KR20240094630A - Catalyst production method for carbon nanotubes with increased yield and carbon nanotubes prepared therefrom - Google Patents

Catalyst production method for carbon nanotubes with increased yield and carbon nanotubes prepared therefrom Download PDF

Info

Publication number
KR20240094630A
KR20240094630A KR1020220177064A KR20220177064A KR20240094630A KR 20240094630 A KR20240094630 A KR 20240094630A KR 1020220177064 A KR1020220177064 A KR 1020220177064A KR 20220177064 A KR20220177064 A KR 20220177064A KR 20240094630 A KR20240094630 A KR 20240094630A
Authority
KR
South Korea
Prior art keywords
catalyst
carbon nanotubes
support
precursor
solution
Prior art date
Application number
KR1020220177064A
Other languages
Korean (ko)
Inventor
박영수
박수련
최영철
이상원
김동영
김원석
Original Assignee
재단법인 한국탄소산업진흥원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 한국탄소산업진흥원 filed Critical 재단법인 한국탄소산업진흥원
Priority to KR1020220177064A priority Critical patent/KR20240094630A/en
Publication of KR20240094630A publication Critical patent/KR20240094630A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0228Coating in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/881Molybdenum and iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 크기가 작은 촉매를 담지체에 여러 번에 나눠 반복적으로 담지하여 설정된 양의 촉매를 담지체에 담지시킨 촉매/담지체를 제조한다. 이로 인해 작은 크기의 촉매를 고함량으로 담지체에 담지할 수 있다. 따라서 설정된 양의 촉매를 한꺼번에 담지체에 담지할 때 큰 촉매가 형성되어 직경이 큰 탄소나노튜브가 합성되는 것을 방지하여, 결정성이 높으면서도 직경이 작은 탄소나노튜브(3nm 이하)를 높은 수율로 합성할 수 있다. 또한 결정성이 높으면서도 직경이 작은 탄소나노튜브의 합성을 위한 작은 크기의 촉매의 대량 합성이 가능해져 생산가격을 낮출 수 있다. The present invention manufactures a catalyst/support in which a set amount of catalyst is supported on the support by repeatedly supporting a small catalyst on the support. Because of this, a high content of a small-sized catalyst can be supported on the carrier. Therefore, when a set amount of catalyst is supported on a carrier at once, a large catalyst is formed, preventing the synthesis of large-diameter carbon nanotubes, producing highly crystalline but small-diameter carbon nanotubes (less than 3 nm) in high yield. It can be synthesized. In addition, mass synthesis of small-sized catalysts for the synthesis of carbon nanotubes with high crystallinity and small diameter is possible, thereby lowering the production price.

Description

탄소나노튜브 수율이 증가된 탄소나노튜브용 촉매 제조 방법 및 이로부터 제조한 탄소나노튜브{Catalyst production method for carbon nanotubes with increased yield and carbon nanotubes prepared therefrom}Catalyst production method for carbon nanotubes with increased yield and carbon nanotubes prepared therefrom}

본 발명은 탄소나노튜브 수율이 증가된 탄소나노튜브용 촉매 제조 방법 및 이로부터 제조한 탄소나노튜브에 관한 것이다.The present invention relates to a method for producing a catalyst for carbon nanotubes with increased carbon nanotube yield and to carbon nanotubes produced therefrom.

전기자동차의 주행거리 향상을 위해서는 리튬 배터리 충전용량을 높일 필요가 있다. 최근 리튬 배터리 충전용량을 높이기 위하여 고용량 음극재를 사용하거나, 리튬을 저장하는 소재를 늘리고 도전재의 양을 줄이는 등의 다양한 시도가 이루어지고 있다. In order to improve the driving range of electric vehicles, it is necessary to increase the charging capacity of lithium batteries. Recently, various attempts have been made to increase the charging capacity of lithium batteries, such as using high-capacity anode materials, increasing materials that store lithium, and reducing the amount of conductive materials.

그 중에서도 도전재의 양을 줄이기 위하여 기존의 종횡비가 낮은 카본블랙에서 종횡비가 높은 탄소나노튜브를 사용하고 있다. 탄소나노튜브를 도전재로 사용함으로써 도전재의 양을 크게 줄이면서도 같은 전도성을 나타내고 있다. Among them, in order to reduce the amount of conductive material, carbon nanotubes with a high aspect ratio are used instead of the existing low aspect ratio carbon black. By using carbon nanotubes as a conductive material, the amount of conductive material is greatly reduced, but the same conductivity is achieved.

그럼에도 불구하고, 최근 더 적은 양의 도전재 사용을 위하여 직경이 더 작으면서도 결정성이 우수한 탄소나노튜브의 생산에 대한 연구가 진행되고 있다. 그러나 탄소나노튜브 합성을 위한 작은 크기의 촉매의 대량 합성이 어려워, 생산가격을 낮추는데 어려움을 겪고 있다.Nevertheless, research has recently been conducted on the production of carbon nanotubes with smaller diameters and excellent crystallinity in order to use smaller amounts of conductive materials. However, it is difficult to mass synthesize small-sized catalysts for carbon nanotube synthesis, making it difficult to lower production prices.

한국등록특허(10-1446116)Korean registered patent (10-1446116)

본 발명의 목적은, 상술한 문제점을 해결할 수 있는 탄소나노튜브 수율이 증가된 탄소나노튜브용 촉매 제조 방법 및 이로부터 제조한 탄소나노튜브를 제공하는 데 있다.The purpose of the present invention is to provide a method for producing a catalyst for carbon nanotubes with increased carbon nanotube yield that can solve the above-mentioned problems, and carbon nanotubes produced therefrom.

상기 목적을 달성하기 위한 탄소나노튜브 수율이 증가된 탄소나노튜브용 촉매 제조 방법은,A method for producing a catalyst for carbon nanotubes with increased carbon nanotube yield to achieve the above purpose,

담지체를 용매에 분산시킨 담지체 용액을 만드는 제1단계;A first step of making a carrier solution in which the carrier is dispersed in a solvent;

크기가 작은 촉매 전구체의 전체 사용량의 1/n을 용매에 분산시킨 전구체 용액을 만드는 제2단계;A second step of making a precursor solution in which 1/n of the total amount of small catalyst precursors dispersed in a solvent;

상기 담지체 용액과 상기 전구체 용액을 혼합하여 상기 담지체에 상기 촉매 전구체를 부착시킨 전구체/담지체 용액을 만드는 제3단계;A third step of mixing the support solution and the precursor solution to create a precursor/support solution in which the catalyst precursor is attached to the support;

상기 전구체/담지체 용액을 필터로 여과하고 남은 여과물을 건조 및 소성하여 상기 담지체에 촉매가 담지된 촉매/담지체를 만드는 제4단계; 및A fourth step of filtering the precursor/support solution through a filter and drying and calcining the remaining filtrate to produce a catalyst/support in which the catalyst is supported on the support; and

상기 담지체 대신 상기 촉매/담지체를 사용하여, 상기 제1단계 내지 상기 제4단계를 (n-1)회 더 반복하여, 최종적으로 담지할 촉매 전체가 담지된 촉매/담지체를 만들어내는 제5단계를 포함하는 것을 특징으로 한다.An agent that uses the catalyst/support instead of the support, repeats the first to fourth steps (n-1) more times, and finally produces a catalyst/support on which the entire catalyst to be supported is supported. It is characterized by including 5 steps.

또한, 상기 목적은,In addition, the above purpose is to

상기 탄소나노튜브 수율이 증가된 탄소나노튜브용 촉매 제조 방법에 의해 제조된 탄소나노튜브에 의해 달성된다.The carbon nanotube yield is achieved by carbon nanotubes produced by a method for producing a catalyst for carbon nanotubes with increased carbon nanotube yield.

본 발명은 크기가 작은 촉매를 담지체에 여러 번에 나눠 반복적으로 담지하여 설정된 양의 촉매를 담지체에 담지시킨 촉매/담지체를 제조한다. 이로 인해 작은 크기의 촉매를 고함량으로 담지체에 담지할 수 있다. 따라서 설정된 양의 촉매를 한꺼번에 담지체에 담지할 때 큰 촉매가 형성되어 직경이 큰 탄소나노튜브가 합성되는 것을 방지하여, 결정성이 높으면서도 직경이 작은 탄소나노튜브(3nm 이하)를 높은 수율로 합성할 수 있다. 또한 결정성이 높으면서도 직경이 작은 탄소나노튜브의 합성을 위한 작은 크기의 촉매의 대량 합성이 가능해져 생산가격을 낮출 수 있다. The present invention manufactures a catalyst/support in which a set amount of catalyst is supported on the support by repeatedly supporting a small catalyst on the support. Because of this, a high content of a small-sized catalyst can be supported on the carrier. Therefore, when a set amount of catalyst is supported on a carrier at once, a large catalyst is formed, preventing the synthesis of large-diameter carbon nanotubes, producing highly crystalline but small-diameter carbon nanotubes (less than 3 nm) in high yield. It can be synthesized. In addition, mass synthesis of small-sized catalysts for the synthesis of carbon nanotubes with high crystallinity and small diameter is possible, thereby lowering the production price.

본 발명은 담지체로 마그네시아(MgO) 분말을 사용하고, 주촉매 전구체로 질산철(iron nitrate) 분말, 조촉매로 몰리브데넘산암모늄(ammonium molybdate)을 사용한다. 이로 인해, 마그네시아에 크기가 작은 촉매가 담지되어, 직경이 작고 결정성이 우수한 탄소나노튜브를 대량으로 합성할 수 있다.The present invention uses magnesia (MgO) powder as a carrier, iron nitrate powder as a main catalyst precursor, and ammonium molybdate as a cocatalyst. As a result, a small catalyst is supported on magnesia, making it possible to synthesize carbon nanotubes with a small diameter and excellent crystallinity in large quantities.

도 1은 본 발명의 일 실시예에 따른 를 나타낸 탄소나노튜브 수율이 증가된 탄소나노튜브용 촉매 제조 방법을 나타낸 순서도다.
도 2는 담지 횟수에 따라 담지체에 촉매가 담지된 모습을 나타낸 모식도로, (a)담지 전 (b)1회 담지 (c)2회 담지 (d)3회 담지 (e)4회 담지 상태를 나타낸다.
도 3은 도 2에 도시된 각 모습의 실제 사진이다.
도 4는 담지 횟수에 따라 실시예 1, 실시예 2, 실시예 3, 실시예 4에 의해 합성한 탄소나노튜브를 나타낸 모식도로, (a)담지 전 (b)1회 담지(실시예 1) (c)2회 담지(실시예 2) (d)3회 담지(실시예 3) (e)4회 담지(실시예 4)를 나타낸다.
도 5는 담지 횟수에 따라 실시예 1, 실시예 2, 실시예 3, 실시예 4에 의해 합성한 탄소나노튜브를 나타낸 주사전자현미경(Scanning Electron Microscope, SEM) 사진으로, (a)실시예 1 (b)실시예 2 (c)실시예 3 (d)실시예 4에 따라 합성된 탄소나노튜브를 나타낸다.
도 6은 비교예 1에 의해 합성한 탄소나노튜브의 주사전자현미경 사진이다.
Figure 1 is a flowchart showing a method for producing a catalyst for carbon nanotubes with increased carbon nanotube yield according to an embodiment of the present invention.
Figure 2 is a schematic diagram showing the catalyst supported on the carrier according to the number of loadings, (a) before loading (b) supported once (c) supported twice (d) supported three times (e) supported four times represents.
Figure 3 is an actual photo of each appearance shown in Figure 2.
Figure 4 is a schematic diagram showing carbon nanotubes synthesized by Example 1, Example 2, Example 3, and Example 4 according to the number of loading, (a) before loading (b) once loading (Example 1) (c) Supporting 2 times (Example 2), (d) Supporting 3 times (Example 3), and (e) Supporting 4 times (Example 4).
Figure 5 is a scanning electron microscope (SEM) photograph showing carbon nanotubes synthesized by Example 1, Example 2, Example 3, and Example 4 according to the number of loadings, (a) Example 1 (b) Example 2 (c) Example 3 (d) shows carbon nanotubes synthesized according to Example 4.
Figure 6 is a scanning electron microscope photograph of carbon nanotubes synthesized in Comparative Example 1.

이하, 본 발명의 일 실시예에 따른 탄소나노튜브 수율이 증가된 탄소나노튜브용 촉매 제조 방법 및 이로부터 제조한 탄소나노튜브를 자세히 설명한다. Hereinafter, a method for producing a catalyst for carbon nanotubes with increased carbon nanotube yield according to an embodiment of the present invention and carbon nanotubes produced therefrom will be described in detail.

도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 탄소나노튜브 수율이 증가된 탄소나노튜브용 촉매 제조 방법은,As shown in Figure 1, the method for producing a catalyst for carbon nanotubes with increased carbon nanotube yield according to an embodiment of the present invention,

담지체를 용매에 분산시킨 담지체 용액을 만드는 제1단계(S11);A first step (S11) of making a carrier solution in which the carrier is dispersed in a solvent;

크기가 작은 촉매 전구체의 전체 사용량의 1/n을 용매에 분산시킨 전구체 용액을 만드는 제2단계(S12);A second step (S12) of creating a precursor solution in which 1/n of the total amount of small catalyst precursors is dispersed in a solvent;

상기 담지체 용액과 상기 전구체 용액을 혼합하여 상기 담지체에 상기 촉매 전구체를 부착시킨 전구체/담지체 용액을 만드는 제3단계(S13);A third step (S13) of mixing the carrier solution and the precursor solution to create a precursor/support solution in which the catalyst precursor is attached to the carrier;

상기 전구체/담지체 용액을 필터로 여과하고 남은 여과물을 건조 및 소성하여 상기 담지체에 촉매가 담지된 촉매/담지체를 수득하는 제4단계(S14); 및A fourth step (S14) of filtering the precursor/support solution through a filter and drying and calcining the remaining filtrate to obtain a catalyst/support containing the catalyst on the support; and

상기 담지체 대신 상기 촉매/담지체를 사용하여, 상기 제1단계 내지 상기 제4단계를 (n-1)회 더 반복하여, 최종적으로 담지할 촉매 전체가 담지된 촉매/담지체를 만들어내는 제5단계(S15)로 구성된다.An agent that uses the catalyst/support instead of the support, repeats the first to fourth steps (n-1) more times, and finally produces a catalyst/support on which the entire catalyst to be supported is supported. It consists of 5 steps (S15).

이하, 제1단계(S11)를 설명한다.Hereinafter, the first step (S11) will be described.

담지체를 용매에 분산시킨 담지체 용액을 만든다. A carrier solution is prepared by dispersing the carrier in a solvent.

담지체는 다공성 물질로 구형으로 형성된다. 담지체는 마그네시아(MgO), 알루미나(Al2O3), 실리카(SiO2) 등이 사용된다. 마그네시아(MgO), 알루미나(Al2O3), 실리카(SiO2)는 촉매를 넓게 담지하는데 장점이 있는 재료다. 본 실시예에서는 마그네시아(MgO) 분말이 담지체로 사용된다.The support is made of a porous material and is formed into a sphere. Magnesia (MgO), alumina (Al 2 O 3 ), silica (SiO 2 ), etc. are used as carriers. Magnesia (MgO), alumina (Al 2 O 3 ), and silica (SiO 2 ) are materials that have the advantage of widely supporting catalysts. In this example, magnesia (MgO) powder is used as a carrier.

담지체는 용매에 넣고 약 1시간 동안 저어서 분산시킨다. 본 실시예에서 용매는 물(DI water)이다.The carrier is placed in a solvent and stirred for about 1 hour to disperse. In this example, the solvent is water (DI water).

이하, 제2단계(S12)를 설명한다.Hereinafter, the second step (S12) will be described.

크기가 작은 촉매 전구체의 전체 사용량의 1/n을 용매에 분산시킨 전구체 용액을 만든다. Create a precursor solution in which 1/n of the total amount of small catalyst precursors is dispersed in a solvent.

제2단계(S12)는, In the second step (S12),

전체 사용량의 1/n의 주촉매 전구체를 용매에 분산시킨 제1전구체 용액을 만드는 단계;Creating a first precursor solution in which 1/n of the total amount of main catalyst precursor is dispersed in a solvent;

전체 사용량의 1/n의 조촉매 전구체를 용매에 분산시킨 제2전구체 용액을 만드는 단계; 및Creating a second precursor solution in which 1/n of the total amount of cocatalyst precursor is dispersed in a solvent; and

상기 제1전구체 용액과 상기 제1전구체 용액을 혼합하여 상기 전구체 용액을 만드는 단계로 구성된다.It consists of making the precursor solution by mixing the first precursor solution with the first precursor solution.

여기서 n은 제1단계(S11) 내지 제4단계(S14)의 실시 횟수로, 촉매의 담지 횟수를 의미한다. Here, n is the number of times the first step (S11) to the fourth step (S14) is performed and means the number of times the catalyst is supported.

직경이 작은 탄소나노튜브(3nm 이하)를 합성하기 위해 크기가 작은 촉매의 촉매 전구체를 이용한다. 본 실시예에서 주촉매 전구체로 질산철(iron nitrate) 분말이 사용되고, 조촉매는 몰리브데늄산암모늄(ammonium molybdate) 분말이 사용된다. To synthesize small-diameter carbon nanotubes (less than 3 nm), catalyst precursors for small-sized catalysts are used. In this example, iron nitrate powder is used as the main catalyst precursor, and ammonium molybdate powder is used as the cocatalyst.

주촉매 전구체와 조촉매 전구체는 각각 용매에 넣고 약 1시간 동안 저어서 제1전구체 용액과 제2전구체 용액을 만든다. 본 실시예에서 용매는 물이다.The main catalyst precursor and the cocatalyst precursor are each placed in a solvent and stirred for about 1 hour to create a first precursor solution and a second precursor solution. In this example the solvent is water.

제1전구체 용액과 제2전구체 용액을 혼합하여 약 10분 동안 저어서 주촉매 전구체와 조촉매 전구체가 분산된 전구체 용액을 만든다.The first precursor solution and the second precursor solution are mixed and stirred for about 10 minutes to create a precursor solution in which the main catalyst precursor and cocatalyst precursor are dispersed.

이하, 제3단계(S13)를 설명한다.Hereinafter, the third step (S13) will be described.

담지체 용액과 전구체 용액을 혼합하여 전구체/담지체 용액을 만든다. 담지체 용액과 전구체 용액을 혼합하면, 담지체에 촉매 전구체가 부착된다.A precursor/support solution is created by mixing the carrier solution and the precursor solution. When the support solution and the precursor solution are mixed, the catalyst precursor is attached to the support.

전구체/담지체 용액은 담지체 용액에 전구체 용액을 약 5분에 걸쳐 혼합한 후 약 1시간 동안 계속 저어서 만든다.The precursor/support solution is made by mixing the precursor solution with the carrier solution over about 5 minutes and then continuing to stir for about 1 hour.

이하, 제4단계(S14)를 설명한다.Hereinafter, the fourth step (S14) will be described.

전구체/담지체 용액을 필터로 여과한 후 물기 일부를 제거한다. 필터는 200nm 기공(pore)을 가진 PvdF(Polyvinylidene Fluoride) 필터가 사용된다. The precursor/carrier solution is filtered through a filter and some of the water is removed. The filter is a PvdF (Polyvinylidene Fluoride) filter with 200 nm pores.

여과물은 건조기에서 110℃에서 약 8시간 동안 건조한다.The filtrate is dried in a dryer at 110°C for about 8 hours.

본 실시예에서 건조된 여과물은 몰리브데늄(Mo)-철(Fe)-마그네시아(MgO)가 혼합되어 있는 분말이다. In this example, the dried filtrate is a powder containing a mixture of molybdenum (Mo)-iron (Fe)-magnesia (MgO).

건조된 여과물을 소성로에 넣고 400℃에서 1시간동안 소성하면, 담지체에 촉매가 담지된 촉매/담지체가 제조된다. When the dried filtrate is placed in a calcination furnace and calcined at 400° C. for 1 hour, a catalyst/support in which a catalyst is supported on a support is manufactured.

본 실시예에서는 마그네시아(MgO)의 표면에 몰리브데늄(Mo)과 철(Fe)이 담지된다.In this embodiment, molybdenum (Mo) and iron (Fe) are supported on the surface of magnesia (MgO).

이하, 제5단계(S15)를 설명한다.Hereinafter, the fifth step (S15) will be described.

담지체 대신 촉매/담지체를 사용하여, 제1단계(S11) 내지 제4단계(S14)를 (n-1)회 더 반복하여, 최종적으로 담지할 촉매 전체가 담지된 촉매/담지체를 만들어낸다.Using a catalyst/support instead of a support, the first step (S11) to the fourth step (S14) are repeated (n-1) more times to finally create a catalyst/support on which the entire catalyst to be supported is supported. pay it out

여기서, n은 1보다 큰 정수로, 담지 횟수는 적어도 2회 이상 실시된다. 본 실시예에서 n=4로, 제1단계(S11) 내지 제4단계(S14)를 총 4회 수행하여 담지체에 촉매가 4회에 나누어 담지하게 된다.Here, n is an integer greater than 1, and the number of loadings is performed at least two times. In this example, n = 4, the first step (S11) to the fourth step (S14) are performed a total of four times, so that the catalyst is supported on the carrier four times.

도 2 및 도 3에 도시된 바와 같이, 제1단계(S11) 내지 제4단계(S14)를 1회에서 4회까지 반복적으로 실시하면, 크기가 작은 촉매가 크기가 작은 상태로 담지체에 반복적으로 담지되어 균일하게 도포된다. As shown in Figures 2 and 3, when the first step (S11) to the fourth step (S14) are repeatedly performed from one to four times, a small catalyst is repeatedly deposited on the support in a small size. It is supported and applied evenly.

[탄소나노튜브(carbon nanotube, CNT)의 합성][Synthesis of carbon nanotubes (CNT)]

본 발명의 일 실시예에 따른 탄소나노튜브(CNT) 수율이 증가된 탄소나노튜브용 촉매 제조 방법으로 제조된 촉매/담지체는 600℃에서 1시간 동안 수소 분위기에서 처리한 후 상온이 될 때까지 기다려 수거한다. 이렇게 처리한 촉매/담지체는 아르곤 분위기의 반응기에 넣고 900℃ 까지 승온시킨다. 가열된 반응기는 아르곤 대신에 메탄 0.5SLM(standard litters per minute)과 수소 0.25SLM을 약 40분간 흘려준다. 담지체에 담지된 촉매로 인해 탄소나노튜브(CNT)가 합성되고, 탄소나노튜브(CNT)가 성장하면서 촉매/담지체를 감싸게 된다(도 3 참조).The catalyst/support manufactured by the method for producing a catalyst for carbon nanotubes with increased carbon nanotube (CNT) yield according to an embodiment of the present invention was treated in a hydrogen atmosphere at 600°C for 1 hour and then heated until room temperature. Wait and collect. The catalyst/support treated in this way is placed in a reactor in an argon atmosphere and the temperature is raised to 900°C. The heated reactor flows 0.5 SLM (standard litters per minute) of methane and 0.25 SLM of hydrogen instead of argon for about 40 minutes. Carbon nanotubes (CNTs) are synthesized due to the catalyst supported on the support, and as the carbon nanotubes (CNTs) grow, they surround the catalyst/support (see Figure 3).

<실시예 1: 1회 담지><Example 1: One-time loading>

담지체로 마그네시아(MgO) 분말 10g을 1000g의 물(DI water)에 넣고, 마그네틱 스터러로 1시간 저어준다. 조촉매 전구체로 몰리브데넘산암모늄(ammonium molybdate) 분말 0.20g을 물 200g에 넣고 녹이며, 주촉매 전구체로 질산철(iron nitrate) 분말 1.5g도 물 200g에 넣고 1시간 동안 각각 저어준다. 이 후 질산철(iron nitrate) 수용액 200g 정도와 몰리브데넘산암모늄(ammonium molybdate) 수용액 200g 정도를 먼저 10분간 혼합한 후, 이를 MgO가 혼합되어 있는 수용액 1000g에 약 5분간에 걸처 혼합한 후, 약 1시간 동안 계속 저어준다. 이 후 200nm 기공을 가진 PvdF 필터를 이용하여 필터한 후 물기 일부를 제거하고, 110℃에서 약 8시간 동안 건조한다. 건조한 몰리브데늄(Mo)-철(Fe)-마그네시아(MgO)가 혼합되어 있는 분말을 400℃의 소성로에 넣고 1시간 소성한다.As a carrier, add 10 g of magnesia (MgO) powder to 1000 g of water (DI water) and stir with a magnetic stirrer for 1 hour. Dissolve 0.20 g of ammonium molybdate powder as a co-catalyst precursor in 200 g of water, and add 1.5 g of iron nitrate powder as a main catalyst precursor to 200 g of water and stir for 1 hour. Afterwards, about 200 g of an aqueous solution of iron nitrate and about 200 g of an aqueous solution of ammonium molybdate were first mixed for 10 minutes, and then mixed with 1000 g of an aqueous solution containing MgO for about 5 minutes. Continue stirring for about 1 hour. Afterwards, it is filtered using a PvdF filter with 200 nm pores, some of the water is removed, and dried at 110°C for about 8 hours. The dried molybdenum (Mo)-iron (Fe)-magnesia (MgO) mixed powder is placed in a sintering furnace at 400°C and fired for 1 hour.

<실시예 2: 2회 담지> <Example 2: Loading twice>

실시예 1의 방법에 의해 합성한 촉매가 담지된 마그네시아(MgO) 분말(촉매/담지체)을 10g으로 중량한 후 실시예 1의 방법을 1회 더 반복한다.After weighing 10 g of magnesia (MgO) powder (catalyst/support) on which the catalyst synthesized by the method of Example 1 was supported, the method of Example 1 was repeated one more time.

<실시예 3: 3회 담지> <Example 3: 3 times loading>

실시예 1의 방법에 의해 합성한 촉매가 담지된 마그네시아(MgO) 분말(촉매/담지체)을 10g으로 중량한 후 실시예 1의 방법을 2회 더 반복한다.After weighing 10 g of magnesia (MgO) powder (catalyst/support) on which the catalyst synthesized by the method of Example 1 was supported, the method of Example 1 was repeated two more times.

<실시예 4: 4회 담지> <Example 4: Loading 4 times>

실시예 1의 방법에 의해 합성한 촉매가 담지된 마그네시아(MgO) 분말(촉매/담지체)을 10g으로 중량한 후 실시예 1의 방법을 3회 더 반복한다.After weighing 10 g of magnesia (MgO) powder (catalyst/support) on which the catalyst synthesized by the method of Example 1 was supported, the method of Example 1 was repeated three more times.

<비교예 1> <Comparative Example 1>

실시예 1의 방법과 동일한 방법으로 실시한다. 단 몰리브데넘산암모늄(ammonium molybdate)의 양은 0.8g으로, 질산철(iron nitrate)의 양은 6.0g으로 하여 실시예 4에서 사용된 촉매의 전체 사용량을 사용한다.This was carried out in the same manner as in Example 1. However, the amount of ammonium molybdate was set to 0.8 g, the amount of iron nitrate was set to 6.0 g, and the total amount of catalyst used in Example 4 was used.

<실험예 1> <Experimental Example 1>

실시예 1, 실시예 2, 실시예 3, 실시예 4 및 비교예 1에서 제조된 촉매/담지체를 이용하여 탄소나노튜브(CNT)를 합성한다. Carbon nanotubes (CNTs) were synthesized using the catalyst/support prepared in Example 1, Example 2, Example 3, Example 4, and Comparative Example 1.

도 4는 담지 횟수에 따라 실시예 1, 실시예 2, 실시예 3, 실시예 4에 의해 합성한 탄소나노튜브(CNT)를 나타낸 모식도이고, 도 5는 담지 횟수에 따라 실시예 1, 실시예 2, 실시예 3, 실시예 4에 의해 합성한 탄소나노튜브(CNT)를 나타낸 주사전자현미경(Scanning Electron Microscope, SEM) 사진이다. 도 6은 비교예 1에 의해 합성한 탄소나노튜브(CNT)의 주사전자현미경 사진이다.Figure 4 is a schematic diagram showing carbon nanotubes (CNTs) synthesized by Example 1, Example 2, Example 3, and Example 4 according to the number of loadings, and Figure 5 is a schematic diagram showing the carbon nanotubes (CNTs) synthesized by Example 1 and Example 4 according to the number of loadings. 2, a scanning electron microscope (SEM) photograph showing carbon nanotubes (CNTs) synthesized in Examples 3 and 4. Figure 6 is a scanning electron microscope photograph of carbon nanotubes (CNTs) synthesized in Comparative Example 1.

탄소나노튜브(CNT)를 합성하기 위해, 실시예 및 비교예에서 제조된 촉매/담지체는 600℃에서 1시간 동안 수소 분위기에서 처리한 후 상온이 될 때까지 기다려 수거한다. 이렇게 처리한 촉매/담지체는 아르곤 분위기의 반응기에 넣고 900℃ 까지 승온시킨다. 가열된 반응기는 아르곤 대신에 메탄 0.5SLM과 수소 0.25SLM을 약 40분간 흘려주어 탄소나노튜브(CNT)를 합성한다.To synthesize carbon nanotubes (CNTs), the catalysts/supports prepared in Examples and Comparative Examples were treated in a hydrogen atmosphere at 600°C for 1 hour, then waited until room temperature and collected. The catalyst/support treated in this way is placed in a reactor in an argon atmosphere and the temperature is raised to 900°C. The heated reactor flows 0.5 SLM of methane and 0.25 SLM of hydrogen instead of argon for about 40 minutes to synthesize carbon nanotubes (CNTs).

특성characteristic 실시예1Example 1 실시예2Example 2 실시예3Example 3 실시예4Example 4 비교예1Comparative Example 1 촉매비율Catalyst ratio 3.1%3.1% 6.2%6.2% 9.3%9.3% 12.4%12.4% 12.4%12.4% CNT 수율CNT yield 42%42% 78%78% 168%168% 226%226% 98%98% 결정성crystallinity 1616 1414 1717 1616 33

<실시예 및 비교예에 의해 합성된 탄소나노튜브 결과><Results of carbon nanotubes synthesized by Examples and Comparative Examples>

표 1을 보면, 실시예 1에서 실시예 4로 갈수록 촉매를 반복적으로 담지함에 따라 촉매비율이 높아지고, 탄소나노튜브(CNT)의 수율이 증가함을 알 수 있다. 그러나 비교예 1과 같이 촉매를 한꺼번에 담지하면 실시예 4와 동일한 촉매비율을 갖더라고 탄소나노튜브(CNT)의 수율이 좋지 못하다. 또한 한 번에 담지하는 촉매의 양을 적게 한 실시예 1 내지 실시예 4는 결정성이 좋지만 많은 양의 촉매를 한꺼번에 담지한 비교예 1은 결정성이 좋지 못한 것을 알 수 있다.Looking at Table 1, it can be seen that from Example 1 to Example 4, as the catalyst is repeatedly supported, the catalyst ratio increases and the yield of carbon nanotubes (CNTs) increases. However, if the catalyst is loaded all at once as in Comparative Example 1, the yield of carbon nanotubes (CNTs) is not good even if the catalyst ratio is the same as in Example 4. In addition, it can be seen that Examples 1 to 4, in which a small amount of catalyst was supported at one time, had good crystallinity, but Comparative Example 1, in which a large amount of catalyst was supported at once, had poor crystallinity.

Claims (5)

담지체를 용매에 분산시킨 담지체 용액을 만드는 제1단계;
크기가 작은 촉매 전구체의 전체 사용량의 1/n을 용매에 분산시킨 전구체 용액을 만드는 제2단계;
상기 담지체 용액과 상기 전구체 용액을 혼합하여 상기 담지체에 상기 촉매 전구체를 부착시킨 전구체/담지체 용액을 만드는 제3단계;
상기 전구체/담지체 용액을 필터로 여과하고 남은 여과물을 건조 및 소성하여 상기 담지체에 촉매가 담지된 촉매/담지체를 만드는 제4단계; 및
상기 담지체 대신 상기 촉매/담지체를 사용하여, 상기 제1단계 내지 상기 제4단계를 (n-1)회 더 반복하여, 최종적으로 담지할 촉매 전체가 담지된 촉매/담지체를 만들어내는 제5단계를 포함하는 것을 특징으로 하는 탄소나노튜브 수율이 증가된 탄소나노튜브용 촉매 제조 방법.
A first step of making a carrier solution in which the carrier is dispersed in a solvent;
A second step of making a precursor solution in which 1/n of the total amount of small catalyst precursors dispersed in a solvent;
A third step of mixing the support solution and the precursor solution to create a precursor/support solution in which the catalyst precursor is attached to the support;
A fourth step of filtering the precursor/support solution through a filter and drying and calcining the remaining filtrate to produce a catalyst/support in which the catalyst is supported on the support; and
An agent that uses the catalyst/support instead of the support, repeats the first to fourth steps (n-1) more times, and finally produces a catalyst/support on which the entire catalyst to be supported is supported. A method for producing a catalyst for carbon nanotubes with increased carbon nanotube yield, comprising five steps.
제1항에 있어서,
상기 제1단계에서, 상기 담지체는 마그네시아(MgO) 분말인 것을 특징으로 하는 탄소나노튜브 수율이 증가된 탄소나노튜브용 촉매 제조 방법.
According to paragraph 1,
In the first step, a method for producing a catalyst for carbon nanotubes with increased carbon nanotube yield, characterized in that the carrier is magnesia (MgO) powder.
제1항에 있어서,
상기 제2단계는,
전체 사용량의 1/n의 주촉매 전구체를 용매에 분산시킨 제1전구체 용액을 만드는 단계;
전체 사용량의 1/n의 조촉매 전구체를 용매에 분산시킨 제2전구체 용액을 만드는 단계; 및
상기 제1전구체 용액과 상기 제1전구체 용액을 혼합하여 상기 전구체 용액을 만드는 단계를 포함하는 것을 특징으로 하는 탄소나노튜브 수율이 증가된 탄소나노튜브용 촉매 제조 방법.
According to paragraph 1,
The second step is,
Creating a first precursor solution in which 1/n of the total amount of main catalyst precursor is dispersed in a solvent;
Creating a second precursor solution in which 1/n of the total amount of cocatalyst precursor is dispersed in a solvent; and
A method for producing a catalyst for carbon nanotubes with increased carbon nanotube yield, comprising the step of mixing the first precursor solution with the first precursor solution to prepare the precursor solution.
제3항에 있어서,
상기 주촉매 전구체는 질산철(iron nitrate) 분말이고, 상기 조촉매는 몰리브데넘산암모늄(ammonium molybdate) 분말인 것을 특징으로 하는 탄소나노튜브 수율이 증가된 탄소나노튜브용 촉매 제조 방법.
According to paragraph 3,
A method for producing a catalyst for carbon nanotubes with increased carbon nanotube yield, characterized in that the main catalyst precursor is iron nitrate powder, and the cocatalyst is ammonium molybdate powder.
제1항 내지 제4항 중 어느 한 항의 방법에 의해 제조된 탄소나노튜브.Carbon nanotubes manufactured by the method of any one of claims 1 to 4.
KR1020220177064A 2022-12-16 2022-12-16 Catalyst production method for carbon nanotubes with increased yield and carbon nanotubes prepared therefrom KR20240094630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220177064A KR20240094630A (en) 2022-12-16 2022-12-16 Catalyst production method for carbon nanotubes with increased yield and carbon nanotubes prepared therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220177064A KR20240094630A (en) 2022-12-16 2022-12-16 Catalyst production method for carbon nanotubes with increased yield and carbon nanotubes prepared therefrom

Publications (1)

Publication Number Publication Date
KR20240094630A true KR20240094630A (en) 2024-06-25

Family

ID=91710867

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220177064A KR20240094630A (en) 2022-12-16 2022-12-16 Catalyst production method for carbon nanotubes with increased yield and carbon nanotubes prepared therefrom

Country Status (1)

Country Link
KR (1) KR20240094630A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101446116B1 (en) 2012-09-18 2014-10-06 한화케미칼 주식회사 Metal catalyst for producing carbon nanotubes and method for preparing carbon nanotubes using thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101446116B1 (en) 2012-09-18 2014-10-06 한화케미칼 주식회사 Metal catalyst for producing carbon nanotubes and method for preparing carbon nanotubes using thereof

Similar Documents

Publication Publication Date Title
KR101303061B1 (en) A catalyst composition for the synthesis of multi-walled carbon nanotubes
KR100976174B1 (en) A catalyst composition for the synthesis of thin multi-walled carbon nanotubes and its manufacturing method
JP5876499B2 (en) Method for producing porous carbon material having mesopores formed thereon and support for catalyst for fuel cell produced therefrom
CN111129468B (en) One-dimensional metal oxide/carbide composite material and preparation method thereof
WO2021135252A1 (en) One-dimensional metal oxide/carbide composite material and preparation method therefor
KR101018660B1 (en) A catalyst composition for the synthesis of multi-walled carbon nanotubes
KR20130082460A (en) Cnt and method for manufacturing thereof
CN111105935B (en) One-dimensional metal oxide/carbide composite material and preparation method thereof
CN115138388A (en) High-dispersity cobalt nitrogen carbon catalyst and preparation method thereof
CN115178250A (en) Preparation method of carbon foam loaded transition metal monoatomic material, product and application
CN109529903B (en) Method for preparing nickel-nitrogen co-doped carbon material by using hydrotalcite as template
KR100497775B1 (en) Catalyst for Process of Graphite Nanofibers And Process Thereof, Graphite Nanofibers And Process of Graphite Nanofibers
KR100540639B1 (en) Method of Making Catalyst for Carbon Nanotubes and Carbon Nanofibers and Catalyst for Carbon Nanotubes and Nanofibers thereof
JP5408593B2 (en) Method for improving coercive force of epsilon-type iron oxide and epsilon-type iron oxide
KR20240094630A (en) Catalyst production method for carbon nanotubes with increased yield and carbon nanotubes prepared therefrom
KR101932575B1 (en) SHAPE-CONTROLLED Pt NANOCUBES AND METHOD OF MANUFACTURE THEREOF
KR20090128838A (en) Method for synthesizing nanocrystalline/nanoporous transition metal oxides
CN110330025A (en) Silicon titanium is than the adjustable TS-1 zeolite single crystal and preparation method thereof with orderly multi-stage porous
KR101484364B1 (en) Method for Preparing Supported Catalyst for Preparing CNT
CN115073165A (en) Giant dielectric constant BaTiO 3 Ceramic and preparation method thereof
KR20090128835A (en) Method for synthesizing nanocrystalline/nanoporous transition metal oxides
JP4984131B2 (en) Nanocarbon paste and method for producing nanocarbon emitter
CN114843475A (en) Iron carbide-based composite material and preparation method thereof
KR20130082267A (en) Metal aqueous solution, supported catalyst for cnt, and a method for preparing thereof
KR101645918B1 (en) Metal Aqueous Solution, Supported Catalyst for CNT, and a Method for Preparing Thereof