KR20240102960A - 무선랜 시스템에서 trigvector 파라미터를 설정하는 방법 및 장치 - Google Patents

무선랜 시스템에서 trigvector 파라미터를 설정하는 방법 및 장치 Download PDF

Info

Publication number
KR20240102960A
KR20240102960A KR1020247014214A KR20247014214A KR20240102960A KR 20240102960 A KR20240102960 A KR 20240102960A KR 1020247014214 A KR1020247014214 A KR 1020247014214A KR 20247014214 A KR20247014214 A KR 20247014214A KR 20240102960 A KR20240102960 A KR 20240102960A
Authority
KR
South Korea
Prior art keywords
ppdu
eht
ltf
parameter
bandwidth
Prior art date
Application number
KR1020247014214A
Other languages
English (en)
Inventor
박은성
천진영
최진수
임동국
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of KR20240102960A publication Critical patent/KR20240102960A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Abstract

본 명세서(present disclosure)는 무선랜 시스템에서 TB A-PPDU를 수신하기 위해 TRIGVECTOR 파라미터를 설정하는 방법 및 장치가 제안된다. 구체적으로, 송신 STA은 수신 STA에게 트리거 프레임을 송신한다. 송신 STA은 TRIGVECTOR 파라미터를 획득한다. 송신 STA은 트리거 프레임 및 TRIGVECTOR 파라미터를 기반으로 TB A-PPDU를 수신한다. TB A-PPDU는 HE TB PPDU 및 EHT TB PPDU를 포함한다. TRIGVECTOR 파라미터는 CH_BANDWIDTH 파라미터를 포함한다.

Description

무선랜 시스템에서 TRIGVECTOR 파라미터를 설정하는 방법 및 장치
본 명세서(present disclosure)는 무선랜 시스템에서 TRIGVECTOR 파라미터를 설정하는 기법에 관한 것으로, 보다 상세하게는, TB A-PPDU를 트리거하는 트리거 프레임을 고려했을 때 TRIGVECTOR 파라미터를 설정하는 방법 및 장치에 관한 것이다.
WLAN(wireless local area network)은 다양한 방식으로 개선되어왔다. 예를 들어, IEEE 802.11ax 표준은 OFDMA(orthogonal frequency division multiple access) 및 DL MU MIMO(downlink multi-user multiple input, multiple output) 기법을 사용하여 개선된 통신 환경을 제안했다.
본 명세서는 새로운 통신 표준에서 활용 가능한 기술적 특징을 제안한다. 예를 들어, 새로운 통신 표준은 최근에 논의 중인 EHT(Extreme high throughput) 규격일 수 있다. EHT 규격은 새롭게 제안되는 증가된 대역폭, 개선된 PPDU(PHY layer protocol data unit) 구조, 개선된 시퀀스, HARQ(Hybrid automatic repeat request) 기법 등을 사용할 수 있다. EHT 규격은 IEEE 802.11be 규격으로 불릴 수 있다.
새로운 무선랜 규격에서는 증가된 개수의 공간 스트림이 사용될 수 있다. 이 경우, 증가된 개수의 공간 스트림을 적절히 사용하기 위해 무선랜 시스탬 내에서의 시그널링 기법이 개선되어야 할 수 있다.
본 명세서는 무선랜 시스템에서 TRIGVECTOR 파라미터를 설정하는 방법 및 장치를 제안한다.
본 명세서의 일례는 TRIGVECTOR 파라미터를 설정하는 방법을 제안한다.
본 실시예는 차세대 무선랜 시스템(IEEE 802.11be 또는 EHT 무선랜 시스템)이 지원되는 네트워크 환경에서 수행될 수 있다. 상기 차세대 무선랜 시스템은 802.11ax 시스템을 개선한 무선랜 시스템으로 802.11ax 시스템과 하위 호환성(backward compatibility)을 만족할 수 있다.
본 실시예는 수신 STA(station)에서 수행되고, 상기 수신 STA은 non-AP(non-access point) STA에 대응할 수 있다. 송신 STA은 AP STA에 대응할 수 있다.
본 실시예는 AP가 트리거 프레임을 기반으로 TB A-PPDU를 트리거할 때 하나의 통합된 TRIGVECTOR 파라미터를 설정하는 방법을 제안한다. 상기 TRIGVECTOR 파라미터는 상기 AP가 PHY 계층에서 상기 TB A-PPDU를 수신 또는 복호하기 위해 필요한 정보이고, 상기 AP 내 MAC 계층에서 PHY 계층으로 전달될 수 있다.
송신 STA(station)은 수신 STA에게 트리거 프레임을 송신한다.
상기 송신 STA은 TRIGVECTOR 파라미터를 획득한다.
상기 송신 STA은 상기 트리거 프레임 및 상기 TRIGVECTOR 파라미터를 기반으로 TB A-PPDU(Trigger Based Aggregated-Physical Protocol Data Unit)를 수신한다.
상기 TB A-PPDU는 HE(High Efficiency) TB PPDU 및 EHT(Extreme High Throughput) TB PPDU를 포함한다.
상기 TRIGVECTOR 파라미터는 CH_BANDWIDTH 파라미터를 포함한다.
상기 CH_BANDWIDTH 파라미터의 값이 0이면, 상기 HE TB PPDU의 대역폭은 80MHz로 설정되고, 상기 EHT TB PPDU의 대역폭은 80MHz로 설정된다. 상기 CH_BANDWIDTH 파라미터의 값이 1이면, 상기 HE TB PPDU의 대역폭은 80MHz로 설정되고, 상기 EHT TB PPDU의 대역폭은 160MHz로 설정된다. 상기 CH_BANDWIDTH 파라미터의 값이 2이면, 상기 HE TB PPDU의 대역폭은 160MHz로 설정되고, 상기 EHT TB PPDU의 대역폭은 80MHz로 설정된다. 상기 CH_BANDWIDTH 파라미터의 값이 3이면, 상기 HE TB PPDU의 대역폭은 160MHz로 설정되고, 상기 EHT TB PPDU의 대역폭은 160MHz로 설정된다.
본 명세서에서 제안된 실시예에 따르면, 상기 트리거 프레임이 상기 TB A-PPDU를 트리거하는 경우, 상기 TRIGVECTOR 파라미터를 상기 TB A-PPDU에 포함된 HE TB PPDU와 EHT TB PPDU에 대해 하나의 통합된 값으로 설정하여 전체적인 오버헤드를 감소시킬 수 있다는 효과가 있다. 이로써, 상기 송신 STA은 상기 TRIGVECTOR 파라미터를 획득할 때 상기 TB A-PPDU에 포함된 HE TB PPDU와 EHT TB PPDU에 대해 단일화된(unified) 동작을 구현할 수 있다. 즉, TB A-PPDU를 송신하기 위한 HE STA 및 EHT STA의 효율적인 지원이 가능하다는 효과가 있다.
도 1은 본 명세서의 송신 장치 및/또는 수신 장치의 일례를 나타낸다.
도 2는 무선랜(WLAN)의 구조를 나타낸 개념도이다.
도 3은 일반적인 링크 셋업(link setup) 과정을 설명하는 도면이다.
도 4는 IEEE 규격에서 사용되는 PPDU의 일례를 도시한 도면이다.
도 5는 20MHz 대역 상에서 사용되는 자원유닛(RU)의 배치를 나타내는 도면이다.
도 6은 40MHz 대역 상에서 사용되는 자원유닛(RU)의 배치를 나타내는 도면이다.
도 7은 80MHz 대역 상에서 사용되는 자원유닛(RU)의 배치를 나타내는 도면이다.
도 8은 HE-SIG-B 필드의 구조를 나타낸다.
도 9는 MU-MIMO 기법을 통해 복수의 User STA이 동일한 RU에 할당되는 일례를 나타낸다.
도 10은 본 명세서에 사용되는 PPDU의 일례를 나타낸다.
도 11은 본 명세서의 송신 장치 및/또는 수신 장치의 변형된 일례를 나타낸다.
도 12는 트리거 프레임의 구조를 나타낸다.
도 13은 HE variant Common Info 필드의 포맷을 나타낸다.
도 14는 EHT variant Common Info 필드의 포맷을 나타낸다.
도 15는 본 실시예에 따른 송신 장치의 동작을 나타낸 절차 흐름도이다.
도 16은 본 실시예에 따른 수신 장치의 동작을 나타낸 절차 흐름도이다.
도 17은 본 실시예에 따른 송신 STA이 트리거 프레임을 송신하는 절차를 도시한 흐름도이다.
도 18은 본 실시예에 따른 수신 STA이 트리거 프레임을 수신하는 절차를 도시한 흐름도이다.
본 명세서에서 “A 또는 B(A or B)”는 “오직 A”, “오직 B” 또는 “A와 B 모두”를 의미할 수 있다. 달리 표현하면, 본 명세서에서 “A 또는 B(A or B)”는 “A 및/또는 B(A and/or B)”으로 해석될 수 있다. 예를 들어, 본 명세서에서 “A, B 또는 C(A, B or C)”는 “오직 A”, “오직 B”, “오직 C”또는 “A, B 및 C의 임의의 모든 조합(any combination of A, B and C)”를 의미할 수 있다.
본 명세서에서 사용되는 슬래쉬(/)나 쉼표(comma)는 “및/또는(and/or)”을 의미할 수 있다. 예를 들어, “A/B”는 “및/또는 B”를 의미할 수 있다. 이에 따라 “A/B”는 “오직 A”, “오직 B”, 또는 “A와 B 모두”를 의미할 수 있다. 예를 들어, “A, B, C”는 “A, B 또는 C”를 의미할 수 있다.
본 명세서에서 “적어도 하나의 A 및 B(at least one of A and B)”는, “오직 A”“오직 B” 또는 “A와 B 모두”를 의미할 수 있다. 또한, 본 명세서에서 “적어도 하나의 A 또는 B(at least one of A or B)”나 “적어도 하나의 A 및/또는 B(at least one of A and/or B)”라는 표현은 “적어도 하나의 A 및 B(at least one of A and B)”와 동일하게 해석될 수 있다.
또한, 본 명세서에서 “적어도 하나의 A, B 및 C(at least one of A, B and C)”는, “오직 A”, “오직 B”, “오직 C”또는 “A, B 및 C의 임의의 모든 조합(any combination of A, B and C)”를 의미할 수 있다. 또한, “적어도 하나의 A, B 또는 C(at least one of A, B or C)”나 “적어도 하나의 A, B 및/또는 C(at least one of A, B and/or C)”는 “적어도 하나의 A, B 및 C(at least one of A, B and C)”를 의미할 수 있다.
또한, 본 명세서에서 사용되는 괄호는 “예를 들어(for example)”를 의미할 수 있다. 구체적으로, “제어 정보(EHT-Signal)”로 표시된 경우, “제어 정보”의 일례로 “EHT-Signal”이 제안된 것일 수 있다. 달리 표현하면 본 명세서의 “제어 정보”는 “EHT-Signal”로 제한(limit)되지 않고, “EHT-Signal”이 “제어 정보”의 일례로 제안될 것일 수 있다. 또한, “제어 정보(즉, EHT-signal)”로 표시된 경우에도, “제어 정보”의 일례로 “EHT-Signal”가 제안된 것일 수 있다.
본 명세서에서 하나의 도면 내에서 개별적으로 설명되는 기술적 특징은, 개별적으로 구현될 수도 있고, 동시에 구현될 수도 있다.
본 명세서의 이하의 일례는 다양한 무선 통신시스템에 적용될 수 있다. 예를 들어, 본 명세서의 이하의 일례는 무선랜(wireless local area network, WLAN) 시스템에 적용될 수 있다. 예를 들어, 본 명세서는 IEEE 802.11a/g/n/ac의 규격이나, IEEE 802.11ax 규격에 적용될 수 있다. 또한 본 명세서는 새롭게 제안되는 EHT 규격 또는 IEEE 802.11be 규격에도 적용될 수 있다. 또한 본 명세서의 일례는 EHT 규격 또는 IEEE 802.11be를 개선(enhance)한 새로운 무선랜 규격에도 적용될 수 있다. 또한 본 명세서의 일례는 이동 통신 시스템에 적용될 수 있다. 예를 들어, 3GPP(3rd Generation Partnership Project) 규격에 기반하는 LTE(Long Term Evolution) 및 그 진화(evoluation)에 기반하는 이동 통신 시스템에 적용될 수 있다. 또한, 본 명세서의 일례는 3GPP 규격에 기반하는 5G NR 규격의 통신 시스템에 적용될 수 있다.
이하 본 명세서의 기술적 특징을 설명하기 위해 본 명세서가 적용될 수 있는 기술적 특징을 설명한다.
도 1은 본 명세서의 송신 장치 및/또는 수신 장치의 일례를 나타낸다.
도 1의 일례는 이하에서 설명되는 다양한 기술적 특징을 수행할 수 있다. 도 1은 적어도 하나의 STA(station)에 관련된다. 예를 들어, 본 명세서의 STA(110, 120)은 이동 단말(mobile terminal), 무선 기기(wireless device), 무선 송수신 유닛(Wireless Transmit/Receive Unit; WTRU), 사용자 장비(User Equipment; UE), 이동국(Mobile Station; MS), 이동 가입자 유닛(Mobile Subscriber Unit) 또는 단순히 유저(user) 등의 다양한 명칭으로도 불릴 수 있다. 본 명세서의 STA(110, 120)은 네트워크, 기지국(Base Station), Node-B, AP(Access Point), 리피터, 라우터, 릴레이 등의 다양한 명칭으로 불릴 수 있다. 본 명세서의 STA(110, 120)은 수신 장치, 송신 장치, 수신 STA, 송신 STA, 수신 Device, 송신 Device 등의 다양한 명칭으로 불릴 수 있다.
예를 들어, STA(110, 120)은 AP(access Point) 역할을 수행하거나 non-AP 역할을 수행할 수 있다. 즉, 본 명세서의 STA(110, 120)은 AP 및/또는 non-AP의 기능을 수행할 수 있다. 본 명세서에서 AP는 AP STA으로도 표시될 수 있다.
본 명세서의 STA(110, 120)은 IEEE 802.11 규격 이외의 다양한 통신 규격을 함께 지원할 수 있다. 예를 들어, 3GPP 규격에 따른 통신 규격(예를 들어, LTE, LTE-A, 5G NR 규격)등을 지원할 수 있다. 또한 본 명세서의 STA은 휴대 전화, 차량(vehicle), 개인용 컴퓨터 등의 다양한 장치로 구현될 수 있다. 또한, 본 명세서의 STA은 음성 통화, 영상 통화, 데이터 통신, 자율 주행(Self-Driving, Autonomous-Driving) 등의 다양한 통신 서비스를 위한 통신을 지원할 수 있다.
본 명세서에서 STA(110, 120)은 IEEE 802.11 표준의 규정을 따르는 매체 접속 제어(medium access control, MAC)와 무선 매체에 대한 물리 계층(Physical Layer) 인터페이스를 포함할 수 있다.
도 1의 부도면 (a)를 기초로 STA(110, 120)을 설명하면 이하와 같다.
제1 STA(110)은 프로세서(111), 메모리(112) 및 트랜시버(113)를 포함할 수 있다. 도시된 프로세서, 메모리 및 트랜시버는 각각 별도의 칩으로 구현되거나, 적어도 둘 이상의 블록/기능이 하나의 칩을 통해 구현될 수 있다.
제1 STA의 트랜시버(113)는 신호의 송수신 동작을 수행한다. 구체적으로, IEEE 802.11 패킷(예를 들어, IEEE 802.11a/b/g/n/ac/ax/be 등)을 송수신할 수 있다.
예를 들어, 제1 STA(110)은 AP의 의도된 동작을 수행할 수 있다. 예를 들어, AP의 프로세서(111)는 트랜시버(113)를 통해 신호를 수신하고, 수신 신호를 처리하고, 송신 신호를 생성하고, 신호 송신을 위한 제어를 수행할 수 있다. AP의 메모리(112)는 트랜시버(113)를 통해 수신된 신호(즉, 수신 신호)를 저장할 수 있고, 트랜시버를 통해 송신될 신호(즉, 송신 신호)를 저장할 수 있다.
예를 들어, 제2 STA(120)은 Non-AP STA의 의도된 동작을 수행할 수 있다. 예를 들어, non-AP의 트랜시버(123)는 신호의 송수신 동작을 수행한다. 구체적으로, IEEE 802.11 패킷(예를 들어, IEEE 802.11a/b/g/n/ac/ax/be 등)을 송수신할 수 있다.
예를 들어, Non-AP STA의 프로세서(121)는 트랜시버(123)를 통해 신호를 수신하고, 수신 신호를 처리하고, 송신 신호를 생성하고, 신호 송신을 위한 제어를 수행할 수 있다. Non-AP STA의 메모리(122)는 트랜시버(123)를 통해 수신된 신호(즉, 수신 신호)를 저장할 수 있고, 트랜시버를 통해 송신될 신호(즉, 송신 신호)를 저장할 수 있다.
예를 들어, 이하의 명세서에서 AP로 표시된 장치의 동작은 제1 STA(110) 또는 제2 STA(120)에서 수행될 수 있다. 예를 들어 제1 STA(110)이 AP인 경우, AP로 표시된 장치의 동작은 제1 STA(110)의 프로세서(111)에 의해 제어되고, 제1 STA(110)의 프로세서(111)에 의해 제어되는 트랜시버(113)를 통해 관련된 신호가 송신되거나 수신될 수 있다. 또한, AP의 동작에 관련된 제어 정보나 AP의 송신/수신 신호는 제1 STA(110)의 메모리(112)에 저장될 수 있다. 또한, 제2 STA(110)이 AP인 경우, AP로 표시된 장치의 동작은 제2 STA(120)의 프로세서(121)에 의해 제어되고, 제2 STA(120)의 프로세서(121)에 의해 제어되는 트랜시버(123)를 통해 관련된 신호가 송신되거나 수신될 수 있다. 또한, AP의 동작에 관련된 제어 정보나 AP의 송신/수신 신호는 제2 STA(110)의 메모리(122)에 저장될 수 있다.
예를 들어, 이하의 명세서에서 non-AP(또는 User-STA)로 표시된 장치의 동작은 제 STA(110) 또는 제2 STA(120)에서 수행될 수 있다. 예를 들어 제2 STA(120)이 non-AP인 경우, non-AP로 표시된 장치의 동작은 제2 STA(120)의 프로세서(121)에 의해 제어되고, 제2 STA(120)의 프로세서(121)에 의해 제어되는 트랜시버(123)를 통해 관련된 신호가 송신되거나 수신될 수 있다. 또한, non-AP의 동작에 관련된 제어 정보나 AP의 송신/수신 신호는 제2 STA(120)의 메모리(122)에 저장될 수 있다. 예를 들어 제1 STA(110)이 non-AP인 경우, non-AP로 표시된 장치의 동작은 제1 STA(110)의 프로세서(111)에 의해 제어되고, 제1 STA(120)의 프로세서(111)에 의해 제어되는 트랜시버(113)를 통해 관련된 신호가 송신되거나 수신될 수 있다. 또한, non-AP의 동작에 관련된 제어 정보나 AP의 송신/수신 신호는 제1 STA(110)의 메모리(112)에 저장될 수 있다.
이하의 명세서에서 (송신/수신) STA, 제1 STA, 제2 STA, STA1, STA2, AP, 제1 AP, 제2 AP, AP1, AP2, (송신/수신) Terminal, (송신/수신) device, (송신/수신) apparatus, 네트워크 등으로 불리는 장치는 도 1의 STA(110, 120)을 의미할 수 있다. 예를 들어, 구체적인 도면 부호 없이 (송신/수신) STA, 제1 STA, 제2 STA, STA1, STA2, AP, 제1 AP, 제2 AP, AP1, AP2, (송신/수신) Terminal, (송신/수신) device, (송신/수신) apparatus, 네트워크 등으로 표시된 장치도 도 1의 STA(110, 120)을 의미할 수 있다. 예를 들어, 이하의 일례에서 다양한 STA이 신호(예를 들어, PPPDU)를 송수신하는 동작은 도 1의 트랜시버(113, 123)에서 수행되는 것일 수 있다. 또한, 이하의 일례에서 다양한 STA이 송수신 신호를 생성하거나 송수신 신호를 위해 사전에 데이터 처리나 연산을 수행하는 동작은 도 1의 프로세서(111, 121)에서 수행되는 것일 수 있다. 예를 들어, 송수신 신호를 생성하거나 송수신 신호를 위해 사전에 데이터 처리나 연산을 수행하는 동작의 일례는, 1) PPDU 내에 포함되는 서브 필드(SIG, STF, LTF, Data) 필드의 비트 정보를 결정/획득/구성/연산/디코딩/인코딩하는 동작, 2) PPDU 내에 포함되는 서브 필드(SIG, STF, LTF, Data) 필드를 위해 사용되는 시간 자원이나 주파수 자원(예를 들어, 서브캐리어 자원) 등을 결정/구성/회득하는 동작, 3) PPDU 내에 포함되는 서브 필드(SIG, STF, LTF, Data) 필드를 위해 사용되는 특정한 시퀀스(예를 들어, 파일럿 시퀀스, STF/LTF 시퀀스, SIG에 적용되는 엑스트라 시퀀스) 등을 결정/구성/회득하는 동작, 4) STA에 대해 적용되는 전력 제어 동작 및/또는 파워 세이빙 동작, 5) ACK 신호의 결정/획득/구성/연산/디코딩/인코딩 등에 관련된 동작을 포함할 수 있다. 또한, 이하의 일례에서 다양한 STA이 송수신 신호의 결정/획득/구성/연산/디코딩/인코딩을 위해 사용하는 다양한 정보(예를 들어, 필드/서브필드/제어필드/파라미터/파워 등에 관련된 정보)는 도 1의 메모리(112, 122)에 저장될 수 있다.
상술한 도 1의 부도면 (a)의 장치/STA는 도 1의 부도면 (b)와 같이 변형될 수 있다. 이하 도 1의 부도면 (b)을 기초로, 본 명세서의 STA(110, 120)을 설명한다.
예를 들어, 도 1의 부도면 (b)에 도시된 트랜시버(113, 123)는 상술한 도 1의 부도면 (a)에 도시된 트랜시버와 동일한 기능을 수행할 수 있다. 예를 들어, 도 1의 부도면 (b)에 도시된 프로세싱 칩(114, 124)은 프로세서(111, 121) 및 메모리(112, 122)를 포함할 수 있다. 도 1의 부도면 (b)에 도시된 프로세서(111, 121) 및 메모리(112, 122)는 상술한 도 1의 부도면 (a)에 도시된 프로세서(111, 121) 및 메모리(112, 122)와 동일한 기능을 수행할 수 있다.
이하에서 설명되는, 이동 단말(mobile terminal), 무선 기기(wireless device), 무선 송수신 유닛(Wireless Transmit/Receive Unit; WTRU), 사용자 장비(User Equipment; UE), 이동국(Mobile Station; MS), 이동 가입자 유닛(Mobile Subscriber Unit), 유저(user), 유저 STA, 네트워크, 기지국(Base Station), Node-B, AP(Access Point), 리피터, 라우터, 릴레이, 수신 장치, 송신 장치, 수신 STA, 송신 STA, 수신 Device, 송신 Device, 수신 Apparatus, 및/또는 송신 Apparatus는, 도 1의 부도면 (a)/(b)에 도시된 STA(110, 120)을 의미하거나, 도 1의 부도면 (b)에 도시된 프로세싱 칩(114, 124)을 의미할 수 있다. 즉, 본 명세서의 기술적 특징은, 도 1의 부도면 (a)/(b)에 도시된 STA(110, 120)에 수행될 수도 있고, 도 1의 부도면 (b)에 도시된 프로세싱 칩(114, 124)에서만 수행될 수도 있다. 예를 들어, 송신 STA가 제어 신호를 송신하는 기술적 특징은, 도 1의 부도면 (a)/(b)에 도시된 프로세서(111, 121)에서 생성된 제어 신호가 도 1의 부도면 (a)/(b)에 도시된 트랜시버(113, 123)을 통해 송신되는 기술적 특징으로 이해될 수 있다. 또는, 송신 STA가 제어 신호를 송신하는 기술적 특징은, 도 1의 부도면 (b)에 도시된 프로세싱 칩(114, 124)에서 트랜시버(113, 123)로 전달될 제어 신호가 생성되는 기술적 특징으로 이해될 수 있다.
예를 들어, 수신 STA가 제어 신호를 수신하는 기술적 특징은, 도 1의 부도면 (a)에 도시된 트랜시버(113, 123)에 의해 제어 신호가 수신되는 기술적 특징으로 이해될 수 있다. 또는, 수신 STA가 제어 신호를 수신하는 기술적 특징은, 도 1의 부도면 (a)에 도시된 트랜시버(113, 123)에 수신된 제어 신호가 도 1의 부도면 (a)에 도시된 프로세서(111, 121)에 의해 획득되는 기술적 특징으로 이해될 수 있다. 또는, 수신 STA가 제어 신호를 수신하는 기술적 특징은, 도 1의 부도면 (b)에 도시된 트랜시버(113, 123)에 수신된 제어 신호가 도 1의 부도면 (b)에 도시된 프로세싱 칩(114, 124)에 의해 획득되는 기술적 특징으로 이해될 수 있다.
도 1의 부도면 (b)을 참조하면, 메모리(112, 122) 내에 소프트웨어 코드(115, 125)가 포함될 수 있다. 소프트웨어 코드(115, 125)는 프로세서(111, 121)의 동작을 제어하는 instruction이 포함될 수 있다. 소프트웨어 코드(115, 125)는 다양한 프로그래밍 언어로 포함될 수 있다.
도 1에 도시된 프로세서(111, 121) 또는 프로세싱 칩(114, 124)은 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 프로세서는 AP(application processor)일 수 있다. 예를 들어, 도 1에 도시된 프로세서(111, 121) 또는 프로세싱 칩(114, 124)은 DSP(digital signal processor), CPU(central processing unit), GPU(graphics processing unit), 모뎀(Modem; modulator and demodulator) 중 적어도 하나를 포함할 수 있다. 예를 들어, 도 1에 도시된 프로세서(111, 121) 또는 프로세싱 칩(114, 124)은 Qualcomm®에 의해 제조된 SNAPDRAGONTM 시리즈 프로세서, Samsung®에 의해 제조된 EXYNOSTM 시리즈 프로세서, Apple®에 의해 제조된 A 시리즈 프로세서, MediaTek®에 의해 제조된 HELIOTM 시리즈 프로세서, INTEL®에 의해 제조된 ATOMTM 시리즈 프로세서 또는 이를 개선(enhance)한 프로세서일 수 있다.
본 명세서에서 상향링크는 non-AP STA로부터 AP STA으로의 통신을 위한 링크를 의미할 수 있고 상향링크를 통해 상향링크 PPDU/패킷/신호 등이 송신될 수 있다. 또한, 본 명세서에서 하향링크는 AP STA로부터 non-AP STA으로의 통신을 위한 링크를 의미할 수 있고 하향링크를 통해 하향링크 PPDU/패킷/신호 등이 송신될 수 있다.
도 2는 무선랜(WLAN)의 구조를 나타낸 개념도이다.
도 2의 상단은 IEEE(institute of electrical and electronic engineers) 802.11의 인프라스트럭쳐 BSS(basic service set)의 구조를 나타낸다.
도 2의 상단을 참조하면, 무선랜 시스템은 하나 또는 그 이상의 인프라스트럭쳐 BSS(200, 205)(이하, BSS)를 포함할 수 있다. BSS(200, 205)는 성공적으로 동기화를 이루어서 서로 통신할 수 있는 AP(access point, 225) 및 STA1(Station, 200-1)과 같은 AP와 STA의 집합으로서, 특정 영역을 가리키는 개념은 아니다. BSS(205)는 하나의 AP(230)에 하나 이상의 결합 가능한 STA(205-1, 205-2)을 포함할 수도 있다.
BSS는 적어도 하나의 STA, 분산 서비스(distribution Service)를 제공하는 AP(225, 230) 및 다수의 AP를 연결시키는 분산 시스템(distribution System, DS, 210)을 포함할 수 있다.
분산 시스템(210)은 여러 BSS(200, 205)를 연결하여 확장된 서비스 셋인 ESS(extended service set, 240)를 구현할 수 있다. ESS(240)는 하나 또는 여러 개의 AP가 분산 시스템(210)을 통해 연결되어 이루어진 하나의 네트워크를 지시하는 용어로 사용될 수 있다. 하나의 ESS(240)에 포함되는 AP는 동일한 SSID(service set identification)를 가질 수 있다.
포털(portal, 220)은 무선랜 네트워크(IEEE 802.11)와 다른 네트워크(예를 들어, 802.X)와의 연결을 수행하는 브리지 역할을 수행할 수 있다.
도 2의 상단과 같은 BSS에서는 AP(225, 230) 사이의 네트워크 및 AP(225, 230)와 STA(200-1, 205-1, 205-2) 사이의 네트워크가 구현될 수 있다. 하지만, AP(225, 230)가 없이 STA 사이에서도 네트워크를 설정하여 통신을 수행하는 것도 가능할 수 있다. AP(225, 230)가 없이 STA 사이에서도 네트워크를 설정하여 통신을 수행하는 네트워크를 애드-혹 네트워크(Ad-Hoc network) 또는 독립 BSS(independent basic service set, IBSS)라고 정의한다.
도 2의 하단은 IBSS를 나타낸 개념도이다.
도 2의 하단을 참조하면, IBSS는 애드-혹 모드로 동작하는 BSS이다. IBSS는 AP를 포함하지 않기 때문에 중앙에서 관리 기능을 수행하는 개체(centralized management entity)가 없다. 즉, IBSS에서 STA(250-1, 250-2, 250-3, 255-4, 255-5)들은 분산된 방식(distributed manner)으로 관리된다. IBSS에서는 모든 STA(250-1, 250-2, 250-3, 255-4, 255-5)이 이동 STA으로 이루어질 수 있으며, 분산 시스템으로의 접속이 허용되지 않아서 자기 완비적 네트워크(self-contained network)를 이룬다.
도 3은 일반적인 링크 셋업(link setup) 과정을 설명하는 도면이다.
도시된 S310 단계에서 STA은 네트워크 발견 동작을 수행할 수 있다. 네트워크 발견 동작은 STA의 스캐닝(scanning) 동작을 포함할 수 있다. 즉, STA이 네트워크에 액세스하기 위해서는 참여 가능한 네트워크를 찾아야 한다. STA은 무선 네트워크에 참여하기 전에 호환 가능한 네트워크를 식별하여야 하는데, 특정 영역에 존재하는 네트워크 식별과정을 스캐닝이라고 한다. 스캐닝 방식에는 능동적 스캐닝(active scanning)과 수동적 스캐닝(passive scanning)이 있다.
도 3에서는 예시적으로 능동적 스캐닝 과정을 포함하는 네트워크 발견 동작을 도시한다. 능동적 스캐닝에서 스캐닝을 수행하는 STA은 채널들을 옮기면서 주변에 어떤 AP가 존재하는지 탐색하기 위해 프로브 요청 프레임(probe request frame)을 전송하고 이에 대한 응답을 기다린다. 응답자(responder)는 프로브 요청 프레임을 전송한 STA에게 프로브 요청 프레임에 대한 응답으로 프로브 응답 프레임(probe response frame)을 전송한다. 여기에서, 응답자는 스캐닝되고 있는 채널의 BSS에서 마지막으로 비콘 프레임(beacon frame)을 전송한 STA일 수 있다. BSS에서는 AP가 비콘 프레임을 전송하므로 AP가 응답자가 되며, IBSS에서는 IBSS 내의 STA들이 돌아가면서 비콘 프레임을 전송하므로 응답자가 일정하지 않다. 예를 들어, 1번 채널에서 프로브 요청 프레임을 전송하고 1번 채널에서 프로브 응답 프레임을 수신한 STA은, 수신한 프로브 응답 프레임에 포함된 BSS 관련 정보를 저장하고 다음 채널(예를 들어, 2번 채널)로 이동하여 동일한 방법으로 스캐닝(즉, 2번 채널 상에서 프로브 요청/응답 송수신)을 수행할 수 있다.
도 3의 일례에는 표시되지 않았지만, 스캐닝 동작은 수동적 스캐닝 방식으로 수행될 수도 있다. 수동적 스캐닝을 기초로 스캐닝을 수행하는 STA은 채널들을 옮기면서 비콘 프레임을 기다릴 수 있다. 비콘 프레임은 IEEE 802.11에서 관리 프레임(management frame) 중 하나로서, 무선 네트워크의 존재를 알리고, 스캐닝을 수행하는 STA으로 하여금 무선 네트워크를 찾아서, 무선 네트워크에 참여할 수 있도록 주기적으로 전송된다. BSS에서 AP가 비콘 프레임을 주기적으로 전송하는 역할을 수행하고, IBSS에서는 IBSS 내의 STA들이 돌아가면서 비콘 프레임을 전송한다. 스캐닝을 수행하는 STA은 비콘 프레임을 수신하면 비콘 프레임에 포함된 BSS에 대한 정보를 저장하고 다른 채널로 이동하면서 각 채널에서 비콘 프레임 정보를 기록한다. 비콘 프레임을 수신한 STA은, 수신한 비콘 프레임에 포함된 BSS 관련 정보를 저장하고 다음 채널로 이동하여 동일한 방법으로 다음 채널에서 스캐닝을 수행할 수 있다.
네트워크를 발견한 STA은, 단계 S320를 통해 인증 과정을 수행할 수 있다. 이러한 인증 과정은 후술하는 단계 S340의 보안 셋업 동작과 명확하게 구분하기 위해서 첫 번째 인증(first authentication) 과정이라고 칭할 수 있다. S320의 인증 과정은, STA이 인증 요청 프레임(authentication request frame)을 AP에게 전송하고, 이에 응답하여 AP가 인증 응답 프레임(authentication response frame)을 STA에게 전송하는 과정을 포함할 수 있다. 인증 요청/응답에 사용되는 인증 프레임(authentication frame)은 관리 프레임에 해당한다.
인증 프레임은 인증 알고리즘 번호(authentication algorithm number), 인증 트랜잭션 시퀀스 번호(authentication transaction sequence number), 상태 코드(status code), 검문 텍스트(challenge text), RSN(Robust Security Network), 유한 순환 그룹(Finite Cyclic Group) 등에 대한 정보를 포함할 수 있다.
STA은 인증 요청 프레임을 AP에게 전송할 수 있다. AP는 수신된 인증 요청 프레임에 포함된 정보에 기초하여, 해당 STA에 대한 인증을 허용할지 여부를 결정할 수 있다. AP는 인증 처리의 결과를 인증 응답 프레임을 통하여 STA에게 제공할 수 있다.
성공적으로 인증된 STA은 단계 S330을 기초로 연결 과정을 수행할 수 있다. 연결 과정은 STA이 연결 요청 프레임(association request frame)을 AP에게 전송하고, 이에 응답하여 AP가 연결 응답 프레임(association response frame)을 STA에게 전송하는 과정을 포함한다. 예를 들어, 연결 요청 프레임은 다양한 능력(capability)에 관련된 정보, 비콘 청취 간격(listen interval), SSID(service set identifier), 지원 레이트(supported rates), 지원 채널(supported channels), RSN, 이동성 도메인, 지원 오퍼레이팅 클래스(supported operating classes), TIM 방송 요청(Traffic Indication Map Broadcast request), 상호동작(interworking) 서비스 능력 등에 대한 정보를 포함할 수 있다. 예를 들어, 연결 응답 프레임은 다양한 능력에 관련된 정보, 상태 코드, AID(Association ID), 지원 레이트, EDCA(Enhanced Distributed Channel Access) 파라미터 세트, RCPI(Received Channel Power Indicator), RSNI(Received Signal to Noise Indicator), 이동성 도메인, 타임아웃 간격(연관 컴백 시간(association comeback time)), 중첩(overlapping) BSS 스캔 파라미터, TIM 방송 응답, QoS 맵 등의 정보를 포함할 수 있다.
이후 S340 단계에서, STA은 보안 셋업 과정을 수행할 수 있다. 단계 S340의 보안 셋업 과정은, 예를 들어, EAPOL(Extensible Authentication Protocol over LAN) 프레임을 통한 4-웨이(way) 핸드쉐이킹을 통해서, 프라이빗 키 셋업(private key setup)을 하는 과정을 포함할 수 있다.
도 4는 IEEE 규격에서 사용되는 PPDU의 일례를 도시한 도면이다.
도시된 바와 같이, IEEE a/g/n/ac 등의 규격에서는 다양한 형태의 PPDU(PHY protocol data unit)가 사용되었다. 구체적으로, LTF, STF 필드는 트레이닝 신호를 포함하였고, SIG-A, SIG-B 에는 수신 스테이션을 위한 제어 정보가 포함되었고, 데이터 필드에는 PSDU(MAC PDU/Aggregated MAC PDU)에 상응하는 사용자 데이터가 포함되었다.
또한, 도 4는 IEEE 802.11ax 규격의 HE PPDU의 일례도 포함한다. 도 4에 따른 HE PPDU는 다중 사용자를 위한 PPDU의 일례로, HE-SIG-B는 다중 사용자를 위한 경우에만 포함되고, 단일 사용자를 위한 PPDU에는 해당 HE-SIG-B가 생략될 수 있다.
도시된 바와 같이, 다중 사용자(Multiple User; MU)를 위한 HE-PPDU는 L-STF(legacy-short training field), L-LTF(legacy-long training field), L-SIG(legacy-signal), HE-SIG-A(high efficiency-signal A), HE-SIG-B(high efficiency-signal-B), HE-STF(high efficiency-short training field), HE-LTF(high efficiency-long training field), 데이터 필드(또는 MAC 페이로드) 및 PE(Packet Extension) 필드를 포함할 수 있다. 각각의 필드는 도시된 시간 구간(즉, 4 또는 8 ㎲ 등) 동안에 전송될 수 있다.
이하, PPDU에서 사용되는 자원유닛(RU)을 설명한다. 자원유닛은 복수 개의 서브캐리어(또는 톤)을 포함할 수 있다. 자원유닛은 OFDMA 기법을 기초로 다수의 STA에게 신호를 송신하는 경우 사용될 수 있다. 또한 하나의 STA에게 신호를 송신하는 경우에도 자원유닛이 정의될 수 있다. 자원유닛은 STF, LTF, 데이터 필드 등을 위해 사용될 수 있다.
도 5는 20MHz 대역 상에서 사용되는 자원유닛(RU)의 배치를 나타내는 도면이다.
도 5에 도시된 바와 같이, 서로 다른 개수의 톤(즉, 서브캐리어)에 대응되는 자원유닛(Resource Unit; RU)이 사용되어 HE-PPDU의 일부 필드를 구성할 수 있다. 예를 들어, HE-STF, HE-LTF, 데이터 필드에 대해 도시된 RU 단위로 자원이 할당될 수 있다.
도 5의 최상단에 도시된 바와 같이, 26-유닛(즉, 26개의 톤에 상응하는 유닛)이 배치될 수 있다. 20MHz 대역의 최좌측(leftmost) 대역에는 6개의 톤이 가드(Guard) 대역으로 사용되고, 20MHz 대역의 최우측(rightmost) 대역에는 5개의 톤이 가드 대역으로 사용될 수 있다. 또한 중심대역, 즉 DC 대역에는 7개의 DC 톤이 삽입되고, DC 대역의 좌우측으로 각 13개의 톤에 상응하는 26-유닛이 존재할 수 있다. 또한, 기타 대역에는 26-유닛, 52-유닛, 106-유닛이 할당될 수 있다. 각 유닛은 수신 스테이션, 즉 사용자를 위해 할당될 수 있다.
한편, 도 5의 RU 배치는 다수의 사용자(MU)를 위한 상황뿐만 아니라, 단일 사용자(SU)를 위한 상황에서도 활용되며, 이 경우에는 도 5의 최하단에 도시된 바와 같이 1개의 242-유닛을 사용하는 것이 가능하며 이 경우에는 3개의 DC 톤이 삽입될 수 있다.
도 5의 일례에서는 다양한 크기의 RU, 즉, 26-RU, 52-RU, 106-RU, 242-RU 등이 제안되었는바, 이러한 RU의 구체적인 크기는 확장 또는 증가할 수 있기 때문에, 본 실시예는 각 RU의 구체적인 크기(즉, 상응하는 톤의 개수)에 제한되지 않는다.
도 6은 40MHz 대역 상에서 사용되는 자원유닛(RU)의 배치를 나타내는 도면이다.
도 5의 일례에서 다양한 크기의 RU가 사용된 것과 마찬가지로, 도 6의 일례 역시 26-RU, 52-RU, 106-RU, 242-RU, 484-RU 등이 사용될 수 있다. 또한, 중심주파수에는 5개의 DC 톤이 삽입될 수 있고, 40MHz 대역의 최좌측(leftmost) 대역에는 12개의 톤이 가드(Guard) 대역으로 사용되고, 40MHz 대역의 최우측(rightmost) 대역에는 11개의 톤이 가드 대역으로 사용될 수 있다.
또한, 도시된 바와 같이, 단일 사용자를 위해 사용되는 경우, 484-RU가 사용될 수 있다. 한편, RU의 구체적인 개수가 변경될 수 있다는 점은 도 4의 일례와 동일하다.
도 7은 80MHz 대역 상에서 사용되는 자원유닛(RU)의 배치를 나타내는 도면이다.
도 5 및 도 6의 일례에서 다양한 크기의 RU가 사용된 것과 마찬가지로, 도 7의 일례 역시 26-RU, 52-RU, 106-RU, 242-RU, 484-RU, 996-RU 등이 사용될 수 있다. 또한, 중심주파수에는 7개의 DC 톤이 삽입될 수 있고, 80MHz 대역의 최좌측(leftmost) 대역에는 12개의 톤이 가드(Guard) 대역으로 사용되고, 80MHz 대역의 최우측(rightmost) 대역에는 11개의 톤이 가드 대역으로 사용될 수 있다. 또한 DC 대역 좌우에 위치하는 각각 13개의 톤을 사용한 26-RU를 사용할 수 있다.
또한, 도시된 바와 같이, 단일 사용자를 위해 사용되는 경우, 996-RU가 사용될 수 있으며 이 경우에는 5개의 DC 톤이 삽입될 수 있다.
본 명세서에서 설명된 RU는 UL(Uplink) 통신 및 DL(Downlink) 통신에 사용될 수 있다. 예를 들어, Trigger frame에 의해 solicit되는 UL-MU 통신이 수행되는 경우, 송신 STA(예를 들어, AP)은 Trigger frame을 통해서 제1 STA에게는 제1 RU(예를 들어, 26/52/106/242-RU 등)를 할당하고, 제2 STA에게는 제2 RU(예를 들어, 26/52/106/242-RU 등)를 할당할 수 있다. 이후, 제1 STA은 제1 RU를 기초로 제1 Trigger-based PPDU를 송신할 수 있고, 제2 STA은 제2 RU를 기초로 제2 Trigger-based PPDU를 송신할 수 있다. 제1/제2 Trigger-based PPDU는 동일한 시간 구간에 AP로 송신된다.
예를 들어, DL MU PPDU가 구성되는 경우, 송신 STA(예를 들어, AP)은 제1 STA에게는 제1 RU(예를 들어, 26/52/106/242-RU 등)를 할당하고, 제2 STA에게는 제2 RU(예를 들어, 26/52/106/242-RU 등)를 할당할 수 있다. 즉, 송신 STA(예를 들어, AP)은 하나의 MU PPDU 내에서 제1 RU를 통해 제1 STA을 위한 HE-STF, HE-LTF, Data 필드를 송신할 수 있고, 제2 RU를 통해 제2 STA을 위한 HE-STF, HE-LTF, Data 필드를 송신할 수 있다.
RU의 배치에 관한 정보는 HE-SIG-B를 통해 시그널될 수 있다.
도 8은 HE-SIG-B 필드의 구조를 나타낸다.
도시된 바와 같이, HE-SIG-B 필드(810)는 공통필드(820) 및 사용자-개별(user-specific) 필드(830)을 포함한다. 공통필드(820)는 SIG-B를 수신하는 모든 사용자(즉, 사용자 STA)에게 공통으로 적용되는 정보를 포함할 수 있다. 사용자-개별 필드(830)는 사용자-개별 제어필드로 불릴 수 있다. 사용자-개별 필드(830)는, SIG-B가 복수의 사용자에게 전달되는 경우 복수의 사용자 중 어느 일부에만 적용될 수 있다.
도 8에 도시된 바와 같이 공통필드(820) 및 사용자-개별 필드(830)는 별도로 인코딩될 수 있다.
공통필드(820)는 N*8 비트의 RU allocation 정보를 포함할 수 있다. 예를 들어, RU allocation 정보는 RU의 위치(location)에 관한 정보를 포함할 수 있다. 예를 들어, 도 5와 같이 20 MHz 채널이 사용되는 경우, RU allocation 정보는 어떤 주파수 대역에 어떤 RU(26-RU/52-RU/106-RU)가 배치되는 지에 관한 정보를 포함할 수 있다.
RU allocation 정보가 8 비트로 구성되는 경우의 일례는 다음과 같다.
Figure pct00001
도 5의 일례와 같이, 20 MHz 채널에는 최대 9개의 26-RU가 할당될 수 있다. 표 1과 같이 공통필드(820)의 RU allocation 정보가 '00000000' 같이 설정되는 경우 대응되는 채널(즉, 20 MHz)에는 9개의 26-RU가 할당될 수 있다. 또한, 표 1과 같이 공통필드(820)의 RU allocation 정보가 '00000001' 같이 설정되는 경우 대응되는 채널에 7개의 26-RU와 1개의 52-RU가 배치된다. 즉, 도 5의 일례에서 최-우측에서는 52-RU가 할당되고, 그 좌측으로는 7개의 26-RU가 할당될 수 있다.
표 1의 일례는 RU allocation 정보가 표시할 수 있는 RU location 들 중 일부만을 표시한 것이다.
예를 들어, RU allocation 정보는 하기 표 2의 일례를 추가로 포함할 수 있다.
8 bit indices (B7 B6 B5 B4 B3 B2 B1 B0) #1 #2 #3 #4 #5 #6 #7 #8 #9 Number of entries
01000y2y1y0 106 26 26 26 26 26 8
01001y2y1y0 106 26 26 26 52 8
“01000y2y1y0”는 20 MHz 채널의 최-좌측에 106-RU가 할당되고, 그 우측으로 5개의 26-RU가 할당되는 일례에 관련된다. 이 경우, 106-RU에 대해서는 MU-MIMO 기법을 기초로 다수의 STA(예를 들어, User-STA)이 할당될 수 있다. 구체적으로 106-RU에 대해서는 최대 8개의 STA(예를 들어, User-STA)이 할당될 수 있고, 106-RU에 할당되는 STA(예를 들어, User-STA)의 개수는 3비트 정보(y2y1y0)를 기초로 결정된다. 예를 들어, 3비트 정보(y2y1y0)가 N으로 설정되는 경우, 106-RU에 MU-MIMO 기법을 기초로 할당되는 STA(예를 들어, User-STA)의 개수는 N+1일 수 있다.
일반적으로 복수의 RU에 대해서는 서로 다른 복수의 STA(예를 들어 User STA)이 할당될 수 있다. 그러나 특정한 크기(예를 들어, 106 서브캐리어) 이상의 하나의 RU에 대해서는 MU-MIMO 기법을 기초로 복수의 STA(예를 들어 User STA)이 할당될 수 있다.
도 8에 도시된 바와 같이, 사용자-개별 필드(830)는 복수 개의 사용자 필드를 포함할 수 있다. 상술한 바와 같이, 공통필드(820)의 RU allocation 정보를 기초로 특정 채널에 할당되는 STA(예를 들어 User STA)의 개수가 결정될 수 있다. 예를 들어, 공통필드(820)의 RU allocation 정보가 '00000000'인 경우 9개의 26-RU 각각에 1개씩의 User STA이 할당(즉, 총 9개의 User STA이 할당)될 수 있다. 즉, 최대 9개의 User STA이 OFDMA 기법을 통해 특정 채널에 할당될 수 있다. 달리 표현하면 최대 9개의 User STA이 non-MU-MIMO 기법을 통해 특정 채널에 할당될 수 있다.
예를 들어, RU allocation가 “01000y2y1y0”로 설정되는 경우, 최-좌측에 배치되는 106-RU에는 MU-MIMO 기법을 통해 복수의 User STA이 할당되고, 그 우측에 배치되는 5개의 26-RU에는 non-MU-MIMO 기법을 통해 5개의 User STA이 할당될 수 있다. 이러한 경우는 도 9의 일례를 통해 구체화된다.
도 9는 MU-MIMO 기법을 통해 복수의 User STA이 동일한 RU에 할당되는 일례를 나타낸다.
예를 들어, 도 9와 같이 RU allocation가 “01000010”으로 설정되는 경우, 표 2를 기초로, 특정 채널의 최-좌측에는 106-RU가 할당되고 그 우측으로는 5개의 26-RU가 할당될 수 있다. 또한, 106-RU에는 총 3개의 User STA이 MU-MIMO 기법을 통해 할당될 수 있다. 결과적으로 총 8개의 User STA이 할당되기 때문에, HE-SIG-B의 사용자-개별 필드(830)는 8개의 User field를 포함할 수 있다.
8개의 User field는 도 9에 도시된 순서로 포함될 수 있다. 또한 도 8에서 도시된 바와 같이, 2개의 User field는 1개의 User block field로 구현될 수 있다.
도 8 및 도 9에 도시되는 User field는 2개의 포맷을 기초로 구성될 수 있다. 즉, MU-MIMO 기법에 관련되는 User field는 제1 포맷으로 구성되고, non-MU-MIMO 기법에 관련되는 User field는 제2 포맷으로 구성될 수 있다. 도 9의 일례를 참조하면, User field 1 내지 User field 3은 제1 포맷에 기초할 수 있고, User field 4 내지 User Field 8은 제2 포맷에 기초할 수 있다. 제1 포맷 또는 제2 포맷은 동일한 길이(예를 들어 21비트)의 비트 정보를 포함할 수 있다.
각각의 User field는 동일한 크기(예를 들어 21 비트)를 가질 수 있다. 예를 들어, 제1 포맷(MU-MIMO 기법의 포맷)의 User Field는 다음과 같이 구성될 수 있다.
예를 들어, User field(즉, 21 비트) 내의 제1 비트(예를 들어, B0-B10)는 해당 User field가 할당되는 User STA의 식별정보(예를 들어, STA-ID, partial AID 등)를 포함할 수 있다. 또한 User field(즉, 21 비트) 내의 제2 비트(예를 들어, B11-B14)는 공간 설정(spatial configuration)에 관한 정보를 포함할 수 있다.
또한, User field(즉, 21 비트) 내의 제3 비트(즉, B15-18)는 MCS(Modulation and coding scheme) 정보를 포함할 수 있다. MCS 정보는 해당 SIG-B가 포함되는 PPDU 내의 데이터 필드에 적용될 수 있다.
본 명세서에서 사용되는 MCS, MCS 정보, MCS 인덱스, MCS 필드 등은 특정한 인덱스 값으로 표시될 수 있다. 예를 들어, MCS 정보는 인덱스 0 내지 인덱스 11로 표시될 수 있다. MCS 정보는 성상 변조 타입(예를 들어, BPSK, QPSK, 16-QAM, 64-QAM, 256-QAM, 1024-QAM 등)에 관한 정보, 및 코딩 레이트(예를 들어, 1/2, 2/3, 3/4, 5/6 등)에 관한 정보를 포함할 수 있다. MCS 정보에는 채널 코딩 타입(예를 들어, BCC 또는 LDPC)에 관한 정보가 제외될 수 있다.
또한, User field(즉, 21 비트) 내의 제4 비트(즉, B19)는 Reserved 필드 일 수 있다.
또한, User field(즉, 21 비트) 내의 제5 비트(즉, B20)는 코딩 타입(예를 들어, BCC 또는 LDPC)에 관한 정보를 포함할 수 있다. 즉, 제5 비트(즉, B20)는 해당 SIG-B가 포함되는 PPDU 내의 데이터 필드에 적용된 채널코딩의 타입(예를 들어, BCC 또는 LDPC)에 관한 정보를 포함할 수 있다.
상술한 일례는 제1 포맷(MU-MIMO 기법의 포맷)의 User Field에 관련된다. 제2 포맷(non-MU-MIMO 기법의 포맷)의 User field의 일례는 이하와 같다.
제2 포맷의 User field 내의 제1 비트(예를 들어, B0-B10)는 User STA의 식별정보를 포함할 수 있다. 또한, 제2 포맷의 User field 내의 제2 비트(예를 들어, B11-B13)는 해당 RU에 적용되는 공간 스트림(spatial stream)의 개수에 관한 정보를 포함할 수 있다. 또한, 제2 포맷의 User field 내의 제3 비트(예를 들어, B14)는 beamforming steering matrix가 적용되는지 여부에 관한 정보가 포함될 수 있다. 제2 포맷의 User field 내의 제4 비트(예를 들어, B15-B18)는 MCS(Modulation and coding scheme) 정보를 포함할 수 있다. 또한, 제2 포맷의 User field 내의 제5 비트(예를 들어, B19)는 DCM(Dual Carrier Modulation)이 적용되는지 여부에 관한 정보를 포함할 수 있다. 또한, 제2 포맷의 User field 내의 제6 비트(즉, B20)는 코딩 타입(예를 들어, BCC 또는 LDPC)에 관한 정보를 포함할 수 있다.
이하, 본 명세서의 STA에서 송신/수신되는 PPDU가 설명된다.
도 10은 본 명세서에 사용되는 PPDU의 일례를 나타낸다.
도 10의 PPDU는 EHT PPDU, 송신 PPDU, 수신 PPDU, 제1 타입 또는 제N 타입 PPDU 등의 다양한 명칭으로 불릴 수 있다. 예를 들어, 본 명세서에서 PPDU 또는 EHT PPDU는, 송신 PPDU, 수신 PPDU, 제1 타입 또는 제N 타입 PPDU 등의 다양한 명칭으로 불릴 수 있다. 또한, EHT PPU는 EHT 시스템 및/또는 EHT 시스템을 개선한 새로운 무선랜 시스템에서 사용될 수 있다.
도 10의 PPDU는 EHT 시스템에서 사용되는 PPDU 타입 중 일부 또는 전부를 나타낼 수 있다. 예를 들어, 도 10의 일례는 SU(single-user) 모드 및 MU(multi-user) 모드 모두를 위해 사용될 수 있다. 달리 표현하면, 도 10의 PPDU는 하나의 수신 STA 또는 복수의 수신 STA을 위한 PPDU일 수 있다. 도 10의 PPDU가 TB(Trigger-based) 모드를 위해 사용되는 경우, 도 10의 EHT-SIG는 생략될 수 있다. 달리 표현하면 UL-MU(Uplink-MU) 통신을 위한 Trigger frame을 수신한 STA은, 도 10의 일례에서 EHT-SIG 가 생략된 PPDU를 송신할 수 있다.
도 10에서 L-STF 내지 EHT-LTF는 프리앰블(preamble) 또는 물리 프리앰블(physical preamble)로 불릴 수 있고, 물리계층에서 생성/송신/수신/획득/디코딩될 수 있다.
도 10의 L-STF, L-LTF, L-SIG, RL-SIG, U-SIG, EHT-SIG 필드의 subcarrier spacing은 312.5 kHz로 정해지고, EHT-STF, EHT-LTF, Data 필드의 subcarrier spacing은 78.125 kHz로 정해질 수 있다. 즉, L-STF, L-LTF, L-SIG, RL-SIG, U-SIG, EHT-SIG 필드의 tone index(또는 subcarrier index)는 312.5 kHz 단위로 표시되고, EHT-STF, EHT-LTF, Data 필드의 tone index(또는 subcarrier index)는 78.125 kHz 단위로 표시될 수 있다.
도 10의 PPDU는 L-LTF 및 L-STF는 종래의 필드와 동일할 수 있다.
도 10의 L-SIG 필드는 예를 들어 24 비트의 비트 정보를 포함할 수 있다. 예를 들어, 24비트 정보는 4 비트의 Rate 필드, 1 비트의 Reserved 비트, 12 비트의 Length 필드, 1 비트의 Parity 비트 및, 6 비트의 Tail 비트를 포함할 수 있다. 예를 들어, 12 비트의 Length 필드는 PPDU의 길이 또는 time duration에 관한 정보를 포함할 수 있다. 예를 들어, 12비트 Length 필드의 값은 PPDU의 타입을 기초로 결정될 수 있다. 예를 들어, PPDU가 non-HT, HT, VHT PPDU이거나 EHT PPDU인 경우, Length 필드의 값은 3의 배수로 결정될 수 있다. 예를 들어, PPDU가 HE PPDU인 경우, Length 필드의 값은 '3의 배수 + 1'또는 '3의 배수 +2'로 결정될 수 있다. 달리 표현하면, non-HT, HT, VHT PPDU이거나 EHT PPDU를 위해 Length 필드의 값은 3의 배수로 결정될 수 있고, HE PPDU를 위해 Length 필드의 값은 '3의 배수 + 1'또는 '3의 배수 +2'로 결정될 수 있다.
예를 들어, 송신 STA은 L-SIG 필드의 24 비트 정보에 대해 1/2의 부호화율(code rate)에 기초한 BCC 인코딩을 적용할 수 있다. 이후 송신 STA은 48 비트의 BCC 부호화 비트를 획득할 수 있다. 48비트의 부호화 비트에 대해서는 BPSK 변조가 적용되어 48 개의 BPSK 심볼이 생성될 수 있다. 송신 STA은 48개의 BPSK 심볼을, 파일럿 서브캐리어{서브캐리어 인덱스 -21, -7, +7, +21} 및 DC 서브캐리어{서브캐리어 인덱스 0}를 제외한 위치에 매핑할 수 있다. 결과적으로 48개의 BPSK 심볼은 서브캐리어 인덱스 -26 내지 -22, -20 내지 -8, -6 내지 -1, +1 내지 +6, +8 내지 +20, 및 +22 내지 +26에 매핑될 수 있다. 송신 STA은 서브캐리어 인덱스 {-28, -27, +27, 28}에 {-1, -1, -1, 1}의 신호를 추가로 매핑할 수 있다. 위의 신호는 {-28, -27, +27, 28}에 상응하는 주파수 영역에 대한 채널 추정을 위해 사용될 수 있다.
송신 STA은 L-SIG와 동일하게 생성되는 RL-SIG를 생성할 수 있다. RL-SIG에 대해서는 BPSK 변조가 적용된다. 수신 STA은 RL-SIG의 존재를 기초로 수신 PPDU가 HE PPDU 또는 EHT PPDU임을 알 수 있다.
도 10의 RL-SIG 이후에는 U-SIG(Universal SIG)가 삽입될 수 있다. U-SIG는 제1 SIG 필드, 제1 SIG, 제1 타입 SIG, 제어 시그널, 제어 시그널 필드, 제1 (타입) 제어 시그널 등의 다양한 명칭으로 불릴 수 있다.
U-SIG는 N 비트의 정보를 포함할 수 있고, EHT PPDU의 타입을 식별하기 위한 정보를 포함할 수 있다. 예를 들어, U-SIG는 2개의 심볼(예를 들어, 연속하는 2 개의 OFDM 심볼)을 기초로 구성될 수 있다. U-SIG를 위한 각 심볼(예를 들어, OFDM 심볼)은 4 us의 duration 을 가질 수 있다. U-SIG의 각 심볼은 26 비트 정보를 송신하기 위해 사용될 수 있다. 예를 들어 U-SIG의 각 심볼은 52개의 데이터 톤과 4 개의 파일럿 톤을 기초로 송수신될 수 있다.
U-SIG(또는 U-SIG 필드)를 통해서는 예를 들어 A 비트 정보(예를 들어, 52 un-coded bit)가 송신될 수 있고, U-SIG의 제1 심볼은 총 A 비트 정보 중 처음 X 비트 정보(예를 들어, 26 un-coded bit)를 송신하고, U-SIG의 제2 심볼은 총 A 비트 정보 중 나머지 Y 비트 정보(예를 들어, 26 un-coded bit)를 송신할 수 있다. 예를 들어, 송신 STA은 각 U-SIG 심볼에 포함되는 26 un-coded bit를 획득할 수 있다. 송신 STA은 R=1/2의 rate를 기초로 convolutional encoding(즉, BCC 인코딩)을 수행하여 52-coded bit를 생성하고, 52-coded bit에 대한 인터리빙을 수행할 수 있다. 송신 STA은 인터리빙된 52-coded bit에 대해 BPSK 변조를 수행하여 각 U-SIG 심볼에 할당되는 52개의 BPSK 심볼을 생성할 수 있다. 하나의 U-SIG 심볼은 DC 인덱스 0을 제외하고, 서브캐리어 인덱스 -28부터 서브캐리어 인덱스 +28까지의 56개 톤(서브캐리어)을 기초로 송신될 수 있다. 송신 STA이 생성한 52개의 BPSK 심볼은 파일럿 톤인 -21, -7, +7, +21 톤을 제외한 나머지 톤(서브캐리어)를 기초로 송신될 수 있다.
예를 들어, U-SIG에 의해 송신되는 A 비트 정보(예를 들어, 52 un-coded bit)는 CRC 필드(예를 들어 4비트 길이의 필드) 및 테일 필드(예를 들어 6비트 길이의 필드)를 포함할 수 있다. 상기 CRC 필드 및 테일 필드는 U-SIG의 제2 심볼을 통해 송신될 수 있다. 상기 CRC 필드는 U-SIG의 제1 심볼에 할당되는 26 비트와 제2 심볼 내에서 상기 CRC/테일 필드를 제외한 나머지 16 비트를 기초로 생성될 수 있고, 종래의 CRC calculation 알고리즘을 기초로 생성될 수 있다. 또한, 상기 테일 필드는 convolutional decoder의 trellis를 terminate하기 위해 사용될 수 있고, 예를 들어 '000000'으로 설정될 수 있다.
U-SIG(또는 U-SIG 필드)에 의해 송신되는 A 비트 정보(예를 들어, 52 un-coded bit)는 version-independent bits와 version-dependent bits로 구분될 수 있다. 예를 들어, version-independent bits의 크기는 고정적이거나 가변적일 수 있다. 예를 들어, version-independent bits는 U-SIG의 제1 심볼에만 할당되거나, version-independent bits는 U-SIG의 제1 심볼 및 제2 심볼 모두에 할당될 수 있다. 예를 들어, version-independent bits와 version-dependent bits는 제1 제어 비트 및 제2 제어 비트 등의 다양한 명칭으로 불릴 수 있다.
예를 들어, U-SIG의 version-independent bits는 3비트의 PHY version identifier를 포함할 수 있다. 예를 들어, 3비트의 PHY version identifier는 송수신 PPDU의 PHY version 에 관련된 정보를 포함할 수 있다. 예를 들어, 3비트의 PHY version identifier의 제1 값은 송수신 PPDU가 EHT PPDU임을 지시할 수 있다. 달리 표현하면, 송신 STA은 EHT PPDU를 송신하는 경우, 3비트의 PHY version identifier를 제1 값으로 설정할 수 있다. 달리 표현하면, 수신 STA은 제1 값을 가지는 PHY version identifier를 기초로, 수신 PPDU가 EHT PPDU임을 판단할 수 있다.
예를 들어, U-SIG의 version-independent bits는 1비트의 UL/DL flag 필드를 포함할 수 있다. 1비트의 UL/DL flag 필드의 제1 값은 UL 통신에 관련되고, UL/DL flag 필드의 제2 값은 DL 통신에 관련된다.
예를 들어, U-SIG의 version-independent bits는 TXOP의 길이에 관한 정보, BSS color ID에 관한 정보를 포함할 수 있다.
예를 들어 EHT PPDU가 다양한 타입(예를 들어, SU 모드에 관련된 EHT PPDU, MU 모드에 관련된 EHT PPDU, TB 모드에 관련된 EHT PPDU, Extended Range 송신에 관련된 EHT PPDU 등의 다양한 타입)으로 구분되는 경우, EHT PPDU의 타입에 관한 정보는 U-SIG의 version-dependent bits에 포함될 수 있다.
예를 들어, U-SIG는 1) 대역폭에 관한 정보를 포함하는 대역폭 필드, 2) EHT-SIG에 적용되는 MCS 기법에 관한 정보를 포함하는 필드, 3) EHT-SIG에 듀얼 서브캐리어 모듈레이션(dual subcarrier modulation, DCM) 기법이 적용되는지 여부에 관련된 정보를 포함하는 지시 필드, 4) EHT-SIG를 위해 사용되는 심볼의 개수에 관한 정보를 포함하는 필드, 5) EHT-SIG가 전 대역에 걸쳐 생성되는지 여부에 관한 정보를 포함하는 필드, 6) EHT-LTF/STF의 타입에 관한 정보를 포함하는 필드, 7) EHT-LTF의 길이 및 CP 길이를 지시하는 필드에 관한 정보를 포함할 수 있다.
도 10의 PPDU에는 프리앰블 펑처링(puncturing)이 적용될 수 있다. 프리앰블 펑처링은 PPDU의 전체 대역 중에서 일부 대역(예를 들어, Secondary 20 MHz 대역)을 펑처링을 적용하는 것을 의미한다. 예를 들어, 80 MHz PPDU가 송신되는 경우, STA은 80 MHz 대역 중 secondary 20 MHz 대역에 대해 펑처링을 적용하고, primary 20 MHz 대역과 secondary 40 MHz 대역을 통해서만 PPDU를 송신할 수 있다.
예를 들어 프리앰블 펑처링의 패턴은 사전에 설정될 수 있다. 예를 들어, 제1 펑처링 패턴이 적용되는 경우, 80 MHz 대역 내에서 secondary 20 MHz 대역에 대해서만 펑처링이 적용될 수 있다. 예를 들어, 제2 펑처링 패턴이 적용되는 경우, 80 MHz 대역 내에서 secondary 40 MHz 대역에 포함된 2개의 secondary 20 MHz 대역 중 어느 하나에 대해서만 펑처링이 적용될 수 있다. 예를 들어, 제3 펑처링 패턴이 적용되는 경우, 160 MHz 대역(또는 80+80 MHz 대역) 내에서 primary 80 MHz 대역에 포함된 secondary 20 MHz 대역에 대해서만 펑처링이 적용될 수 있다. 예를 들어, 제4 펑처링 패턴이 적용되는 경우, 160 MHz 대역(또는 80+80 MHz 대역) 내에서 primary 80 MHz 대역에 포함된 primary 40 MHz 대역은 존재(present)하고 primary 40 MHz 대역에 속하지 않는 적어도 하나의 20 MHz 채널에 대해 펑처링이 적용될 수 있다.
PPDU에 적용되는 프리앰블 펑처링에 관한 정보는 U-SIG 및/또는 EHT-SIG에 포함될 수 있다. 예를 들어, U-SIG의 제1 필드는 PPDU의 연속하는 대역폭(contiguous bandwidth)에 관한 정보를 포함하고, U-SIG의 제2 필드는 PPDU에 적용되는 프리앰블 펑처링에 관한 정보를 포함할 수 있다.
예를 들어, U-SIG 및 EHT-SIG는 아래의 방법을 기초로 프리앰블 펑처링에 관한 정보를 포함할 수 있다. PPDU의 대역폭이 80 MHz를 초과하는 경우, U-SIG는 80 MHz 단위로 개별적으로 구성될 수 있다. 예를 들어, PPDU의 대역폭이 160 MHz인 경우, 해당 PPDU에는 첫 번째 80 MHz 대역을 위한 제1 U-SIG 및 두 번째 80 MHz 대역을 위한 제2 U-SIG가 포함될 수 있다. 이 경우, 제1 U-SIG의 제1 필드는 160 MHz 대역폭에 관한 정보를 포함하고, 제1 U-SIG의 제2 필드는 첫 번째 80 MHz 대역에 적용된 프리앰블 펑처링에 관한 정보(즉, 프리앰블 펑처링 패턴에 관한 정보)를 포함할 수 있다. 또한, 제2 U-SIG의 제1 필드는 160 MHz 대역폭에 관한 정보를 포함하고, 제2 U-SIG의 제2 필드는 두 번째 80 MHz 대역에 적용된 프리앰블 펑처링에 관한 정보(즉, 프리앰블 펑처링 패턴에 관한 정보)를 포함할 수 있다. 한편, 제1 U-SIG에 연속하는 EHT-SIG는 두 번째 80 MHz 대역에 적용된 프리앰블 펑처링에 관한 정보(즉, 프리앰블 펑처링 패턴에 관한 정보)를 포함할 수 있고, 제2 U-SIG에 연속하는 EHT-SIG는 첫 번째 80 MHz 대역에 적용된 프리앰블 펑처링에 관한 정보(즉, 프리앰블 펑처링 패턴에 관한 정보)를 포함할 수 있다.
추가적으로 또는 대체적으로, U-SIG 및 EHT-SIG는 아래의 방법을 기초로 프리앰블 펑처링에 관한 정보를 포함할 수 있다. U-SIG는 모든 대역에 관한 프리앰블 펑처링에 관한 정보(즉, 프리앰블 펑처링 패턴에 관한 정보)를 포함할 수 있다. 즉, EHT-SIG는 프리앰블 펑처링에 관한 정보를 포함하지 않고, U-SIG 만이 프리앰블 펑처링에 관한 정보(즉, 프리앰블 펑처링 패턴에 관한 정보)를 포함할 수 있다.
U-SIG는 20 MHz 단위로 구성될 수 있다. 예를 들어, 80 MHz PPDU가 구성되는 경우, U-SIG가 복제될 수 있다. 즉, 80 MHz PPDU 내에 동일한 4개의 U-SIG가 포함될 수 있다. 80 MHz 대역폭을 초과하는 PPDU는 서로 다른 U-SIG를 포함할 수 있다.
도 10의 EHT-SIG는 수신 STA을 위한 제어 정보를 포함할 수 있다. EHT-SIG는 적어도 하나의 심볼을 통해 송신될 수 있고, 하나의 심볼은 4 us의 길이를 가질 수 있다. EHT-SIG를 위해 사용되는 심볼의 개수에 관한 정보는 U-SIG에 포함될 수 있다.
EHT-SIG는 도 8 내지 도 9를 통해 설명된 HE-SIG-B의 기술적 특징을 포함할 수 있다. 예를 들어 EHT-SIG는, 도 8의 일례와 동일하게, 공통필드(common field) 및 사용자-개별 필드(user-specific field)를 포함할 수 있다. EHT-SIG의 공통필드는 생략될 수 있고, 사용자-개별 필드의 개수는 사용자(user)의 개수를 기초로 결정될 수 있다.
도 8의 일례와 동일하게, EHT-SIG의 공통필드 및 EHT-SIG의 사용자-개별 필드는 개별적으로 코딩될 수 있다. 사용자-개별 필드에 포함되는 하나의 사용자 블록 필드(User block field) 은 2 개의 사용자(user)를 위한 정보를 포함할 수 있지만, 사용자-개별 필드에 포함되는 마지막 사용자 블록 필드는 1 개의 사용자를 위한 정보를 포함하는 것이 가능하다. 즉, EHT-SIG의 하나의 사용자 블록 필드는 최대 2개의 사용자 필드(user field)를 포함할 수 있다. 도 9의 일례와 동일하게, 각 사용자 필드(user field)는 MU-MIMO 할당에 관련되거나, non-MU-MIMO 할당에 관련될 수 있다.
도 8의 일례와 동일하게, EHT-SIG의 공통필드는 CRC 비트와 Tail 비트를 포함할 수 있고, CRC 비트의 길이는 4 비트로 결정될 수 있고, Tail 비트의 길이는 6 비트로 결정되고 '000000'으로 설정될 수 있다.
도 8의 일례와 동일하게, EHT-SIG의 공통필드는 RU 할당 정보(RU allocation information)를 포함할 수 있다. RU allocation information 은 복수의 사용자(즉, 복수의 수신 STA)이 할당되는 RU의 위치(location)에 관한 정보를 의미할 수 있다. RU allocation information은, 표 1과 동일하게, 8 비트(또는 N 비트) 단위로 구성될 수 있다.
EHT-SIG의 공통필드가 생략되는 모드가 지원될 수 있다. EHT-SIG의 공통필드가 생략되는 모드는 compressed mode라 불릴 수 있다. compressed mode가 사용되는 경우, EHT PPDU의 복수의 사용자(즉, 복수의 수신 STA)은 non-OFDMA를 기초로 PPDU(예를 들어, PPDU의 데이터 필드)를 디코딩할 수 있다. 즉, EHT PPDU의 복수의 사용자는 동일한 주파수 대역을 통해 수신되는 PPDU(예를 들어, PPDU의 데이터 필드)를 디코딩할 수 있다. 한편, non- compressed mode가 사용되는 경우, EHT PPDU의 복수의 사용자는 OFDMA를 기초로 PPDU(예를 들어, PPDU의 데이터 필드)를 디코딩할 수 있다. 즉, EHT PPDU의 복수의 사용자는 상이한 주파수 대역을 통해 PPDU(예를 들어, PPDU의 데이터 필드)를 수신할 수 있다.
EHT-SIG는 다양한 MCS 기법을 기초로 구성될 수 있다. 상술한 바와 같이 EHT-SIG에 적용되는 MCS 기법에 관련된 정보는 U-SIG에 포함될 수 있다. EHT-SIG는 DCM 기법을 기초로 구성될 수 있다. 예를 들어, EHT-SIG를 위해 할당된 N개의 데이터 톤(예를 들어, 52개의 데이터 톤) 중에 연속하는 절반의 톤에는 제1 변조 기법이 적용되고, 나머지 연속하는 절반의 톤에는 제2 변조 기법이 적용될 수 있다. 즉, 송신 STA은 특정한 제어 정보를 제1 변조 기법을 기초로 제1 심볼로 변조하고 연속하는 절반의 톤에 할당하고, 동일한 제어 정보를 제2 변조 기법을 기초로 제2 심볼로 변조하고 나머지 연속하는 절반의 톤에 할당할 수 있다. 상술한 바와 같이 EHT-SIG에 DCM 기법이 적용되는지 여부에 관련된 정보(예를 들어 1 비트 필드)는 U-SIG에 포함될 수 있다. 도 10의 EHT-STF는 MIMO(multiple input multiple output) 환경 또는 OFDMA 환경에서 자동 이득 제어 추정(automatic gain control estimation)을 향상시키기 위하여 사용될 수 있다. 도 10의 EHT-LTF는 MIMO 환경 또는 OFDMA 환경에서 채널을 추정하기 위하여 사용될 수 있다.
STF 및/또는 LTF의 타입에 관한 정보(LTF에 적용되는 GI에 관한 정보도 포함됨)는 도 10의 SIG A 필드 및/또는 SIG B 필드 등에 포함될 수 있다.
도 10의 PPDU(즉, EHT-PPDU)는 도 5 및 도 6의 일례를 기초로 구성될 수 있다.
예를 들어, 20 MHz 대역 상에서 송신되는 EHT PPDU, 즉 20 MHz EHT PPDU는 도 5의 RU를 기초로 구성될 수 있다. 즉, EHT PPDU에 포함되는 EHT-STF, EHT-LTF, 데이터 필드의 RU의 위치(location)는 도 5와 같이 결정될 수 있다.
40 MHz 대역 상에서 송신되는 EHT PPDU, 즉 40 MHz EHT PPDU는 도 6의 RU를 기초로 구성될 수 있다. 즉, EHT PPDU에 포함되는 EHT-STF, EHT-LTF, 데이터 필드의 RU의 위치(location)는 도 6과 같이 결정될 수 있다.
도 6의 RU 위치는 40 MHz에 대응되므로, 도 6의 패턴을 두 번 반복하면 80 MHz을 위한 톤-플랜(tone-plan)이 결정될 수 있다. 즉, 80 MHz EHT PPDU는 도 7의 RU가 아닌 도 6의 RU가 두 번 반복되는 새로운 톤-플랜을 기초로 송신될 수 있다.
도 6의 패턴이 두 번 반복되는 경우, DC 영역에는 23 개의 톤(즉, 11 가드 톤 + 12 가드 톤)이 구성될 수 있다. 즉, OFDMA를 기초로 할당되는 80 MHz EHT PPDU를 위한 톤-플랜은 23 개의 DC 톤을 가질 수 있다. 이와 달리 Non-OFDMA를 기초로 할당되는 80 MHz EHT PPDU (즉, non-OFDMA full Bandwidth 80 MHz PPDU)는 996 RU을 기초로 구성되고 5 개의 DC 톤, 12개의 좌측 가드 톤, 11 개의 우측 가드 톤을 포함할 수 있다.
160/240/320 MHz 를 위한 톤-플랜은 도 6의 패턴을 여러 번 반복하는 형태로 구성될 수 있다.
도 10의 PPDU는 이하의 방법을 기초로 EHT PPDU로 식별될 수 있다.
수신 STA은 다음의 사항을 기초로 수신 PPDU의 타입을 EHT PPDU로 판단할 수 있다. 예를 들어, 1) 수신 PPDU의 L-LTF 신호 이후의 첫 번째 심볼이 BPSK이고, 2) 수신 PPDU의 L-SIG가 반복되는 RL-SIG가 detect 되고, 3) 수신 PPDU의 L-SIG의 Length 필드의 값에 대해 “modulo 3”을 적용한 결과가 “0”으로 detect되는 경우, 수신 PPDU는 EHT PPDU로 판단될 수 있다. 수신 PPDU가 EHT PPDU로 판단되는 경우, 수신 STA은 도 10의 RL-SIG 이후의 심볼에 포함되는 비트 정보를 기초로 EHT PPDU의 타입(예를 들어, SU/MU/Trigger-based/Extended Range 타입)을 detect할 수 있다. 달리 표현하면, 수신 STA은 1) BSPK인 L-LTF 신호 이후의 첫 번째 심볼, 2) L-SIG 필드에 연속하고 L-SIG와 동일한 RL-SIG, 및 3) “modulo 3”을 적용한 결과가 “0”으로 설정되는 Length 필드를 포함하는 L-SIG를 기초로, 수신 PPDU를 EHT PPDU로 판단할 수 있다.
예를 들어, 수신 STA은 다음의 사항을 기초로 수신 PPDU의 타입을 HE PPDU로 판단할 수 있다. 예를 들어, 1) L-LTF 신호 이후의 첫 번째 심볼이 BPSK이고, 2) L-SIG가 반복되는 RL-SIG가 detect 되고, 3) L-SIG의 Length 값에 대해 “modulo 3”을 적용한 결과가 “1”또는 “2”로 detect되는 경우, 수신 PPDU는 HE PPDU로 판단될 수 있다.
예를 들어, 수신 STA은 다음의 사항을 기초로, 수신 PPDU의 타입을 non-HT, HT 및 VHT PPDU로 판단할 수 있다. 예를 들어, 1) L-LTF 신호 이후의 첫 번째 심볼이 BPSK이고, 2) L-SIG가 반복되는 RL-SIG가 detect 되지 않는 경우, 수신 PPDU는 non-HT, HT 및 VHT PPDU로 판단될 수 있다. 또한, 수신 STA이 RL-SIG의 반복을 detect했더라도 L-SIG의 Length 값에 대해 “modulo 3”을 적용한 결과가 “0”으로 detect되는 경우에는, 수신 PPDU이 non-HT, HT 및 VHT PPDU로 판단될 수 있다.
이하의 일례에서 (송신/수신/상향/하향) 신호, (송신/수신/상향/하향) 프레임, (송신/수신/상향/하향) 패킷, (송신/수신/상향/하향) 데이터 유닛, (송신/수신/상향/하향) 데이터 등으로 표시되는 신호는 도 10의 PPDU를 기초로 송수신되는 신호일 수 있다. 도 10의 PPDU는 다양한 타입의 프레임을 송수신하기 위해 사용될 수 있다. 예를 들어, 도 10의 PPDU는 제어 프레임(control frame)을 위해 사용될 수 있다. 제어 프레임의 일례는, RTS(request to send), CTS(clear to send), PS-Poll(Power Save-Poll), BlockACKReq, BlockAck, NDP(Null Data Packet) announcement, Trigger Frame을 포함할 수 있다. 예를 들어, 도 10의 PPDU는 관리 프레임(management frame)을 위해 사용될 수 있다. management frame의 일례는, Beacon frame, (Re-)Association Request frame, (Re-)Association Response frame, Probe Request frame, Probe Response frame를 포함할 수 있다. 예를 들어, 도 10의 PPDU는 데이터 프레임을 위해 사용될 수 있다. 예를 들어, 도 10의 PPDU는 제어 프레임, 관리 프레임, 및 데이터 프레임 중 적어도 둘 이상을 동시에 송신하기 위해 사용될 수도 있다.
도 11은 본 명세서의 송신 장치 및/또는 수신 장치의 변형된 일례를 나타낸다.
도 1의 부도면 (a)/(b)의 각 장치/STA은 도 11과 같이 변형될 수 있다. 도 11의 트랜시버(630)는 도 1의 트랜시버(113, 123)와 동일할 수 있다. 도 11의 트랜시버(630)는 수신기(receiver) 및 송신기(transmitter)를 포함할 수 있다.
도 11의 프로세서(610)는 도 1의 프로세서(111, 121)과 동일할 수 있다. 또는, 도 11의 프로세서(610)는 도 1의 프로세싱 칩(114, 124)과 동일할 수 있다.
도 11의 메모리(150)는 도 1의 메모리(112, 122)와 동일할 수 있다. 또는, 도 11의 메모리(150)는 도 1의 메모리(112, 122)와는 상이한 별도의 외부 메모리일 수 있다.
도 11을 참조하면, 전력 관리 모듈(611)은 프로세서(610) 및/또는 트랜시버(630)에 대한 전력을 관리한다. 배터리(612)는 전력 관리 모듈(611)에 전력을 공급한다. 디스플레이(613)는 프로세서(610)에 의해 처리된 결과를 출력한다. 키패드(614)는 프로세서(610)에 의해 사용될 입력을 수신한다. 키패드(614)는 디스플레이(613) 상에 표시될 수 있다. SIM 카드(615)는 휴대 전화 및 컴퓨터와 같은 휴대 전화 장치에서 가입자를 식별하고 인증하는 데에 사용되는 IMSI(international mobile subscriber identity) 및 그와 관련된 키를 안전하게 저장하기 위하여 사용되는 집적 회로일 수 있다.
도 11을 참조하면, 스피커(640)는 프로세서(610)에 의해 처리된 소리 관련 결과를 출력할 수 있다. 마이크(641)는 프로세서(610)에 의해 사용될 소리 관련 입력을 수신할 수 있다.
1. 본 명세서에 적용 가능한 실시예
무선랜 802.11be 시스템에서는 peak throughput의 증가를 위해 기존 802.11ax 보다 더 넓은 대역을 사용하거나 혹은 더 많은 안테나를 사용하여 증가된 stream의 전송을 고려하고 있다. 또한 본 명세서는 다양한 band/link를 aggregation하여 사용하는 방식도 고려하고 있다.
본 명세서에서는 wide bandwidth 등을 고려한 상황에서 TB A-PPDU (HE TB PPDU와 EHT TB PPDU를 동시 전송)를 요청(solicit)할 수 있는 Trigger frame을 고려했을 때 TRIGVECTOR parameter의 구성에 대해 제안한다.
기본적으로 UL PPDU 전송은 Trigger frame에 의해 트리거될 수 있고 UL PPDU에서 사용되는 다양한 PHY 정보가 Trigger frame에 실려 전송될 수 있다. UL PPDU는 TB(Trigger Based) PPDU(HE(High Efficiency) TB PPDU, EHT(Extreme High Throughput) TB PPDU, 또는 TB A-PPDU를 포함)일 수 있고, 아래는 상기 TB PPDU를 트리거하는 Trigger frame의 구조이다.
도 12는 트리거 프레임의 구조를 나타낸다.
도 12를 참조하면, 트리거 프레임은 MAC 헤더, Common Info 필드, User Info List 필드 등을 포함한다.
AP는 도 12의 Trigger frame을 그대로 활용하여 TB PPDU의 전송 정보를 각 HE/EHT STA에게 지시한 후 TB PPDU를 수신할 수 있다.
도 12의 트리거 프레임 내 Common Info field는 각 STA의 공통 정보를 포함하고 있으며, HE PPDU를 트리거하기 위한 HE variant field와 EHT PPDU를 트리거하기 위한 EHT variant field로 구성된다.
도 13은 HE variant Common Info 필드의 포맷을 나타낸다.
도 14는 EHT variant Common Info 필드의 포맷을 나타낸다.
현재 802.11be에서 정의되어 있는 HE variant Common Info 필드는 도 13과 같고, 현재 802.11be에서 정의되어 있는 EHT variant Common Info 필드는 도 14와 같다.
Trigger frame의 Common Info field는 HE TB PPDU를 trigger하는 경우 HE variant Common Info field로 구성될 수 있고 EHT TB PPDU를 trigger하는 경우 EHT variant Common Info field로 구성될 수 있다. 또한 A-PPDU를 trigger하는 경우에는 EHT variant Common Info field로 구성될 수 있으나 subfield의 이름이나 설명 등은 변경되어 사용될 수 있다.
아래는 802.11be에서 정의되어 있는 TRIGVECTOR parameter이다. 상기 TRIGVECTOR parameter는 AP가 EHT TB PPDU를 trigger하는 경우 AP의 PHY에서 EHT TB PPDU를 수신 시 decoding을 할 수 있도록 AP 내의 MAC에서 PHY에게 전달해주는 정보를 포함하고 있다.
Figure pct00002
Figure pct00003
하지만 EHT AP는 Trigger frame을 이용해 HE TB PPDU 혹은 TB A-PPDU (HE TB PPDU와 EHT TB PPDU를 주파수 도메인 상에서 어그리게이트한(aggregated) TB PPDU)도 trigger할 수 있다. 특히, EHT AP가 HE TB PPDU 만을 trigger하는 경우라면 802.11ax에서 정의된 아래의 TRIGVECTOR를 고려할 수 있다. 아래는 802.11ax에서 정의되어 있는 TRIGVECTOR parameter이다.
Figure pct00004
Figure pct00005
1) TB A-PPDU를 trigger하는 경우 TRIGVECTOR parameters 구성 1
AP가 TB A-PPDU(Trigger Based Aggregated-PPDU)를 trigger하는 경우 802.11ax에서 정의된 TRIGVECTOR(표 4)와 802.11be에서 정의된 TRIGVECTOR(표 3)가 모두 사용될 수 있으며 즉, AP가 TB A-PPDU 수신 시, HE TB PPDU가 수신되는 frequency 부분에서는 802.11ax의 TRIGVECTOR를 사용하여 디코딩을 수행하고, EHT TB PPDU가 수신되는 frequency 부분에서는 802.11be의 TRIGVECTOR를 사용하여 decoding을 수행할 수 있다. 그러나 해당 방식은 중복된 parameter들이 있을 수 있어 overhead 관점에서 효율적이지 않을 수 있다.
2) TB A-PPDU를 trigger하는 경우 TRIGVECTOR parameters 구성 2
AP가 TB A-PPDU를 trigger하는 경우 하나의 통합된 TRIGVECTOR를 구성할 수 있다.
아래는 각 parameter와 각 value의 의미이다.
2-1) CH_BANDWIDTH
HE와 EHT를 위한 두 개의 CH_BANDWIDTH parameter가 존재할 수 있다. 이 경우 각 TRIGVECTOR(802.11ax에서 정의된 TRIGVECTOR 및 802.11be에서 정의된 TRIGVECTOR)에서 정의된 것과 동일한 parameter를 사용할 수 있다.
혹은 HE와 EHT에 대해 하나의 CH_BANDWIDTH parameter가 사용될 수 있고, 이때 다음과 같은 의미를 가질 수 있다. 각 value와 description의 순서는 변경될 수 있고 일부 description은 빠지거나 새로운 description이 추가될 수 있다.
0: 80 MHz for HE TB PPDU, 80 MHz for EHT TB PPDU
1: 80 MHz for HE TB PPDU, 160 MHz for EHT TB PPDU
2: 160 MHz for HE TB PPDU, 80 MHz for EHT TB PPDU
3: 160 MHz for HE TB PPDU, 160 MHz for EHT TB PPDU
2-2) UL_LENGTH
HE와 EHT를 위한 두 개의 UL_LENGTH parameter가 존재할 수 있다. 이 경우 각 TRIGVECTOR에서 정의된 것과 동일한 parameter를 사용할 수 있다.
혹은 HE와 EHT에 대해 하나의 UL_LENGTH parameter가 사용될 수 있고, 이때 다음과 같은 의미를 가질 수 있다.
UL_LENGTH parameter Indicates the value of the LENGTH field in the L-SIG field of the expected HE TB PPDU(s)
즉, 이는 Trigger frame 내의 UL Length subfield의 값과 동일하며(TB A-PPDU를 trigger하는 경우에도 하나의 UL Length subfield만 존재) EHT TB PPDU(s)의 L-SIG LENGTH field의 값에서 2를 뺀 것과 동일하다.
상기 UL_LENGTH parameter의 값 또는 상기 Trigger frame 내의 UL Length subfield의 값은 아래 수학식과 같이 설정될 수 있으며, m은 2로 고정될 수 있다. 이 값은 3의 배수가 아닌 값으로 설정될 수 있다.
Figure pct00006
여기서, TXTIME은 Signal Extension 길이 및 Packet extension 길이를 포함한 전체 PPDU 길이(단위는 us)를 의미한다. SignalExtension은 TXVECTOR parameter NO_SIG_EXTN이 true인 경우 0us이고, TXVECTOR parameter NO_SIG_EXTN이 false인 경우 aSignalExtension이다. 상기 aSignalExtension은 5GHz 또는 6GHz 대역에서 동작하는 경우 0us이고, 2.4GHz 대역에서 동작하는 경우 6us이다.
2-3) GI_AND_EHT_LTF_TYPE / GI_AND_HE_LTF_TYPE
GI_AND_EHT_LTF_TYPE / GI_AND_HE_LTF_TYPE 파라미터는 HE와 EHT를 위해 각각의 parameter로 존재할 수 있다. 이 경우 각 TRIGVECTOR에서 정의된 것과 동일한 parameter를 사용할 수 있다.
혹은 GI_AND_EHT_LTF_TYPE / GI_AND_HE_LTF_TYPE 파라미터는 HE와 EHT에 대해 하나의 GI_AND_EHT/HE_LTF_TYPE parameter로 사용될 수 있고, 해당 파라미터의 이름은 달라질 수도 있다. 이때 상기 하나의 GI_AND_EHT/HE_LTF_TYPE parameter는 다음과 같은 의미를 가질 수 있다. 상기 하나의 GI_AND_EHT/HE_LTF_TYPE parameter의 제안은 각 TB PPDU의 alignment를 고려 시 바람직할 수 있다.
상기 하나의 GI_AND_EHT/HE_LTF_TYPE parameter는 EHT TB PPDU의 EHT-LTF type과 HE TB PPDU의 HE-LTF type을 동시에 지시한다. 즉, HE TB PPDU와 EHT TB PPDU에서 동일한 type의 LTF가 사용된다.
Enumerated type: 1xEHT/HE-LTF+1.6us GI, 2xEHT/HE-LTF+1.6us GI, 4xEHT/HE-LTF+3.2us GI
2-4) MU_MIMO_HE_LTF_MODE
MU_MIMO_HE_LTF_MODE 파라미터는 EHT TB PPDU에서는 고려되지 않지만 HE TB PPDU에서는 고려될 수 있다. 이에 따라, 해당 parameter를 사용할 수 있고 802.11ax의 TRIGVECTOR에서 정의된 것과 동일한 parameter를 사용할 수 있다.
혹은 해당 parameter는 존재하지 않을 수 있고 이 경우 HE TB PPDU의 HE-LTF에는 항상 single stream pilot이 사용될 수 있다.
2-5) NUM_EHT_LTF_SYMBOLS / NUMBER_OF_HE_LTF_SYMBOLS
NUM_EHT_LTF_SYMBOLS / NUMBER_OF_HE_LTF_SYMBOLS 파라미터는 HE와 EHT를 위해 각각의 parameter로 존재할 수 있다. 이 경우 각 TRIGVECTOR에서 정의된 것과 동일한 parameter를 사용할 수 있다.
혹은 하나의 NUM_EHT/HE_LTF_SYMBOLS parameter가 사용될 수 있고, 해당 파라미터는 이름이 달라질 수도 있다. 이때 상기 하나의 NUM_EHT/HE_LTF_SYMBOLS parameter는 다음과 같은 의미를 가질 수 있다. 특히, 상기 하나의 NUM_EHT/HE_LTF_SYMBOLS parameter의 제안은 각 TB PPDU의 alignment 고려 시 바람직할 수 있다. 또한 A-PPDU 전송 시 HE TB PPDU 부분에서 doppler 상황을 고려하지 않는다면, 상기 하나의 NUM_EHT/HE_LTF_SYMBOLS parameter의 제안은 더욱 바람직할 수 있다.
상기 하나의 NUM_EHT/HE_LTF_SYMBOLS parameter는 EHT TB PPDU의 EHT-LTF symbol 수와 HE TB PPDU의 HE-LTF symbol 수를 동시에 지시한다. 즉, HE TB PPDU와 EHT TB PPDU에서 동일한 LTF symbol 수가 사용된다.
0: 1 EHT-/HE-LTF symbol
1: 2 EHT-/HE-LTF symbol
2: 4 EHT-/HE-LTF symbol
3: 6 EHT-/HE-LTF symbol
4: 8 EHT-/HE-LTF symbol
2-6) MIDAMBLE_PERIODICITY
MIDAMBLE_PERIODICITY 파라미터는 EHT TB PPDU에서는 고려되지 않지만 HE TB PPDU에서는 고려될 수 있다. 이에 따라, 해당 parameter를 사용할 수 있고 802.11ax의 TRIGVECTOR에서 정의된 것과 동일한 parameter를 사용할 수 있다.
혹은 해당 parameter는 존재하지 않을 수 있고, 즉, doppler 상황을 고려하지 않을 수 있다. 이 경우 HE TB PPDU에는 항상 midamble이 존재하지 않을 수 있다. 이 경우 DOPPLER parameter 또한 존재하지 않을 수 있다.
2-7) STBC(Space Time Block Coding)
STBC 파라미터는 EHT TB PPDU에서는 고려되지 않지만 HE TB PPDU에서는 고려될 수 있다. 이에 따라, 해당 parameter를 사용할 수 있고 802.11ax의 TRIGVECTOR에서 정의된 것과 동일한 parameter를 사용할 수 있다.
혹은 해당 parameter는 존재하지 않을 수 있고 이 경우 HE TB PPDU에는 STBC가 항상 적용되지 않을 수 있다.
2-8) LDPC_EXTRA_SYMBOL
LDPC_EXTRA_SYMBOL 파라미터는 HE와 EHT를 위해 각각의 parameter로 존재할 수 있다. 이 경우 각 TRIGVECTOR에서 정의된 것과 동일한 parameter를 사용할 수 있다.
혹은 LDPC_EXTRA_SYMBOL 파라미터는 HE와 EHT에 대해 하나의 parameter가 사용될 수 있고 이때 다음과 같은 의미를 가질 수 있다.
1: TB A-PPDU 내에(즉, HE TB PPDU 혹은 EHT TB PPDU 내에) LDPC extra symbol segment가 존재
0: otherwise
2-9) PRE_FEC_PADDING_FACTOR / PRE_FEC_FACTOR
PRE_FEC_PADDING_FACTOR / PRE_FEC_FACTOR 파라미터는 HE와 EHT를 위한 각각의 parameter로 존재할 수 있다. 이 경우 각 TRIGVECTOR에서 정의된 것과 동일한 parameter를 사용할 수 있다.
혹은 PRE_FEC_PADDING_FACTOR / PRE_FEC_FACTOR 파라미터는 HE와 EHT에 대해 하나의 PRE_FEC_PADDING_FACTOR parameter로 사용될 수 있고, 해당 파라미터의 이름은 달라질 수도 있다. 이때 다음과 같은 의미를 가질 수 있다. 특히 각 TB PPDU의 alignment 고려 시 해당 파라미터의 제안은 바람직할 수 있다.
상기 하나의 PRE_FEC_PADDING_FACTOR parameter는 HE TB PPDU와 EHT TB PPDU의 pre-FEC padding factor를 동시에 지시한다. 즉, HE TB PPDU와 EHT TB PPDU에서 동일한 pre-FEC padding factor가 사용된다.
0: pre-FEC padding factor of 4
1: pre-FEC padding factor of 1
2: pre-FEC padding factor of 2
3: pre-FEC padding factor of 3
2-10) PE_DISAMBIGUITY
PE_DISAMBIGUITY 파라미터는 HE와 EHT를 위한 각각의 parameter로 존재할 수 있다. 이 경우 각 TRIGVECTOR에서 정의된 것과 동일한 parameter를 사용할 수 있다.
혹은 PE_DISAMBIGUITY 파라미터는 HE와 EHT에 대해 하나의 parameter로 사용될 수 있고, 이때 다음과 같은 의미를 가질 수 있다. 특히 각 TB PPDU의 alignment 고려 시 하나의 파라미터의 제안은 바람직할 수 있다.
상기 하나의 PE_DISAMBIGUITY 파라미터는 HE TB PPDU와 EHT TB PPDU의 PE disambiguity를 동시에 지시한다. 즉, HE TB PPDU와 EHT TB PPDU의 길이는 동일하게 맞춰질 수 있다.
0: no PE disambiguity
1: PE disambiguity
2-11) DOPPLER
DOPPLER 파라미터는 EHT TB PPDU에서는 고려되지 않지만 HE TB PPDU에서는 고려될 수 있다. 이에 따라, 해당 parameter를 사용할 수 있고 802.11ax의 TRIGVECTOR에서 정의된 것과 동일한 parameter를 사용할 수 있다.
혹은 해당 parameter는 존재하지 않을 수 있고, 즉, doppler 상황을 고려하지 않을 수 있다. 이 경우 HE TB PPDU에는 항상 midamble이 존재하지 않을 수 있다. 이 경우 MIDAMBLE_PERIODICITY parameter 또한 존재하지 않을 수 있다.
2-12) AID12_LIST
AID12_LIST 파라미터는 HE와 EHT를 위한 각각의 parameter로 존재할 수 있다. 이 경우 각 TRIGVECTOR에서 정의된 것과 동일한 parameter를 사용할 수 있으며 parameter 이름 뒤에 HE / EHT가 붙어 이를 구별할 수도 있다. 이 경우 아래에서 제안하는 다양한 parameter도 HE와 EHT를 위한 각 parameter가 존재하는 것이 바람직할 수 있다.
혹은 하나의 통합된 AID12_LIST parameter가 사용될 수 있다. 이 경우 아래에서 제안하는 다양한 parameter의 제안도 하나의 통합된 parameter인 경우 바람직할 수 있다. 이때 다음과 같은 의미를 가질 수 있으나, 하나의 통합된 파라미터는 어떤 STA이 각 HE/EHT TB PPDU에 할당이 되었는지 모호할 수 있어 바람직하지 않을 수 있다.
Each entry of AID12_LIST is (12-bit) AID of the corresponding HE TB PPDU and EHT TB PPDU
AID의 순서는 HE TB PPDU에 할당된 STA부터 나열될 수 있고 혹은 EHT TB PPDU에 할당된 STA부터 나열될 수도 있다.
모호함을 없애기 위해 HE TB PPDU와 EHT TB PPDU에 할당된 STA의 AID 나열 시 HE TB PPDU와 EHT TB PPDU 사이에 경계를 나타내는 지시자가 들어갈 수 있다. 이 지시자는 12 bit가 사용될 수 있고, 아래의 AID12 subfield의 Reserved 값 혹은 2007 혹은 4095 중 하나가 사용될 수 있다.
AID12 subfield Description
0 User Info field allocates one or more contiguous RA-RUs for associated STAs
1-2007 User Info field is addressed to an associated STA whose AID is equal to the value in the AID12 subfield
2008-2044 Reserved
2045 User Info field allocates one or more contiguous RA-RUs for unassociated STAs
2046 Unallocated RU
2047-4094 Reserved
4095 Start of Padding field
2-13) RU_ALLOCATION_LIST
RU_ALLOCATION_LIST 파라미터는 HE와 EHT를 위한 각각의 parameter로 존재할 수 있다. 이 경우 각 TRIGVECTOR에서 정의된 것과 동일한 parameter를 사용할 수 있으며 parameter 이름 뒤에 HE / EHT가 붙어 이를 구별할 수도 있다. 이 경우 AID12_LIST parameter도 HE와 EHT를 위한 각 parameter가 존재하는 것이 바람직할 수 있다.
혹은 하나의 통합된 RU_ALLOCATION_LIST parameter가 사용될 수 있고, 이 경우 AID12_LIST parameter도 하나의 통합된 parameter인 경우 바람직할 수 있다. 이때 다음과 같은 의미를 가질 수 있으나, 하나의 통합된 파라미터는 어떤 STA이 각 HE/EHT TB PPDU에 할당이 되었는지 모호할 수 있어 바람직하지 않을 수 있다.
AID12_LIST parameter의 순서대로 각 STA가 할당된 RU를 지시해주며, RU_ALLOCATION_LIST parameter는 HE TB PPDU에 할당된 STA에서는 8 bit을 이용해 HE TB PPDU의 bandwidth를 고려하여 RU를 지시하고, EHT TB PPDU에 할당된 STA에서는 9 bit을 이용해 EHT TB PPDU의 bandwidth를 고려하여 RU를 지시한다.
혹은 RU_ALLOCATION_LIST parameter는 EHT TB PPDU에 할당된 STA에서는 9 bit을 이용해 TB A-PPDU 전체 bandwidth (예로 320 MHz)를 고려하여 RU를 지시할 수도 있다.
모호함을 없애기 위해 HE TB PPDU와 EHT TB PPDU에 할당된 STA의 RU allocation 지시할 때, 각 HE TB PPDU와 EHT TB PPDU에 할당된 RU allocation의 경계를 나타내는 특정 지시자가 RU_ALLOCATION_LIST parameter에 포함될 수 있다.
2-14) FEC_CODING_LIST
FEC_CODING_LIST 파라미터는 HE와 EHT를 위한 각각의 parameter로 존재할 수 있다. 이 경우 각 TRIGVECTOR에서 정의된 것과 동일한 parameter를 사용할 수 있으며 parameter 이름 뒤에 HE / EHT가 붙어 이를 구별할 수도 있다. 이 경우 AID12_LIST parameter도 HE와 EHT를 위한 각 parameter가 존재하는 것이 바람직할 수 있다.
혹은 하나의 통합된 FEC_CODING_LIST parameter가 사용될 수 있고 이 경우 AID12_LIST parameter도 하나의 통합된 parameter인 경우 바람직할 수 있다. 이때 다음과 같은 의미를 가질 수 있으나, 하나의 통합된 파라미터는 어떤 STA이 각 HE/EHT TB PPDU에 할당이 되었는지 모호할 수 있어 바람직하지 않을 수 있다.
FEC_CODING_LIST 파라미터는 AID12_LIST parameter의 순서대로 TB A-PPDU 내에서 각 STA에게 적용된 coding type을 지시해준다.
모호함을 없애기 위해 HE TB PPDU와 EHT TB PPDU에 할당된 STA의 coding type을 지시할 때, 각 HE TB PPDU와 EHT TB PPDU에 할당된 coding type의 경계를 나타내는 특정 지시자가 FEC_CODING_LIST 파라미터에 포함될 수 있다.
2-15) EHT_MCS_LIST / HE_MCS_LIST
EHT_MCS_LIST / HE_MCS_LIST 파라미터는 HE와 EHT를 위한 각각의 parameter로 존재할 수 있다. 이 경우 각 TRIGVECTOR에서 정의된 것과 동일한 parameter를 사용할 수 있다. 이 경우 AID12_LIST parameter도 HE와 EHT를 위한 각 parameter가 존재하는 것이 바람직할 수 있다.
혹은 하나의 통합된 MCS_LIST parameter가 사용될 수 있다(다른 이름이 사용될 수도 있다). 이 경우 AID12_LIST parameter도 하나의 통합된 parameter인 경우 바람직할 수 있다. 이때 다음과 같은 의미를 가질 수 있으나, 하나의 통합된 파라미터는 어떤 STA이 각 HE/EHT TB PPDU에 할당이 되었는지 모호할 수 있어 바람직하지 않을 수 있다.
하나의 통합된 MCS_LIST parameter는 AID12_LIST parameter의 순서대로 TB A-PPDU 내에서 각 STA에게 적용된 MCS를 지시해준다.
모호함을 없애기 위해 HE TB PPDU와 EHT TB PPDU에 할당된 STA의 MCS를 지시할 때 각 HE TB PPDU와 EHT TB PPDU에 할당된 STA의 MCS의 경계를 나타내는 특정 지시자가 하나의 통합된 MCS_LIST parameter에 포함될 수 있다.
2-16) UL_DCM_LIST
EHT TB PPDU에서는 고려되지 않지만 HE TB PPDU에서는 고려될 수 있어 UL_DCM_LIST parameter를 사용할 수 있고, 802.11ax의 TRIGVECTOR에서 정의된 것과 동일한 parameter를 사용할 수 있다.
혹은 UL_DCM_LIST parameter는 존재하지 않을 수 있고 이 경우 HE TB PPDU에는 항상 DCM이 적용되지 않을 수 있으나 성능 관점에서 바람직하지 않을 수 있다.
2-17) SS_ALLOCATION_LIST
SS_ALLOCATION_LIST 파라미터는 HE와 EHT를 위한 각각의 parameter로 존재할 수 있다. 이 경우 각 TRIGVECTOR에서 정의된 것과 동일한 parameter를 사용할 수 있으며 parameter 이름 뒤에 HE / EHT가 붙어 이를 구별할 수도 있다. 이 경우 AID12_LIST parameter도 HE와 EHT를 위한 각각의 parameter로 존재하는 것이 바람직할 수 있다.
혹은 하나의 통합된 SS_ALLOCATION_LIST parameter가 사용될 수 있고 이 경우 AID12_LIST parameter도 하나의 통합된 parameter인 경우 바람직할 수 있다. 이때 다음과 같은 의미를 가질 수 있으나, 하나의 통합된 파라미터는 어떤 STA이 각 HE/EHT TB PPDU에 할당이 되었는지 모호할 수 있어 바람직하지 않을 수 있다.
SS_ALLOCATION_LIST parameter는 AID12_LIST parameter의 순서대로 TB A-PPDU 내에서 각 STA에게 적용된 spatial stream 수를 지시해준다.
모호함을 없애기 위해 HE TB PPDU와 EHT TB PPDU에 할당된 STA의 spatial stream 수를 지시할 때, 각 HE TB PPDU와 EHT TB PPDU에 할당된 STA의 spatial stream의 경계를 나타내는 특정 지시자가 SS_ALLOCATION_LIST parameter에 포함될 수 있다.
도 15은 본 실시예에 따른 송신 장치의 동작을 나타낸 절차 흐름도이다.
도 15의 일례는 송신 STA 또는 송신 장치(AP 및/또는 non-AP STA)에서 수행될 수 있다.
도 15의 일례의 각 step (또는 후술하는 세부적인 sub-step) 중 일부는 생략되거나 변경될 수 있다.
S1510 단계를 통해, 송신 장치(송신 STA)는 상술한 Tone Plan에 관한 정보를 획득(obtain)할 수 있다. 상술한 바와 같이 Tone Plan에 관한 정보는 RU의 크기, 위치, RU에 관련된 제어정보, RU가 포함되는 주파수 대역에 관한 정보, RU를 수신하는 STA에 관한 정보 등을 포함한다.
S1520 단계를 통해, 송신 장치는 획득한 제어 정보를 기초로 PPDU를 구성/생성할 수 있다. PPDU를 구성/생성하는 단계는 PPDU의 각 필드를 구성/생성하는 단계를 포함할 수 있다. 즉, S1520 단계는 Tone Plan에 관한 제어정보를 포함하는 EHT-SIG 필드를 구성하는 단계를 포함한다. 즉, S1520 단계는 RU의 크기/위치를 지시하는 제어정보(예를 들어, N 비트맵)을 포함하는 필드를 구성하는 단계 및/또는 RU를 수신하는 STA의 식별자(예를 들어, AID)를 포함하는 필드를 구성하는 단계를 포함할 수 있다.
또한, S1520 단계는 특정 RU를 통해 송신되는 STF/LTF 시퀀스를 생성하는 단계를 포함할 수 있다. STF/LTF 시퀀스는 기 설정된 STF 생성 시퀀스/LTF 생성 시퀀스를 기초로 생성될 수 있다.
또한, S1520 단계는 특정 RU를 통해 송신되는 데이터 필드(즉, MPDU)를 생성하는 단계를 포함할 수 있다.
송신 장치는 S1520 단계를 통해 구성된 PPDU를 S1530 단계를 기초로 수신 장치로 송신할 수 있다.
S1530 단계를 수행하는 동안, 송신 장치는 CSD, Spatial Mapping, IDFT/IFFT 동작, GI 삽입(insert) 등의 동작 중 적어도 하나를 수행될 수 있다.
본 명세서에 따라 구성된 신호/필드/시퀀스는 도 10의 형태로 송신될 수 있다.
도 16은 본 실시예에 따른 수신 장치의 동작을 나타낸 절차 흐름도이다.
상술한 PPDU는 도 16의 일례에 따른 수신될 수 있다.
도 16의 일례는 수신 STA 또는 수신 장치(AP 및/또는 non-AP STA)에서 수행될 수 있다.
도 16의 일례의 각 step (또는 후술하는 세부적인 sub-step) 중 일부는 생략될 수 있다.
수신 장치(수신 STA)는 S1610 단계를 통해 PPDU의 전부 또는 일부를 수신할 수 있다. 수신된 신호는 도 10의 형태일 수 있다.
S1610 단계의 sub-step은 도 15의 S1530 단계를 기초로 결정될 수 있다. 즉 S1610 단계는 S1530 단계에서 적용된, CSD, Spatial Mapping, IDFT/IFFT 동작, GI 삽입(insert) 동작의 결과를 복원하는 동작을 수행할 수 있다.
S1620 단계에서, 수신 장치는 PPDU의 전부/일부에 대한 디코딩을 수행할 수 있다. 또한 수신 장치는 디코딩된 PPDU로부터 Tone Plan(즉, RU)에 관련된 제어정보를 획득할 수 있다.
보다 구체적으로 수신 장치는 Legacy STF/LTF를 기초로 PPDU의 L-SIG 및 EHT-SIG를 디코딩하고, L-SIG 및 EHT SIG 필드에 포함된 정보를 획득할 수 있다. 본 명세서에 기재된 다양한 Tone Plan(즉, RU)에 관한 정보는 EHT-SIG에 포함될 수 있고, 수신 STA은 EHT-SIG를 통해 Tone Plan(즉, RU)에 관한 정보를 획득할 수 있다.
S1630 단계에서, 수신 장치는 S1620 단계를 통해 획득한 Tone Plan(즉, RU)에 관한 정보를 기초로 PPDU의 나머지 부분을 디코딩 할 수 있다. 예를 들어, 수신 STA은 one Plan(즉, RU)에 관한 정보를 기초로 PPDU의 STF/LTF 필드를 디코딩할 수 있다. 또한, 수신 STA은 Tone Plan(즉, RU)에 관한 정보를 기초로 PPDU의 데이터 필드를 디코딩하고, 데이터 필드에 포함된 MPDU를 획득할 수 있다.
또한, 수신 장치는 S1630 단계를 통해 디코딩된 데이터를 상위 계층(예를 들어, MAC 계층)으로 전달하는 처리 동작을 수행할 수 있다. 또한, 상위 계층으로 전달된 데이터에 대응하여 상위 계층으로부터 PHY 계층으로 신호의 생성이 지시되는 경우, 후속 동작을 수행할 수 있다.
이하에서는, 도 1 내지 도 16을 참조하여, 상술한 실시예를 설명한다.
도 17은 본 실시예에 따른 송신 STA이 트리거 프레임을 송신하는 절차를 도시한 흐름도이다.
도 17의 일례는 차세대 무선랜 시스템(IEEE 802.11be 또는 EHT 무선랜 시스템)이 지원되는 네트워크 환경에서 수행될 수 있다. 상기 차세대 무선랜 시스템은 802.11ax 시스템을 개선한 무선랜 시스템으로 802.11ax 시스템과 하위 호환성(backward compatibility)을 만족할 수 있다.
도 17의 일례는 송신 STA(station)에서 수행되고, 상기 송신 STA은 AP(access point) STA에 대응할 수 있다. 수신 STA은 non-AP STA에 대응할 수 있다.
본 실시예는 AP가 트리거 프레임을 기반으로 TB A-PPDU를 트리거할 때 하나의 통합된 TRIGVECTOR 파라미터를 설정하는 방법을 제안한다. 상기 TRIGVECTOR 파라미터는 상기 AP가 PHY 계층에서 상기 TB A-PPDU를 수신 또는 복호하기 위해 필요한 정보이고, 상기 AP 내 MAC 계층에서 PHY 계층으로 전달될 수 있다.
S1710 단계에서, 송신 STA(station)은 수신 STA에게 트리거 프레임을 송신한다.
S1720 단계에서, 상기 송신 STA은 TRIGVECTOR 파라미터를 획득한다.
S1730 단계에서, 상기 송신 STA은 상기 트리거 프레임 및 상기 TRIGVECTOR 파라미터를 기반으로 TB A-PPDU(Trigger Based Aggregated-Physical Protocol Data Unit)를 수신한다.
상기 TB A-PPDU는 HE(High Efficiency) TB PPDU 및 EHT(Extreme High Throughput) TB PPDU를 포함한다.
상기 TRIGVECTOR 파라미터는 CH_BANDWIDTH 파라미터를 포함한다.
상기 CH_BANDWIDTH 파라미터의 값이 0이면, 상기 HE TB PPDU의 대역폭은 80MHz로 설정되고, 상기 EHT TB PPDU의 대역폭은 80MHz로 설정된다. 상기 CH_BANDWIDTH 파라미터의 값이 1이면, 상기 HE TB PPDU의 대역폭은 80MHz로 설정되고, 상기 EHT TB PPDU의 대역폭은 160MHz로 설정된다. 상기 CH_BANDWIDTH 파라미터의 값이 2이면, 상기 HE TB PPDU의 대역폭은 160MHz로 설정되고, 상기 EHT TB PPDU의 대역폭은 80MHz로 설정된다. 상기 CH_BANDWIDTH 파라미터의 값이 3이면, 상기 HE TB PPDU의 대역폭은 160MHz로 설정되고, 상기 EHT TB PPDU의 대역폭은 160MHz로 설정된다.
상기 TRIGVECTOR 파라미터는 UL_LENGTH 파라미터, GI_AND_EHT/HE_LTF_TYPE 파라미터, NUM_EHT/HE_LTF_SYMBOLS 파라미터, AID12_LIST 파라미터 및 RU_ALLOCATION_LIST 파라미터를 더 포함할 수 있다.
상기 트리거 프레임은 UL Length 서브필드를 포함할 수 있다. 상기 UL_LENGTH 파라미터는 상기 UL Length 서브필드의 값으로 설정될 수 있다. 상기 UL Length 서브필드의 값은 3의 배수가 아닌 값으로 설정될 수 있다.
상기 UL Length 서브필드의 값은 상기 트리거 프레임이 HE variant인지 EHT variant인지 상관없이 다음과 같은 수학식으로 정의될 수 있다.
Figure pct00007
여기서, TXTIME은 연장된 신호의 길이 및 연장된 패킷의 길이를 포함한 전체 PPDU의 길이일 수 있다. SignalExtension은 0us 또는 6us일 수 있다. m은 2일 수 있다.
상기 GI_AND_EHT/HE_LTF_TYPE 파라미터는 상기 HE TB PPDU 및 상기 EHT TB PPDU에 대해 하나의 통합된 LTF(Long Training Field) 유형 및 GI(Guard Interval)에 대한 정보를 포함할 수 있다. 즉, 상기 HE TB PPDU 및 상기 EHT TB PPDU에서 동일한 LTF 유형과 GI가 사용될 수 있다.
상기 하나의 통합된 LTF 유형 및 GI에 대한 정보가 제1 값으로 설정되면, 상기 HE TB PPDU의 LTF 유형은 1x HE LTF이고, 상기 EHT TB PPDU의 LTF 유형은 1x EHT LTF이고, 상기 HE TB PPDU 및 상기 EHT TB PPDU는 1.6us의 길이를 갖는 GI를 포함할 수 있다.
상기 하나의 통합된 LTF 유형 및 GI에 대한 정보가 제2 값으로 설정되면, 상기 HE TB PPDU의 LTF 유형은 2x HE LTF이고, 상기 EHT TB PPDU의 LTF 유형은 2x EHT LTF이고, 상기 HE TB PPDU 및 상기 EHT TB PPDU는 1.6us의 길이를 갖는 GI를 포함할 수 있다.
상기 하나의 통합된 LTF 유형 및 GI에 대한 정보가 제3 값으로 설정되면, 상기 HE TB PPDU의 LTF 유형은 4x HE LTF이고, 상기 EHT TB PPDU의 LTF 유형은 4x EHT LTF이고, 상기 HE TB PPDU 및 상기 EHT TB PPDU는 3.2us의 길이를 갖는 GI를 포함할 수 있다.
상기 NUM_EHT/HE_LTF_SYMBOLS 파라미터는 상기 HE TB PPDU 및 상기 EHT TB PPDU에 대해 하나의 통합된 LTF 심볼의 개수에 대한 정보를 포함할 수 있다. 즉, 상기 HE TB PPDU 및 상기 EHT TB PPDU에서 동일한 LTF 심볼의 수가 사용될 수 있다.
상기 HE TB PPDU 및 상기 EHT TB PPDU에 대해 하나의 통합된 LTF 심볼의 개수에 대한 정보가 제1 값으로 설정되면, 상기 HE TB PPDU의 HE LTF 심볼과 상기 EHT TB PPDU의 EHT LTF 심볼의 개수는 1개일 수 있다.
상기 HE TB PPDU 및 상기 EHT TB PPDU에 대해 하나의 통합된 LTF 심볼의 개수에 대한 정보가 제2 값으로 설정되면, 상기 HE TB PPDU의 HE LTF 심볼과 상기 EHT TB PPDU의 EHT LTF 심볼의 개수는 2개일 수 있다.
상기 HE TB PPDU 및 상기 EHT TB PPDU에 대해 하나의 통합된 LTF 심볼의 개수에 대한 정보가 제3 값으로 설정되면, 상기 HE TB PPDU의 HE LTF 심볼과 상기 EHT TB PPDU의 EHT LTF 심볼의 개수는 4개일 수 있다.
상기 HE TB PPDU 및 상기 EHT TB PPDU에 대해 하나의 통합된 LTF 심볼의 개수에 대한 정보가 제4 값으로 설정되면, 상기 HE TB PPDU의 HE LTF 심볼과 상기 EHT TB PPDU의 EHT LTF 심볼의 개수는 6개일 수 있다.
상기 HE TB PPDU 및 상기 EHT TB PPDU에 대해 하나의 통합된 LTF 심볼의 개수에 대한 정보가 제5 값으로 설정되면, 상기 HE TB PPDU의 HE LTF 심볼과 상기 EHT TB PPDU의 EHT LTF 심볼의 개수는 8개일 수 있다.
상기 AID12_LIST 파라미터는 상기 HE TB PPDU에 할당된 STA에 대한 AID(Association IDentifier)부터 상기 EHT TB PPDU에 할당된 STA에 대한 AID까지 나열된 제1 정보를 포함할 수 있다.
상기 제1 정보는 제1 지시자를 더 포함할 수 있다. 상기 제1 지시자는 12비트로 구성되고, 상기 HE TB PPDU에 할당된 STA에 대한 AID와 상기 EHT TB PPDU에 할당된 STA에 대한 AID 간의 경계를 지시하는 정보일 수 있다. 상기 12비트는 모두 1로 설정될 수 있다. 또는, 상기 12비트는 모두 0으로 설정되거나 유보될(reserved) 수 있다.
상기 RU_ALLOCATION_LIST 파라미터는 상기 HE TB PPDU에 할당된 STA의 제1 RU(Resource Unit) 할당 정보, 상기 EHT TB PPDU에 할당된 STA의 제2 RU 할당 정보 및 제1 지시자를 포함할 수 있다. 상기 제1 지시자는 8비트로 구성되고, 상기 제1 및 제2 RU 할당 정보 간의 경계를 지시하는 정보일 수 있다. 상기 8비트는 모두 1로 설정될 수 있다.
상기 제1 RU 할당 정보는 STA 별로 8비트로 구성될 수 있다(즉, 전체 대역폭에서 할당된 RU를 지시하기 위해 STA 별로 8비트가 사용될 수 있다). 상기 제2 RU 할당 정보는 STA 별로 9비트로 구성될 수 있다(즉, 전체 대역폭에서 할당된 RU를 지시하기 위해 STA 별로 9비트가 사용될 수 있다).
상기 TRIGVECTOR 파라미터는 MU_MIMO_HE_LTF_MODE 파라미터, MIDAMBLE_PERIODICITY 파라미터, STBC 파라미터, LDPC_EXTRA_SYMBOL 파라미터, PRE_FEC_PADDING_FACTOR / PRE_FEC_FACTOR 파라미터, PE_DISAMBIGUITY 파라미터, DOPPLER 파라미터, FEC_CODING_LIST 파라미터, EHT_MCS_LIST / HE_MCS_LIST 파라미터, UL_DCM_LIST 파라미터 및 SS_ALLOCATION_LIST 파라미터를 더 포함할 수 있다. 상기 파라미터들은 상기 HE TB PPDU에 대해서는 802.11ax 무선랜 시스템에서 정의된 파라미터로 정의될 수 있고, 상기 EHT TB PPDU에 대해서는 802.11be 무선랜 시스템에서 정의된 파라미터로 정의될 수 있다.
상술한 바와 같이, 본 실시예는 상기 트리거 프레임이 상기 TB A-PPDU를 트리거하는 경우, 상기 TRIGVECTOR 파라미터를 상기 TB A-PPDU에 포함된 HE TB PPDU와 EHT TB PPDU에 대해 하나의 통합된 값으로 설정하여 전체적인 오버헤드를 감소시킬 수 있다는 효과를 가진다. 이로써, 상기 송신 STA은 상기 TRIGVECTOR 파라미터를 획득할 때 상기 TB A-PPDU에 포함된 HE TB PPDU와 EHT TB PPDU에 대해 단일화된(unified) 동작을 구현할 수 있다.
도 18은 본 실시예에 따른 수신 STA이 트리거 프레임을 수신하는 절차를 도시한 흐름도이다.
도 18의 일례는 차세대 무선랜 시스템(IEEE 802.11be 또는 EHT 무선랜 시스템)이 지원되는 네트워크 환경에서 수행될 수 있다. 상기 차세대 무선랜 시스템은 802.11ax 시스템을 개선한 무선랜 시스템으로 802.11ax 시스템과 하위 호환성(backward compatibility)을 만족할 수 있다.
도 18의 일례는 수신 STA(station)에서 수행되고, 상기 수신 STA은 non-AP(non-access point) STA에 대응할 수 있다. 송신 STA은 AP STA에 대응할 수 있다.
본 실시예는 AP가 트리거 프레임을 기반으로 TB A-PPDU를 트리거할 때 하나의 통합된 TRIGVECTOR 파라미터를 설정하는 방법을 제안한다. 상기 TRIGVECTOR 파라미터는 상기 AP가 PHY 계층에서 상기 TB A-PPDU를 수신 또는 복호하기 위해 필요한 정보이고, 상기 AP 내 MAC 계층에서 PHY 계층으로 전달될 수 있다.
S1810 단계에서, 수신 STA(station)은 송신 STA로부터 트리거 프레임을 수신한다.
S1820 단계에서, 상기 수신 STA은 상기 송신 STA에게 상기 트리거 프레임을 기반으로 TB A-PPDU(Trigger Based Aggregated-Physical Protocol Data Unit)를 송신한다.
이때, 상기 송신 STA은 상기 TB A-PPDU를 수신(또는 복호)하기 위해 TRIGVECTOR 파라미터를 획득한다.
상기 TB A-PPDU는 HE(High Efficiency) TB PPDU 및 EHT(Extreme High Throughput) TB PPDU를 포함한다.
상기 TRIGVECTOR 파라미터는 CH_BANDWIDTH 파라미터를 포함한다.
상기 CH_BANDWIDTH 파라미터의 값이 0이면, 상기 HE TB PPDU의 대역폭은 80MHz로 설정되고, 상기 EHT TB PPDU의 대역폭은 80MHz로 설정된다. 상기 CH_BANDWIDTH 파라미터의 값이 1이면, 상기 HE TB PPDU의 대역폭은 80MHz로 설정되고, 상기 EHT TB PPDU의 대역폭은 160MHz로 설정된다. 상기 CH_BANDWIDTH 파라미터의 값이 2이면, 상기 HE TB PPDU의 대역폭은 160MHz로 설정되고, 상기 EHT TB PPDU의 대역폭은 80MHz로 설정된다. 상기 CH_BANDWIDTH 파라미터의 값이 3이면, 상기 HE TB PPDU의 대역폭은 160MHz로 설정되고, 상기 EHT TB PPDU의 대역폭은 160MHz로 설정된다.
상기 TRIGVECTOR 파라미터는 UL_LENGTH 파라미터, GI_AND_EHT/HE_LTF_TYPE 파라미터, NUM_EHT/HE_LTF_SYMBOLS 파라미터, AID12_LIST 파라미터 및 RU_ALLOCATION_LIST 파라미터를 더 포함할 수 있다.
상기 트리거 프레임은 UL Length 서브필드를 포함할 수 있다. 상기 UL_LENGTH 파라미터는 상기 UL Length 서브필드의 값으로 설정될 수 있다. 상기 UL Length 서브필드의 값은 3의 배수가 아닌 값으로 설정될 수 있다.
상기 UL Length 서브필드의 값은 상기 트리거 프레임이 HE variant인지 EHT variant인지 상관없이 다음과 같은 수학식으로 정의될 수 있다.
Figure pct00008
여기서, TXTIME은 연장된 신호의 길이 및 연장된 패킷의 길이를 포함한 전체 PPDU의 길이일 수 있다. SignalExtension은 0us 또는 6us일 수 있다. m은 2일 수 있다.
상기 GI_AND_EHT/HE_LTF_TYPE 파라미터는 상기 HE TB PPDU 및 상기 EHT TB PPDU에 대해 하나의 통합된 LTF(Long Training Field) 유형 및 GI(Guard Interval)에 대한 정보를 포함할 수 있다. 즉, 상기 HE TB PPDU 및 상기 EHT TB PPDU에서 동일한 LTF 유형과 GI가 사용될 수 있다.
상기 하나의 통합된 LTF 유형 및 GI에 대한 정보가 제1 값으로 설정되면, 상기 HE TB PPDU의 LTF 유형은 1x HE LTF이고, 상기 EHT TB PPDU의 LTF 유형은 1x EHT LTF이고, 상기 HE TB PPDU 및 상기 EHT TB PPDU는 1.6us의 길이를 갖는 GI를 포함할 수 있다.
상기 하나의 통합된 LTF 유형 및 GI에 대한 정보가 제2 값으로 설정되면, 상기 HE TB PPDU의 LTF 유형은 2x HE LTF이고, 상기 EHT TB PPDU의 LTF 유형은 2x EHT LTF이고, 상기 HE TB PPDU 및 상기 EHT TB PPDU는 1.6us의 길이를 갖는 GI를 포함할 수 있다.
상기 하나의 통합된 LTF 유형 및 GI에 대한 정보가 제3 값으로 설정되면, 상기 HE TB PPDU의 LTF 유형은 4x HE LTF이고, 상기 EHT TB PPDU의 LTF 유형은 4x EHT LTF이고, 상기 HE TB PPDU 및 상기 EHT TB PPDU는 3.2us의 길이를 갖는 GI를 포함할 수 있다.
상기 NUM_EHT/HE_LTF_SYMBOLS 파라미터는 상기 HE TB PPDU 및 상기 EHT TB PPDU에 대해 하나의 통합된 LTF 심볼의 개수에 대한 정보를 포함할 수 있다. 즉, 상기 HE TB PPDU 및 상기 EHT TB PPDU에서 동일한 LTF 심볼의 수가 사용될 수 있다.
상기 HE TB PPDU 및 상기 EHT TB PPDU에 대해 하나의 통합된 LTF 심볼의 개수에 대한 정보가 제1 값으로 설정되면, 상기 HE TB PPDU의 HE LTF 심볼과 상기 EHT TB PPDU의 EHT LTF 심볼의 개수는 1개일 수 있다.
상기 HE TB PPDU 및 상기 EHT TB PPDU에 대해 하나의 통합된 LTF 심볼의 개수에 대한 정보가 제2 값으로 설정되면, 상기 HE TB PPDU의 HE LTF 심볼과 상기 EHT TB PPDU의 EHT LTF 심볼의 개수는 2개일 수 있다.
상기 HE TB PPDU 및 상기 EHT TB PPDU에 대해 하나의 통합된 LTF 심볼의 개수에 대한 정보가 제3 값으로 설정되면, 상기 HE TB PPDU의 HE LTF 심볼과 상기 EHT TB PPDU의 EHT LTF 심볼의 개수는 4개일 수 있다.
상기 HE TB PPDU 및 상기 EHT TB PPDU에 대해 하나의 통합된 LTF 심볼의 개수에 대한 정보가 제4 값으로 설정되면, 상기 HE TB PPDU의 HE LTF 심볼과 상기 EHT TB PPDU의 EHT LTF 심볼의 개수는 6개일 수 있다.
상기 HE TB PPDU 및 상기 EHT TB PPDU에 대해 하나의 통합된 LTF 심볼의 개수에 대한 정보가 제5 값으로 설정되면, 상기 HE TB PPDU의 HE LTF 심볼과 상기 EHT TB PPDU의 EHT LTF 심볼의 개수는 8개일 수 있다.
상기 AID12_LIST 파라미터는 상기 HE TB PPDU에 할당된 STA에 대한 AID(Association IDentifier)부터 상기 EHT TB PPDU에 할당된 STA에 대한 AID까지 나열된 제1 정보를 포함할 수 있다.
상기 제1 정보는 제1 지시자를 더 포함할 수 있다. 상기 제1 지시자는 12비트로 구성되고, 상기 HE TB PPDU에 할당된 STA에 대한 AID와 상기 EHT TB PPDU에 할당된 STA에 대한 AID 간의 경계를 지시하는 정보일 수 있다. 상기 12비트는 모두 1로 설정될 수 있다. 또는, 상기 12비트는 모두 0으로 설정되거나 유보될(reserved) 수 있다.
상기 RU_ALLOCATION_LIST 파라미터는 상기 HE TB PPDU에 할당된 STA의 제1 RU(Resource Unit) 할당 정보, 상기 EHT TB PPDU에 할당된 STA의 제2 RU 할당 정보 및 제1 지시자를 포함할 수 있다. 상기 제1 지시자는 8비트로 구성되고, 상기 제1 및 제2 RU 할당 정보 간의 경계를 지시하는 정보일 수 있다. 상기 8비트는 모두 1로 설정될 수 있다.
상기 제1 RU 할당 정보는 STA 별로 8비트로 구성될 수 있다(즉, 전체 대역폭에서 할당된 RU를 지시하기 위해 STA 별로 8비트가 사용될 수 있다). 상기 제2 RU 할당 정보는 STA 별로 9비트로 구성될 수 있다(즉, 전체 대역폭에서 할당된 RU를 지시하기 위해 STA 별로 9비트가 사용될 수 있다).
상기 TRIGVECTOR 파라미터는 MU_MIMO_HE_LTF_MODE 파라미터, MIDAMBLE_PERIODICITY 파라미터, STBC 파라미터, LDPC_EXTRA_SYMBOL 파라미터, PRE_FEC_PADDING_FACTOR / PRE_FEC_FACTOR 파라미터, PE_DISAMBIGUITY 파라미터, DOPPLER 파라미터, FEC_CODING_LIST 파라미터, EHT_MCS_LIST / HE_MCS_LIST 파라미터, UL_DCM_LIST 파라미터 및 SS_ALLOCATION_LIST 파라미터를 더 포함할 수 있다. 상기 파라미터들은 상기 HE TB PPDU에 대해서는 802.11ax 무선랜 시스템에서 정의된 파라미터로 정의될 수 있고, 상기 EHT TB PPDU에 대해서는 802.11be 무선랜 시스템에서 정의된 파라미터로 정의될 수 있다.
상술한 바와 같이, 본 실시예는 상기 트리거 프레임이 상기 TB A-PPDU를 트리거하는 경우, 상기 TRIGVECTOR 파라미터를 상기 TB A-PPDU에 포함된 HE TB PPDU와 EHT TB PPDU에 대해 하나의 통합된 값으로 설정하여 전체적인 오버헤드를 감소시킬 수 있다는 효과를 가진다. 이로써, 상기 송신 STA은 상기 TRIGVECTOR 파라미터를 획득할 때 상기 TB A-PPDU에 포함된 HE TB PPDU와 EHT TB PPDU에 대해 단일화된(unified) 동작을 구현할 수 있다.
2. 장치 구성
상술한 본 명세서의 기술적 특징은 다양한 장치 및 방법에 적용될 수 있다. 예를 들어, 상술한 본 명세서의 기술적 특징은 도 1 및/또는 도 11의 장치를 통해 수행/지원될 수 있다. 예를 들어, 상술한 본 명세서의 기술적 특징은, 도 1 및/또는 도 11의 일부에만 적용될 수 있다. 예를 들어, 상술한 본 명세서의 기술적 특징은, 도 1의 프로세싱 칩(114, 124)을 기초로 구현되거나, 도 1의 프로세서(111, 121)와 메모리(112, 122)를 기초로 구현되거나, 도 11의 프로세서(610)와 메모리(620)를 기초로 구현될 수 있다. 예를 들어, 본 명세서의 장치는, 수신 STA(station)에게 트리거 프레임을 송신하고; TRIGVECTOR 파라미터를 획득하고; 및 상기 트리거 프레임 및 상기 TRIGVECTOR 파라미터를 기반으로 TB A-PPDU(Trigger Based Aggregated-Physical Protocol Data Unit)를 수신한다.
본 명세서의 기술적 특징은 CRM(computer readable medium)을 기초로 구현될 수 있다. 예를 들어, 본 명세서에 의해 제안되는 CRM은 적어도 하나의 프로세서(processor)에 의해 실행됨을 기초로 하는 명령어(instruction)를 포함하는 적어도 하나의 컴퓨터로 읽을 수 있는 기록매체(computer readable medium)이다.
상기 CRM은, 수신 STA(station)에게 트리거 프레임을 송신하는 단계; TRIGVECTOR 파라미터를 획득하는 단계; 및 상기 트리거 프레임 및 상기 TRIGVECTOR 파라미터를 기반으로 TB A-PPDU(Trigger Based Aggregated-Physical Protocol Data Unit)를 수신하는 단계를 포함하는 동작(operations)을 수행하는 명령어(instructions)를 저장할 수 있다. 본 명세서의 CRM 내에 저장되는 명령어는 적어도 하나의 프로세서에 의해 실행(execute)될 수 있다. 본 명세서의 CRM에 관련된 적어도 하나의 프로세서는 도 1의 프로세서(111, 121) 또는 프로세싱 칩(114, 124)이거나, 도 11의 프로세서(610)일 수 있다. 한편, 본 명세서의 CRM은 도 1의 메모리(112, 122)이거나 도 11의 메모리(620)이거나, 별도의 외부 메모리/저장매체/디스크 등일 수 있다.
상술한 본 명세서의 기술적 특징은 다양한 응용예(application)나 비즈니스 모델에 적용 가능하다. 예를 들어, 인공 지능(Artificial Intelligence: AI)을 지원하는 장치에서의 무선 통신을 위해 상술한 기술적 특징이 적용될 수 있다.
인공 지능은 인공적인 지능 또는 이를 만들 수 있는 방법론을 연구하는 분야를 의미하며, 머신 러닝(기계 학습, Machine Learning)은 인공 지능 분야에서 다루는 다양한 문제를 정의하고 그것을 해결하는 방법론을 연구하는 분야를 의미한다. 머신 러닝은 어떠한 작업에 대하여 꾸준한 경험을 통해 그 작업에 대한 성능을 높이는 알고리즘으로 정의하기도 한다.
인공 신경망(Artificial Neural Network; ANN)은 머신 러닝에서 사용되는 모델로써, 시냅스의 결합으로 네트워크를 형성한 인공 뉴런(노드)들로 구성되는, 문제 해결 능력을 가지는 모델 전반을 의미할 수 있다. 인공 신경망은 다른 레이어의 뉴런들 사이의 연결 패턴, 모델 파라미터를 갱신하는 학습 과정, 출력값을 생성하는 활성화 함수(Activation Function)에 의해 정의될 수 있다.
인공 신경망은 입력층(Input Layer), 출력층(Output Layer), 그리고 선택적으로 하나 이상의 은닉층(Hidden Layer)를 포함할 수 있다. 각 층은 하나 이상의 뉴런을 포함하고, 인공 신경망은 뉴런과 뉴런을 연결하는 시냅스를 포함할 수 있다. 인공 신경망에서 각 뉴런은 시냅스를 통해 입력되는 입력 신호들, 가중치, 편향에 대한 활성 함수의 함숫값을 출력할 수 있다.
모델 파라미터는 학습을 통해 결정되는 파라미터를 의미하며, 시냅스 연결의 가중치와 뉴런의 편향 등이 포함된다. 그리고, 하이퍼파라미터는 머신 러닝 알고리즘에서 학습 전에 설정되어야 하는 파라미터를 의미하며, 학습률(Learning Rate), 반복 횟수, 미니 배치 크기, 초기화 함수 등이 포함된다.
인공 신경망의 학습의 목적은 손실 함수를 최소화하는 모델 파라미터를 결정하는 것으로 볼 수 있다. 손실 함수는 인공 신경망의 학습 과정에서 최적의 모델 파라미터를 결정하기 위한 지표로 이용될 수 있다.
머신 러닝은 학습 방식에 따라 지도 학습(Supervised Learning), 비지도 학습(Unsupervised Learning), 강화 학습(Reinforcement Learning)으로 분류할 수 있다.
지도 학습은 학습 데이터에 대한 레이블(label)이 주어진 상태에서 인공 신경망을 학습시키는 방법을 의미하며, 레이블이란 학습 데이터가 인공 신경망에 입력되는 경우 인공 신경망이 추론해 내야 하는 정답(또는 결과 값)을 의미할 수 있다. 비지도 학습은 학습 데이터에 대한 레이블이 주어지지 않는 상태에서 인공 신경망을 학습시키는 방법을 의미할 수 있다. 강화 학습은 어떤 환경 안에서 정의된 에이전트가 각 상태에서 누적 보상을 최대화하는 행동 혹은 행동 순서를 선택하도록 학습시키는 학습 방법을 의미할 수 있다.
인공 신경망 중에서 복수의 은닉층을 포함하는 심층 신경망(DNN: Deep Neural Network)으로 구현되는 머신 러닝을 딥 러닝(심층 학습, Deep Learning)이라 부르기도 하며, 딥 러닝은 머신 러닝의 일부이다. 이하에서, 머신 러닝은 딥 러닝을 포함하는 의미로 사용된다.
또한 상술한 기술적 특징은 로봇의 무선 통신에 적용될 수 있다.
로봇은 스스로 보유한 능력에 의해 주어진 일을 자동으로 처리하거나 작동하는 기계를 의미할 수 있다. 특히, 환경을 인식하고 스스로 판단하여 동작을 수행하는 기능을 갖는 로봇을 지능형 로봇이라 칭할 수 있다.
로봇은 사용 목적이나 분야에 따라 산업용, 의료용, 가정용, 군사용 등으로 분류할 수 있다. 로봇은 액츄에이터 또는 모터를 포함하는 구동부를 구비하여 로봇 관절을 움직이는 등의 다양한 물리적 동작을 수행할 수 있다. 또한, 이동 가능한 로봇은 구동부에 휠, 브레이크, 프로펠러 등이 포함되어, 구동부를 통해 지상에서 주행하거나 공중에서 비행할 수 있다.
또한 상술한 기술적 특징은 확장 현실을 지원하는 장치에 적용될 수 있다.
확장 현실은 가상 현실(VR: Virtual Reality), 증강 현실(AR: Augmented Reality), 혼합 현실(MR: Mixed Reality)을 총칭한다. VR 기술은 현실 세계의 객체나 배경 등을 CG 영상으로만 제공하고, AR 기술은 실제 사물 영상 위에 가상으로 만들어진 CG 영상을 함께 제공하며, MR 기술은 현실 세계에 가상 객체들을 섞고 결합시켜서 제공하는 컴퓨터 그래픽 기술이다.
MR 기술은 현실 객체와 가상 객체를 함께 보여준다는 점에서 AR 기술과 유사하다. 그러나, AR 기술에서는 가상 객체가 현실 객체를 보완하는 형태로 사용되는 반면, MR 기술에서는 가상 객체와 현실 객체가 동등한 성격으로 사용된다는 점에서 차이점이 있다.
XR 기술은 HMD(Head-Mount Display), HUD(Head-Up Display), 휴대폰, 태블릿 PC, 랩탑, 데스크탑, TV, 디지털 사이니지 등에 적용될 수 있고, XR 기술이 적용된 장치를 XR 장치(XR Device)라 칭할 수 있다.
본 명세서에 기재된 청구항들은 다양한 방식으로 조합될 수 있다. 예를 들어, 본 명세서의 방법 청구항의 기술적 특징이 조합되어 장치로 구현될 수 있고, 본 명세서의 장치 청구항의 기술적 특징이 조합되어 방법으로 구현될 수 있다. 또한, 본 명세서의 방법 청구항의 기술적 특징과 장치 청구항의 기술적 특징이 조합되어 장치로 구현될 수 있고, 본 명세서의 방법 청구항의 기술적 특징과 장치 청구항의 기술적 특징이 조합되어 방법으로 구현될 수 있다.

Claims (18)

  1. 무선랜 시스템에서,
    송신 STA(station)이, 수신 STA에게 트리거 프레임을 송신하는 단계;
    상기 송신 STA이, TRIGVECTOR 파라미터를 획득하는 단계; 및
    상기 송신 STA이, 상기 트리거 프레임 및 상기 TRIGVECTOR 파라미터를 기반으로 TB A-PPDU(Trigger Based Aggregated-Physical Protocol Data Unit)를 수신하는 단계를 포함하되,
    상기 TB A-PPDU는 HE(High Efficiency) TB PPDU 및 EHT(Extreme High Throughput) TB PPDU를 포함하고,
    상기 TRIGVECTOR 파라미터는 CH_BANDWIDTH 파라미터를 포함하고,
    상기 CH_BANDWIDTH 파라미터의 값이 0이면, 상기 HE TB PPDU의 대역폭은 80MHz로 설정되고, 상기 EHT TB PPDU의 대역폭은 80MHz로 설정되고,
    상기 CH_BANDWIDTH 파라미터의 값이 1이면, 상기 HE TB PPDU의 대역폭은 80MHz로 설정되고, 상기 EHT TB PPDU의 대역폭은 160MHz로 설정되고,
    상기 CH_BANDWIDTH 파라미터의 값이 2이면, 상기 HE TB PPDU의 대역폭은 160MHz로 설정되고, 상기 EHT TB PPDU의 대역폭은 80MHz로 설정되고, 및
    상기 CH_BANDWIDTH 파라미터의 값이 3이면, 상기 HE TB PPDU의 대역폭은 160MHz로 설정되고, 상기 EHT TB PPDU의 대역폭은 160MHz로 설정되는
    방법.
  2. 제1항에 있어서,
    상기 TRIGVECTOR 파라미터는 UL_LENGTH 파라미터, GI_AND_EHT/HE_LTF_TYPE 파라미터, NUM_EHT/HE_LTF_SYMBOLS 파라미터, AID12_LIST 파라미터 및 RU_ALLOCATION_LIST 파라미터를 더 포함하는
    방법.
  3. 제2항에 있어서,
    상기 트리거 프레임은 UL Length 서브필드를 포함하고,
    상기 UL_LENGTH 파라미터는 상기 UL Length 서브필드의 값으로 설정되고,
    상기 UL Length 서브필드의 값은 3의 배수가 아닌 값으로 설정되는
    방법.
  4. 제2항에 있어서,
    상기 GI_AND_EHT/HE_LTF_TYPE 파라미터는 상기 HE TB PPDU 및 상기 EHT TB PPDU에 대해 하나의 통합된 LTF(Long Training Field) 유형 및 GI(Guard Interval)에 대한 정보를 포함하고,
    상기 하나의 통합된 LTF 유형 및 GI에 대한 정보가 제1 값으로 설정되면, 상기 HE TB PPDU의 LTF 유형은 1x HE LTF이고, 상기 EHT TB PPDU의 LTF 유형은 1x EHT LTF이고, 상기 HE TB PPDU 및 상기 EHT TB PPDU는 1.6us의 길이를 갖는 GI를 포함하고,
    상기 하나의 통합된 LTF 유형 및 GI에 대한 정보가 제2 값으로 설정되면, 상기 HE TB PPDU의 LTF 유형은 2x HE LTF이고, 상기 EHT TB PPDU의 LTF 유형은 2x EHT LTF이고, 상기 HE TB PPDU 및 상기 EHT TB PPDU는 1.6us의 길이를 갖는 GI를 포함하고,
    상기 하나의 통합된 LTF 유형 및 GI에 대한 정보가 제3 값으로 설정되면, 상기 HE TB PPDU의 LTF 유형은 4x HE LTF이고, 상기 EHT TB PPDU의 LTF 유형은 4x EHT LTF이고, 상기 HE TB PPDU 및 상기 EHT TB PPDU는 3.2us의 길이를 갖는 GI를 포함하는
    방법.
  5. 제2항에 있어서,
    상기 NUM_EHT/HE_LTF_SYMBOLS 파라미터는 상기 HE TB PPDU 및 상기 EHT TB PPDU에 대해 하나의 통합된 LTF 심볼의 개수에 대한 정보를 포함하고,
    상기 HE TB PPDU 및 상기 EHT TB PPDU에 대해 하나의 통합된 LTF 심볼의 개수에 대한 정보가 제1 값으로 설정되면, 상기 HE TB PPDU의 HE LTF 심볼과 상기 EHT TB PPDU의 EHT LTF 심볼의 개수는 1개이고,
    상기 HE TB PPDU 및 상기 EHT TB PPDU에 대해 하나의 통합된 LTF 심볼의 개수에 대한 정보가 제2 값으로 설정되면, 상기 HE TB PPDU의 HE LTF 심볼과 상기 EHT TB PPDU의 EHT LTF 심볼의 개수는 2개이고,
    상기 HE TB PPDU 및 상기 EHT TB PPDU에 대해 하나의 통합된 LTF 심볼의 개수에 대한 정보가 제3 값으로 설정되면, 상기 HE TB PPDU의 HE LTF 심볼과 상기 EHT TB PPDU의 EHT LTF 심볼의 개수는 4개이고,
    상기 HE TB PPDU 및 상기 EHT TB PPDU에 대해 하나의 통합된 LTF 심볼의 개수에 대한 정보가 제4 값으로 설정되면, 상기 HE TB PPDU의 HE LTF 심볼과 상기 EHT TB PPDU의 EHT LTF 심볼의 개수는 6개이고,
    상기 HE TB PPDU 및 상기 EHT TB PPDU에 대해 하나의 통합된 LTF 심볼의 개수에 대한 정보가 제5 값으로 설정되면, 상기 HE TB PPDU의 HE LTF 심볼과 상기 EHT TB PPDU의 EHT LTF 심볼의 개수는 8개인
    방법.
  6. 제2항에 있어서,
    상기 AID12_LIST 파라미터는 상기 HE TB PPDU에 할당된 STA에 대한 AID(Association IDentifier)부터 상기 EHT TB PPDU에 할당된 STA에 대한 AID까지 나열된 제1 정보를 포함하고,
    상기 제1 정보는 제1 지시자를 더 포함하고,
    상기 제1 지시자는 12비트로 구성되고, 상기 HE TB PPDU에 할당된 STA에 대한 AID와 상기 EHT TB PPDU에 할당된 STA에 대한 AID 간의 경계를 지시하는 정보이고,
    상기 12비트는 모두 1로 설정되는
    방법.
  7. 제2항에 있어서,
    상기 RU_ALLOCATION_LIST 파라미터는 상기 HE TB PPDU에 할당된 STA의 제1 RU(Resource Unit) 할당 정보, 상기 EHT TB PPDU에 할당된 STA의 제2 RU 할당 정보 및 제1 지시자를 포함하고,
    상기 제1 지시자는 8비트로 구성되고, 상기 제1 및 제2 RU 할당 정보 간의 경계를 지시하는 정보이고,
    상기 8비트는 모두 1로 설정되는
    방법.
  8. 제7항에 있어서,
    상기 제1 RU 할당 정보는 STA 별로 8비트로 구성되고,
    상기 제2 RU 할당 정보는 STA 별로 9비트로 구성되는
    방법.
  9. 무선랜 시스템에서, 송신 STA(station)는
    메모리;
    트랜시버; 및
    상기 메모리 및 상기 트랜시버와 동작 가능하게 결합된 프로세서를 포함하되, 상기 프로세서는:
    수신 STA에게 트리거 프레임을 송신하고;
    TRIGVECTOR 파라미터를 획득하고; 및
    상기 트리거 프레임 및 상기 TRIGVECTOR 파라미터를 기반으로 TB A-PPDU(Trigger Based Aggregated-Physical Protocol Data Unit)를 수신하되,
    상기 TB A-PPDU는 HE(High Efficiency) TB PPDU 및 EHT(Extreme High Throughput) TB PPDU를 포함하고,
    상기 TRIGVECTOR 파라미터는 CH_BANDWIDTH 파라미터를 포함하고,
    상기 CH_BANDWIDTH 파라미터의 값이 0이면, 상기 HE TB PPDU의 대역폭은 80MHz로 설정되고, 상기 EHT TB PPDU의 대역폭은 80MHz로 설정되고,
    상기 CH_BANDWIDTH 파라미터의 값이 1이면, 상기 HE TB PPDU의 대역폭은 80MHz로 설정되고, 상기 EHT TB PPDU의 대역폭은 160MHz로 설정되고,
    상기 CH_BANDWIDTH 파라미터의 값이 2이면, 상기 HE TB PPDU의 대역폭은 160MHz로 설정되고, 상기 EHT TB PPDU의 대역폭은 80MHz로 설정되고, 및
    상기 CH_BANDWIDTH 파라미터의 값이 3이면, 상기 HE TB PPDU의 대역폭은 160MHz로 설정되고, 상기 EHT TB PPDU의 대역폭은 160MHz로 설정되는
    송신 STA.
  10. 제9항에 있어서,
    상기 TRIGVECTOR 파라미터는 UL_LENGTH 파라미터, GI_AND_EHT/HE_LTF_TYPE 파라미터, NUM_EHT/HE_LTF_SYMBOLS 파라미터, AID12_LIST 파라미터 및 RU_ALLOCATION_LIST 파라미터를 더 포함하는
    송신 STA.
  11. 제10항에 있어서,
    상기 트리거 프레임은 UL Length 서브필드를 포함하고,
    상기 UL_LENGTH 파라미터는 상기 UL Length 서브필드의 값으로 설정되고,
    상기 UL Length 서브필드의 값은 3의 배수가 아닌 값으로 설정되는
    송신 STA.
  12. 제10항에 있어서,
    상기 GI_AND_EHT/HE_LTF_TYPE 파라미터는 상기 HE TB PPDU 및 상기 EHT TB PPDU에 대해 하나의 통합된 LTF(Long Training Field) 유형 및 GI(Guard Interval)에 대한 정보를 포함하고,
    상기 하나의 통합된 LTF 유형 및 GI에 대한 정보가 제1 값으로 설정되면, 상기 HE TB PPDU의 LTF 유형은 1x HE LTF이고, 상기 EHT TB PPDU의 LTF 유형은 1x EHT LTF이고, 상기 HE TB PPDU 및 상기 EHT TB PPDU는 1.6us의 길이를 갖는 GI를 포함하고,
    상기 하나의 통합된 LTF 유형 및 GI에 대한 정보가 제2 값으로 설정되면, 상기 HE TB PPDU의 LTF 유형은 2x HE LTF이고, 상기 EHT TB PPDU의 LTF 유형은 2x EHT LTF이고, 상기 HE TB PPDU 및 상기 EHT TB PPDU는 1.6us의 길이를 갖는 GI를 포함하고,
    상기 하나의 통합된 LTF 유형 및 GI에 대한 정보가 제3 값으로 설정되면, 상기 HE TB PPDU의 LTF 유형은 4x HE LTF이고, 상기 EHT TB PPDU의 LTF 유형은 4x EHT LTF이고, 상기 HE TB PPDU 및 상기 EHT TB PPDU는 3.2us의 길이를 갖는 GI를 포함하는
    송신 STA.
  13. 제10항에 있어서,
    상기 NUM_EHT/HE_LTF_SYMBOLS 파라미터는 상기 HE TB PPDU 및 상기 EHT TB PPDU에 대해 하나의 통합된 LTF 심볼의 개수에 대한 정보를 포함하고,
    상기 HE TB PPDU 및 상기 EHT TB PPDU에 대해 하나의 통합된 LTF 심볼의 개수에 대한 정보가 제1 값으로 설정되면, 상기 HE TB PPDU의 HE LTF 심볼과 상기 EHT TB PPDU의 EHT LTF 심볼의 개수는 1개이고,
    상기 HE TB PPDU 및 상기 EHT TB PPDU에 대해 하나의 통합된 LTF 심볼의 개수에 대한 정보가 제2 값으로 설정되면, 상기 HE TB PPDU의 HE LTF 심볼과 상기 EHT TB PPDU의 EHT LTF 심볼의 개수는 2개이고,
    상기 HE TB PPDU 및 상기 EHT TB PPDU에 대해 하나의 통합된 LTF 심볼의 개수에 대한 정보가 제3 값으로 설정되면, 상기 HE TB PPDU의 HE LTF 심볼과 상기 EHT TB PPDU의 EHT LTF 심볼의 개수는 4개이고,
    상기 HE TB PPDU 및 상기 EHT TB PPDU에 대해 하나의 통합된 LTF 심볼의 개수에 대한 정보가 제4 값으로 설정되면, 상기 HE TB PPDU의 HE LTF 심볼과 상기 EHT TB PPDU의 EHT LTF 심볼의 개수는 6개이고,
    상기 HE TB PPDU 및 상기 EHT TB PPDU에 대해 하나의 통합된 LTF 심볼의 개수에 대한 정보가 제5 값으로 설정되면, 상기 HE TB PPDU의 HE LTF 심볼과 상기 EHT TB PPDU의 EHT LTF 심볼의 개수는 8개인
    송신 STA.
  14. 제10항에 있어서,
    상기 AID12_LIST 파라미터는 상기 HE TB PPDU에 할당된 STA에 대한 AID(Association IDentifier)부터 상기 EHT TB PPDU에 할당된 STA에 대한 AID까지 나열된 제1 정보를 포함하고,
    상기 제1 정보는 제1 지시자를 더 포함하고,
    상기 제1 지시자는 12비트로 구성되고, 상기 HE TB PPDU에 할당된 STA에 대한 AID와 상기 EHT TB PPDU에 할당된 STA에 대한 AID 간의 경계를 지시하는 정보이고,
    상기 12비트는 모두 1로 설정되는
    송신 STA.
  15. 제10항에 있어서,
    상기 RU_ALLOCATION_LIST 파라미터는 상기 HE TB PPDU에 할당된 STA의 제1 RU(Resource Unit) 할당 정보, 상기 EHT TB PPDU에 할당된 STA의 제2 RU 할당 정보 및 제1 지시자를 포함하고,
    상기 제1 지시자는 8비트로 구성되고, 상기 제1 및 제2 RU 할당 정보 간의 경계를 지시하는 정보이고,
    상기 8비트는 모두 1로 설정되는
    송신 STA.
  16. 제15항에 있어서,
    상기 제1 RU 할당 정보는 STA 별로 8비트로 구성되고,
    상기 제2 RU 할당 정보는 STA 별로 9비트로 구성되는
    송신 STA.
  17. 적어도 하나의 프로세서(processor)에 의해 실행됨을 기초로 하는 명령어(instruction)를 포함하는 적어도 하나의 컴퓨터로 읽을 수 있는 기록매체(computer readable medium)에 있어서,
    수신 STA(station)에게 트리거 프레임을 송신하는 단계;
    TRIGVECTOR 파라미터를 획득하는 단계; 및
    상기 트리거 프레임 및 상기 TRIGVECTOR 파라미터를 기반으로 TB A-PPDU(Trigger Based Aggregated-Physical Protocol Data Unit)를 수신하는 단계를 포함하되,
    상기 TB A-PPDU는 HE(High Efficiency) TB PPDU 및 EHT(Extreme High Throughput) TB PPDU를 포함하고,
    상기 TRIGVECTOR 파라미터는 CH_BANDWIDTH 파라미터를 포함하고,
    상기 CH_BANDWIDTH 파라미터의 값이 0이면, 상기 HE TB PPDU의 대역폭은 80MHz로 설정되고, 상기 EHT TB PPDU의 대역폭은 80MHz로 설정되고,
    상기 CH_BANDWIDTH 파라미터의 값이 1이면, 상기 HE TB PPDU의 대역폭은 80MHz로 설정되고, 상기 EHT TB PPDU의 대역폭은 160MHz로 설정되고,
    상기 CH_BANDWIDTH 파라미터의 값이 2이면, 상기 HE TB PPDU의 대역폭은 160MHz로 설정되고, 상기 EHT TB PPDU의 대역폭은 80MHz로 설정되고, 및
    상기 CH_BANDWIDTH 파라미터의 값이 3이면, 상기 HE TB PPDU의 대역폭은 160MHz로 설정되고, 상기 EHT TB PPDU의 대역폭은 160MHz로 설정되는
    기록매체.
  18. 무선랜 시스템에서 장치에 있어서,
    메모리; 및
    상기 메모리와 동작 가능하게 결합된 프로세서를 포함하되, 상기 프로세서는:
    수신 STA(station)에게 트리거 프레임을 송신하고;
    TRIGVECTOR 파라미터를 획득하고; 및
    상기 트리거 프레임 및 상기 TRIGVECTOR 파라미터를 기반으로 TB A-PPDU(Trigger Based Aggregated-Physical Protocol Data Unit)를 수신하되,
    상기 TB A-PPDU는 HE(High Efficiency) TB PPDU 및 EHT(Extreme High Throughput) TB PPDU를 포함하고,
    상기 TRIGVECTOR 파라미터는 CH_BANDWIDTH 파라미터를 포함하고,
    상기 CH_BANDWIDTH 파라미터의 값이 0이면, 상기 HE TB PPDU의 대역폭은 80MHz로 설정되고, 상기 EHT TB PPDU의 대역폭은 80MHz로 설정되고,
    상기 CH_BANDWIDTH 파라미터의 값이 1이면, 상기 HE TB PPDU의 대역폭은 80MHz로 설정되고, 상기 EHT TB PPDU의 대역폭은 160MHz로 설정되고,
    상기 CH_BANDWIDTH 파라미터의 값이 2이면, 상기 HE TB PPDU의 대역폭은 160MHz로 설정되고, 상기 EHT TB PPDU의 대역폭은 80MHz로 설정되고, 및
    상기 CH_BANDWIDTH 파라미터의 값이 3이면, 상기 HE TB PPDU의 대역폭은 160MHz로 설정되고, 상기 EHT TB PPDU의 대역폭은 160MHz로 설정되는
    장치.
KR1020247014214A 2021-11-04 2022-11-01 무선랜 시스템에서 trigvector 파라미터를 설정하는 방법 및 장치 KR20240102960A (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210150833 2021-11-04

Publications (1)

Publication Number Publication Date
KR20240102960A true KR20240102960A (ko) 2024-07-03

Family

ID=

Similar Documents

Publication Publication Date Title
KR102595373B1 (ko) 무선랜 시스템에서 광대역을 통해 ppdu를 수신하는 방법 및 장치
KR102669115B1 (ko) 무선랜 시스템에서 ppdu를 수신하는 방법 및 장치
KR20220024498A (ko) 멀티 링크에서 캐퍼빌리티 협상
US20230379109A1 (en) Improved trigger frame
EP4181603A1 (en) Method and device for allocating resource by limiting rus and mrus for sta operating at only 20 mhz in wireless lan system
US11984981B2 (en) Method and apparatus for receiving PPDU on which BCC interleaving has been performed in multi-RU in wireless LAN system
KR102643471B1 (ko) 트리거 프레임의 구성
KR20230169931A (ko) 무선랜 시스템에서 20mhz에서만 동작하는 sta에 대한피드백 프레임을 송신하는 방법 및 장치
KR20230137351A (ko) 개선된 링크 적응 제어
KR20230118820A (ko) 무선랜 시스템에서 a-ppdu를 수신하는 방법 및 장치
EP4340501A1 (en) Method and device for configuring field for instructing transmission of a-ppdu in wireless lan system
KR20240102960A (ko) 무선랜 시스템에서 trigvector 파라미터를 설정하는 방법 및 장치
US12004202B2 (en) Method and apparatus for transmitting capability information of receiving STA in wireless LAN system
KR20240099231A (ko) 무선랜 시스템에서 trigvector 파라미터를 설정하는 방법 및 장치
EP4340502A1 (en) Method and apparatus for configuring field for indicating transmission of a-ppdu and bandwidth of a-ppdu in wireless lan system
EP4277401A1 (en) Enhanced indicating method for ppdu configuration and device using same method
EP4387137A1 (en) Method and device for using coding subfield reserved for mu-mimo in wireless lan system
KR20240087633A (ko) 무선랜 시스템에서 a-ppdu에 대한 시퀀스 및 프리앰블 펑처링을 적용하는 방법 및 장치
KR20240087655A (ko) 무선랜 시스템에서 dl a-ppdu 내 a-ppdu 헤더를 정의하고 a-ppdu 헤더가 지시하는 정보를 구성하는 방법 및 장치
KR20240018436A (ko) 무선랜 시스템에서 a-ppdu 내 he ppdu와 eht ppdu의각 필드의 심볼 경계를 정렬하는 방법 및 장치
KR20240090354A (ko) 무선랜 시스템에서 eht sounding ndp 프레임을 수신하는 방법 및 장치
KR20240037941A (ko) 무선랜 시스템에서 공간 스트림의 지원을 고려하여 다양한 ng 값을 지시하는 방법 및 장치
KR20240102963A (ko) 개선된 ndpa 프레임
KR20240010450A (ko) 무선랜 시스템에서 20/80/160mhz에서만 동작하는 sta에대한 일부 대역의 피드백을 요청하는 방법 및 장치
CN117413476A (zh) 在无线lan系统中发送接收sta的能力信息的方法和设备