KR20240097028A - Electrolyte solution for lithium secondary battery and Lithium secondary battery comprising the same - Google Patents
Electrolyte solution for lithium secondary battery and Lithium secondary battery comprising the same Download PDFInfo
- Publication number
- KR20240097028A KR20240097028A KR1020220178440A KR20220178440A KR20240097028A KR 20240097028 A KR20240097028 A KR 20240097028A KR 1020220178440 A KR1020220178440 A KR 1020220178440A KR 20220178440 A KR20220178440 A KR 20220178440A KR 20240097028 A KR20240097028 A KR 20240097028A
- Authority
- KR
- South Korea
- Prior art keywords
- solvent
- secondary battery
- lithium secondary
- electrolyte solution
- lithium
- Prior art date
Links
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 53
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 52
- 239000008151 electrolyte solution Substances 0.000 title claims abstract description 32
- 239000002904 solvent Substances 0.000 claims abstract description 128
- 229910003002 lithium salt Inorganic materials 0.000 claims abstract description 60
- 159000000002 lithium salts Chemical class 0.000 claims abstract description 60
- 238000010494 dissociation reaction Methods 0.000 claims abstract description 21
- 230000005593 dissociations Effects 0.000 claims abstract description 21
- 239000004210 ether based solvent Substances 0.000 claims abstract description 21
- 150000002170 ethers Chemical class 0.000 claims abstract description 14
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 claims description 42
- 238000002156 mixing Methods 0.000 claims description 19
- 239000003792 electrolyte Substances 0.000 claims description 16
- NOPJRYAFUXTDLX-UHFFFAOYSA-N 1,1,1,2,2,3,3-heptafluoro-3-methoxypropane Chemical compound COC(F)(F)C(F)(F)C(F)(F)F NOPJRYAFUXTDLX-UHFFFAOYSA-N 0.000 claims description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 claims description 6
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 claims description 6
- 239000007773 negative electrode material Substances 0.000 claims description 5
- 239000007774 positive electrode material Substances 0.000 claims description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 229910010238 LiAlCl 4 Inorganic materials 0.000 claims description 3
- 229910015015 LiAsF 6 Inorganic materials 0.000 claims description 3
- 229910015044 LiB Inorganic materials 0.000 claims description 3
- 229910013063 LiBF 4 Inorganic materials 0.000 claims description 3
- 229910013372 LiC 4 Inorganic materials 0.000 claims description 3
- 229910013684 LiClO 4 Inorganic materials 0.000 claims description 3
- 229910010941 LiFSI Inorganic materials 0.000 claims description 3
- 229910013385 LiN(SO2C2F5)2 Inorganic materials 0.000 claims description 3
- 229910013870 LiPF 6 Inorganic materials 0.000 claims description 3
- 229910012258 LiPO Inorganic materials 0.000 claims description 3
- 229910012513 LiSbF 6 Inorganic materials 0.000 claims description 3
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Inorganic materials [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 claims description 3
- VDVLPSWVDYJFRW-UHFFFAOYSA-N lithium;bis(fluorosulfonyl)azanide Chemical compound [Li+].FS(=O)(=O)[N-]S(F)(=O)=O VDVLPSWVDYJFRW-UHFFFAOYSA-N 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229940021013 electrolyte solution Drugs 0.000 description 22
- 238000002474 experimental method Methods 0.000 description 18
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 15
- 239000003063 flame retardant Substances 0.000 description 15
- 229910003473 lithium bis(trifluoromethanesulfonyl)imide Inorganic materials 0.000 description 15
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 15
- -1 polytetrafluoroethylene Polymers 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 239000000203 mixture Substances 0.000 description 8
- 239000004743 Polypropylene Substances 0.000 description 7
- 239000003960 organic solvent Substances 0.000 description 7
- 229920001155 polypropylene Polymers 0.000 description 7
- 239000004698 Polyethylene Substances 0.000 description 6
- 229920000573 polyethylene Polymers 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical group [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 229910001416 lithium ion Inorganic materials 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000007706 flame test Methods 0.000 description 3
- 239000013538 functional additive Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000005191 phase separation Methods 0.000 description 3
- 239000011149 active material Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910021383 artificial graphite Inorganic materials 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000001311 chemical methods and process Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011267 electrode slurry Substances 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910021382 natural graphite Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009831 deintercalation Methods 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229920005994 diacetyl cellulose Polymers 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 239000011357 graphitized carbon fiber Substances 0.000 description 1
- 239000002946 graphitized mesocarbon microbead Substances 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 229920002620 polyvinyl fluoride Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000011856 silicon-based particle Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C43/00—Ethers; Compounds having groups, groups or groups
- C07C43/02—Ethers
- C07C43/03—Ethers having all ether-oxygen atoms bound to acyclic carbon atoms
- C07C43/04—Saturated ethers
- C07C43/043—Dimethyl ether
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C43/00—Ethers; Compounds having groups, groups or groups
- C07C43/02—Ethers
- C07C43/03—Ethers having all ether-oxygen atoms bound to acyclic carbon atoms
- C07C43/04—Saturated ethers
- C07C43/12—Saturated ethers containing halogen
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
- H01M2300/0028—Organic electrolyte characterised by the solvent
- H01M2300/0034—Fluorinated solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
- H01M2300/0028—Organic electrolyte characterised by the solvent
- H01M2300/0037—Mixture of solvents
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Secondary Cells (AREA)
Abstract
본 발명은 고용량 리튬 이차전지의 수명특성 및 출력특성과 함께 난연특성을 향상시킬 수 있는 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지에 관한 것이다.는 리튬 이차전지에 관한 것이다.
본 발명의 일 실시형태에 따른 리튬 이차전지용 전해액은 리튬염과; 리튬염 불해리 특성을 갖는 불소화 에테르계 용매로 이루어지는 제 1 용매와; 리튬염 해리 특성을 갖는 에테르계 용매로 이루어지는 제 2 용매를 포함한다.The present invention relates to an electrolyte solution for a lithium secondary battery that can improve the flame retardancy characteristics as well as the lifespan characteristics and output characteristics of a high-capacity lithium secondary battery, and to a lithium secondary battery containing the same. It relates to a lithium secondary battery.
An electrolyte solution for a lithium secondary battery according to an embodiment of the present invention includes lithium salt; a first solvent consisting of a fluorinated ether-based solvent having lithium salt non-dissociation properties; It includes a second solvent consisting of an ether-based solvent having lithium salt dissociation properties.
Description
본 발명은 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지에 관한 것으로서, 더욱 상세하게는 고용량 리튬 이차전지의 수명특성 및 출력특성과 함께 난연특성을 향상시킬 수 있는 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지에 관한 것이다.는 리튬 이차전지에 관한 것이다.The present invention relates to an electrolyte for lithium secondary batteries and a lithium secondary battery containing the same, and more specifically, to an electrolyte for lithium secondary batteries that can improve flame retardancy characteristics as well as life characteristics and output characteristics of high-capacity lithium secondary batteries, and lithium containing the same. It's about secondary batteries. It's about lithium secondary batteries.
리튬 이차전지는 충전시 리튬을 제공하는 양극과 리튬을 받아들이는 음극, 리튬이온 전달 매개체인 전해질, 양극과 음극을 분리시키는 분리막으로 이루어진 에너지 저장기기로서, 양극 및 음극에서 리튬 이온이 인터칼레이션(intercalation)/디인터칼레이션(deintercalation)될 때의 화학전위(chemical potential)의 변화에 의하여 전기 에너지를 생성 및 저장시킨다.A lithium secondary battery is an energy storage device consisting of a positive electrode that provides lithium when charging, a negative electrode that accepts lithium, an electrolyte that is a lithium ion transfer medium, and a separator that separates the positive and negative electrodes. Lithium ions intercalate at the positive and negative electrodes. Electrical energy is generated and stored by changes in chemical potential during intercalation/deintercalation.
이러한 리튬 이차전지는 휴대용 전자기기에 주로 사용되었지만, 최근에는 전기자동차(Electric Vehicle, EV) 및 하이브리드 전기차(Hybrid Electric Vehicle, HEV)가 상용화되면서 전기자동차 및 하이브리드 전기차의 에너지 저장수단으로도 리튬 이차전지가 사용되고 있다.These lithium secondary batteries were mainly used in portable electronic devices, but recently, with the commercialization of electric vehicles (EV) and hybrid electric vehicles (HEV), lithium secondary batteries have also been used as an energy storage method for electric vehicles and hybrid electric vehicles. is being used.
한편, 리튬 이차전지는 4대 핵심소재인 양극, 음극, 분리막 및 전해질의 특성에 의해 성능이 결정된다.Meanwhile, the performance of lithium secondary batteries is determined by the characteristics of the four core materials: anode, cathode, separator, and electrolyte.
특히, 친환경차인 전기자동차의 상용화를 앞당기기 위해서는 주행거리의 향상을 위하여 셀 단위의 에너지 밀도 향상이 필수적으로 요구되고 있으며, 저가격, 급속충전 및 급속 방전 기술, 고안전성 기술 역시 필수적으로 요구되고 있다.In particular, in order to accelerate the commercialization of electric vehicles, which are eco-friendly vehicles, it is essential to improve energy density at the cell level to improve driving range, and low-cost, fast charging and rapid discharging technology, and high safety technology are also essential.
그리고, 리튬 이차전지의 전해질에 포함되는 저점도 용매와 첨가제는 출력과 관련된 전지 성능 및 안정성을 향상시키기 위해 그 중요성이 강조되고 있다.In addition, the importance of low-viscosity solvents and additives included in the electrolyte of lithium secondary batteries is being emphasized to improve battery performance and stability related to output.
한편 전해질은 유기용매에 리튬염과 다양한 기능성 첨가제를 해리시켜서 형성되는데, 이때 유기용매로는 카보네이트계 유기용매, 에스터계 유기용매, 에테르계 유기용매를 단독 또는 혼합하여 사용하고 있다.Meanwhile, electrolytes are formed by dissociating lithium salts and various functional additives in organic solvents. In this case, carbonate-based organic solvents, ester-based organic solvents, and ether-based organic solvents are used alone or in combination as organic solvents.
그러나 카보네이트계 유기용매는 가연성 유기물로 리튬금속(리튬염)과의 부반응 및 덴드라이트를 형성하여 전지 안전성(Safety)이 취약해질 우려가 있다.However, carbonate-based organic solvents are flammable organic substances, and there is a risk that battery safety may be compromised due to side reactions with lithium metal (lithium salt) and the formation of dendrites.
또한, 카보네이트계 유기용매는 인화점(flash point)이 낮고 휘발성이 높기 때문에 고온에서 활용 시 전극물질과의 연소반응을 유발하여 전지온도를 급격하게 상승시키고, 최종적으로 열폭주 현상을 일으키게 된다.In addition, carbonate-based organic solvents have a low flash point and high volatility, so when used at high temperatures, they cause a combustion reaction with electrode materials, rapidly increasing the battery temperature, and ultimately causing thermal runaway.
따라서, 안정적인 전해액의 개발은 리튬 이차전지의 에너지 밀도를 향상시키기 위한 핵심요소라 할 수 있다. 특히, 우수한 출력/수명 특성을 확보하면서도 다양한 온도 환경에서 사용 가능한 전기자동차 또는 하이브리드 자동차용 중대형 리튬 이차전지의 개발이 필요하다. Therefore, the development of a stable electrolyte can be said to be a key factor in improving the energy density of lithium secondary batteries. In particular, there is a need to develop mid- to large-sized lithium secondary batteries for electric vehicles or hybrid vehicles that can be used in various temperature environments while ensuring excellent output/lifespan characteristics.
상기의 배경기술로서 설명된 내용은 본 발명에 대한 배경을 이해하기 위한 것일 뿐, 이 기술분야에서 통상의 지식을 가진 자에게 이미 알려진 종래기술에 해당함을 인정하는 것으로 받아들여져서는 안 될 것이다.The content described as background technology above is only for understanding the background to the present invention, and should not be taken as an admission that it corresponds to prior art already known to those skilled in the art.
본 발명은 고용량 리튬 이차전지의 수명특성 및 출력특성과 함께 난연특성을 향상시킬 수 있는 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지에 관한 것이다.는 리튬 이차전지를 제공한다.The present invention relates to an electrolyte solution for a lithium secondary battery that can improve the flame retardancy characteristics as well as the lifespan characteristics and output characteristics of a high-capacity lithium secondary battery, and to a lithium secondary battery containing the same. It provides a lithium secondary battery.
본 발명이 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 본 발명의 기재로부터 이 기술분야에서 통상의 지식을 가진 자에게 명확히 이해될 수 있는 것으로 보아야 할 것이다.The technical problems to be achieved by the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned can be clearly understood by those skilled in the art from the description of the present invention. You will have to see it.
본 발명의 일 실시형태에 따른 리튬 이차전지용 전해액은 리튬염과; 리튬염 불해리 특성을 갖는 불소화 에테르계 용매로 이루어지는 제 1 용매와; 리튬염 해리 특성을 갖는 에테르계 용매로 이루어지는 제 2 용매를 포함한다.An electrolyte solution for a lithium secondary battery according to an embodiment of the present invention includes lithium salt; a first solvent consisting of a fluorinated ether-based solvent having lithium salt non-dissociation properties; and a second solvent consisting of an ether-based solvent having lithium salt dissociation properties.
상기 제 1 용매는 하기의 [식 1]로 표현되는 1-methoxyheptafluoropropane인 불소화 에테르계 용매를 포함하는 것을 특징으로 한다.The first solvent is characterized in that it contains a fluorinated ether-based solvent, which is 1-methoxyheptafluoropropane, represented by [Formula 1] below.
……… [식 1] … … … [Equation 1]
상기 제 2 용매는 Dimethyl ether(DME)를 포함하는 것을 특징으로 한다.The second solvent is characterized in that it contains dimethyl ether (DME).
상기 제 1 용매와 제 2 용매의 혼합비율은 중량비율로 상기 제 1 용매가 50% 이상을 혼합되는 것을 특징으로 한다.The mixing ratio of the first solvent and the second solvent is characterized in that the first solvent is mixed in a weight ratio of 50% or more.
상기 제 1 용매와 제 2 용매의 혼합비율은 중량비율로 10 : 90 ~ 80 : 20인 것이 바람직하다.The mixing ratio of the first solvent and the second solvent is preferably 10:90 to 80:20 in weight ratio.
상기 리튬염의 농도는 0.1 ~ 3.0 몰인 것을 특징으로 하는 리튬 이차전지용 전해액.An electrolyte solution for a lithium secondary battery, characterized in that the concentration of the lithium salt is 0.1 to 3.0 mol.
상기 리튬염은 LiPF6, LiBF4, LiClO4, LiCl, LiBr, LiI, LiB10Cl10, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, LiN(SO2C2F5)2, Li(CF3SO2)2N, LiC4F9SO3, LiB(C6H5)4, LiB(C2O4)2, LiPO2F2, Li(SO2F)2N, LiFSI 또는 (CF3SO2)2NLi로 이루어진 군에서 선택되는 1종 또는 2종 이상이 혼합된 것을 특징으로 한다.The lithium salt is LiPF 6 , LiBF 4 , LiClO 4 , LiCl, LiBr, LiI, LiB 10 Cl 10 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, LiN(SO 2 C 2 F 5 ) 2 , Li(CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , LiB(C 6 H 5 ) 4 , LiB(C 2 O 4 ) 2 , LiPO 2 F 2 , Li(SO 2 F) 2 N, LiFSI, or (CF 3 SO 2 ) 2 NLi. It is characterized by one or a mixture of two or more types selected from the group consisting of.
한편, 본 발명의 일 실시형태에 따른 리튬 이차전지는 전술된 전해액을 포함한다. 그리고, Ni, Co 및 Mn으로 이루어진 양극활물질을 포함하는 양극; 탄소(C)계 또는 실리콘(Si)계 중 선택되는 1종 또는 2종 이상의 음극활물질을 포함하는 음극; 상기 양극과 음극 사이에 개재되는 분리막을 더 포함한다.Meanwhile, a lithium secondary battery according to an embodiment of the present invention includes the above-described electrolyte solution. And, a positive electrode containing a positive electrode active material made of Ni, Co, and Mn; A negative electrode containing one or two or more types of negative electrode active materials selected from carbon (C)-based or silicon (Si)-based; It further includes a separator interposed between the anode and the cathode.
본 발명의 실시예에 따르면, 전해액을 형성하는 용매 중 난연특성이 우수한 불소화 에테르계 용매를 50% 이상 혼합함에 따라 리튬 이차전지의 난연성을 향상시킬 수 있는 효과를 기대할 수 있다.According to an embodiment of the present invention, the effect of improving the flame retardancy of a lithium secondary battery can be expected by mixing 50% or more of a fluorinated ether-based solvent with excellent flame retardant properties among the solvents forming the electrolyte solution.
또한, 본 발명의 실시예에 따르면, 리튬 이차전지의 수명을 증대시키는 동시에 전지 출력 특성을 향상시킬 수 있는 효과를 기대할 수 있다.In addition, according to embodiments of the present invention, the effect of increasing the lifespan of a lithium secondary battery and improving battery output characteristics can be expected.
도 1은 용매의 종류 변경에 따른 다양한 샘플의 화염테스트 후 표면 상태를 보여주는 도면이고,
도 2는 용매의 종류 변경에 따른 리튬염의 해리특성을 보여주는 도면이며,
도 3은 용매의 종류 변경에 따른 실시예 및 비교예의 방전 용량 및 수명 용량 유지율을 평가한 실험 결과를 보여주는 그래프이고,
도 4는 용매의 종류 변경에 따른 실시예 및 비교예의 출력 성능을 평가한 실험 결과를 보여주는 그래프이다.Figure 1 is a diagram showing the surface condition after flame testing of various samples according to changes in the type of solvent.
Figure 2 is a diagram showing the dissociation characteristics of lithium salt according to changes in the type of solvent;
Figure 3 is a graph showing the results of an experiment evaluating the discharge capacity and life capacity maintenance rate of Examples and Comparative Examples according to changes in the type of solvent;
Figure 4 is a graph showing the results of an experiment evaluating the output performance of Examples and Comparative Examples according to changes in the type of solvent.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. Hereinafter, embodiments disclosed in the present specification will be described in detail with reference to the attached drawings. However, identical or similar components will be assigned the same reference numbers regardless of reference numerals, and duplicate descriptions thereof will be omitted.
본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. In describing the embodiments disclosed in this specification, if it is determined that detailed descriptions of related known technologies may obscure the gist of the embodiments disclosed in this specification, the detailed descriptions will be omitted. In addition, the attached drawings are only for easy understanding of the embodiments disclosed in this specification, and the technical idea disclosed in this specification is not limited by the attached drawings, and all changes included in the spirit and technical scope of the present invention are not limited. , should be understood to include equivalents or substitutes.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.Terms containing ordinal numbers, such as first, second, etc., may be used to describe various components, but the components are not limited by the terms. The above terms are used only for the purpose of distinguishing one component from another.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. Singular expressions include plural expressions unless the context clearly dictates otherwise.
본 명세서에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. In this specification, terms such as “comprise” or “have” are intended to designate the presence of features, numbers, steps, operations, components, parts, or combinations thereof described in the specification, but are not intended to indicate the presence of one or more other features. It should be understood that this does not exclude in advance the possibility of the existence or addition of elements, numbers, steps, operations, components, parts, or combinations thereof.
본 발명의 일 실시예에 따른 리튬 이차전지용 전해액은 리튬 이차전지에 적용되는 전해질을 형성하는 물질로서, 리튬염과 용매로 이루어진다.The electrolyte solution for a lithium secondary battery according to an embodiment of the present invention is a material that forms an electrolyte applied to a lithium secondary battery and consists of a lithium salt and a solvent.
리튬염은 LiPF6, LiBF4, LiClO4, LiCl, LiBr, LiI, LiB10Cl10, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, LiN(SO2C2F5)2, Li(CF3SO2)2N, LiC4F9SO3, LiB(C6H5)4, LiB(C2O4)2, LiPO2F2, Li(SO2F)2N, LiFSI 또는 (CF3SO2)2NLi로 이루어진 군에서 선택되는 1종 또는 2종 이상이 혼합된 혼합물일 수 있다.Lithium salts are LiPF 6 , LiBF 4 , LiClO 4 , LiCl, LiBr, LiI, LiB 10 Cl 10 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, LiN(SO 2 C 2 F 5 ) 2 , Li(CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , LiB(C 6 H 5 ) 4 , LiB(C 2 O 4 ) 2 , It may be one or a mixture of two or more selected from the group consisting of LiPO 2 F 2 , Li(SO 2 F) 2 N, LiFSI, or (CF 3 SO 2 ) 2 NLi.
이때 리튬염은 전해액에서 총량이 0.1 ~ 3.0 몰, 바람직하게는 1.0 ~ 2.0 몰의 농도로 존재할 수 있다. 더욱 바람직하게는 2.0 몰의 농도로 존재하는 것이 좋다.At this time, the lithium salt may be present in the electrolyte solution at a total concentration of 0.1 to 3.0 mol, preferably 1.0 to 2.0 mol. More preferably, it is present at a concentration of 2.0 mol.
그리고, 용매는 전해액에 난연특성을 부여하기 위하여 난연특성을 갖는 제 1 용매와, 리튬염의 해리특성을 갖는 제 2 용매를 혼합하여 사용한다.In order to provide flame retardant properties to the electrolyte solution, the solvent is used by mixing a first solvent with flame retardant properties and a second solvent with dissociation properties of lithium salt.
이때 제 1 용매는 난연특성을 갖는 불소화 에테르계 용매로 이루어진 군에서 선택되는 1종 또는 2종 이상이 혼합된 것을 사용할 수 있다.At this time, the first solvent may be one type or a mixture of two or more types selected from the group consisting of fluorinated ether-based solvents with flame retardant properties.
예를 들어 불소화 에테르계 용매로는 [식 1]로 표현되는 1-methoxyheptafluoropropane(이하, "MPFPE"라고 지칭함)을 사용할 수 있다.For example, 1-methoxyheptafluoropropane (hereinafter referred to as “MPFPE”) represented by [Formula 1] can be used as a fluorinated ether solvent.
……… [식 1] … … … [Equation 1]
이때 제 1 용매로 사용하는 1-methoxyheptafluoropropane(MPFPE)은 난연특성이 우수하고, 고농도염 전해액에서 용매로 사용되는 경우에 수명 및 출력 특성을 향상시킬 수 있다.At this time, 1-methoxyheptafluoropropane (MPFPE) used as the first solvent has excellent flame retardant properties and can improve lifespan and output characteristics when used as a solvent in a high concentration salt electrolyte solution.
그래서 제 1 용매로는 1-methoxyheptafluoropropane(MPFPE)을 단독으로 사용하거나 1-methoxyheptafluoropropane(MPFPE)와 불소화 에테르계 용매 군에 속하는 용매를 혼합하여 사용할 수 있다.Therefore, as the first solvent, 1-methoxyheptafluoropropane (MPFPE) can be used alone or a mixture of 1-methoxyheptafluoropropane (MPFPE) and a solvent belonging to the fluorinated ether solvent group.
다만, 제 1 용매로 사용되는 1-methoxyheptafluoropropane(MPFPE)는 리튬염이 해리되지 않는 비해리성 불소화 에테르계 용매로서, 전해질을 구성하는 리튬염의 해리를 위하여 리튬염 해리특성을 갖는 제 2 용매를 제 1 용매와 혼합하여 용매를 구성한다.However, 1-methoxyheptafluoropropane (MPFPE) used as the first solvent is a non-dissociating fluorinated ether-based solvent in which lithium salts do not dissociate. In order to dissociate the lithium salts constituting the electrolyte, a second solvent having lithium salt dissociation properties is used as the first solvent. It is mixed with a solvent to form a solvent.
이때 제 2 용매로는 리튬염 해리 특성을 갖는 에테르계 용매를 사용할 수 있다.At this time, an ether-based solvent having lithium salt dissociation properties can be used as the second solvent.
예를 들어 제 2 용매로 사용되는 에테르계 용매로는 Dimethyl ether(DME)를 사용할 수 있다.For example, dimethyl ether (DME) can be used as an ether-based solvent used as a second solvent.
이때 제 2 용매로 사용되는 Dimethyl ether(DME)는 제 1 용매로 사용되는 1-methoxyheptafluoropropane(MPFPE)이 갖는 리튬염 비해리특성을 보완하여 리튬염을 해리시킬 수 있다.At this time, dimethyl ether (DME), used as the second solvent, can dissociate the lithium salt by complementing the lithium salt non-dissociation property of 1-methoxyheptafluoropropane (MPFPE), used as the first solvent.
다만, 제 2 용매로 사용되는 Dimethyl ether(DME)는 해리된 리튬이온이 음극의 표면에 전착되는 현상이 발생될 수 있는데, 이때 제 1 용매로 사용되는 1-methoxyheptafluoropropane(MPFPE)에 의해 이러한 반응을 억제할 수 있다.However, dimethyl ether (DME), which is used as the second solvent, may cause the phenomenon of dissociated lithium ions being electrodeposited on the surface of the cathode. In this case, this reaction is prevented by 1-methoxyheptafluoropropane (MPFPE), which is used as the first solvent. It can be suppressed.
이렇게 제 1 용매와 제 2 용매는 상호 간의 단점을 보완하는 역할을 하면서, 각각의 장점인 난연특성과 리튬염 해리 특성을 유지하기 위하여 혼합비율을 한정하는 것이 바람직하다.In this way, it is desirable to limit the mixing ratio of the first solvent and the second solvent in order to compensate for each other's shortcomings and maintain their respective strengths, such as flame retardant properties and lithium salt dissociation properties.
예를 들어 제 1 용매와 제 2 용매의 혼합비율은 중량비율로 제 1 용매가 50% 이상이 되도록 혼합하는 것이 바람직하다. 더욱 바람직하게는 제 1 용매와 제 2 용매의 혼합비율은 중량비율로 10 : 90 ~ 80 : 20을 유지하는 것이 좋다.For example, it is desirable to mix the first solvent and the second solvent so that the first solvent accounts for 50% or more by weight. More preferably, the mixing ratio of the first solvent and the second solvent is maintained at a weight ratio of 10:90 to 80:20.
만약, 제 1 용매의 혼합량이 10% 보다 적은 경우에는 제 1 용매로 사용되는 1-methoxyheptafluoropropane(MPFPE)이 갖는 난연특성이 원하는 수준으로 구현되지 않는 문제가 발생할 수 있고, 제 1 용매의 혼합량이 80% 보다 많은 경우에는 제 1 용매로 사용되는 1-methoxyheptafluoropropane(MPFPE)이 갖는 리튬염 비해리 특성으로 인해 전해액을 형성하는 리튬염이 용매에 충분히 해리되지 않아 리튬 이차전지의 용량 및 출력특성을 저하시키는 문제가 발생할 수 있다. 또한, 제 1 용매의 혼합량이 80% 보다 많은 경우에는 전해액의 상분리가 발생되는 문제가 있다.If the mixing amount of the first solvent is less than 10%, a problem may occur in which the flame retardant properties of 1-methoxyheptafluoropropane (MPFPE) used as the first solvent are not realized at the desired level, and the mixing amount of the first solvent is 80%. In cases exceeding %, the lithium salt forming the electrolyte solution is not sufficiently dissociated in the solvent due to the lithium salt non-dissociation characteristic of 1-methoxyheptafluoropropane (MPFPE) used as the first solvent, which reduces the capacity and output characteristics of the lithium secondary battery. Problems may arise. Additionally, when the mixing amount of the first solvent is greater than 80%, there is a problem that phase separation of the electrolyte solution occurs.
한편, 본 발명의 일 실시예에 따른 리튬 이차전지용 전해액은 리튬염, 제 1 용매 및 제 2 용매와 함께 다양한 기능을 하는 기능성 첨가제가 더 첨가될 수 있다.Meanwhile, the electrolyte solution for a lithium secondary battery according to an embodiment of the present invention may further contain functional additives that perform various functions along with lithium salt, the first solvent, and the second solvent.
예를 들어 기능성 첨가제로는 음극에 보호피막을 형성하는 역할을 하는 다양한 종류의 음극피막 첨가제가 사용될 수 있다. 예를 들어 음극피막 첨가제로는 Vinylene Carbonate(이하, "VC"라고 지칭함)를 사용할 수 있다.For example, various types of cathode film additives that play the role of forming a protective film on the cathode can be used as functional additives. For example, Vinylene Carbonate (hereinafter referred to as “VC”) can be used as a cathode coating additive.
한편, 본 발명의 일 실시예에 따른 리튬 이차전지는 전술된 전해액과 함께 양극, 음극 및 분리막으로 이루어진다.Meanwhile, a lithium secondary battery according to an embodiment of the present invention consists of a positive electrode, a negative electrode, and a separator along with the above-described electrolyte solution.
양극은 Ni, Co 및 Mn으로 이루어진 NCM계 양극활물질을 포함하여 이루어진다. 특히 본 실시예에서 양극에 포함되는 양극활물질은 Ni을 60wt% 이상 함유하는 NCM계 양극활물질로만 구성되는 것이 바람직하다.The positive electrode is made of NCM-based positive electrode active material consisting of Ni, Co, and Mn. In particular, in this embodiment, the positive electrode active material included in the positive electrode is preferably composed only of NCM-based positive electrode active material containing 60 wt% or more of Ni.
그리고, 음극은 탄소(C)계 또는 실리콘(Si)계 중 선택되는 1종 또는 2종 이상의 음극활물질을 포함하여 이루어진다.And, the negative electrode includes one or two or more types of negative electrode active materials selected from carbon (C)-based or silicon (Si)-based.
탄소(C)계 음극활물질은 인조흑연, 천연흑연, 흑연화탄소 섬유, 흑연화 메조카본 마이크로비드, 플러렌(fullerene) 및 비정질탄소로 이루어진 군에서 선택되는 적어도 하나의 물질을 사용할 수 있다.The carbon (C)-based negative electrode active material may be at least one material selected from the group consisting of artificial graphite, natural graphite, graphitized carbon fiber, graphitized mesocarbon microbeads, fullerene, and amorphous carbon.
그리고, 실리콘(Si)계 음극 활물질은 실리콘 산화물, 실리콘 입자 및 실리콘 합금 입자 등을 포함한다.And, the silicon (Si)-based negative electrode active material includes silicon oxide, silicon particles, and silicon alloy particles.
한편, 양극 및 음극은 각각의 활물질과 함께 도전재, 바인더 및 용매를 혼합하여 전극 슬러리를 제조한 다음, 전류 집전체 상에 전극 슬러리를 직접 코팅 및 건조하여 제조한다. 이때 전류 집전체로는 알루미늄(Al)을 사용할 수 있으나 이에 한정되는 것은 아니다. 이와 같은 전극 제조 방법은 당해 분야에 널리 알려진 내용이므로 본 명세서에서 상세한 설명은 생략하기로 한다.Meanwhile, the positive and negative electrodes are manufactured by mixing each active material with a conductive material, binder, and solvent to prepare an electrode slurry, and then directly coating and drying the electrode slurry on a current collector. At this time, aluminum (Al) may be used as the current collector, but is not limited thereto. Since this electrode manufacturing method is widely known in the field, detailed description will be omitted in this specification.
바인더로는 각각의 활물질 입자들을 서로 잘 부착시키거나 전류 집전체에 잘 부착시키는 역할을 하며, 예를 들어 폴리비닐알콜, 카르복시메틸셀룰로즈, 히드록시프로필셀룰로즈, 디아세틸셀룰로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌부타디엔 러버, 아크릴레이티드 스티렌부타디엔 러버, 에폭시 수지, 나일론 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.The binder plays a role in adhering each active material particle to each other or to the current collector. For example, polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, polyvinyl chloride, and carboxylic acid. Silized polyvinyl chloride, polyvinyl fluoride, polymers containing ethylene oxide, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrenebutadiene rubber, acrylate. Teed styrenebutadiene rubber, epoxy resin, nylon, etc. can be used, but are not limited thereto.
또한, 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하며, 그 예로 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유, 구리, 니켈, 알루미늄, 은 등의 금속 분말, 금속 섬유 등을 사용할 수 있고, 또한 폴리페닐렌 유도체 등의 도전성 재료를 1종 또는 1종 이상을 혼합하여 사용할 수 있다.In addition, the conductive material is used to provide conductivity to the electrode, and in the battery being constructed, any electronically conductive material can be used as long as it does not cause chemical change. Examples include natural graphite, artificial graphite, carbon black, acetylene black, Metal powders such as Ketjen black, carbon fiber, copper, nickel, aluminum, and silver, and metal fibers can be used. Additionally, conductive materials such as polyphenylene derivatives can be used one type or a mixture of one or more types.
분리막은 양극 및 음극 사이의 단락을 방지하고 리튬 이온의 이동통로를 제공한다. 이러한 분리막은 폴리프로필렌, 폴리에틸렌, 폴리에틸렌/폴리프로필렌, 폴리에틸렌/폴리프로필렌/폴리에틸렌, 폴리프로필렌/폴리에틸렌/폴리프로필렌 등의 폴리올레핀계 고분자막 또는 이들의 다중막, 미세다공성 필름, 직포 및 부직포와 같은 공지된 것이 사용될 수 있다. 또한 다공성의 폴리올레핀 필름에 안정성이 우수한 수지가 코팅된 필름이 사용될 수도 있다.The separator prevents short circuit between the anode and cathode and provides a passage for lithium ions. These separators are known ones such as polyolefin-based polymer membranes such as polypropylene, polyethylene, polyethylene/polypropylene, polyethylene/polypropylene/polyethylene, polypropylene/polyethylene/polypropylene, or multilayers thereof, microporous films, woven fabrics, and non-woven fabrics. can be used Additionally, a porous polyolefin film coated with a highly stable resin may be used.
이하, 본 발명의 실시예 및 비교예를 통하여 본 발명을 설명한다.Hereinafter, the present invention will be described through examples and comparative examples.
<실험 1> 용매의 종류에 따른 난연성 관련 실험<Experiment 1> Flame retardancy-related experiments depending on the type of solvent
전해액의 용매로 사용되는 다양한 종류의 용매에 대하여 난연성 실험 후 용매가 함침된 분리막의 손상도, 용매가 함침된 분리막의 화염테스트 후 표면 상태 및 난연성을 평가하였고, 그 결과를 하기의 표 1과 도 1에 나타내었다.After the flame retardancy test for various types of solvents used as solvents for electrolyte solutions, the damage to the solvent-impregnated separator was evaluated, and the surface condition and flame retardancy were evaluated after the flame test of the solvent-impregnated separator. The results are shown in Table 1 and Figures below. It is shown in 1.
도 1은 용매의 종류 변경에 따른 다양한 샘플의 화염테스트 후 표면 상태를 보여주는 도면이다.Figure 1 is a diagram showing the surface condition after a flame test of various samples according to changes in the type of solvent.
이때 전해액을 모사하기 위하여 표 1과 같은 용매에 리튬염으로 1.0M의 LiTFSI을 첨가하였고, 이렇게 준비된 전해액을 통상의 리튬 이차전지의 분리막으로 사용되는 폴리프로필렌 소재에 충분히 함침시킨 다음 난연성 실험을 실시하였다.At this time, in order to simulate the electrolyte solution, 1.0M LiTFSI as a lithium salt was added to the solvent shown in Table 1, and the electrolyte solution thus prepared was sufficiently impregnated into polypropylene material used as a separator in a typical lithium secondary battery, and then a flame retardancy test was conducted. .
그리고, 함침 분리막 손상도는 평가된 4종류의 시편에 대하여 육안으로 관찰되는 상대적인 손상도를 정성적으로 평가하였고, 난연성 실험은 UL 94 시험을 기준에 의거하여 판정하였으며, first burn과 second burn은 각각 10초간 불꽃에 연소시킨 후 꺼진 시간으로 단위는 초(sec)이고, sec/g로 표시하였다. In addition, the degree of damage to the impregnated separator was qualitatively evaluated by the relative degree of damage observed with the naked eye for the four types of specimens evaluated. The flame retardancy test was determined based on the UL 94 test standard, and first burn and second burn were respectively The unit of time for extinguishing after burning with a flame for 10 seconds is seconds (sec) and expressed as sec/g.
표 1 및 도 1에서 확인할 수 있듯이, 화염테스트 후 No. 4에 따른 분리막 따른 분리막은 No 1 내지 NO. 3에 비하여 상대적으로 분리막의 손상이 거의 없는 것을 확인할 수 있었다. As can be seen in Table 1 and Figure 1, after the flame test, No. Separation membrane according to 4 Separation membrane according to No. 1 to No. Compared to 3, it was confirmed that there was relatively little damage to the separator.
또한, 난연성 측면에서도 No. 4에 따른 분리막 따른 분리막은 No 1 내지 NO. 3에 비하여 상대적으로 난연성이 상당히 우수한 것을 확인할 수 있었다.Also, in terms of flame retardancy, it ranks No. 1. Separation membrane according to 4 Separation membrane according to No. 1 to No. It was confirmed that the flame retardancy was relatively excellent compared to 3.
따라서, 난연성의 향상을 위하여 MPFPE를 용매로 사용할 수 있다는 것을 확인할 수 있었다.Therefore, it was confirmed that MPFPE can be used as a solvent to improve flame retardancy.
<실험 2> 용매의 종류에 따른 리튬염 해리특성 실험<Experiment 2> Lithium salt dissociation characteristics experiment according to the type of solvent
MPFPE의 리튬염 불해리 특성을 보완하기 위하여 리튬염 해리 특성을 갖는 다양한 용매를 MPFPE와 1:1로 혼합한 다음 리튬염의 해리 가능 여부를 확인하였다.In order to complement the lithium salt non-dissociation property of MPFPE, various solvents with lithium salt dissociation properties were mixed 1:1 with MPFPE, and then it was confirmed whether the lithium salt could be dissociated.
이때 MPFPE(제 1 용매)에 혼합되는 용매(제 2 용매)의 종류와 실험 결과를 하기의 표 2와 도 2에 나타내었다.At this time, the type of solvent (second solvent) mixed with MPFPE (first solvent) and the experimental results are shown in Table 2 and Figure 2 below.
도 2는 용매의 종류 변경에 따른 리튬염의 해리특성을 보여주는 도면이다.Figure 2 is a diagram showing the dissociation characteristics of lithium salt according to changes in the type of solvent.
표 2와 도 2에서 확인할 수 있듯이, 용매로 MPFPE을 단독으로 사용한 No. 5의 경우에는 리튬염이 용매에 해리되지 않는 것을 확인할 수 있었다.As can be seen in Table 2 and Figure 2, No. 2 used only MPFPE as a solvent. In case 5, it was confirmed that the lithium salt did not dissociate in the solvent.
반면에, 용매로 MPFPE와 DME를 혼합하여 사용한 No. 6의 경우에는 리튬염이 용매에 해리된 것을 확인할 수 있었다.On the other hand, No. 1 used a mixture of MPFPE and DME as a solvent. In case 6, it was confirmed that the lithium salt was dissociated in the solvent.
그리고, 용매로 MPFPE와 PC를 혼합하여 사용한 No. 7의 경우에는 리튬염이 용매에 해리는 되었지만, 용매로 사용된 MPFPE와 PC의 상분리가 발생하면서 용매로 사용하기 어려운 것을 확인할 수 있었다.In addition, No. 1 used a mixture of MPFPE and PC as a solvent. In case 7, it was confirmed that although the lithium salt was dissociated in the solvent, it was difficult to use it as a solvent as phase separation occurred between MPFPE and PC used as solvents.
따라서, 난연성을 향상시키면서 리튬염을 충분히 해리시키기 위하여 리튬염 불해리 특성을 갖지만 난연성을 갖는 불소화 에테르계 용매인 MPFPE와 리튬염 해리 특성을 갖는 에테르계 용매인 DME를 혼합한 용매를 사용할 수 있다는 것을 확인할 수 있었다.Therefore, in order to sufficiently dissociate the lithium salt while improving flame retardancy, it is possible to use a solvent that is a mixture of MPFPE, a fluorinated ether-based solvent that has lithium salt non-dissociation properties but is flame retardant, and DME, an ether-based solvent that has lithium salt dissociation properties. I was able to confirm.
<실험 3> 제 1 용매와 제 2 용매의 혼합 비율에 따른 이온전도도 및 난연특성 실험 <Experiment 3> Ion conductivity and flame retardant properties experiment according to the mixing ratio of the first and second solvents
제 1 용매와 제 2 용매의 혼합 비율에 따른 이온전도도 및 난연특성을 알아보기 위하여 하기의 표 3과 같이 제 1 용매와 제 2 용매의 혼합 비율을 변경하였고, 그에 따른 전해액의 이온전도도 및 난연특성을 측정하였고, 그 결과를 표 3에 함께 나타내었다.In order to determine the ionic conductivity and flame retardant properties according to the mixing ratio of the first solvent and the second solvent, the mixing ratio of the first solvent and the second solvent was changed as shown in Table 3 below, and the ionic conductivity and flame retardant properties of the electrolyte solution were changed accordingly. was measured, and the results are shown in Table 3.
이때 제 1 용매로는 MPFPE를 사용하였고, 제 2 용매로는 DME를 사용하였다.At this time, MPFPE was used as the first solvent, and DME was used as the second solvent.
그리고 난연특성은 <실험 1>의 난연성 실험에 의거하여 실시하였다.And the flame retardant properties were conducted based on the flame retardancy test in <Experiment 1>.
(MPFPE)First solvent (v/v)
(MPFPE)
(DME)Second solvent (v/v)
(DME)
(mS/cmIon conductivity
(mS/cm
(sec/g)Flame retardant
(sec/g)
표 3에서 확인할 수 있듯이, 제 1 용매인 MPFPE가 50% 이상의 비율로 혼합되는 No. 9 및 No. 10의 경우가 제 1 용매인 MPFPE가 50% 미만의 비율로 혼합되는 No. 7 및 No. 8의 경우보다 난연성이 상당히 향상된 것을 확인할 수 있었다.As can be seen in Table 3, No. 1 in which MPFPE, the first solvent, is mixed in a ratio of 50% or more. 9 and no. Case 10 is No. 1 in which MPFPE, the first solvent, is mixed in a ratio of less than 50%. 7 and no. It was confirmed that flame retardancy was significantly improved compared to case 8.
특히, 제 1 용매와 제 2 용매의 혼합비율이 6:4인 No. 10의 경우에 난연성이 제일 우수한 것을 확인할 수 있었다.In particular, No. 1, where the mixing ratio of the first solvent and the second solvent is 6:4. In the case of 10, it was confirmed that the flame retardancy was the best.
다만, 이온전도도 측면에서는 제 1 용매인 MPFPE의 혼합비율이 증가할수록 점점 저하되는 것을 확인할 수 있었다. 하지만, 이온전도도 측면에서 제 1 용매인 MPFPE의 혼합비율이 증가하더라도 제 1 용매인 MPFPE가 50% 미만의 비율로 혼합되는 No. 7 및 No. 8의 경우보다 제 1 용매인 MPFPE가 50% 이상의 비율로 혼합되는 No. 9 및 No. 10의 경우에서 이온전도도가 저하정도가 낮은 것을 확인할 수 있었다.However, in terms of ionic conductivity, it was confirmed that it gradually decreased as the mixing ratio of MPFPE, the first solvent, increased. However, in terms of ionic conductivity, even if the mixing ratio of MPFPE, the first solvent, increases, No. 1 where MPFPE, the first solvent, is mixed in a ratio of less than 50%. 7 and no. No. 8, in which the first solvent, MPFPE, is mixed in a ratio of 50% or more. 9 and no. In case 10, it was confirmed that the degree of decrease in ionic conductivity was low.
따라서, 난연성을 향상시키면서 이온전도도를 우수하게 유지하기 위하여 제 1 용매와 제 2 용매의 혼합비율은 중량비율로 제 1 용매가 50% 이상이 되도록 혼합하는 것이 바람직하다는 것을 확인할 수 있었다.Therefore, in order to improve flame retardancy and maintain excellent ionic conductivity, it was confirmed that it is preferable to mix the first solvent and the second solvent so that the first solvent is 50% or more by weight.
<실험 4> 리튬염의 농도에 따른 이온전도도 및 방전 용량 실험 <Experiment 4> Ion conductivity and discharge capacity experiment according to lithium salt concentration
제 1 용매와 제 2 용매의 혼합 비율을 6:4로 고정시킨 상태에서 리튬염의 농도를 하기의 표 4와 같이 변경하였고, 그에 따른 전해액의 이온전도도와 그 전해액을 적용한 리튬 이차전지의 화성공정 1st 방전 특성을 측정하였으며, 그 결과를 표 4에 함께 나타내었다.With the mixing ratio of the first solvent and the second solvent fixed at 6:4, the concentration of lithium salt was changed as shown in Table 4 below, and the ionic conductivity of the electrolyte solution and the 1st chemical conversion process of the lithium secondary battery using the electrolyte solution were changed. Discharge characteristics were measured, and the results are shown in Table 4.
이때 제 1 용매로는 MPFPE를 사용하였고, 제 2 용매로는 DME를 사용하였다.At this time, MPFPE was used as the first solvent, and DME was used as the second solvent.
(LiTFSI)lithium salt
(LiTFSI)
(MPFPE)First solvent (v/v)
(MPFPE)
(DME)Second solvent (v/v)
(DME)
(mS/cmIon conductivity
(mS/cm
1st 방전 용량
(mAh/g) chemical process
1st discharge capacity
(mAh/g)
표 4에서 확인할 수 있듯이, 리튬염의 농도가 증가할수록 이온전도도는 점점 저하되지만, 화성공정의 1st 방전 용량은 리튬염의 농도가 증가할수록 점점 증가하다 2.0M을 고점으로 다시 저하되는 것을 확인할 수 있었다.As can be seen in Table 4, as the concentration of lithium salt increases, the ionic conductivity gradually decreases, but the 1st discharge capacity of the chemical process gradually increases as the concentration of lithium salt increases, and then decreases again to a high point of 2.0M.
따라서, 이온전도도와 방전 용량을 고려할 때 리튬염의 농도는 1.0 ~ 2.0 , 바람직하게는 2.0 몰의 농도를 유지하는 것이 좋다는 것을 확인할 수 있었다. 다만, 본 실시예에서는 용매에 종류에 따른 난연성을 확보하는 것이 중요하기 때문에 리튬염의 농도는 0.1 ~ 3.0 몰을 유지하는 범위까지 가능할 것이다.Therefore, considering ionic conductivity and discharge capacity, it was confirmed that it is good to maintain the concentration of lithium salt at 1.0 to 2.0, preferably 2.0 mol. However, in this embodiment, since it is important to secure flame retardancy depending on the type of solvent, the concentration of lithium salt may be maintained in the range of 0.1 to 3.0 mol.
<실험 5> 리튬염의 종류에 따른 방전 용량 및 수명특성 실험 <Experiment 5> Discharge capacity and lifespan characteristics experiment according to the type of lithium salt
제 1 용매와 제 2 용매의 종류를 하기의 표 5와 같이 변경하였고, 그에 따른 전해액을 적용한 리튬 이차전지의 방전 용량 및 수명특성을 측정하였고, 그 결과를 표 5 및 도 3에 나타내었다.The types of the first solvent and the second solvent were changed as shown in Table 5 below, and the discharge capacity and life characteristics of the lithium secondary battery using the corresponding electrolyte were measured, and the results are shown in Table 5 and Figure 3.
도 3은 용매의 종류 변경에 따른 실시예 및 비교예의 방전 용량 및 수명 용량 유지율을 평가한 실험 결과를 보여주는 그래프이다.Figure 3 is a graph showing the results of an experiment evaluating the discharge capacity and life capacity maintenance rate of Examples and Comparative Examples according to changes in the type of solvent.
용매
menstruum
(mAh/g)Chemical process @0.1C 1st discharge capacity
(mAh/g)
(mAh/g)Life characteristics @0.5C 1st discharge capacity
(mAh/g)
(mAh/g)Life characteristics @0.5C 100th discharge capacity
(mAh/g)
표 5 및 도 3에서 확인할 수 있듯이, 종래의 일반적인 리튬 이차전지의 전해액으로 사용되는 EC:EMC=1:1로 혼합한 전해액을 적용한 비교예 비해 본 발명의 실시예에 따른 No. 13의 전해액을 적용한 실시예에서 방전 용량 및 수명특성이 모두 향상된 것을 확인할 수 있었다.As can be seen in Table 5 and Figure 3, compared to the comparative example using an electrolyte mixed at EC:EMC=1:1, which is used as an electrolyte for a conventional lithium secondary battery, No. 1 according to the embodiment of the present invention. In Example 13 where the electrolyte solution was applied, it was confirmed that both discharge capacity and lifespan characteristics were improved.
<실험 6> 리튬염의 종류에 따른 방전 용량 실험 <Experiment 6> Discharge capacity experiment according to the type of lithium salt
제 1 용매와 제 2 용매의 종류를 하기의 표 5와 같이 변경하였고, 그에 따른 전해액을 적용한 리튬 이차전지의 방전 용량 및 수명특성을 측정하였고, 그 결과를 표 6 및 도 4에 나타내었다.The types of the first solvent and the second solvent were changed as shown in Table 5 below, and the discharge capacity and life characteristics of the lithium secondary battery using the corresponding electrolyte were measured, and the results are shown in Table 6 and Figure 4.
도 4는 용매의 종류 변경에 따른 실시예 및 비교예의 출력 성능을 평가한 실험 결과를 보여주는 그래프이다.Figure 4 is a graph showing the results of an experiment evaluating the output performance of Examples and Comparative Examples according to changes in the type of solvent.
용매
menstruum
표 6 및 도 4에서 확인할 수 있듯이, 종래의 일반적인 리튬 이차전지의 전해액으로 사용되는 EC:EMC=1:1로 혼합한 전해액을 적용한 비교예 비해 본 발명의 실시예에 따른 No. 13의 전해액을 적용한 실시예에서 모든 조건에서의 방전 용량이 모두 향상된 것을 확인할 수 있었다.As can be seen in Table 6 and Figure 4, compared to the comparative example using an electrolyte mixed at EC:EMC=1:1, which is used as an electrolyte for a conventional lithium secondary battery, No. 1 according to the embodiment of the present invention. In Example 13 where the electrolyte solution was applied, it was confirmed that the discharge capacity was improved under all conditions.
따라서, 상기의 실험들에서 알 수 있듯이, 전해액을 형성하는 용매로 본 발명에서 제시하고 있는 난연특성을 갖는 불소화 에테르계 용매로 이루어지는 제 1 용매와, 리튬염 해리 특성을 갖는 에테르계 용매로 이루어지는 제 2 용매를 적정 비율로 혼합하여 사용하는 경우에 종래의 일반적인 용매를 사용하는 경우 대비 리튬 이차전지의 난연성과 함께 출력 특성 및 수명 특성이 향상된 것을 확인할 수 있었다.Therefore, as can be seen from the above experiments, a first solvent consisting of a fluorinated ether-based solvent having flame retardant properties suggested in the present invention as a solvent for forming an electrolyte solution, and a second solvent consisting of an ether-based solvent having lithium salt dissociation properties 2 It was confirmed that when the solvent was mixed in an appropriate ratio, the flame retardancy, output characteristics, and lifespan characteristics of the lithium secondary battery were improved compared to when a conventional solvent was used.
특히, 난연성, 출력 특성 및 수명 특성을 모두 향상시키기 위해서는 본 발명에 따른 제 1 용매와 제 2 용매를 10 : 90 ~ 80 : 20, 바람직하게는 60 : 40의 비율로 혼합하는 것이 좋다는 것을 확인할 수 있었다.In particular, it can be confirmed that in order to improve all flame retardancy, output characteristics and life characteristics, it is better to mix the first solvent and the second solvent according to the present invention at a ratio of 10:90 to 80:20, preferably 60:40. there was.
또한, 제 1 용매로는 불소화 에테르계 용매 중 난연특성이 우수한 불소화 에테르계 용매인 1-methoxyheptafluoropropane(MPFPE)을 사용하고, 제 2 용매로는 에테르계 용매 중 리튬염의 해리특성이 우수한 에테르계 용매인 Dimethyl ether(DME)을 적용하는 것이 좋다는 것을 확인할 수 있었다.In addition, 1-methoxyheptafluoropropane (MPFPE), a fluorinated ether-based solvent with excellent flame retardant properties among fluorinated ether-based solvents, is used as the first solvent, and the second solvent is an ether-based solvent with excellent dissociation characteristics of lithium salts among ether-based solvents. It was confirmed that it is better to apply dimethyl ether (DME).
본 발명을 첨부 도면과 전술된 바람직한 실시예를 참조하여 설명하였으나, 본 발명은 그에 한정되지 않으며, 후술되는 특허청구범위에 의해 한정된다. 따라서, 본 기술분야의 통상의 지식을 가진 자라면 후술되는 특허청구범위의 기술적 사상에서 벗어나지 않는 범위 내에서 본 발명을 다양하게 변형 및 수정할 수 있다.Although the present invention has been described with reference to the accompanying drawings and the above-described preferred embodiments, the present invention is not limited thereto and is limited by the claims described below. Accordingly, those skilled in the art can make various changes and modifications to the present invention without departing from the technical spirit of the claims described later.
Claims (9)
리튬염 불해리 특성을 갖는 불소화 에테르계 용매로 이루어지는 제 1 용매와;
리튬염 해리 특성을 갖는 에테르계 용매로 이루어지는 제 2 용매를 포함하는 리튬 이차전지용 전해액.
Lithium salt;
a first solvent consisting of a fluorinated ether-based solvent having lithium salt non-dissociation properties;
An electrolyte solution for a lithium secondary battery comprising a second solvent consisting of an ether-based solvent having lithium salt dissociation properties.
상기 제 1 용매는 하기의 [식 1]로 표현되는 1-methoxyheptafluoropropane인 불소화 에테르계 용매를 포함하는 것을 특징으로 하는 리튬 이차전지용 전해액.
……… [식 1]In claim 1,
The first solvent is an electrolyte solution for a lithium secondary battery, characterized in that it contains a fluorinated ether-based solvent, which is 1-methoxyheptafluoropropane, represented by [Formula 1] below.
… … … [Equation 1]
상기 제 2 용매는 Dimethyl ether(DME)를 포함하는 것을 특징으로 하는 리튬 이차전지용 전해액.
In claim 1,
The second solvent is an electrolyte solution for a lithium secondary battery, characterized in that it contains dimethyl ether (DME).
상기 제 1 용매와 제 2 용매의 혼합비율은 중량비율로 상기 제 1 용매가 50% 이상을 혼합되는 것을 특징으로 하는 리튬 이차전지용 전해액.
In claim 1,
An electrolyte solution for a lithium secondary battery, characterized in that the mixing ratio of the first solvent and the second solvent is 50% or more of the first solvent by weight.
상기 제 1 용매와 제 2 용매의 혼합비율은 중량비율로 10 : 90 ~ 80 : 20인 것을 특징으로 하는 리튬 이차전지용 전해액.
In claim 4,
An electrolyte solution for a lithium secondary battery, characterized in that the mixing ratio of the first solvent and the second solvent is 10:90 to 80:20 in weight ratio.
상기 리튬염의 농도는 0.1 ~ 3.0 몰인 것을 특징으로 하는 리튬 이차전지용 전해액.
In claim 1,
An electrolyte solution for a lithium secondary battery, characterized in that the concentration of the lithium salt is 0.1 to 3.0 mol.
상기 리튬염은 LiPF6, LiBF4, LiClO4, LiCl, LiBr, LiI, LiB10Cl10, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, LiN(SO2C2F5)2, Li(CF3SO2)2N, LiC4F9SO3, LiB(C6H5)4, LiB(C2O4)2, LiPO2F2, Li(SO2F)2N, LiFSI 또는 (CF3SO2)2NLi로 이루어진 군에서 선택되는 1종 또는 2종 이상이 혼합된 것을 특징으로 하는 리튬 이차전지용 전해액.
In claim 1,
The lithium salt is LiPF 6 , LiBF 4 , LiClO 4 , LiCl, LiBr, LiI, LiB 10 Cl 10 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, LiN(SO 2 C 2 F 5 ) 2 , Li(CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , LiB(C 6 H 5 ) 4 , LiB(C 2 O 4 ) 2 , LiPO 2 F 2 , Li(SO 2 F) 2 N, LiFSI, or (CF 3 SO 2 ) 2 NLi. An electrolyte solution for a lithium secondary battery, characterized in that one or two or more types are mixed.
A lithium secondary battery containing the electrolyte of claim 1.
Ni, Co 및 Mn으로 이루어진 양극활물질을 포함하는 양극;
탄소(C)계 또는 실리콘(Si)계 중 선택되는 1종 또는 2종 이상의 음극활물질을 포함하는 음극;
상기 양극과 음극 사이에 개재되는 분리막을 더 포함하는 리튬 이차전지.
In claim 8,
A positive electrode containing a positive electrode active material consisting of Ni, Co, and Mn;
A negative electrode containing one or two or more types of negative electrode active materials selected from carbon (C)-based or silicon (Si)-based;
A lithium secondary battery further comprising a separator interposed between the positive electrode and the negative electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220178440A KR20240097028A (en) | 2022-12-19 | 2022-12-19 | Electrolyte solution for lithium secondary battery and Lithium secondary battery comprising the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220178440A KR20240097028A (en) | 2022-12-19 | 2022-12-19 | Electrolyte solution for lithium secondary battery and Lithium secondary battery comprising the same |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20240097028A true KR20240097028A (en) | 2024-06-27 |
Family
ID=91713759
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020220178440A KR20240097028A (en) | 2022-12-19 | 2022-12-19 | Electrolyte solution for lithium secondary battery and Lithium secondary battery comprising the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20240097028A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070001196A (en) | 2004-03-23 | 2007-01-03 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | Non-aqueous solvent mixture and non-aqueous electrolytic solution containing such mixture |
-
2022
- 2022-12-19 KR KR1020220178440A patent/KR20240097028A/en unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070001196A (en) | 2004-03-23 | 2007-01-03 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | Non-aqueous solvent mixture and non-aqueous electrolytic solution containing such mixture |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101202863B1 (en) | Negative electrode for battery and lithium ion battery using the same | |
KR101440347B1 (en) | Anode Having Multi-Layer Structure for Secondary Battery and Lithium Secondary Battery Including The Same | |
KR20190030345A (en) | Pre-lithiation method of negative electrode for secondary battery | |
US20240282949A1 (en) | Positive electrode plate and lithium-ion secondary battery containing same | |
KR20230101255A (en) | Electrolyte solution for lithium secondary battery and Lithium secondary battery comprising the same | |
KR20220048803A (en) | Electrolyte solution for lithium secondary battery and Lithium secondary battery comprising the same | |
KR20240097028A (en) | Electrolyte solution for lithium secondary battery and Lithium secondary battery comprising the same | |
US11742521B2 (en) | Electrolyte solution for lithium secondary battery and lithium secondary battery comprising same | |
EP3985774B1 (en) | Electrolyte for lithium secondary battery and lithium secondary battery comprising the same | |
US20240178450A1 (en) | Electrolyte solution for lithium secondary battery and lithium secondary battery including same | |
US11670801B2 (en) | Electrolyte solution for lithium secondary battery and lithium secondary battery comprising same | |
US20240170724A1 (en) | Electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same | |
US20220131191A1 (en) | Electrolyte solution for lithium secondary battery and lithium secondary battery including the same | |
US20240063397A1 (en) | Ion conducting molecular thermal blankets | |
US20210151796A1 (en) | Electrolytic Solution for Lithium Secondary Batteries and Lithium Secondary Battery Including the Same | |
KR20230133602A (en) | Electrolyte solution for lithium secondary battery and Lithium secondary battery comprising the same | |
KR20230170418A (en) | Electrolyte solution for lithium secondary battery and Lithium secondary battery comprising the same | |
KR20220048784A (en) | Electrolyte solution for lithium secondary battery and Lithium secondary battery comprising the same | |
KR20240061927A (en) | Electrolyte solution for lithium secondary battery and Lithium secondary battery comprising the same | |
KR20230133603A (en) | Electrolyte solution for lithium secondary battery and Lithium secondary battery comprising the same | |
KR20230170419A (en) | Electrolyte solution for lithium secondary battery and Lithium secondary battery comprising the same | |
KR20240061928A (en) | Electrolyte solution for lithium secondary battery and Lithium secondary battery comprising the same | |
KR20240061946A (en) | Electrolyte solution for lithium secondary battery and Lithium secondary battery comprising the same | |
KR20240061926A (en) | Electrolyte solution for lithium secondary battery and Lithium secondary battery comprising the same | |
KR20240060146A (en) | Electrolyte solution for lithium secondary battery and Lithium secondary battery comprising the same |