의 최적의 촉매 관련 인자를 제공하며, 상기 촉매를 이용한 에스테르 작용기를 포함하는 방향족 고분자 분해반응시 최적의 반응조건도 제공할 수 있다.In addition, in the case of having the Pt-Sn dimetal, it provides optimal catalyst-related factors such as metal mixing ratio and supported amount, and also provides optimal reaction conditions when decomposing an aromatic polymer containing an ester functional group using the catalyst. You can.

이하, 본 발명의 에스테르 작용기를 포함하는 방향족 고분자 분해반응용 2금속 촉매에 대하여 살펴보기로 한다.Hereinafter, we will look at the bimetallic catalyst for aromatic polymer decomposition reaction containing an ester functional group of the present invention.

본 발명의 에스테르 작용기를 포함하는 방향족 고분자 분해반응용 2금속 촉매는 활성금속으로 Pt 및 Sn을 포함하는 것을 특징으로 한다. 여기서, 2금속(bi-metal)이라 함은 촉매를 구성하는 활성금속으로서 Pt 및 Sn을 포함하는 것을 의미한다.The bimetallic catalyst for aromatic polymer decomposition reaction containing an ester functional group of the present invention is characterized by containing Pt and Sn as active metals. Here, bi-metal means including Pt and Sn as active metals constituting the catalyst.

상기 본 발명의 촉매는 에스테르 작용기를 포함하는 방향족 고분자의 분해반응에 유용하며, 에스테르 작용기를 포함하는 방향족 고분자는 디카르복실산과 디올(디알코올)이 출발 물질로 사용되거나 히드록시기와 카복실산기를 동시에 갖는 히드록시카복실산 화합물 단독 1종 혹은 2종 이상이 출발 물질로 사용되어 탈수에 의한 축중합이 연속적으로 진행되어 생성되거나 반복단위 또는 고분자내 임의의 위치에 다수의 에스테르 결합 구조를 갖는 것일 수 있으며, 여기서 디카르복실산은 테레프탈산, 이소프탈산, 나프탈렌 디카르복실산, 디페닐디카르복실산, 디페닐 에테르 디카르복실산, 디페녹시에탄디카르복실산, 트리멜리트산, 피로멜리트산 및 이의 조합으로 이루어진 군에서 선택되고, 디알코올은 에틸렌글리콜, 트리메틸렌글리콜, 1,2-프로판디올, 테트라메틸렌글리콜, 네오펜틸글리콜, 펜타메틸렌클리콜, 헥사메틸렌글리콜, 데칸메틸렌글리콜, 도데카메틸렌글리콜, 1,4-시클로헥산디메탄올, 디에틸렌글리콜, 트리에틸렌글리콜, 테트라에틸렌글리콜, 폴리에틸렌글리콜, 디프로필렌글리콜, 트리프로필렌글리콜, 테트라프로필렌글리콜, 폴리프로필렌글리콜, 디(테트라메틸렌)글리콜, 트리(테트라메틸렌)글리콜, 폴리테트라메틸렌글리콜, 펜타에리스리톨, 2,2-비스(4-β-히드록시에톡시페닐)프로판 및 이의 조합으로 이루어진 군에서 선택되고, 히드록시카복실산 화합물은 4-하이드록시벤조산, 6-하이드록시나프탈렌-2-카복실산 및 이의 조합으로 이루어진 군에서 선택될 수 있다.The catalyst of the present invention is useful in the decomposition reaction of aromatic polymers containing an ester functional group, and the aromatic polymers containing an ester functional group are dicarboxylic acids and diols (dialcohols) used as starting materials, or hydrides having both hydroxy groups and carboxylic acid groups. One or two or more oxycarboxylic acid compounds alone are used as starting materials and are produced through continuous condensation polymerization by dehydration, or they may have multiple ester bond structures in repeating units or at arbitrary positions in the polymer, where dicarboxylic acid compounds are used as starting materials. Ruboxylic acid consists of terephthalic acid, isophthalic acid, naphthalene dicarboxylic acid, diphenyldicarboxylic acid, diphenyl ether dicarboxylic acid, diphenoxyethanedicarboxylic acid, trimellitic acid, pyromellitic acid, and combinations thereof. Di-alcohol is selected from the group, ethylene glycol, trimethylene glycol, 1,2-propanediol, tetramethylene glycol, neopentyl glycol, pentamethylene glycol, hexamethylene glycol, decane methylene glycol, dodecamethylene glycol, 1, 4-cyclohexanedimethanol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, dipropylene glycol, tripropylene glycol, tetrapropylene glycol, polypropylene glycol, di(tetramethylene) glycol, tri(tetramethylene) It is selected from the group consisting of glycol, polytetramethylene glycol, pentaerythritol, 2,2-bis (4-β-hydroxyethoxyphenyl) propane, and combinations thereof, and the hydroxycarboxylic acid compound is 4-hydroxybenzoic acid, 6- It may be selected from the group consisting of hydroxynaphthalene-2-carboxylic acid and combinations thereof.

상기 에스테르 작용기를 포함하는 방향족 고분자의 예로써, 폴리에틸렌 테레프탈레이트(PET), 폴리부틸렌 테레프탈레이트(PBT), 폴리트리메틸렌 테레프탈레이트(PTT), 폴리에틸렌 나프탈레이트(PEN), 벡트란 및 이의 조합에서 선택될 수 있다.Examples of aromatic polymers containing the ester functional group include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN), Vectran, and combinations thereof. can be selected.

바람직하게는 상기 에스테르 작용기를 포함하는 고분자는 폴리에틸렌 테레프탈레이트(PET) 또는 폴리부틸렌 테레프탈레이트(PBT)이며, 이때 상기 고분자 제조를 위한 출발 물질은 테레프탈산 또는 이의 염, 및 알킬렌글리콜일 수 있다.Preferably, the polymer containing the ester functional group is polyethylene terephthalate (PET) or polybutylene terephthalate (PBT), and the starting material for producing the polymer may be terephthalic acid or a salt thereof, and alkylene glycol.

본 발명의 Pt-Sn 2금속 촉매는 지지체에 담지되어 사용될 수도 있다. 상기 지지체는 에스테르 작용기를 포함하는 방향족 고분자 분해를 방해하지 않는 한 통상적인 지지체를 사용할 수 있으며, 바람직하게는 산성 지지체, 더욱 바람직하게는 알루미나 일 수 있다.The Pt-Sn two-metal catalyst of the present invention may be used while supported on a support. The support can be any conventional support as long as it does not interfere with the decomposition of the aromatic polymer containing an ester functional group, and is preferably an acidic support, more preferably alumina.

활성금속 중에서 상기 Pt는 금속 전구체로서 (NH3)4Pt(NO3)2, PtCl2, PtCl4, (NH4)2PtCl4, (NH4)2PtCl6, K2PtCl4, K2PtCl6, Na2PtCl6, H2PtCl6 및 Pt(C5H7O2)2(Pt(acac)2), Pt(NH3)2Cl2 및 Pt(NH3)4Cl2·xH2O, Pt(NH3)4(OH)2·xH2O 를 사용할 수 있고, 바람직하게는 (NH3)4Pt(NO3)2 를 사용할 수 있다.Among the active metals, Pt is a metal precursor: (NH 3 ) 4 Pt(NO 3 ) 2 , PtCl 2 , PtCl 4 , (NH 4 ) 2 PtCl 4 , (NH 4 ) 2 PtCl 6 , K 2 PtCl 4 , K 2 PtCl 6 , Na 2 PtCl 6 , H 2 PtCl 6 and Pt(C 5 H 7 O 2 ) 2 (Pt(acac) 2 ), Pt(NH 3 ) 2 Cl 2 and Pt(NH 3 ) 4 Cl 2 ·xH 2 O, Pt(NH 3 ) 4 (OH) 2 ·xH 2 O can be used, and preferably (NH 3 ) 4 Pt(NO 3 ) 2 can be used.

또한, 상기 Sn은 금속 전구체로서 SnCl4·5H2O, SnF2, SnBr4, Sn(CH3CO2)2, Sn(OC(CH3)3)4, SnC2O4 를 사용할 수 있고, 바람직하게는 SnCl4·5H2O 를 사용할 수 있다.In addition, SnCl 4 ·5H 2 O, SnF 2 , SnBr 4 , Sn(CH 3 CO 2 ) 2 , Sn(OC(CH 3 ) 3 ) 4 , SnC 2 O 4 can be used as the Sn metal precursor, Preferably, SnCl 4 ·5H 2 O can be used.

상기 Pt:Sn의 몰 비는 1:0.05 내지 1:3.0, 바람직하게는 1:0.1 내지 1:1.5, 더욱 바람직하게는 1:0.2 내지 1:1.2, 가장 바람직하게는 1:0.4 내지 1:1.2 인 것을 특징으로 할 수 있다.The molar ratio of Pt:Sn is 1:0.05 to 1:3.0, preferably 1:0.1 to 1:1.5, more preferably 1:0.2 to 1:1.2, and most preferably 1:0.4 to 1:1.2. It can be characterized as:

상기 촉매내 활성금속의 담지량은 촉매 총 중량 대비 1.0 내지 20.0 wt%, 바람직하게는 2.5 내지 12.0 wt%, 더욱 바람직하게는 3.5 내지 10 wt% 범위일 수 있다.The amount of active metal supported in the catalyst may range from 1.0 to 20.0 wt%, preferably from 2.5 to 12.0 wt%, and more preferably from 3.5 to 10 wt%, based on the total weight of the catalyst.

상기 촉매내 Sn의 함량은 Pt의 함량 대비 15 내지 200 %, 바람직하게는 25 내지 200 %, 더욱 바람직하게는 50 내지 200 % 범위일 수 있다.The content of Sn in the catalyst may range from 15 to 200%, preferably from 25 to 200%, and more preferably from 50 to 200%, relative to the content of Pt.

상기 촉매는 온도 200 내지 800 ℃, 바람직하게는 450 내지 650 ℃ 범위에서 소성된 것일 수 있다.The catalyst may be calcined at a temperature ranging from 200 to 800 °C, preferably 450 to 650 °C.

또한, 본 발명은 상기 촉매를 이용한 에스테르 작용기를 포함하는 방향족 고분자로부터 고수율 및 고선택성으로 알킬방향족 탄화수소를 제조하는 방법을 제공할 수 있다.Additionally, the present invention can provide a method for producing alkyl aromatic hydrocarbons with high yield and high selectivity from an aromatic polymer containing an ester functional group using the catalyst.

본 발명에 따르면, 에스테르 작용기를 포함하는 방향족 고분자로부터 고수율 및 고선택성으로 알킬방향족 탄화수소를 제조하는 방법은 (A) 상기 에스테르 작용기를 포함하는 방향족 고분자 분해반응용 촉매를 환원시키는 단계; (B) (A)단계의 환원된 촉매와 에스테르 작용기를 포함하는 방향족 고분자를 접촉시켜 분해반응을 수행하는 단계; 및 (C) (B)단계의 에스테르 작용기를 포함하는 방향족 고분자 분해반응으로부터 자일렌을 포함하는 방향족 탄화수소를 수득하는 단계;를 포함하는 것을 특징으로 한다.According to the present invention, a method for producing an alkyl aromatic hydrocarbon with high yield and high selectivity from an aromatic polymer containing an ester functional group includes the steps of (A) reducing a catalyst for the decomposition reaction of an aromatic polymer containing an ester functional group; (B) performing a decomposition reaction by contacting the reduced catalyst of step (A) with an aromatic polymer containing an ester functional group; and (C) obtaining an aromatic hydrocarbon containing xylene from the decomposition reaction of the aromatic polymer containing an ester functional group in step (B).

상기 (A)단계에서 촉매의 환원 온도는 200 내지 800 ℃, 바람직하게는 300 내지 700 ℃, 더욱 바람직하게는 400 내지 600 ℃, 가장 바람직하게는 400 내지 550 ℃ 범위일 수 있다.In step (A), the reduction temperature of the catalyst may be in the range of 200 to 800 °C, preferably 300 to 700 °C, more preferably 400 to 600 °C, and most preferably 400 to 550 °C.

상기 (B)단계에서 에스테르 작용기를 포함하는 방향족 고분자 분해반응은 수소첨가 분해반응 및 수소첨가 탈산소화반응을 포함하며, 상기 두 반응은 경쟁적으로 수행되며, 상기 두 반응의 경쟁관계에서 촉매 활성금속이 영향을 미칠 수 있다.In step (B), the decomposition reaction of the aromatic polymer containing an ester functional group includes a hydrogenation decomposition reaction and a hydrogenation deoxygenation reaction. The two reactions are performed competitively, and the catalytically active metal is generated in the competition between the two reactions. It can have an impact.

상기 (B)단계의 에스테르 작용기를 포함하는 방향족 고분자 분해반응은 200 내지 350 ℃, 바람직하게는 225 내지 325 ℃, 더욱 바람직하게는 250 내지 300 ℃, 더더욱 바람직하게는 270 내지 295 ℃, 가장 바람직하게는 285 내지 295 ℃ 범위의 가열 조건 하에 수행될 수 있다.The decomposition reaction of the aromatic polymer containing the ester functional group in step (B) is carried out at 200 to 350 ° C, preferably 225 to 325 ° C, more preferably 250 to 300 ° C, even more preferably 270 to 295 ° C, most preferably Can be carried out under heating conditions ranging from 285 to 295 °C.

또한, 상기 (B)단계의 에스테르 작용기를 포함하는 방향족 고분자 분해반응은 상온에서의 환산한 압력으로서 수소 압력 10 내지 300 bar, 바람직하게는 10 내지 100 bar, 더욱 바람직하게는 25 내지 70 bar, 가장 바람직하게는 35 내지 60 bar 범위의 가압 조건 하에 수행될 수 있다.In addition, the decomposition reaction of the aromatic polymer containing the ester functional group in step (B) is performed at a hydrogen pressure of 10 to 300 bar, preferably 10 to 100 bar, more preferably 25 to 70 bar, as converted to pressure at room temperature. Preferably, it may be performed under pressurized conditions in the range of 35 to 60 bar.

상기 (C) 단계에서 수득된 방향족 탄화수소는 벤젠 등의 알킬기가 치환되지 않은 방향족과 알킬기가 치환된 알킬 방향족 탄화수소를 포함하며, 상기 알킬 방향족 탄화수소는 구조내 단일 방향족 벤젠 고리 혹은 융합된 방향족 벤젠 고리를 포함하는 탄화수소이며, 상기 벤젠 고리에 연결되어 있는 1 이상의 수소 원자의 자리에 1 이상의 알킬기가 치환된 화합물로서, 상기 알킬 방향족 탄화수소의 일 예로 톨루엔(Toluene)을 포함한 모노알킬벤젠, 자일렌(Xylene)을 포함한 디알킬벤젠, 트리알킬벤젠, 테트라알킬벤젠, 펜타알킬벤젠, 모노알킬나프탈렌 디알킬나프탈렌을 포함하나 기재된 예시 화합물만으로 제한되지 아니한다.The aromatic hydrocarbons obtained in step (C) include aromatics in which an alkyl group, such as benzene, is not substituted, and alkyl aromatic hydrocarbons in which an alkyl group is substituted. The alkyl aromatic hydrocarbons include a single aromatic benzene ring or a fused aromatic benzene ring in the structure. It is a hydrocarbon containing a compound in which at least one alkyl group is substituted in place of at least one hydrogen atom connected to the benzene ring. Examples of the alkyl aromatic hydrocarbon include monoalkylbenzene including toluene, and xylene. Including dialkylbenzene, trialkylbenzene, tetraalkylbenzene, pentaalkylbenzene, monoalkylnaphthalene, dialkylnaphthalene, but is not limited to the exemplary compounds described.

이하, 본 발명의 에스테르 작용기를 포함하는 방향족 고분자 분해반응용 2금속 촉매 및 상기 촉매를 이용한 에스테르 작용기를 포함하는 방향족 고분자로부터 고수율 및 고선택성으로 알킬방향족 탄화수소를 제조하는 방법의 바람직한 실시예에 대하여 살펴보기로 한다. 참고로, 하기 실시예는 본 발명의 하나 이상의 바람직한 실시형태를 예시하기 위해 제공된 것이나 본 발명이 그 실시형태에 한정되는 것은 아니다. 하기 실시예에 본 발명의 범위 내에 속하는 다수의 변경이 이루어질 수 있다.Hereinafter, a preferred embodiment of the bimetallic catalyst for the decomposition reaction of an aromatic polymer containing an ester functional group of the present invention and a method for producing alkyl aromatic hydrocarbons with high yield and high selectivity from an aromatic polymer containing an ester functional group using the catalyst will be described. Let's take a look. For reference, the following examples are provided to illustrate one or more preferred embodiments of the present invention, but the present invention is not limited to those embodiments. Numerous changes may be made to the examples below that remain within the scope of the invention.

<비교제조예 1~6 및 제조예 1~12: 촉매 제조><Comparative Preparation Examples 1 to 6 and Preparation Examples 1 to 12: Catalyst Preparation>

탈기된 증류수 20 mL가 포함된 250 ml 플라스크내 하기 표 1에 기재된 금속 전구체 및 지지체 1.8 g를 첨가한 촉매 조물을 상온의 초음파 수조에서 60분간 분산 및 80℃의 핫플레이트(Hot plate)에서 건조하였다. 건조된 촉매 조성물은 오븐내 120 ℃ 에서 12시간 동안 추가 건조한 후, 튜브형 퍼니스에서 공기를 주입하면서 500 ℃까지 5 ℃/min 속도로 승온시킨 다음 500 ℃에서 4시간 동안 소성하여 활성 금속이 알루미나에 담지된 형태의 촉매를 제조하였다.The catalyst mixture containing 20 mL of degassed distilled water and 1.8 g of the metal precursor and support shown in Table 1 below was added to the catalyst mixture for 60 minutes in an ultrasonic bath at room temperature and dried on a hot plate at 80°C. . The dried catalyst composition was further dried in an oven at 120°C for 12 hours, then heated to 500°C at a rate of 5°C/min while injecting air in a tubular furnace, and then calcined at 500°C for 4 hours to ensure that the active metal was not contained in the alumina. A catalyst in this form was prepared.

번호number 전구체 질량(g)Precursor mass (g) Pt:Ru:Sn
몰비
Pt:Ru:Sn
molar ratio
금속 담지량(wt.%)Metal loading amount (wt.%) 지지체(g)Support (g)
TotalTotal PtPt RuRu SnSn 종류type 질량mass Pt
전구체*
Pt
Precursor *
Ru
전구체**
Ru
Precursor **
Sn
전구체***
Sn
Precursor ***
비교제조예1Comparative Manufacturing Example 1 0.1880.188 -- -- 1:0:01:0:0 5.05.0 5.05.0 -- -- γ-Al2O3 γ-Al 2 O 3 1.81.8 비교제조예2Comparative Manufacturing Example 2 -- 0.2450.245 -- 0:1:00:1:0 5.05.0 -- 5.05.0 -- γ-Al2O3 γ-Al 2 O 3 1.81.8 비교제조예3Comparative Manufacturing Example 3 -- -- 0.2800.280 0:0:10:0:1 5.05.0 -- -- 5.05.0 γ-Al2O3 γ-Al 2 O 3 1.81.8 비교제조예4Comparative Manufacturing Example 4 0.1240.124 0.0840.084 -- 1:1:01:1:0 5.05.0 3.33.3 1.71.7 -- γ-Al2O3 γ-Al 2 O 3 1.81.8 비교제조예5Comparative Manufacturing Example 5 -- 0.1130.113 0.1510.151 0:1:10:1:1 5.05.0 -- 2.32.3 2.72.7 γ-Al2O3 γ-Al 2 O 3 1.81.8 비교제조예6Comparative Manufacturing Example 6 0.0890.089 0.0600.060 0.0800.080 1:1:11:1:1 5.05.0 2.42.4 1.21.2 1.41.4 γ-Al2O3 γ-Al 2 O 3 1.81.8 제조예1Manufacturing Example 1 0.1560.156 -- 0.0470.047 1:0:0.331:0:0.33 5.05.0 4.24.2 -- 0.80.8 γ-Al2O3 γ-Al 2 O 3 1.81.8 제조예2Manufacturing example 2 0.0850.085 -- 0.0380.038 1:0:0.501:0:0.50 3.03.0 2.32.3 -- 0.70.7 γ-Al2O3 γ-Al 2 O 3 1.81.8 제조예3Manufacturing example 3 0.1140.114 -- 0.0520.052 1:0:0.501:0:0.50 4.04.0 3.13.1 -- 0.90.9 γ-Al2O3 γ-Al 2 O 3 1.81.8 제조예4Manufacturing example 4 0.1440.144 -- 0.0650.065 1:0:0.501:0:0.50 5.05.0 3.83.8 -- 1.21.2 γ-Al2O3 γ-Al 2 O 3 1.81.8 제조예5Manufacturing example 5 0.1750.175 -- 0.0790.079 1:0:0.501:0:0.50 6.06.0 4.64.6 -- 1.41.4 γ-Al2O3 γ-Al 2 O 3 1.81.8 제조예6Manufacturing example 6 0.1900.190 -- 0.0570.057 1:0:0.331:0:0.33 6.06.0 5.05.0 -- 1.01.0 γ-Al2O3 γ-Al 2 O 3 1.81.8 제조예7Manufacturing example 7 0.1910.191 -- 0.0870.087 1:0:0.501:0:0.50 6.56.5 5.05.0 -- 1.51.5 γ-Al2O3 γ-Al 2 O 3 1.81.8 제조예8Manufacturing example 8 0.1940.194 -- 0.1760.176 1:0:1.001:0:1.00 8.08.0 5.05.0 -- 3.03.0 γ-Al2O3 γ-Al 2 O 3 1.81.8 제조예9Manufacturing example 9 0.1170.117 -- 0.1060.106 1:0:1.001:0:1.00 5.05.0 3.13.1 -- 1.91.9 γ-Al2O3 γ-Al 2 O 3 1.81.8 제조예10Production example 10 0.0850.085 -- 0.1540.154 1:0:2.001:0:2.00 5.05.0 2.32.3 -- 2.72.7 γ-Al2O3 γ-Al 2 O 3 1.81.8 제조예11Manufacturing example 11 0.1440.144 -- 0.0650.065 1:0:0.501:0:0.50 5.05.0 3.83.8 -- 1.21.2 ZnTiO3 ZnTiO3 1.81.8 제조예12Manufacturing example 12 0.1440.144 -- 0.0650.065 1:0:0.501:0:0.50 5.05.0 3.83.8 -- 1.21.2 SiO2 SiO 2 1.81.8 *Pt 전구체: (NH3)4Pt(NO3)2, **Ru 전구체: RuCl3·3H2O, ***Sn 전구체: SnCl4·5H2O*Pt precursor: (NH 3 ) 4 Pt(NO 3 ) 2 , **Ru precursor: RuCl 3 ·3H 2 O, ***Sn precursor: SnCl 4 ·5H 2 O

<촉매 TEM 측정 결과><Catalyst TEM measurement results>

상기 제조예4에서 제조된 촉매의 특성을 평가하기 위해 TEM과 HAADF-STEM(Titan cube G2 60-300, ThermoFisher, USA)를 측정하여 그 결과를 도 2에 나타냈다.To evaluate the properties of the catalyst prepared in Preparation Example 4, TEM and HAADF-STEM (Titan cube G2 60-300, ThermoFisher, USA) were measured, and the results are shown in FIG. 2.

도 2은 본 발명의 일 실시예로서 PtSn/Al2O3 촉매의 TEM 측정 사진이다.Figure 2 is a TEM measurement photo of a PtSn/Al 2 O 3 catalyst as an example of the present invention.

도 2를 참조하면, Pt와 Sn이 Al2O3 지지체에 잘 분산된 것을 확인 할 수 있다. 특히 Pt는 (111)면을 갖는 2-4 nm 크기의 결정성 나노입자로 고르게 분산되어 있는 것을 확인하였다.Referring to Figure 2, it can be seen that Pt and Sn are well dispersed in the Al 2 O 3 support. In particular, Pt was confirmed to be evenly dispersed as crystalline nanoparticles of 2-4 nm in size with a (111) plane.

<촉매 XRD 측정 결과><Catalyst XRD measurement results>

상기 제조예 1,4,9,10 및 비교제조예 1,3에서 제조된 촉매의 특성을 평가하기 위해 XRD(Aeris, Malvern Panalytical Ltd 제, UK)을 20°~ 90°(2theta, degree)까지 분당 1°도 속도로 측정한 결과를 도 3에 나타냈다.To evaluate the properties of the catalysts prepared in Preparation Examples 1, 4, 9, 10 and Comparative Preparation Examples 1 and 3, XRD (Aeris, manufactured by Malvern Panalytical Ltd, UK) was used from 20° to 90° (2theta, degree). The results of measurement at a speed of 1° per minute are shown in Figure 3.

도 3은 본 발명의 일 실시예로서 촉매내 활성금속의 종류 및 활성금속간 몰비가 상이한 촉매들의 XRD 측정 결과이다.Figure 3 shows the XRD measurement results of catalysts with different types of active metals and molar ratios between active metals in the catalyst as an example of the present invention.

도 3을 참조하면, Pt는 나노입자 크기로 Al2O3 지지체에 잘 분산되어 있는 것을 알 수 있으며, Sn 함량이 증가함에 Pt3Sn alloy가 형성되는 것을 알 수 있다. 특히 제조예 1(Pt/Sn=1/0.33) 및 제조예 4(Pt/Sn=1/0.50)는 Pt 및 Pt3Sn alloy가 동시에 존재하지만, Pt/Sn 함량비가 1.0 이하인 제조예 9(Pt/Sn=1/1) 및 제조예 10(Pt/Sn=1/2)는 Pt가 급격히 Pt3Sn alloy로 전환되는 것을 확인하였다.Referring to Figure 3, it can be seen that Pt is well dispersed in the Al 2 O 3 support in nanoparticle size, and as the Sn content increases, Pt 3 Sn alloy is formed. In particular, Preparation Example 1 (Pt/Sn=1/0.33) and Preparation Example 4 (Pt/Sn=1/0.50) contain both Pt and Pt 3 Sn alloy, but Preparation Example 9 (Pt) has a Pt/Sn content ratio of 1.0 or less. /Sn=1/1) and Preparation Example 10 (Pt/Sn=1/2) confirmed that Pt was rapidly converted to Pt 3 Sn alloy.

<2금속 촉매 존재하 PET의 수소첨가 분해반응><Hydrogenolysis reaction of PET in the presence of a two-metal catalyst>

하기 표 2에 기재된 비교제조예 또는 제조예의 촉매 1.6 g을 튜브형 퍼니스에 넣고 5% H2/N2를 주입하면서 상온에서 400℃ ~ 700℃까지 승온 시키고, 4시간 동안 환원시킨 후 상온까지 온도를 낮춘 다음, 공기를 주입시켜 부동태화(Passivation) 시킨다. 1.6 g of the catalyst of the comparative preparation or preparation example shown in Table 2 below was placed in a tubular furnace, the temperature was raised from room temperature to 400°C to 700°C while injecting 5% H 2 /N 2 , and the temperature was reduced to room temperature after reduction for 4 hours. After lowering it, air is injected to passivate it.

부동태화된 촉매를 100 mL 오토클레이브 반응기(Autoclave, Parr 제)에 크기 0.5 cm × 0.5 cm 로 세절된 폴리에틸렌테레프탈레이트(PET, 롯데케미칼 제) 16.0 g 및 헥사데칸(Hexadecane, Internal Standard 제) 0.5 g 을 투입한 후, 50 bar 수소를 이용하여 가압한 다음 Purge를 3회 반복하여 반응기 내 산소 및 수분을 제거하였다. The passivated catalyst was placed in a 100 mL autoclave reactor (Autoclave, manufactured by Parr) with 16.0 g of polyethylene terephthalate (PET, manufactured by Lotte Chemical) and 0.5 g of hexadecane (made by Hexadecane, Internal Standard) cut into pieces of 0.5 cm × 0.5 cm. After inputting the reactor, it was pressurized using 50 bar hydrogen and purged three times to remove oxygen and moisture in the reactor.

상온에서 수소의 압력을 20 bar ~ 50 bar로 채운 후 반응기를 가열시키고, 반응기 내부 온도가 150 ℃ 이상 증가하였을 때 교반을 시작하였다. 수소화 반응은 반응기 내부 온도 260 ℃ ~ 300 ℃ 에서 시작하여 12 ~ 24시간 동안 수행하였으며, 고압 MFC(Mass flow controller)를 이용하여 반응기 내 수소압력을 제어하였으며, 반응중 수소가 소비되는 만큼 공급될 수 있도록 하였다. After filling the hydrogen pressure to 20 bar to 50 bar at room temperature, the reactor was heated, and stirring was started when the temperature inside the reactor increased above 150°C. The hydrogenation reaction was performed for 12 to 24 hours starting at an internal temperature of 260 ℃ to 300 ℃ in the reactor. The hydrogen pressure in the reactor was controlled using a high-pressure MFC (Mass flow controller), and hydrogen could be supplied as much as consumed during the reaction. It was allowed to happen.

수소화 반응이 완료된 후에 반응기를 급속 냉각한 후, 아세톤을 이용하여 생성물과 미반응 PET 및 촉매를 분리한 다음, 건조시킨 미반응 PET의 질량을 측정하여 전환율을 계산하고, GC를 이용하여 BTX 및 부산물의 수율을 계산한 결과를 아래 표 3 내지 표 5 와 도 4 내지 도 8에 나타냈다.After the hydrogenation reaction is completed, the reactor is rapidly cooled, the product is separated from unreacted PET and catalyst using acetone, the mass of dried unreacted PET is measured to calculate the conversion rate, and BTX and by-products are extracted using GC. The results of calculating the yield are shown in Tables 3 to 5 and Figures 4 to 8 below.

구분division 촉매catalyst 수소
압력
(bar)
hydrogen
enter
(bar)
반응
온도
(℃)
reaction
temperature
(℃)
촉매(제조예)Catalyst (production example) 환원
온도
(℃)
restoration
temperature
(℃)
Pt:Ru:Sn
몰비
Pt:Ru:Sn
molar ratio
금속 담지량(wt.%)Metal loading amount (wt.%)
TotalTotal PtPt RuRu SnSn 비교예1Comparative Example 1 Pt/Al2O3(비교제조예1)Pt/Al 2 O 3 (Comparative Manufacturing Example 1) 500500 1:0:01:0:0 5.05.0 5.05.0 -- -- 5050 270270 비교예2Comparative example 2 Ru/Al2O3(비교제조예2)Ru/Al 2 O 3 (Comparative Manufacturing Example 2) 500500 0:1:00:1:0 5.05.0 -- 5.05.0 -- 5050 270270 비교예3Comparative Example 3 Sn/Al2O3(비교제조예3)Sn/Al 2 O 3 (Comparative Manufacturing Example 3) 500500 0:0:10:0:1 5.05.0 -- -- 5.05.0 5050 270270 비교예4Comparative example 4 Pt-Ru/Al2O3(비교제조예4)Pt-Ru/Al 2 O 3 (Comparative Manufacturing Example 4) 500500 1:1:01:1:0 5.05.0 3.33.3 1.71.7 -- 5050 270270 비교예5Comparative Example 5 Ru-Sn/Al2O3(비교제조예5)Ru-Sn/Al 2 O 3 (Comparative Manufacturing Example 5) 500500 0:1:10:1:1 5.05.0 -- 2.32.3 2.72.7 5050 270270 비교예6Comparative Example 6 Pt-Ru-Sn/Al2O3(비교제조예6)Pt-Ru-Sn/Al 2 O 3 (Comparative Manufacturing Example 6) 500500 1:1:11:1:1 5.05.0 2.42.4 1.21.2 1.41.4 5050 270270 실시예1Example 1 Pt-Sn/Al2O3(제조예9)Pt-Sn/Al 2 O 3 (Production Example 9) 500500 1:0:1.001:0:1.00 5.05.0 3.13.1 -- 1.91.9 5050 270270 실시예2Example 2 Pt-Sn/Al2O3(제조예1)Pt-Sn/Al 2 O 3 (Production Example 1) 500500 1:0:0.331:0:0.33 5.05.0 4.24.2 -- 0.80.8 5050 270270 실시예3Example 3 Pt-Sn/Al2O3(제조예4)Pt-Sn/Al 2 O 3 (Production Example 4) 500500 1:0:0.501:0:0.50 5.05.0 3.83.8 -- 1.21.2 5050 270270 실시예4Example 4 Pt-Sn/Al2O3(제조예10)Pt-Sn/Al 2 O 3 (Production Example 10) 500500 1:0:2.001:0:2.00 5.05.0 2.32.3 -- 2.72.7 5050 270270 실시예5Example 5 Pt-Sn/Al2O3(제조예2)Pt-Sn/Al 2 O 3 (Production Example 2) 500500 1:0:0.501:0:0.50 3.03.0 2.32.3 -- 0.70.7 5050 270270 실시예6Example 6 Pt-Sn/Al2O3(제조예3)Pt-Sn/Al 2 O 3 (Production Example 3) 500500 1:0:0.501:0:0.50 4.04.0 3.13.1 -- 0.90.9 5050 270270 실시예7Example 7 Pt-Sn/Al2O3(제조예5)Pt-Sn/Al 2 O 3 (Production Example 5) 500500 1:0:0.501:0:0.50 6.06.0 4.64.6 -- 1.41.4 5050 270270 실시예8Example 8 Pt-Sn/Al2O3(제조예6)Pt-Sn/Al 2 O 3 (Production Example 6) 500500 1:0:0.331:0:0.33 6.06.0 5.05.0 -- 1.01.0 5050 270270 실시예9Example 9 Pt-Sn/Al2O3(제조예7)Pt-Sn/Al 2 O 3 (Production Example 7) 500500 1:0:0.501:0:0.50 6.56.5 5.05.0 -- 1.51.5 5050 270270 실시예10Example 10 Pt-Sn/Al2O3(제조예8)Pt-Sn/Al 2 O 3 (Production Example 8) 500500 1:0:1.001:0:1.00 8.08.0 5.05.0 -- 3.03.0 5050 270270 실시예11Example 11 Pt-Sn/ZnTiO3(제조예11)Pt-Sn/ZnTiO 3 (Production Example 11) 500500 1:0:0.501:0:0.50 5.05.0 3.83.8 -- 1.21.2 5050 270270 실시예12Example 12 Pt-Sn/SiO2(제조예12)Pt-Sn/SiO 2 (Production Example 12) 500500 1:0:0.501:0:0.50 5.05.0 3.83.8 -- 1.21.2 5050 270270 실시예13Example 13 Pt-Sn/Al2O3(제조예4)Pt-Sn/Al 2 O 3 (Production Example 4) 400400 1:0:0.501:0:0.50 5.05.0 3.83.8 -- 1.21.2 5050 270270 실시예14Example 14 Pt-Sn/Al2O3(제조예4)Pt-Sn/Al 2 O 3 (Production Example 4) 600600 1:0:0.501:0:0.50 5.05.0 3.83.8 -- 1.21.2 5050 270270 실시예15Example 15 Pt-Sn/Al2O3(제조예4)Pt-Sn/Al 2 O 3 (Production Example 4) 700700 1:0:0.501:0:0.50 5.05.0 3.83.8 -- 1.21.2 5050 270270 실시예16Example 16 Pt-Sn/Al2O3(제조예4)Pt-Sn/Al 2 O 3 (Production Example 4) 500500 1:0:0.501:0:0.50 5.05.0 3.83.8 -- 1.21.2 5050 260260 실시예17Example 17 Pt-Sn/Al2O3(제조예4)Pt-Sn/Al 2 O 3 (Production Example 4) 500500 1:0:0.501:0:0.50 5.05.0 3.83.8 -- 1.21.2 5050 280280 실시예18Example 18 Pt-Sn/Al2O3(제조예4)Pt-Sn/Al 2 O 3 (Production Example 4) 500500 1:0:0.501:0:0.50 5.05.0 3.83.8 -- 1.21.2 5050 290290 실시예19Example 19 Pt-Sn/Al2O3(제조예4)Pt-Sn/Al 2 O 3 (Production Example 4) 500500 1:0:0.501:0:0.50 5.05.0 3.83.8 -- 1.21.2 5050 300300 실시예20Example 20 Pt-Sn/Al2O3(제조예4)Pt-Sn/Al 2 O 3 (Production Example 4) 500500 1:0:0.501:0:0.50 5.05.0 3.83.8 -- 1.21.2 2020 270270 실시예21Example 21 Pt-Sn/Al2O3(제조예4)Pt-Sn/Al 2 O 3 (Production Example 4) 500500 1:0:0.501:0:0.50 5.05.0 3.83.8 -- 1.21.2 3030 270270 실시예22Example 22 Pt-Sn/Al2O3(제조예4)Pt-Sn/Al 2 O 3 (Production Example 4) 500500 1:0:0.501:0:0.50 5.05.0 3.83.8 -- 1.21.2 4040 270270

<촉매내 활성금속 종류에 따른 PET 전환율 및 BTX 수율 계산 결과><PET conversion rate and BTX yield calculation results according to the type of active metal in the catalyst>

구분division 촉매(제조예)Catalyst (production example) PET
전환율(%)
PET
Conversion rate (%)
벤젠
수율(%)
benzene
transference number(%)
톨루엔
수율(%)
toluene
transference number(%)
p-자일렌
수율(%)
p-xylene
transference number(%)
BTX
수율(%)
BTX
transference number(%)
비교예1Comparative Example 1 Pt/Al2O3
(비교제조예1)
Pt/Al 2 O 3
(Comparative Manufacturing Example 1)
45.245.2 0.020.02 0.030.03 0.250.25 0.300.30
비교예2Comparative example 2 Ru/Al2O3
(비교제조예2)
Ru/Al 2 O 3
(Comparative Manufacturing Example 2)
37.537.5 0.040.04 0.030.03 0.010.01 0.080.08
비교예3Comparative Example 3 Sn/Al2O3
(비교제조예3)
Sn/Al 2 O 3
(Comparative Manufacturing Example 3)
36.736.7 0.020.02 0.020.02 0.100.10 0.140.14
비교예4Comparative example 4 Pt-Ru/Al2O3
(비교제조예4)
Pt-Ru/Al 2 O 3
(Comparative Manufacturing Example 4)
49.549.5 0.010.01 0.050.05 0.090.09 0.150.15
비교예5Comparative Example 5 Ru-Sn/Al2O3
(비교제조예5)
Ru-Sn/Al 2 O 3
(Comparative Manufacturing Example 5)
35.835.8 0.040.04 0.030.03 0.000.00 0.070.07
비교예6Comparative Example 6 Pt-Ru-Sn/Al2O3
(비교제조예6)
Pt-Ru-Sn/Al 2 O 3
(Comparative Manufacturing Example 6)
73.573.5 0.000.00 3.943.94 44.044.0 47.9447.94
실시예1Example 1 Pt-Sn/Al2O3
(제조예9)
Pt-Sn/Al 2 O 3
(Production Example 9)
99.899.8 0.440.44 2.552.55 68.268.2 71.1971.19

상기 표 3 및 도 4를 참조하면, 활성금속으로서 Pt 및 Sn이 포함된 촉매를 사용하는 실시예 1은 활성금속 2종이 아닌 Pt, Ru, Sn 중 어느 한 종을 활성금속으로 사용하는 비교예 1~3과 촉매의 활성 2금속으로 Pt 및 Sn이 아닌, Pt-Ru 나, Ru-Sn 을 사용하는 비교예 4~5 대비 BTX 수율이 최소 230배 이상 향상되었으며, p-자일렌 수율은 최소 270배 이상 증가한 것으로 나타났다.Referring to Table 3 and Figure 4, Example 1 uses a catalyst containing Pt and Sn as the active metal, and Comparative Example 1 uses any one of Pt, Ru, and Sn as the active metal instead of the two active metals. Compared to Comparative Examples 4 to 5, which used Pt-Ru or Ru-Sn rather than Pt and Sn as the active bimetal of ~3 and the catalyst, the BTX yield was improved by at least 230 times, and the p-xylene yield was at least 270 times. It was found to have increased by more than twofold.

또한, 2금속 촉매를 사용하는 실시예1은 Pt 및 Sn에 Ru이 포함된 3금속 촉매인 비교제조예6 촉매를 사용하는 비교예6 대비 BTX 수율은 48%, p-자일렌 수율은 55% 향상된 것으로 확인되었다.In addition, Example 1 using a two-metal catalyst had a BTX yield of 48% and a p-xylene yield of 55% compared to Comparative Example 6 using the catalyst of Comparative Preparation Example 6, which is a three-metal catalyst containing Ru in Pt and Sn. It was confirmed to be improved.

<촉매내 Pt 및 Sn의 몰비에 따른 PET 전환율 및 BTX 수율 계산 결과><PET conversion rate and BTX yield calculation results according to the molar ratio of Pt and Sn in the catalyst>

구분division 촉매catalyst 수소
압력
(bar)
hydrogen
enter
(bar)
반응
온도
(℃)
reaction
temperature
(℃)
PET
전환율
(%)
PET
conversion rate
(%)
벤젠
수율
(%)
benzene
transference number
(%)
톨루엔
수율
(%)
toluene
transference number
(%)
p-자일렌
수율
(%)
p-xylene
transference number
(%)
BTX
수율
(%)
BTX
transference number
(%)
촉매(제조예)Catalyst (production example) Pt:Sn
몰비
Pt:Sn
molar ratio
실시예2Example 2 Pt-Sn/Al2O3
(제조예1)
Pt-Sn/Al 2 O 3
(Production Example 1)
1:0.331:0.33 5050 270270 99.399.3 0.690.69 5.305.30 59.3059.30 65.2965.29
실시예3Example 3 Pt-Sn/Al2O3
(제조예4)
Pt-Sn/Al 2 O 3
(Production Example 4)
1:0.501:0.50 5050 270270 100100 0.670.67 4.374.37 72.2572.25 77.2977.29
실시예4Example 4 Pt-Sn/Al2O3
(제조예10)
Pt-Sn/Al 2 O 3
(Production Example 10)
1:2.001:2.00 5050 270270 92.292.2 0.690.69 1.321.32 61.2561.25 63.2663.26

상기 표 4 및 도 5를 참조하면, Pt:Sn 몰비에는 최적몰비가 존재하며, 그 최적몰비는 1:0.5인 것을 확인하였다.Referring to Table 4 and Figure 5, it was confirmed that there is an optimal Pt:Sn molar ratio, and that the optimal molar ratio is 1:0.5.

<PtSn/Al<PtSn/Al 22 OO 33 촉매내 Pt 및 Sn의 금속담지량에 따른 PET 전환율 및 BTX 수율 계산 결과> PET conversion rate and BTX yield calculation results according to the metal loading amount of Pt and Sn in the catalyst>

구분division 촉매catalyst PET
전환율
(%)
PET
conversion rate
(%)
벤젠
수율
(%)
benzene
transference number
(%)
톨루엔
수율
(%)
toluene
transference number
(%)
p-자일렌
수율
(%)
p-xylene
transference number
(%)
BTX
수율
(%)
BTX
transference number
(%)
촉매(제조예)Catalyst (production example) Pt:Sn
몰비
Pt:Sn
molar ratio
금속 담지량(wt.%)Metal loading amount (wt.%)
TotalTotal PtPt RuRu SnSn 실시예3Example 3 Pt-Sn/Al2O3
(제조예4)
Pt-Sn/Al 2 O 3
(Production Example 4)
1:0.51:0.5 5.05.0 3.83.8 -- 1.21.2 100100 0.670.67 4.374.37 72.2572.25 77.2977.29
실시예5Example 5 Pt-Sn/Al2O3
(제조예2)
Pt-Sn/Al 2 O 3
(Production Example 2)
1:0.51:0.5 3.03.0 2.32.3 -- 0.70.7 90.390.3 0.400.40 3.853.85 58.6758.67 62.9262.92
실시예6Example 6 Pt-Sn/Al2O3
(제조예3)
Pt-Sn/Al 2 O 3
(Production Example 3)
1:0.51:0.5 4.04.0 3.13.1 -- 0.90.9 95.195.1 0.440.44 4.264.26 67.5367.53 72.2372.23
실시예7Example 7 Pt-Sn/Al2O3
(제조예5)
Pt-Sn/Al 2 O 3
(Production Example 5)
1:0.51:0.5 6.06.0 4.64.6 -- 1.41.4 99.699.6 0.390.39 5.545.54 70.1370.13 76.0676.06

상기 표 5 및 도 6을 참조하면, Pt 및 Sn 의 금속담지량이 5 wt%인 실시예3 촉매의 BTX 및 p-자일렌의 수율이 가장 우수한 것으로 나타나, Pt : Sn 의 몰비에도 최적점이 있음을 알 수 있었다.Referring to Table 5 and Figure 6, it appears that the yield of BTX and p-xylene of the catalyst of Example 3 with a metal loading amount of Pt and Sn of 5 wt% is the best, indicating that there is an optimum point in the molar ratio of Pt:Sn. Could know.

<Pt 함량이 5 wt% 고정된 2금속 촉매내 Sn의 금속담지량에 따른 PET 전환율 및 BTX 수율 계산 결과><PET conversion rate and BTX yield calculation results according to the metal loading amount of Sn in a bimetallic catalyst with a fixed Pt content of 5 wt%>

구분division 촉매catalyst PET
전환율
(%)
PET
conversion rate
(%)
벤젠
수율
(%)
benzene
transference number
(%)
톨루엔
수율
(%)
toluene
transference number
(%)
p-자일렌
수율
(%)
p-xylene
transference number
(%)
BTX
수율
(%)
BTX
transference number
(%)
촉매(제조예)Catalyst (production example) Pt:Sn
몰비
Pt:Sn
molar ratio
금속 담지량(wt.%)Metal loading amount (wt.%)
TotalTotal PtPt RuRu SnSn 실시예8Example 8 Pt-Sn/Al2O3
(제조예6)
Pt-Sn/Al 2 O 3
(Production Example 6)
1:0.331:0.33 6.06.0 5.05.0 -- 1.01.0 99.099.0 0.540.54 1.101.10 56.9456.94 58.5858.58
실시예9Example 9 Pt-Sn/Al2O3
(제조예7)
Pt-Sn/Al 2 O 3
(Production Example 7)
1:0.501:0.50 6.56.5 5.05.0 -- 1.51.5 99.599.5 0.350.35 1.161.16 59.4559.45 60.9660.96
실시예10Example 10 Pt-Sn/Al2O3
(제조예8)
Pt-Sn/Al 2 O 3
(Production Example 8)
1:1.001:1.00 8.08.0 5.05.0 -- 3.03.0 99.499.4 0.230.23 1.361.36 62.7762.77 64.3664.36

상기 표 6를 참조하면, Sn 함량이 증가될수록 BTX 수율이 증가되는 것을 확인할 수 있으며, Pt/Sn 함량비가 1:1인 실시예10이 가장 높은 p-자일렌 수율 및 BTX 선택성을 갖는 것을 확인하였다. Referring to Table 6, it can be seen that the BTX yield increases as the Sn content increases, and it was confirmed that Example 10 with a Pt/Sn content ratio of 1:1 had the highest p-xylene yield and BTX selectivity. .

<촉매의 지지체 종류에 따른 PET 전환율 및 BTX 수율 계산 결과><PET conversion rate and BTX yield calculation results according to catalyst support type>

구분division 촉매catalyst 수소
압력
(bar)
hydrogen
enter
(bar)
반응
온도
(℃)
reaction
temperature
(℃)
PET
전환율
(%)
PET
conversion rate
(%)
벤젠
수율
(%)
benzene
transference number
(%)
톨루엔
수율
(%)
toluene
transference number
(%)
p-자일렌
수율
(%)
p-xylene
transference number
(%)
BTX
수율
(%)
BTX
transference number
(%)
촉매(제조예)Catalyst (production example) Pt:Sn
몰비
Pt:Sn
molar ratio
실시예3Example 3 Pt-Sn/Al2O3
(제조예1)
Pt-Sn/Al 2 O 3
(Production Example 1)
1:0.501:0.50 5050 270270 100100 0.670.67 4.374.37 72.2572.25 77.2977.29
실시예11Example 11 Pt-Sn/ZnTiO3
(제조예11)
Pt-Sn/ZnTiO 3
(Production Example 11)
1:0.501:0.50 5050 270270 99.499.4 0.230.23 1.361.36 62.7762.77 64.3664.36
실시예12Example 12 Pt-Sn/SiO2
(제조예12)
Pt-Sn/ SiO2
(Production Example 12)
1:0.501:0.50 5050 270270 95.595.5 0.070.07 0.300.30 25.925.9 26.2726.27

표 7을 참조하면, 촉매의 지지체 종류에 따라 BTX 및 p-자일렌 수율은 상이하며, 알루미나, 아연티타늄 복합금속산화물, 실리카 순으로 높은 것으로 나타났다. 특히, 알루미나 지지체를 사용하는 제조예4 촉매는 실리카를 사용하는 제조예12 촉매 대비 BTX 및 p-자일렌 수율이 2.9배 증가된 것으로 확인되었다.Referring to Table 7, the BTX and p-xylene yields differed depending on the type of catalyst support, and were found to be highest in that order: alumina, zinc titanium composite metal oxide, and silica. In particular, the Preparation Example 4 catalyst using an alumina support was confirmed to have a 2.9-fold increase in BTX and p-xylene yield compared to the Preparation Example 12 catalyst using silica.

<반응시간에 따른 PET 전환율 및 BTX 수율 계산 결과><PET conversion rate and BTX yield calculation results according to reaction time>

도 7은 본 발명의 일 실시예로서 제조예 4 촉매 존재하에서 반응시간에 따른 PET 전환율 및 BTX 수율을 나타낸 그래프이다.Figure 7 is a graph showing the PET conversion rate and BTX yield according to reaction time in the presence of the catalyst in Preparation Example 4 as an example of the present invention.

도 7을 참조하면, 반응시간 6시간까지 PET 전환율 및 p-자일렌의 수율이 급격히 증가하다가 점차 그 증가율이 감소하는 경향을 나타내며, 반응시간 12 ~ 30 시간 동안 PET 전환율은 100% 달성하고, p-자일렌 수율은 약 70% 에 수렴하는 것으로 확인되었다.Referring to Figure 7, the PET conversion rate and the yield of p-xylene increase rapidly until the reaction time is 6 hours, but then the increase rate gradually decreases. The PET conversion rate is achieved at 100% during the reaction time of 12 to 30 hours, and p -It was confirmed that the xylene yield converged to about 70%.

<반응시간에 따른 부산물의 수율 계산 결과><Yield calculation results of by-products according to reaction time>

도 8은 본 발명의 일 실시예로서 제조예 4 촉매 존재하 반응시간에 따른 BTX외의 생성물(a: BTX외의 알킬방향족계 및 지환족계, b: 벤조에이트계 및 테레프탈레이트계, c: 이량체 생성물)의 수율을 나타낸 그래프이다.Figure 8 is an example of the present invention, showing products other than BTX (a: alkyl aromatic and cycloaliphatic other than BTX, b: benzoate and terephthalate, c: dimer product) according to reaction time in the presence of catalyst in Preparation Example 4. ) This is a graph showing the yield.

도 8을 참조하면, PET 분해반응 초반의 수소첨가 분해반응에 의해 PET 내 존재하는 EG가 급격히 떨어져 나오는 것을 확인할 수 있으며, Decarboxylation에 의해 생성되는 반응 부산물 보다, 수소첨가 분해반응(Hydrogenolysis)에 의해 생성되는 반응 부산물이 더 많이 생성되는 것을 확인하였다.Referring to Figure 8, it can be seen that EG present in PET is rapidly removed by the hydrogen decomposition reaction at the beginning of the PET decomposition reaction, and is produced by hydrogen decomposition (Hydrogenolysis) rather than a reaction by-product generated by decarboxylation. It was confirmed that more reaction by-products were produced.

<촉매의 환원온도에 따른 PET 전환율 및 BTX 수율 계산 결과><PET conversion rate and BTX yield calculation results according to catalyst reduction temperature>

구분division 촉매catalyst 수소
압력
(bar)
hydrogen
enter
(bar)
반응
온도
(℃)
reaction
temperature
(℃)
PET
전환율
(%)
PET
conversion rate
(%)
벤젠
수율
(%)
benzene
transference number
(%)
톨루엔
수율
(%)
toluene
transference number
(%)
p-자일렌
수율
(%)
p-xylene
transference number
(%)
BTX
수율
(%)
BTX
transference number
(%)
촉매(제조예)Catalyst (production example) 환원온도
(℃)
reduction temperature
(℃)
실시예3Example 3 Pt-Sn/Al2O3
(제조예4)
Pt-Sn/Al 2 O 3
(Production Example 4)
500500 5050 270270 100100 0.670.67 4.374.37 72.2572.25 77.2977.29
실시예13Example 13 Pt-Sn/Al2O3
(제조예4)
Pt-Sn/Al 2 O 3
(Production Example 4)
400400 5050 270270 99.799.7 0.350.35 3.203.20 68.0868.08 71.6371.63
실시예14Example 14 Pt-Sn/Al2O3
(제조예4)
Pt-Sn/Al 2 O 3
(Production Example 4)
600600 5050 270270 99.599.5 0.410.41 2.642.64 56.2356.23 59.2859.28
실시예15Example 15 Pt-Sn/Al2O3
(제조예4)
Pt-Sn/Al 2 O 3
(Production Example 4)
700700 5050 270270 99.499.4 0.290.29 2.562.56 53.8553.85 56.7056.70

표 8을 참조하면, 촉매의 환원온도에는 최적온도가 존재하며, 그 최적온도는 500 ℃인 것으로 나타났다.Referring to Table 8, there is an optimum temperature for the reduction temperature of the catalyst, and the optimum temperature was found to be 500°C.

<촉매 존재하 반응온도에 따른 PET 전환율 및 BTX 수율 계산 결과><PET conversion rate and BTX yield calculation results according to reaction temperature in the presence of catalyst>

구분division 촉매catalyst 수소
압력
(bar)
hydrogen
enter
(bar)
반응
온도
(℃)
reaction
temperature
(℃)
PET
전환율
(%)
PET
conversion rate
(%)
벤젠
수율
(%)
benzene
transference number
(%)
톨루엔
수율
(%)
toluene
transference number
(%)
p-자일렌
수율
(%)
p-xylene
transference number
(%)
BTX
수율
(%)
BTX
transference number
(%)
촉매(제조예)Catalyst (production example) 환원온도
(℃)
reduction temperature
(℃)
실시예3Example 3 Pt-Sn/Al2O3
(제조예4)
Pt-Sn/Al 2 O 3
(Production Example 4)
500500 5050 270270 100100 0.670.67 4.374.37 72.2572.25 77.2977.29
실시예16Example 16 Pt-Sn/Al2O3
(제조예4)
Pt-Sn/Al 2 O 3
(Production Example 4)
500500 5050 260260 93.593.5 0.350.35 2.002.00 61.7461.74 64.0964.09
실시예17Example 17 Pt-Sn/Al2O3
(제조예4)
Pt-Sn/Al 2 O 3
(Production Example 4)
500500 5050 280280 100100 0.960.96 6.886.88 75.475.4 83.2483.24
실시예18Example 18 Pt-Sn/Al2O3
(제조예4)
Pt-Sn/Al 2 O 3
(Production Example 4)
500500 5050 290290 100100 2.262.26 8.498.49 77.0977.09 87.8487.84
실시예19Example 19 Pt-Sn/Al2O3
(제조예4)
Pt-Sn/Al 2 O 3
(Production Example 4)
500500 5050 300300 100100 1.691.69 9.659.65 71.2571.25 82.5982.59

표 9를 참조하면, 제조예4의 동일 촉매 존재하에 수소첨가 분해반응은 최적온도가 존재하는 것으로 나타났으며, 그 최적온도는 290℃로 나타났다.Referring to Table 9, it was found that there was an optimal temperature for the hydrogenation cracking reaction in the presence of the same catalyst in Preparation Example 4, and the optimal temperature was found to be 290°C.

<수소압력에 따른 PET 전환율 및 BTX 수율 계산 결과><PET conversion rate and BTX yield calculation results according to hydrogen pressure>

구분division 촉매catalyst 수소
압력
(bar)
hydrogen
enter
(bar)
반응
온도
(℃)
reaction
temperature
(℃)
PET
전환율
(%)
PET
conversion rate
(%)
벤젠
수율
(%)
benzene
transference number
(%)
톨루엔
수율
(%)
toluene
transference number
(%)
p-자일렌
수율
(%)
p-xylene
transference number
(%)
BTX
수율
(%)
BTX
transference number
(%)
촉매(제조예)Catalyst (production example) 환원온도
(℃)
reduction temperature
(℃)
실시예3Example 3 Pt-Sn/Al2O3
(제조예4)
Pt-Sn/Al 2 O 3
(Production Example 4)
500500 5050 270270 100100 0.670.67 4.374.37 72.2572.25 77.2977.29
실시예20Example 20 Pt-Sn/Al2O3
(제조예4)
Pt-Sn/Al 2 O 3
(Production Example 4)
500500 2020 270270 59.859.8 0.030.03 0.320.32 7.437.43 7.787.78
실시예21Example 21 Pt-Sn/Al2O3
(제조예4)
Pt-Sn/Al 2 O 3
(Production Example 4)
500500 3030 270270 82.282.2 0.260.26 3.623.62 37.2537.25 41.1341.13
실시예22Example 22 Pt-Sn/Al2O3
(제조예4)
Pt-Sn/Al 2 O 3
(Production Example 4)
500500 4040 270270 90.390.3 0.260.26 3.483.48 54.1554.15 57.8957.89

표 10을 참조하면, 제조예4의 동일 촉매 존재하에 수소첨가 분해반응에 투입되는 수소 압력이 20 bar에서 50 bar로 상승할수록 BTX 및 p-자일렌의 수율이 향상되는 것으로 나타났다.Referring to Table 10, it was found that the yields of BTX and p-xylene improved as the hydrogen pressure introduced into the hydrocracking reaction in the presence of the same catalyst in Preparation Example 4 increased from 20 bar to 50 bar.

이상으로 본 발명은 명세서에 기재되거나 첨부된 도면에 도시된 실시예를 참조하여 설명되었으나, 이는 예시적인 것에 불과하며, 당해 기술에 속하는 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 것을 이해할 것이다. 따라서 본 발명의 기술적 보호범위는 아래의 특허청구범위에 의해서 정하여져야 할 것이다.Above, the present invention has been described with reference to the embodiments described in the specification or shown in the accompanying drawings, but these are merely illustrative, and various modifications and equivalents can be made by those skilled in the art. It will be appreciated that other embodiments are possible. Therefore, the scope of technical protection of the present invention should be determined by the scope of the patent claims below.

Claims (10)

활성금속으로 Pt 및 Sn을 포함하는 것을 특징으로 하는, 에스테르 작용기를 포함하는 방향족 고분자 분해반응용 2금속 촉매.
A bimetallic catalyst for the decomposition reaction of an aromatic polymer containing an ester functional group, characterized in that it contains Pt and Sn as active metals.
제1항에 있어서,
상기 활성금속은 산성 지지체에 담지된 것을 특징으로 하는, 에스테르 작용기를 포함하는 방향족 고분자 분해반응용 2금속 촉매.
According to paragraph 1,
A two-metal catalyst for the decomposition reaction of an aromatic polymer containing an ester functional group, wherein the active metal is supported on an acidic support.
제1항에 있어서,
상기 Pt:Sn의 몰 비는 1:0.05 내지 1:3.0 인 것을 특징으로 하는 에스테르 작용기를 포함하는 방향족 고분자 분해반응용 2금속 촉매.
According to paragraph 1,
A bimetallic catalyst for aromatic polymer decomposition reaction containing an ester functional group, wherein the molar ratio of Pt:Sn is 1:0.05 to 1:3.0.
제2항에 있어서,
상기 촉매내 활성금속의 담지량은 촉매 총 중량 대비 1.0 내지 20 wt% 인 것을 특징으로 하는 에스테르 작용기를 포함하는 방향족 고분자 분해반응용 2금속 촉매.
According to paragraph 2,
A bimetallic catalyst for aromatic polymer decomposition reaction containing an ester functional group, characterized in that the amount of active metal supported in the catalyst is 1.0 to 20 wt% based on the total weight of the catalyst.
제1항에 있어서,
상기 촉매는 온도 200 내지 800 ℃ 범위에서 소성된 것을 특징으로 하는 에스테르 작용기를 포함하는 방향족 고분자 분해반응용 2금속 촉매.
According to paragraph 1,
The catalyst is a bimetallic catalyst for aromatic polymer decomposition reaction containing an ester functional group, characterized in that the catalyst is calcined at a temperature in the range of 200 to 800 ° C.
(A) 제1항 내지 제5항 중 어느 한 항의 에스테르 작용기를 포함하는 방향족 고분자 분해반응용 2금속 촉매를 환원시키는 단계;
(B) (A)단계의 환원된 촉매와 에스테르 작용기를 포함하는 방향족 고분자를 접촉시켜 분해반응을 수행하는 단계; 및
(C) (B)단계의 에스테르 작용기를 포함하는 방향족 고분자 분해반응으로부터 알킬방향족 탄화수소를 수득하는 단계;를 포함하는 것을 특징으로 하는, 에스테르 작용기를 포함하는 방향족 고분자로부터 선택적으로 알킬방향족 탄화수소를 제조하는 방법.
(A) reducing the bimetallic catalyst for aromatic polymer decomposition reaction containing the ester functional group of any one of claims 1 to 5;
(B) performing a decomposition reaction by contacting the reduced catalyst of step (A) with an aromatic polymer containing an ester functional group; and
(C) obtaining an alkylaromatic hydrocarbon from the decomposition reaction of the aromatic polymer containing an ester functional group in step (B); method.
제6항에 있어서,
상기 (A)단계에서 촉매의 환원 온도는 200 내지 800 ℃ 범위인 것을 특징으로 하는, 에스테르 작용기를 포함하는 방향족 고분자로부터 선택적으로 알킬방향족 탄화수소를 제조하는 방법.
According to clause 6,
A method for selectively producing an alkyl aromatic hydrocarbon from an aromatic polymer containing an ester functional group, characterized in that the reduction temperature of the catalyst in step (A) is in the range of 200 to 800 ° C.
제6항에 있어서,
상기 (B)단계에서 에스테르 작용기를 포함하는 방향족 고분자 분해반응은 수소첨가 분해반응 및 수소첨가 탈산소화반응을 포함하는 것을 특징으로 하는, 에스테르 작용기를 포함하는 방향족 고분자로부터 선택적으로 알킬방향족 탄화수소를 제조하는 방법.
According to clause 6,
In the step (B), the decomposition reaction of the aromatic polymer containing an ester functional group is characterized in that it includes a hydrogenation decomposition reaction and a hydrogenation deoxygenation reaction. method.
제6항에 있어서,
상기 (B)단계의 에스테르 작용기를 포함하는 방향족 고분자 분해반응은 200 내지 350 ℃ 범위에서 수행되는 것을 특징으로 하는, 에스테르 작용기를 포함하는 방향족 고분자로부터 고수율 및 고선택성으로 알킬방향족 탄화수소를 제조하는 방법.
According to clause 6,
A method for producing alkyl aromatic hydrocarbons with high yield and high selectivity from an aromatic polymer containing an ester functional group, characterized in that the decomposition reaction of the aromatic polymer containing an ester functional group in step (B) is carried out in the range of 200 to 350 ° C. .
제6항에 있어서,
상기 (B)단계의 에스테르 작용기를 포함하는 방향족 고분자 분해반응은 수소 압력 10 내지 300 bar 범위에서 수행되는 것을 특징으로 하는, 에스테르 작용기를 포함하는 방향족 고분자로부터 고수율 및 고선택성으로 알킬방향족 탄화수소를 제조하는 방법.
According to clause 6,
The decomposition reaction of the aromatic polymer containing an ester functional group in step (B) is performed at a hydrogen pressure range of 10 to 300 bar, and produces an alkyl aromatic hydrocarbon in high yield and high selectivity from an aromatic polymer containing an ester functional group. How to.
KR1020230004859A 2023-01-12 2023-01-12 A bimetal catalyst for aromatic polymer containing an ester group decomposition reaction and method for producing alkyl aromatic hydrocarbons in high yield and high selectivity from aromatic polymer containing an ester group using the catalyst KR20240112619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020230004859A KR20240112619A (en) 2023-01-12 2023-01-12 A bimetal catalyst for aromatic polymer containing an ester group decomposition reaction and method for producing alkyl aromatic hydrocarbons in high yield and high selectivity from aromatic polymer containing an ester group using the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020230004859A KR20240112619A (en) 2023-01-12 2023-01-12 A bimetal catalyst for aromatic polymer containing an ester group decomposition reaction and method for producing alkyl aromatic hydrocarbons in high yield and high selectivity from aromatic polymer containing an ester group using the catalyst

Publications (1)

Publication Number Publication Date
KR20240112619A true KR20240112619A (en) 2024-07-19

Family

ID=92173803

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020230004859A KR20240112619A (en) 2023-01-12 2023-01-12 A bimetal catalyst for aromatic polymer containing an ester group decomposition reaction and method for producing alkyl aromatic hydrocarbons in high yield and high selectivity from aromatic polymer containing an ester group using the catalyst

Country Status (1)

Country Link
KR (1) KR20240112619A (en)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
RSC Advance, 2016, 6, pp.48737-48744
Shenglu Lu et al., H2-free Plastic Conversion: Converting PET back to BTX by Unlocking Hidden Hydrogen, ChemSusChem, 2021, 14, pp.1-10
Xuefeng Li et al., One-Pot Conversion of Dimethyl Terephthalate into 1,4-Cyclohexanedimethanol with Supported Trimetallic RuPtSn Catalysts, Industrial & Engineering Chemistry Research, 2014, 53, pp.619-625

Similar Documents

Publication Publication Date Title
EP2370491B1 (en) Process of making compositions comprising bio-based therephthalic acid or bio-based dimethyl terephthalate
Chu et al. Sustainable chemical upcycling of waste polyolefins by heterogeneous catalysis
Kosloski-Oh et al. Catalytic methods for chemical recycling or upcycling of commercial polymers
Al-Sabagh et al. Greener routes for recycling of polyethylene terephthalate
US8946472B2 (en) Bio-based terephthalate polyesters
US20100168371A1 (en) Bio-Based Terephthalate Polyesters
EP2649029B1 (en) Depolymerization process
US20100168373A1 (en) Bio-Based Terephthalate Polyesters
TWI523886B (en) Producing method of polyester composition
US20100168461A1 (en) Bio-Based Terephthalate Polyesters
CN107915833B (en) Fiber-grade bio-based polyester and preparation method thereof
Hu et al. Recycling and upgrading utilization of polymer plastics
JP4460453B2 (en) Method for preparing trimethylene terephthalate oligomer
KR20240112619A (en) A bimetal catalyst for aromatic polymer containing an ester group decomposition reaction and method for producing alkyl aromatic hydrocarbons in high yield and high selectivity from aromatic polymer containing an ester group using the catalyst
CN115678030A (en) Mechanochemical method for preparing metal-organic framework material
TW200401668A (en) Titanium-zirconium catalyst compositions and use thereof
Manjunathan et al. Integrated process towards sustainable renewable plastics: Production of 2, 5-furandicarboxylic acid from fructose in a base-free environment
CN116444343A (en) Method for preparing 1, 4-cyclohexanedimethanol from waste polyester
Sajid et al. Comparative study of glycerol conversion to polyglycerol via conventional and microwave irradiation reactor
CN114456062A (en) Method for converting terephthalic acid into terephthalic acid diester through catalytic esterification
CN1363544A (en) Impregnation method for preparing 3-hydroxypropanal as hydrocatalyst
CN111393397B (en) Preparation method of 2, 5-furandicarboxylic acid
EP0287840B1 (en) Process for producing polyesters using a niobium compound as a catalyst
CN117772254A (en) Bimetallic catalyst for high-efficiency photo-thermal synergistic catalysis hydrogenolysis of benzene plastics and preparation method thereof
CN116393139B (en) Catalyst for preparing paraxylene by hydrogenating waste PET, preparation method and application thereof