KR20240086776A - Metal-organic framework (MOFs) nanoparticles coated with a fusion protein of Glutathione S-transferase and peptides targeting diseased cells and use thereof - Google Patents

Metal-organic framework (MOFs) nanoparticles coated with a fusion protein of Glutathione S-transferase and peptides targeting diseased cells and use thereof Download PDF

Info

Publication number
KR20240086776A
KR20240086776A KR1020220167056A KR20220167056A KR20240086776A KR 20240086776 A KR20240086776 A KR 20240086776A KR 1020220167056 A KR1020220167056 A KR 1020220167056A KR 20220167056 A KR20220167056 A KR 20220167056A KR 20240086776 A KR20240086776 A KR 20240086776A
Authority
KR
South Korea
Prior art keywords
gst
pcn
metal
afb
mofs
Prior art date
Application number
KR1020220167056A
Other languages
Korean (ko)
Inventor
유자형
오준용
최은실
최원영
곽상규
Original Assignee
울산과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 울산과학기술원 filed Critical 울산과학기술원
Priority to KR1020220167056A priority Critical patent/KR20240086776A/en
Priority to PCT/KR2023/019273 priority patent/WO2024117717A1/en
Publication of KR20240086776A publication Critical patent/KR20240086776A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5169Proteins, e.g. albumin, gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5123Organic compounds, e.g. fats, sugars
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

글루타싸이온전달효소 및 질환 세포 표적 펩티드의 융합 단백질이 표면 코팅된 금속-유기 프레임워크 (Metal-Organic framework: MOFs) 나노 입자, 및 이의 표적 세포 특이적 약물 전달 용도 및 암 예방 또는 치료 용도에 관한 것으로, 일 양상에 따른 금속-유기 프레임워크 나노 입자 및 이를 포함하는 조성물에 의하면, 우수한 단백질 흡착 차단 효과, 세포 표적 효과, 표적 세포 특이적 약물 전달 효과, 및 표적 세포 내에서 광반응성 ROS 생성에 의한 세포 사멸 효과를 나타내어 표적 세포 특이적 약물 전달체 또는 질환 치료제 (예컨대, 암 치료제)로서 유용하게 사용될 수 있으며, 특히, 암 세포 사멸에 대한 광역학 요법 및 화학 요법의 시너지 효과를 유도할 수 있다.Metal-organic framework (MOFs) nanoparticles surface-coated with a fusion protein of glutathione transferase and disease cell targeting peptide, and their use for target cell-specific drug delivery and cancer prevention or treatment Related to this, according to one aspect, the metal-organic framework nanoparticle and the composition containing the same have excellent protein adsorption blocking effect, cell targeting effect, target cell specific drug delivery effect, and photoreactive ROS generation within the target cell. It can be usefully used as a target cell-specific drug carrier or disease treatment agent (e.g., cancer treatment agent) by exhibiting a cell death effect. In particular, it can induce a synergistic effect of photodynamic therapy and chemotherapy on cancer cell death.

Description

글루타싸이온전달효소 및 질환 세포 표적 펩티드의 융합 단백질이 표면 코팅된 금속-유기 프레임워크 (MOFs) 나노 입자 및 이의 용도{Metal-organic framework (MOFs) nanoparticles coated with a fusion protein of Glutathione S-transferase and peptides targeting diseased cells and use thereof}Metal-organic framework (MOFs) nanoparticles coated with a fusion protein of glutathione transferase and disease cell targeting peptide and their uses {Metal-organic framework (MOFs) nanoparticles coated with a fusion protein of Glutathione S-transferase and peptides targeting diseased cells and use thereof}

글루타싸이온전달효소 및 질환 세포 표적 펩티드의 융합 단백질이 표면 코팅된 금속-유기 프레임워크 (MOFs) 나노 입자, 및 이를 포함하는 표적 세포 특이적 약물 전달용 조성물 및 암 예방 또는 치료용 약학적 조성물에 관한 것이다.Metal-organic framework (MOFs) nanoparticles surface-coated with a fusion protein of glutathione transferase and disease cell targeting peptide, and compositions containing the same for target cell-specific drug delivery and pharmaceutical compositions for preventing or treating cancer It's about.

금속-유기 프레임워크 (Metal-Organic framework: MOFs)는 금속 이온 또는 금속 이온 클러스터가 유기 리간드 분자와 배위결합을 통해 형성된 결정성 유무기 하이브리드 고분자이다. 다공성 배위결합 고분자 (porous coordination polymers: PCPs)라고도 불리는 MOFs는 규칙적인 세공 구조와 높은 비표면적을 가지며 리간드 분자와 금속 이온의 선택을 통해 다양한 구조로 합성될 수 있다. 일반적으로 유기 리간드 분자의 크기를 조절함으로써 세공의 크기를 조절할 수 있고 적절한 금속 이온을 선택하거나 유기 리간드 분자에 작용기를 도입하여 세공의 표면 성질을 제어할 수 있다. 특히 탈수나 탈용매시 구조 내부에 형성되는 불포화 금속 자리는 기체 분자 또는 손님 분자 (guest molecules)의 흡착 자리로 작용한다. 이러한 특징들을 바탕으로 연료 가스 흡착 및 저장 재료, 촉매, 센서, 합성 매질, 약물전달매체, 양성자 전도체 등의 개발을 위해 활발히 연구되고 있다. 하지만 많은 발전에도 불구하고 여전히 낮은 열적·화학적·기계적 안정성으로 인해 연구분야를 벗어나 산업으로의 도입은 주춤하고 있는 실정이다. 이를 해결하기 위해 제올라이트 유사 구조체 (zeolitic imidazolate frameworks: ZIFs) 또는 유기 골격 구조체 (covalent organic frameworks: COFs)등이 개발 되고 있지만 이들 역시 입자 크기가 작은 분말 형태로 얻어지는 경우가 많고 응집으로 인한 비활성화 문제가 제기되고 있다. 또한, 최근 포르피린 (Porphyrin) 기반의 MOFs 등이 개발되고 있으나, 이 역시, 생물학적 환경에서 MOFs 입자에 불필요한 단백질이 흡착되어 단백질 코로나가 형성되고, 이로 인해, MOFs 입자의 약물 전달 기능이 방해받는 문제점이 있다.Metal-organic framework (MOFs) is a crystalline organic-inorganic hybrid polymer formed through coordination of metal ions or metal ion clusters with organic ligand molecules. MOFs, also called porous coordination polymers (PCPs), have a regular pore structure and high specific surface area, and can be synthesized into various structures through selection of ligand molecules and metal ions. In general, the size of the pores can be controlled by adjusting the size of the organic ligand molecule, and the surface properties of the pores can be controlled by selecting an appropriate metal ion or introducing a functional group into the organic ligand molecule. In particular, unsaturated metal sites formed inside the structure during dehydration or desolvation serve as adsorption sites for gas molecules or guest molecules. Based on these characteristics, active research is being conducted to develop fuel gas adsorption and storage materials, catalysts, sensors, synthetic media, drug delivery media, and proton conductors. However, despite much progress, its introduction out of the research field and into industry is slowing down due to its still low thermal, chemical, and mechanical stability. To solve this problem, zeolitic imidazolate frameworks (ZIFs) or covalent organic frameworks (COFs) are being developed, but these are also often obtained in the form of powders with small particle sizes, raising the issue of deactivation due to agglomeration. It is becoming. In addition, porphyrin-based MOFs have been developed recently, but this also has the problem that unnecessary proteins are adsorbed to MOFs particles in a biological environment, forming a protein corona, which interferes with the drug delivery function of MOFs particles. there is.

따라서 MOFs의 특성을 개선하고 새로운 기능을 부여하기 위한 새로운 전략으로 다양한 소재와 융합하여 복합체 (composites)로 만드는 연구가 진행 중이다.Therefore, research is underway to create composites by fusing MOFs with various materials as a new strategy to improve the properties of MOFs and give them new functions.

이에 따라 본 발명자들은 MOFs의 표면에 글루타싸이온전달효소 (Glutathione S-transferase: GST) 및 질환 세포 표적 펩티드의 융합 단백질이 코팅된 복합체를 개발하였고, 상기 복합체의 우수한 단백질 흡착 차단 효과, 세포 표적 효과, 표적 세포 특이적 약물 전달 효과, 및 표적 세포 특이적 광반응성 세포 사멸 효과를 확인함으로써, 본 발명을 완성하였다.Accordingly, the present inventors developed a complex in which the surface of MOFs was coated with a fusion protein of glutathione S-transferase (GST) and a disease cell-targeting peptide, and the complex had an excellent protein adsorption blocking effect and cell targeting effect. The present invention was completed by confirming the effect, target cell-specific drug delivery effect, and target cell-specific photoreactive cell death effect.

일 양상은 글루타싸이온전달효소 (Glutathione S-transferase: GST); 및 질환 세포 표적 펩티드가 연결된 융합 단백질이 표면에 코팅된 금속-유기 프레임워크 (Metal-Organic framework: MOFs) 나노 입자를 제공하는 것이다.One aspect is glutathione S-transferase (GST); and providing metal-organic framework (MOFs) nanoparticles coated on the surface with a fusion protein linked to a disease cell targeting peptide.

다른 양상은 상기 금속-유기 프레임워크 나노 입자를 유효 성분으로 포함하는, 표적 세포 특이적 약물 전달용 조성물을 제공하는 것이다.Another aspect is to provide a composition for target cell-specific drug delivery, comprising the metal-organic framework nanoparticles as an active ingredient.

또 다른 양상은 상기 금속-유기 프레임워크 나노 입자를 유효 성분으로 포함하는, 표적 세포 특이적 광반응성 세포 사멸용 조성물을 제공하는 것이다.Another aspect is to provide a composition for target cell-specific photoreactive cell death comprising the metal-organic framework nanoparticles as an active ingredient.

또 다른 양상은 상기 금속-유기 프레임워크 나노 입자를 유효 성분으로 포함하는, 암 예방 또는 치료용 약학적 조성물을 제공하는 것이다.Another aspect is to provide a pharmaceutical composition for preventing or treating cancer, comprising the metal-organic framework nanoparticles as an active ingredient.

또 다른 양상은 상기 금속-유기 프레임워크 나노 입자 또는 상기 조성물을 개체에 투여하는 단계를 포함하는 암을 예방 또는 치료하는 방법을 제공하는 것이다.Another aspect is to provide a method of preventing or treating cancer comprising administering the metal-organic framework nanoparticle or the composition to a subject.

또 다른 양상은 상기 금속-유기 프레임워크 나노 입자의 표적 세포 특이적 약물 전달 용도, 표적 세포 특이적 광반응성 세포 사멸 용도, 또는 암 예방 또는 치료 용도를 제공하는 것이다.Another aspect is to provide the metal-organic framework nanoparticles for use in target cell-specific drug delivery, target cell-specific photoreactive cell killing, or cancer prevention or treatment.

또 다른 양상은 상기 금속-유기 프레임워크 나노 입자의, 표적 세포 특이적 약물 전달용 조성물, 표적 세포 특이적 광반응성 세포 사멸용 조성물, 또는 암 예방 또는 치료용 조성물을 제조하기 위한 용도를 제공하는 것이다. Another aspect is to provide a use of the metal-organic framework nanoparticles for preparing a composition for target cell-specific drug delivery, a composition for target cell-specific photoreactive cell killing, or a composition for preventing or treating cancer. .

본 출원의 다른 목적 및 이점은 첨부한 청구범위 및 도면과 함께 하기의 상세한 설명에 의해 보다 명확해질 것이다. 본 명세서에 기재되지 않은 내용은 본 출원의 기술 분야 또는 유사한 기술 분야 내 숙련된 자이면 충분히 인식하고 유추할 수 있는 것이므로 그 설명을 생략한다.Other objects and advantages of the present application will become clearer from the following detailed description together with the appended claims and drawings. Contents not described in this specification can be fully recognized and inferred by a person skilled in the technical field of this application or a similar technical field, so description thereof is omitted.

본 출원에서 개시된 각각의 설명 및 실시 형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본 출원에서 개시된 다양한 요소들의 모든 조합이 본 출원의 범주에 속한다. 또한, 하기 기술된 구체적인 서술에 의하여 본 출원의 범주가 제한된다고 볼 수 없다.Each description and embodiment disclosed in this application may also be applied to each other description and embodiment. That is, all combinations of the various elements disclosed in this application fall within the scope of this application. Additionally, the scope of the present application cannot be considered limited by the specific description described below.

일 양상은 글루타싸이온전달효소 (Glutathione S-transferase: GST); 및 질환 세포 표적 펩티드 (Afb)가 연결된 융합 단백질 (GST-Afb)이 표면에 코팅된 금속-유기 프레임워크 (Metal-Organic framework: MOFs) 나노 입자 (GST-Afb-MOFs 나노 입자)를 제공한다.One aspect is glutathione S-transferase (GST); and metal-organic framework (MOFs) nanoparticles (GST-Afb-MOFs nanoparticles) coated on the surface with a fusion protein (GST-Afb) linked to a disease cell targeting peptide (Afb).

용어 "글루타싸이온전달효소 (Glutathione S-transferase: GST)"는 유기 황, 나이트릴, 또는 할로젠 화합물로부터 지방족, 방향족, 또는 헤테로기를 글루타싸이온에 전달하는 반응을 촉매하는 해독 효소를 의미하고, 글루타싸이온-에스(S)-전달효소라고도 한다.The term "Glutathione S-transferase (GST)" refers to a detoxification enzyme that catalyzes the transfer of aliphatic, aromatic, or hetero groups from organic sulfur, nitrile, or halogen compounds to glutathione. It is also called glutathione-S-transferase.

상기 글루타싸이온전달효소는 서열번호 1의 아미노산 서열을 포함하는 것일 수 있다. 또한, 상기 서열번호 1로 구성된 아미노산 서열뿐만 아니라, 상기 서열과 80% 이상, 구체적으로는 90% 이상, 보다 구체적으로는 95% 이상, 더욱 구체적으로는 98% 이상, 가장 구체적으로는 99% 이상의 상동성을 나타내는 아미노산 서열로서 실질적으로 상기 효소와 동일하거나 상응하는 효능을 나타내는 아미노산 서열이라면 제한 없이 포함한다. 또한, 이러한 상동성을 갖는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환 또는 부가된 아미노산 서열도 본 발명의 범위 내에 포함됨은 자명하다.The glutathione transferase may include the amino acid sequence of SEQ ID NO: 1. In addition, not only the amino acid sequence consisting of SEQ ID NO: 1, but also an amino acid sequence that is at least 80%, specifically at least 90%, more specifically at least 95%, even more specifically at least 98%, and most specifically at least 99% of the above sequence. An amino acid sequence showing homology includes, without limitation, any amino acid sequence that is substantially the same as that of the enzyme or shows a corresponding effect. In addition, it is clear that, as long as the amino acid sequence has such homology, amino acid sequences in which some sequences are deleted, modified, substituted, or added are also included within the scope of the present invention.

용어 "상동성" 이란, 단백질을 암호화하는 염기 서열이나 단백질을 구성하는 아미노산 서열의 유사한 정도를 의미하는데, 상동성이 충분히 높은 경우 해당 유전자의 발현 산물 및 단백질은 동일하거나 유사한 활성을 가질 수 있다. 또한, 상동성은 주어진 아미노산 서열 또는 염기 서열과 일치하는 정도에 따라 백분율로 표시될 수 있다. 본 명세서에서, 주어진 아미노산 서열 또는 뉴클레오티드 서열과 동일하거나 유사한 활성을 가지는 그의 상동성 서열이 "% 상동성"으로 표시된다. 예를 들면, 점수 (score), 동일성 (identity) 및 유사도 (similarity) 등의 매개 변수 (parameter)들을 계산하는 표준 소프트웨어, 구체적으로 BLAST 2.0을 이용하거나, 정의된 엄격한 조건 (stringent condition)하에서 썼던 혼성화 실험에 의해 서열을 비교함으로써 확인할 수 있으며, 정의되는 적절한 혼성화 조건은 해당 기술 범위 내이고, 당업자에게 잘 알려진 방법 (예컨대, J. Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor,New York, 1989; F.M. Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York)으로 결정될 수 있다.The term “homology” refers to the degree of similarity between the base sequence encoding a protein or the amino acid sequence constituting the protein. If the homology is sufficiently high, the expression product and protein of the corresponding gene may have the same or similar activity. Additionally, homology can be expressed as a percentage based on the degree of matching to a given amino acid or base sequence. In this specification, a given amino acid or nucleotide sequence and its homologous sequence having the same or similar activity are indicated as “% homology”. For example, standard software for calculating parameters such as score, identity and similarity, specifically BLAST 2.0, or hybridization performed under defined stringent conditions. It can be confirmed by comparing sequences experimentally, and appropriate hybridization conditions defined are within the scope of the relevant technology and methods well known to those skilled in the art (e.g., J. Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York, 1989; F.M. Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York.

일 구체예에 따르면, 상기 융합 단백질 (GST-Afb)은, 상기 글루타싸이온전달효소 (GST)의 N 말단과 상기 질환 세포 표적 펩티드 (Afb)의 C 말단이 연결된 것일 수 있다. 더욱 구체적으로는, 상기 융합 단백질 (GST-Afb)은, 링커에 의해 상기 글루타싸이온전달효소 (GST)의 N 말단과 상기 질환 세포 표적 펩티드 (Afb)의 C 말단이 연결된 것일 수 있다. 상기 연결은 예컨대 펩티드 결합 (아마이드 형태의 공유 결합)에 의한 것일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment, the fusion protein (GST-Afb) may be one in which the N terminus of the glutathione transferase (GST) and the C terminus of the disease cell targeting peptide (Afb) are connected. More specifically, the fusion protein (GST-Afb) may be one in which the N terminus of the glutathione transferase (GST) and the C terminus of the disease cell targeting peptide (Afb) are connected by a linker. The connection may be, for example, a peptide bond (amide-type covalent bond), but is not limited thereto.

상기 링커는 서열번호 6의 아미노산 서열을 포함하는 것일 수 있다. 또한, 상기 서열번호 6으로 구성된 아미노산 서열뿐만 아니라, 상기 서열과 80% 이상, 구체적으로는 90% 이상, 보다 구체적으로는 95% 이상, 더욱 구체적으로는 98% 이상, 가장 구체적으로는 99% 이상의 상동성을 나타내는 아미노산 서열로서 실질적으로 상기 링커와 동일하거나 상응하는 효능을 나타내는 아미노산 서열이라면 제한 없이 포함한다. 또한, 이러한 상동성을 갖는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환 또는 부가된 아미노산 서열도 본 발명의 범위 내에 포함됨은 자명하다.The linker may include the amino acid sequence of SEQ ID NO: 6. In addition, not only the amino acid sequence consisting of SEQ ID NO: 6, but also at least 80%, specifically at least 90%, more specifically at least 95%, more specifically at least 98%, and most specifically at least 99% of the above sequence. As an amino acid sequence showing homology, any amino acid sequence that is substantially the same as that of the linker or shows a corresponding effect is included without limitation. In addition, it is clear that, as long as the amino acid sequence has such homology, amino acid sequences in which some sequences are deleted, modified, substituted, or added are also included within the scope of the present invention.

용어 "금속-유기 프레임워크 (Metal-Organic framework: MOFs)"는 금속 이온 또는 금속 노드가 유기분자와 연결되어 형성된 결정성 유무기 하이브리드 고분자를 의미한다. The term “Metal-Organic framework (MOFs)” refers to a crystalline organic-inorganic hybrid polymer formed by connecting metal ions or metal nodes with organic molecules.

구체적으로, 상기 금속-유기 프레임워크는 유기분자 사이에 금속 이온 또는 금속 노드가 연결되어 다공성인 3차원 구조를 가지는 것일 수 있다. Specifically, the metal-organic framework may have a porous three-dimensional structure in which metal ions or metal nodes are connected between organic molecules.

상기 금속 노드는 복수의 금속 이온을 포함하는 금속 이온 클러스터를 의미할 수 있다. 따라서, 상기 금속-유기 프레임워크는 유기분자와 금속 노드 내의 금속 이온이 연결된 구조를 가지는 것일 수 있다. 상기 유기분자와 금속 이온 또는 금속 노드 (금속 이온 클러스터) 사이의 연결은 배위결합에 의한 것일 수 있다.The metal node may refer to a metal ion cluster containing a plurality of metal ions. Therefore, the metal-organic framework may have a structure in which organic molecules and metal ions within metal nodes are connected. The connection between the organic molecule and the metal ion or metal node (metal ion cluster) may be through a coordination bond.

상기 금속 이온은 순금속 또는 전해 금속일 수 있고, 순금속 또는 전해 금속의 예에는 비제한적으로 마그네슘 (Mg), 칼슘 (Ca), 망간 (Mn), 철 (Fe), 구리 (Cu), 아연 (Zn), 갈륨 (Ga), 게르마늄 (Ge), 셀레늄 (Se), 스트론튬 (Sr), 지르코늄 (Zr), 몰리브덴 (Mo), 은 (Ag), 또는 백금 (Pt)이 포함될 수 있다. The metal ion may be a pure metal or an electrolytic metal, and examples of pure metals or electrolytic metals include, but are not limited to, magnesium (Mg), calcium (Ca), manganese (Mn), iron (Fe), copper (Cu), and zinc (Zn). ), gallium (Ga), germanium (Ge), selenium (Se), strontium (Sr), zirconium (Zr), molybdenum (Mo), silver (Ag), or platinum (Pt).

따라서, 상기 금속 노드는 상기 나열된 금속 이온 중 1 종 이상을 복수로 포함하는 것일 수 있다. 일 구체예에 따르면, 상기 금속 노드는 지르코늄 (Zr) 이온을 복수로 포함하는 지르코늄 (Zr) 이온 클러스터일 수 있고, 바람직하게는, 상기 금속 노드는 Zr6일 수 있으나, 이에 제한되는 것은 아니다.Accordingly, the metal node may include one or more of the metal ions listed above. According to one embodiment, the metal node may be a zirconium (Zr) ion cluster containing a plurality of zirconium (Zr) ions. Preferably, the metal node may be Zr 6 , but is not limited thereto.

일 구체예에 따르면, 상기 GST-Afb-MOFs 나노 입자에 있어서, 상기 글루타싸이온전달효소 (GST)의 상기 질환 세포 표적 펩티드 (Afb)와 연결되지 않은 부위가 상기 금속-유기 프레임워크 (MOFs)의 표면에 노출된 상기 금속 노드에 연결됨으로써, 상기 글루타싸이온전달효소 및 질환 세포 표적 펩티드가 연결된 융합 단백질 (GST-Afb)이 상기 MOFs의 표면에 코팅되는 것일 수 있다. 구체적으로, 상기 GST의 상기 Afb와 연결되지 않은 부위와 상기 MOFs의 표면에 노출된 상기 금속 노드의 연결은 정전기적 상호작용에 의한 것일 수 있다.According to one embodiment, in the GST-Afb-MOFs nanoparticle, the portion of the glutathione transferase (GST) that is not connected to the disease cell targeting peptide (Afb) is the metal-organic framework (MOFs). ), a fusion protein (GST-Afb) linked to the glutathione transferase and disease cell targeting peptide may be coated on the surface of the MOFs by being connected to the metal node exposed on the surface of the MOFs. Specifically, the connection between the portion of the GST that is not connected to the Afb and the metal node exposed on the surface of the MOFs may be due to electrostatic interaction.

따라서, 일 구체예에 따르면, 상기 GST-Afb-MOFs 나노 입자에 있어서, 상기 Afb는 상기 나노 입자의 가장 외곽에 위치하여 상기 나노 입자의 외부로 노출되어 있는 것이고, 상기 Afb와 연결된 GST의 Afb와 연결되지 않은 부위가 상기 MOFs의 표면에 연결되어 있는 것일 수 있다. Therefore, according to one embodiment, in the GST-Afb-MOFs nanoparticle, the Afb is located at the outermost part of the nanoparticle and is exposed to the outside of the nanoparticle, and the Afb of GST linked to the Afb The unconnected portion may be connected to the surface of the MOFs.

더욱 구체적으로는, 상기 GST-Afb-MOFs 나노 입자에 있어서, 상기 GST의 G-사이트 (G-site) 부위 (예컨대, G-사이트 부위의 아미노산 잔기 또는 아미노산 작용기)와 상기 MOFs의 표면에 노출된 상기 금속 노드 (예컨대, 지르코늄 (Zr) 이온 클러스터, 바람직하게는, Zr6) 또는 금속 이온 (예컨대, 지르코늄 (Zr) 이온)이 정전기적 상호작용에 의해 연결됨으로써, 상기 GST-Afb가 상기 MOFs의 표면에 코팅되는 것일 수 있다.More specifically, in the GST-Afb-MOFs nanoparticles, the G-site site (e.g., amino acid residue or amino acid functional group of the G-site site) of the GST is exposed on the surface of the MOFs. The metal nodes (e.g., zirconium (Zr) ion clusters, preferably, Zr 6 ) or metal ions (e.g., zirconium (Zr) ions) are connected by electrostatic interaction, thereby allowing the GST-Afb to bind to the MOFs. It may be coated on the surface.

용어 "글루타싸이온전달효소의 G-사이트 (G-site)"는 글루타싸이온전달효소 내 글루타싸이온 결합 부위를 의미하며, 글루타싸이온전달효소의 티오레독신 유사 도메인 (thioredoxin-like domain)에 주로 위치한다 (cf. Dirr et al., Eur. J. Biochem. 220:645, 1994; Armstrong, Chem. Res. Toxicol. 10:2, 1997; ADANG et al., Biochem. J. (1990) 269, 47-54).The term "G-site of glutathione transferase" refers to the glutathione binding site in glutathione transferase and the thioredoxin-like domain of glutathione transferase. -like domain) (cf. Dirr et al., Eur. J. Biochem. 220:645, 1994; Armstrong, Chem. Res. Toxicol. 10:2, 1997; ADANG et al., Biochem. J (1990) 269, 47-54).

일 구체예에 따르면, 상기 GST-Afb-MOFs 나노 입자에 있어서, 상기 GST의 G-사이트 부위와 상기 MOFs의 표면에 노출된 상기 금속 노드 또는 금속 이온이 연결됨으로써, 상기 GST-Afb가 상기 MOFs의 표면 전 영역에 더욱 안정적이고 더욱 균일하게 코팅될 수 있다. 이로 인해, 상기 GST-Afb-MOFs 나노 입자는 생물학적 환경에서, 더욱 우수한 단백질 흡착 차단능을 나타내어, 고 효율로 타겟 세포를 표적하고 해당 표적 세포에 흡수될 수 있다. 그 결과, 상기 GST-Afb-MOFs 나노 입자는 현저히 우수한 표적 세포 특이적 약물 전달 효과 및 표적 세포 내에서 광반응성 ROS 생성에 의한 세포 사멸 효과를 나타낼 수 있다.According to one embodiment, in the GST-Afb-MOFs nanoparticles, the G-site region of the GST is connected to the metal node or metal ion exposed on the surface of the MOFs, thereby allowing the GST-Afb to form the MOFs. It can be coated more stably and more uniformly over the entire surface area. Because of this, the GST-Afb-MOFs nanoparticles exhibit superior protein adsorption blocking ability in a biological environment, targeting target cells with high efficiency and being absorbed into the target cells. As a result, the GST-Afb-MOFs nanoparticles can exhibit a significantly excellent target cell-specific drug delivery effect and a cell death effect by generating photoreactive ROS within target cells.

상기 GST-Afb-MOFs 나노 입자에 있어서, 상기 MOFs를 구성하는 유기분자는 상기 금속 노드들을 연결하여 상기 금속 노드들 간의 간격을 형성하고, 그로 인해 상기 MOFs 내부에 빈 영역들 즉 기공을 형성할 수 있는 유기분자라면 제한없이 사용될 수 있다.In the GST-Afb-MOFs nanoparticles, the organic molecules constituting the MOFs connect the metal nodes to form gaps between the metal nodes, thereby forming empty regions, that is, pores, inside the MOFs. Any organic molecule can be used without limitation.

더하여, 상기 MOFs를 구성하는 유기분자는 빛에 반응하여 활성산소 (reactive oxygen species: ROS)를 생성하는 광감작제 (photosensitizer)인 것일 수 있다.In addition, the organic molecules constituting the MOFs may be photosensitizers that generate reactive oxygen species (ROS) in response to light.

용어 "광감작제 (photosensitizer)"는 빛에 의해 활성화되어 광화학반응을 할 수 있는 물질일 수 있다. 예컨대, 상기 광감작제는 광촉매, 광역학치료 등에 사용되는 유기분자로서 주로 암 치료에서 인체에 투입된 후 광조사에 의해 일중항산소를 발생시켜 세포를 사멸시키는 유기분자일 수 있다.The term “photosensitizer” may be a substance that is activated by light and can undergo a photochemical reaction. For example, the photosensitizer is an organic molecule used in photocatalysis, photodynamic therapy, etc., and may be an organic molecule that is mainly introduced into the human body in cancer treatment and then kills cells by generating singlet oxygen through light irradiation.

일 구체예에 따르면, 상기 GST-Afb-MOFs 나노 입자에 있어서, 상기 MOFs를 구성하는 유기분자는 포르피린계 (phorphyrins) 화합물 또는 고분자, 클로린계 (chlorins) 화합물 또는 고분자, 박테리오클로린계 (bacteriochlorins) 화합물 또는 고분자, 프탈로시아닌계 (phtalocyanine) 화합물 또는 고분자, 나프탈로시아닌계 (naphthalocyanines) 화합물 또는 고분자, 및 5-아미노레불린 에스테르계 (5-aminoevuline esters) 화합물 또는 고분자로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있고, 더욱 구체적으로는, 상기 MOFs를 구성하는 유기분자는 메조-테트라(4-카르복시페닐)포르핀 (meso-tetra(4-carboxyphenyl)porphine: TCPP) 또는 이의 유도체일 수 있으나, 이에 제한되는 것은 아니고, 상기 MOFs를 형성할 수 있으면서, 광감작제로서 기능할 수 있는 유기분자라면 제한없이 사용될 수 있다.According to one embodiment, in the GST-Afb-MOFs nanoparticles, the organic molecules constituting the MOFs are porphyrins or polymers, chlorins or polymers, or bacteriochlorins. Or it may contain at least one selected from the group consisting of polymers, phtalocyanine compounds or polymers, naphthalocyanines compounds or polymers, and 5-aminoevuline esters compounds or polymers. More specifically, the organic molecule constituting the MOFs may be meso-tetra(4-carboxyphenyl)porphine (TCPP) or a derivative thereof, but is limited thereto. Rather, any organic molecule that can form the MOFs and function as a photosensitizer can be used without limitation.

상기 GST-Afb-MOFs 나노 입자에 있어서, 상기 금속-유기 프레임워크 (MOFs)는 포르피린계 MOFs (phorphyrin-based MOFs)를 포함하는 것일 수 있다. 구체적으로는, 상기 MOFs는 MIL-88A, MIL-88Bt, MIL-89, MIL-127, MIL-101, MIL-100, MIL-53, MOF-74, UiO-66, UiO-67, ZIF-8, ZIFs, HKUST-1, M2(dobpdc), NU-1000, PCN-222, 및 PCN-224로 이루어지는 군으로부터 선택된 어느 하나를 포함하는 것일 수 있다.In the GST-Afb-MOFs nanoparticles, the metal-organic framework (MOFs) may include porphyrin-based MOFs. Specifically, the MOFs include MIL-88A, MIL-88Bt, MIL-89, MIL-127, MIL-101, MIL-100, MIL-53, MOF-74, UiO-66, UiO-67, ZIF-8 , ZIFs, HKUST-1, M2 (dobpdc), NU-1000, PCN-222, and PCN-224.

상기 GST-Afb-MOFs 나노 입자에 있어서, 상기 질환 세포 표적 펩티드 (Afb)는 질환 세포를 표적하는 펩티드로서, 상기 GST-Afb-MOFs 나노 입자가 표적이 된 질환 세포로 이동하고 해당 세포 내로 흡수될 수 있게 유도하는 펩티드를 의미한다. In the GST-Afb-MOFs nanoparticle, the disease cell targeting peptide (Afb) is a peptide that targets disease cells, and the GST-Afb-MOFs nanoparticle moves to the targeted disease cell and is absorbed into the cell. refers to a peptide that induces

상기 질환 세포는 정상 세포와는 구별되는 특성을 가지는 비정상 세포로서 질환의 원인이 되는 세포를 의미할 수 있다. 예컨대, 상기 질환 세포는 암 세포일 수 있다. 상기 암은, 뇌종양, 양성성상세포종, 악성성상세포종, 뇌하수체 선종, 뇌수막종, 뇌림프종, 핍지교종, 두개내인종, 상의세포종, 뇌간종양, 두경부 종양, 후두암, 구인두암, 비강/부비동암, 비인두암, 침샘암, 하인두암, 갑상선암, 구강암, 흉부종양, 소세포성 폐암, 비소세포성 폐암, 흉선암, 종격동 종양, 식도암, 유방암, 남성유방암, 복부종양, 위암, 간암, 담낭암, 담도암, 췌장암, 소장암, 대장암, 항문암, 방광암, 신장암, 전립선암, 자궁경부암, 자궁내막암, 난소암, 자궁육종, 및 피부암으로 이루어진 군으로부터 선택된 1 종 이상인 것일 수 있다. 또한, 상기 암은, 항암제에 대한 내성 (예를 들면, 다제 내성)을 갖는 위암, 유방암, 폐암, 간암, 식도암, 및 전립선암으로 이루어진 군으로부터 선택되는 어느 하나 이상인 것일 수 있다.The disease cells are abnormal cells with characteristics distinct from normal cells and may refer to cells that cause disease. For example, the diseased cells may be cancer cells. The cancers include brain tumor, benign astrocytoma, malignant astrocytoma, pituitary adenoma, meningioma, brain lymphoma, oligodendroglioma, intracranial tumor, ependymoma, brainstem tumor, head and neck tumor, laryngeal cancer, oropharyngeal cancer, nasal cavity/paranasal sinus cancer, nasopharyngeal cancer, Salivary gland cancer, hypopharyngeal cancer, thyroid cancer, oral cancer, thoracic tumor, small cell lung cancer, non-small cell lung cancer, thymus cancer, mediastinal tumor, esophageal cancer, breast cancer, male breast cancer, abdominal tumor, stomach cancer, liver cancer, gallbladder cancer, biliary tract cancer, pancreatic cancer, small intestine cancer. , colon cancer, anal cancer, bladder cancer, kidney cancer, prostate cancer, cervical cancer, endometrial cancer, ovarian cancer, uterine sarcoma, and skin cancer. In addition, the cancer may be any one or more selected from the group consisting of stomach cancer, breast cancer, lung cancer, liver cancer, esophageal cancer, and prostate cancer that has resistance to anticancer drugs (e.g., multidrug resistance).

구체적으로, 상기 Afb는 상기 질환 세포에 존재하는 (예컨대, 질환 세포 표면에 발현되어 있는), 질환과 연관되는 특정 인자 (예컨대, 마커, 수용체, 단백질 등)를 특이적으로 표적하거나 상기 질환과 연관되는 특정 인자에 특이적으로 결합하는 펩티드일 수 있다. 예컨대, 상기 질환과 연관되는 특정 인자는 암 세포의 표면에 발현되어 있는 수용체일 수 있다. 상기 암 세포의 표면에 발현되어 있는 수용체의 예에는, 비제한적으로 CD44, CD133, CD166, CD19, CD20, CD21, CD22, CD45, BCMA, MART-1, MAGE-A3, 당단백질 100 (gp100), NY-ESO-1, HER2 (ErbB2), IGF2B3, EGFRvIII, 칼리크레인 4, KIF20A, Lengsin, Meloe, MUC-1, MUC5AC, MUC-16, B7-H3, B7-H6, CD70, CEA, CSPG4, EphA2, EpCAM, EGFR 패밀리, FAP, FRα, 글루피칸-3, GD2, GD3, HLA-A1+MAGE1, IL-11Rα, IL-23Rα2, 루이스-Y, 메소텔린, NKG2D 리간드, PSMA, ROR1, 서바이빈, TAG72, 또는 VEGFR2가 포함될 수 있다.Specifically, the Afb specifically targets specific factors (e.g., markers, receptors, proteins, etc.) present in the diseased cells (e.g., expressed on the surface of the diseased cells) and associated with the disease, or are associated with the disease. It may be a peptide that specifically binds to a specific factor. For example, a specific factor associated with the disease may be a receptor expressed on the surface of cancer cells. Examples of receptors expressed on the surface of the cancer cells include, but are not limited to, CD44, CD133, CD166, CD19, CD20, CD21, CD22, CD45, BCMA, MART-1, MAGE-A3, glycoprotein 100 (gp100), NY-ESO-1, HER2 (ErbB2), IGF2B3, EGFRvIII, Kallikrein 4, KIF20A, Lengsin, Meloe, MUC-1, MUC5AC, MUC-16, B7-H3, B7-H6, CD70, CEA, CSPG4, EphA2 , EpCAM, EGFR family, FAP, FRα, glupican-3, GD2, GD3, HLA-A1+MAGE1, IL-11Rα, IL-23Rα2, Lewis-Y, mesothelin, NKG2D ligand, PSMA, ROR1, survivin , TAG72, or VEGFR2.

일 구체예에 따르면, 상기 Afb는 질환 세포 상의 (예컨대, 암 세포 표면에 발현되어 있는) HER2 (human epidermal growth factor receptor 2) 및/또는 EGFR (epidermal growth factor receptor)을 특이적으로 표적하거나, 상기 HER2 및/또는 EGFR에 특이적으로 결합하는 것일 수 있으나, 이에 제한되는 것은 아니고, 상기 Afb는 표적, 즉 타겟에 따라, 해당 타겟을 특이적으로 표적하거나, 해당 타겟에 특이적으로 결합하도록 다양하게 디자인될 수 있다.According to one embodiment, the Afb specifically targets HER2 (human epidermal growth factor receptor 2) and/or EGFR (epidermal growth factor receptor) on disease cells (e.g., expressed on the surface of cancer cells), or It may specifically bind to HER2 and/or EGFR, but is not limited thereto, and the Afb may be used in various ways to specifically target or specifically bind to the target, depending on the target. can be designed

일 구체예에 따르면, 상기 Afb는 서열번호 2 (HER2 표적 Afb) 또는 서열번호 3 (EGFR 표적 Afb)의 아미노산 서열을 포함하는 것일 수 있다. 또한, 상기 서열번호 2 또는 서열번호 3으로 구성된 아미노산 서열뿐만 아니라, 상기 서열과 80% 이상, 구체적으로는 90% 이상, 보다 구체적으로는 95% 이상, 더욱 구체적으로는 98% 이상, 가장 구체적으로는 99% 이상의 상동성을 나타내는 아미노산 서열로서 실질적으로 상기 펩티드와 동일하거나 상응하는 효능을 나타내는 아미노산 서열이라면 제한 없이 포함한다. 또한, 이러한 상동성을 갖는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환 또는 부가된 아미노산 서열도 본 발명의 범위 내에 포함됨은 자명하다.According to one embodiment, the Afb may include the amino acid sequence of SEQ ID NO: 2 (HER2 target Afb) or SEQ ID NO: 3 (EGFR target Afb). In addition, not only the amino acid sequence consisting of SEQ ID NO: 2 or SEQ ID NO: 3, but also 80% or more, specifically 90% or more, more specifically 95% or more, more specifically 98% or more, most specifically is an amino acid sequence showing 99% or more homology, and includes without limitation any amino acid sequence that is substantially the same as the above-mentioned peptide or shows a corresponding efficacy. In addition, it is clear that, as long as the amino acid sequence has such homology, amino acid sequences in which some sequences are deleted, modified, substituted, or added are also included within the scope of the present invention.

일 구체예에 따르면, 상기 GST-Afb-MOFs 나노 입자에 있어서, 상기 글루타싸이온전달효소 (GST) 및 상기 질환 세포 표적 펩티드 (Afb)가 연결된 융합 단백질 (GST-Afb)은 서열번호 4 (GST-HER2) 또는 서열번호 5 (GST-EGFR)의 아미노산 서열을 포함하는 것일 수 있다. 또한, 상기 서열번호 4 또는 서열번호 5로 구성된 아미노산 서열뿐만 아니라, 상기 서열과 80% 이상, 구체적으로는 90% 이상, 보다 구체적으로는 95% 이상, 더욱 구체적으로는 98% 이상, 가장 구체적으로는 99% 이상의 상동성을 나타내는 아미노산 서열로서 실질적으로 상기 단백질과 동일하거나 상응하는 효능을 나타내는 아미노산 서열이라면 제한 없이 포함한다. 또한, 이러한 상동성을 갖는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환 또는 부가된 아미노산 서열도 본 발명의 범위 내에 포함됨은 자명하다.According to one embodiment, in the GST-Afb-MOFs nanoparticle, the fusion protein (GST-Afb) in which the glutathione transferase (GST) and the disease cell targeting peptide (Afb) are linked is SEQ ID NO: 4 ( It may include the amino acid sequence of GST-HER2) or SEQ ID NO: 5 (GST-EGFR). In addition, not only the amino acid sequence consisting of SEQ ID NO: 4 or SEQ ID NO: 5, but also 80% or more, specifically 90% or more, more specifically 95% or more, more specifically 98% or more, most specifically is an amino acid sequence showing more than 99% homology, and includes without limitation any amino acid sequence that is substantially the same as that of the protein or shows a corresponding effect. In addition, it is clear that, as long as the amino acid sequence has such homology, amino acid sequences in which some sequences are deleted, modified, substituted, or added are also included within the scope of the present invention.

일 구체예에 따르면, 상기 GST-Afb-MOFs 나노 입자는, GST 및 질환 세포 상의 HER2를 표적하는 Afb가 연결된 제 1 융합 단백질 (제 1 GST-Afb), GST 및 질환 세포 상의 EGFR를 표적하는 Afb가 연결된 제 2 융합 단백질 (제 2 GST-Afb), 또는 이의 조합이 상기 MOFs의 표면에 코팅되어 있는 것일 수 있다.According to one embodiment, the GST-Afb-MOFs nanoparticles include a first fusion protein (first GST-Afb) linked to GST and Afb targeting HER2 on diseased cells, and Afb targeting GST and EGFR on diseased cells. A linked second fusion protein (second GST-Afb), or a combination thereof, may be coated on the surface of the MOFs.

즉, 상기 GST-Afb-MOFs 나노 입자에 있어서, 상기 MOFs 표면에 코팅된 상기 융합 단백질 (GST-Afb)은 2 종 이상일 수 있다. 예컨대, 상기 2 종 이상의 GST-Afb의 경우, 각각 상이한 타겟을 표적하는 Afb를 포함할 수 있다. 이로 인해, 상기 GST-Afb-MOFs 나노 입자는 다중 표적화가 가능할 수 있다. That is, in the GST-Afb-MOFs nanoparticles, there may be two or more types of fusion proteins (GST-Afb) coated on the surface of the MOFs. For example, in the case of the two or more types of GST-Afb, each may include Afb targeting a different target. Because of this, the GST-Afb-MOFs nanoparticles may be capable of multiple targeting.

따라서, 일 구체예에 따르면, 상기 2 종 이상의 GST-Afb로 표면 코팅된 GST-Afb-MOFs 나노 입자는, 상기 Afb가 표적하는 복수 종의 인자 (예컨대, 질환-관련 인자) 중 1 종 이상의 인자를 가지는 단일 종의 질환 세포 또는 복수 종의 질환 세포를 표적하고, 해당 세포내로 흡수될 수 있다. Therefore, according to one embodiment, the GST-Afb-MOFs nanoparticles surface-coated with the two or more types of GST-Afb are at least one of a plurality of factors (e.g., disease-related factors) targeted by the Afb. It targets a single type of diseased cell or multiple types of diseased cells and can be absorbed into the corresponding cell.

상기 GST-Afb-MOFs 나노 입자는, 상기 질환 세포, 즉, 상기 Afb가 표적하는 질환 세포 (예컨대, 상기 Afb가 표적하는 질환-연관 인자를 가지는 세포)에 특이적으로 흡수되어 해당 세포 내에서 빛에 반응하여 활성산소를 생성함으로써 상기 질환 세포만을 특이적으로 사멸시키는 것일 수 있다.The GST-Afb-MOFs nanoparticles are specifically absorbed by the disease cells, that is, disease cells targeted by the Afb (e.g., cells with disease-related factors targeted by the Afb) and emit light within the cells. By generating active oxygen in response, only the diseased cells may be specifically killed.

따라서, 일 구체예에 따르면, 상기 GST-Afb-MOFs 나노 입자는, 표적 세포 특이적인 광반응성 세포 사멸 효과를 나타낼 수 있다. Therefore, according to one embodiment, the GST-Afb-MOFs nanoparticles may exhibit a target cell-specific photoreactive cell death effect.

용어 "활성산소 (reactive oxygen species: ROS)"는 산소 원자를 포함한, 화학적으로 반응성있는 분자를 의미한다. 활성산소는 생물체내에서 생성되는 산소의 화합물로 짝지어지지 않은 전자 때문에 반응성이 매우 높고, 생체 조직을 공격하고 세포를 손상시키는 산화력이 강한 산소이다.The term “reactive oxygen species (ROS)” refers to a chemically reactive molecule containing an oxygen atom. Active oxygen is a compound of oxygen generated within living organisms that is highly reactive due to unpaired electrons and has a strong oxidizing power that attacks biological tissues and damages cells.

상기 활성산소는 초과산화수소이온, 과산화수소, 하이드록시 라디칼, 일중항산소 등을 포함할 수 있고, 일 구체예에 따르면, 상기 GST-Afb-MOFs 나노 입자는, 세포 내에서 빛에 반응하여 일중항산소를 생성함으로써 세포를 사멸시키는 것일 수 있다. The active oxygen may include hydrogen superoxide ion, hydrogen peroxide, hydroxy radical, singlet oxygen, etc., and according to one embodiment, the GST-Afb-MOFs nanoparticles react to light within the cell to produce singlet oxygen. It may kill cells by producing .

용어 "일중항산소 (singlet oxygen; 1O2)"는 산소분자에 있는 2개의 π* 궤도 중 한쪽에만 전자가 옮겨진 상태의 산소일 수 있으며, 여기된 상태에 있기 때문에 반응성이 매우 높을 수 있다.The term "singlet oxygen ( 1 O 2 )" may be oxygen in which electrons have been transferred to only one of the two π* orbitals in the oxygen molecule, and because it is in an excited state, it may be very reactive.

상기 GST-Afb-MOFs 나노 입자는, 내부에 약물이 담지되어 있는 것일 수 있다. 구체적으로, 상기 GST-Afb-MOFs 나노 입자는, 상기 금속-유기 프레임워크 (MOFs) 내부에 약물이 담지되어 있는 것일 수 있다.The GST-Afb-MOFs nanoparticles may have a drug loaded therein. Specifically, the GST-Afb-MOFs nanoparticles may have a drug loaded inside the metal-organic framework (MOFs).

일 구체예에 있어서, 상기 약물은 항암제인 것일 수 있으나, 이에 제한되는 것은 아니고, DNA, RNA 등의 유전자, 단백질 등 생물학적 반응을 조절하며, 생리 작용에 영향을 주는 활성 물질이라면 제한없이 포함될 수 있다. 구체적으로, 상기 약물은, 화합물 또는 그의 변형체 또는 유도체, 펩티드 또는 그의 변형체 또는 유도체, 앱타머 (Aptamer) 또는 그의 변형체 또는 유도체, 항체 또는 그의 변형체 또는 유도체, 세포의 생리 활성을 조절하여 질환을 치료하는 치료제, 또는 유전자 치료제 등일 수 있다.In one embodiment, the drug may be an anti-cancer agent, but is not limited thereto, and may be included without limitation as long as it is an active substance that regulates biological reactions such as genes such as DNA and RNA, and proteins, and affects physiological functions. . Specifically, the drug is a compound or a variant or derivative thereof, a peptide or a variant or derivative thereof, an aptamer or a variant or derivative thereof, an antibody or a variant or derivative thereof, or a drug that treats diseases by regulating the physiological activity of cells. It may be a therapeutic agent, a gene therapy, etc.

상기 항암제는 아바렐릭스 [abarelix (Plenaxis depot®)]; 알데스류킨 [aldesleukin (Prokine®)]; 알데스류킨 [Aldesleukin (Proleukin®)]; 알렘투주맙 [Alemtuzumabb (Campath®)]; 알리트레티노인 [alitretinoin (Panretin®)]; 알로퓨리놀 [allopurinol (Zyloprim®)]; 알트레타민 [altretamine (Hexalen®)]; 아미포스틴 [amifostine (Ethyol®)]; 아나스트로졸 [anastrozole (Arimidex®)]; 아르세닉 트리옥사이드 [arsenic trioxide (Trisenox®)]; 아스파라기나아제 [asparaginase (Elspar®)]; 아자시티딘 [azacitidine (Vidaza®)]; 베바쿠지맙 [bevacuzimab (Avastin®)]; 벡사로텐 캡슐 [bexarotene capsules (Targretin®)]; 벡사로텐 겔 [bexarotene gel (Targretin®)]; 블레오마이신 [bleomycin (Blenoxane®)]; 보르테조밉 [bortezomib (Velcade®)]; 정맥용 부술판 [busulfan intravenous (Busulfex®)]; 경구용 부술판 [busulfan oral (Myleran®)]; 칼루스테론 [calusterone (Methosarb®)]; 카페시타빈 [capecitabine (Xeloda®)]; 카르보플라틴 [carboplatin (Paraplatin®)]; 카르무스틴 [carmustine (BCNU®, BiCNU®)]; 카르무스틴 [carmustine (Gliadel®)]; 카르무스틴과 폴리페프로산 20 임플란트 (Polifeprosan 20 Implant) (Gliadel Wafer®); 셀레콕십 [celecoxib (Celebrex®)]; 세툭시맙 [cetuximab (Erbitux®)]; 클로람부실 [chloambucil (Leukeran®)]; 시스플라틴 [cisplatin (Platinol®)]; 클라드리빈 [cladribine (Leustatin®) 2-CdA®]; 클로파라빈 [clofarabine (Clolar®)]; 사이클로포스파미드 [cyclophosphamide (Cytoxan®, Neosar®)]; 사이클로포스파미드 [cyclophosphamide (Cytoxan Injection®)]; 사이클로포스파미드 [cyclophosphamide (Cytoxan Tablet®)]; 사이타라빈 [cytarabine (Cytosar-U®)]; 사이타라빈 리포조말 [cytarabine liposomal (DepoCyt®)]; 다카르바진 [dacarbazine (DTIC-Dome®)]; 닥티노마이신 (dactinomycin), 액티노마이신 D [actinomycinD (Cosmegen®)]; 다르베포에틴 알파 [Darbepoetin alfa (Aranesp®)]; 다우노루비신 리포조말 [daunorubicin liposomal (Danuoxome®)]; 다우노루비신 (daunorubicin), 다우노마이신 [daunomycin (Daunorubicin®)]; 다우노루비신 (daunorubicin), 다우노마이신 [daunomycin (Cerubidine®)]; 데니류킨 디프티톡스 [Denileukin diftitox (Ontak®)]; 덱스라조산 [dexrazoxane (Zinecard®)]; 도세탁셀 [docetaxel (Taxotere®)]; 독소루비신 [doxorubicin (Adriamycin PFS®)]; 독소루비신 [doxorubicin (Adriamycin®, Rubex®)]; 독소루비신 [doxorubicin (Adriamycin PFS Injection®)]; 독소루비신 리포조말 [doxorubicin liposomal (Doxil®)]; 드로모스타놀론 프로피오네이트 [dromostanolone propionate (dromostanolone®)]; 드로모스타놀론 프로피오네이트 [dromostanolone propionate (masterone injection®)]; 엘리엇 B 용액 [Elliott's B Solution (Elliott's B Solution®)]; 에피루비신 [epirubicin (Ellence®)]; 이포에틴 알파 [Epoetin alfa (epogen®)]; 에를로티닙 [erlotinib (Tarceva®)]; 에스트라무스틴 [estramustine (Emcyt®)]; 에토포사이드 포스페이트 [etoposide phosphate (Etopophos®)]; 에토포사이드 (etoposide), VP-16 (Vepesid®); 엑세메스탄 [exemestane (Aromasin®)]; 필그라스팀 [Filgrastim (Neupogen®)]; 플록수리딘 [floxuridine (intraarterial) (FUDR®)]; 플루다라빈 [fludarabine (Fludara®)]; 플루오로우라실 [Fluorouracil, 5-FU (Adrucil®)]; 플루베스트란트 [folvestrant (Faslodex®)]; 게피티닙 [gefitinib (Iressa®)]; 겜시타빈 [gemcitabine (Gemzar®)]; 겜투주맙 오조가미신 [gemtuzumab ozogamicin (Mylotarg®)]; 고세렐린 아세테이트 [goserelin acetate (Zoladex Implant®)]; 고세렐린 아세테이트 [goserelin acetate (Zoladex®)]; 히스트렐린 아세테이트 [histrelin acetate (Histrelin implant®)]; 하이드록시우레아 [hydroxyurea (Hydrea®)]; 이브리투모맙 티욱세탄 [Ibritumomab Tiuxetan (Zevalin®)]; 이다루비신 [idarubicin (Idamycin®)]; 이포스파미드 [ifosfamide (IFEX®)]; 이마티닙 메실레이트 [imatinib mesylate (Gleevec®)]; 인터페론 알파-2a [interferon alfa-2a (Roferon A®)]; 인터페론 알파-2b [Interferon alfa-2b (Intron A®)]; 이리노테칸 [irinotecan (Camptosar®)]; 레날리도마이드 [lenalidomide (Revlimid®)]; 레트로졸 [letrozole (Femara®)]; 류코보린 [leucovorin (Wellcovorin®, Leucovorin®)]; 류프롤리드 아세테이트 [Leuprolide Acetate (Eligard®)]; 레바미솔 [levamisole (Ergamisol®)]; 로무스틴-CCNU [lomustine-CCNU (CeeBU®)]; 메클로레타민 (meclorethamine), 니트로겐 머스타드 [nitrogen mustard (Mustargen®)]; 메게스트롤 아세테이트 [megestrol acetate (Megace®)]; 멜파란 (melphalan), L-PAM (Alkeran®); 머캅토퓨린 [mercaptopurine, 6-MP (purinethol®)]; 메스나 [mesna (Mesnex®)]; 메스나 [mesna (Mesnex tabs®)]; 메토트렉제이트 [methotraxate (methotraxate®)]; 메톡스살렌 [methoxsalen (Uvadex®)]; 미토마이신 C [mitomycin C (Mutamycin®)]; 미토탄 [mitotane (Lysodren®)]; 미토잔트론 [mitoxantrone (Novantrone®)]; 난드롤란 펜프로피오네이트 [nandrolone phenpropionate (Durabolin-50®)]; 넬라라빈 [nelarabine (Arranon®)]; 노페투모맙 [Nofetumomab (Verluma®)]; 오프렐베킨 [Oprelvekin (Neumega®)]; 옥살리플라틴 [oxaliplatin (Eloxatin®)]; 파클리탁셀 [paclitaxel (Paxene®)]; 파클리탁셀 [paclitaxel (Taxol®)]; 파클리탁셀 단백질 결합 입자 [paclitaxel protein-bound particles (Abraxane®)]; 팔리페르민 [palifermin (Kepivance®)]; 파미드로네이트 [pamidronate (Aredia®)]; peg아데마스 [pegademase (Adagen (Pegademase Bovine)®)]; peg아스파르가아제 [pegaspargase (Oncaspar®)]; peg필그라스팀 [Pegfilgrastim (Neulasta®)]; 페멕트렉제트 디소듐 [pemetrexed disodium (Alimta®)]; 펜토스타틴 [pentostatin (Nipent®)]; 피포브로만 [pipobroman (Vercyte®)]; 플리카마이신 [plicamycin], 미트라마이신 [mithramycin (Mithracin®)]; 포르피머 소듐 [porfimer sodium (Photofrin®)]; 프로카르바진 [procarbazine (Matulane®)]; 퀴나크린 [quinacrine (Atabrine®)]; 라스뷰리카아제 [Rasburicase (Elitek®)]; 리툭시맙 [Rituximab (Rituxan®)]; 사르그라모스팀 [sargramostim (Leukine®)]; 사르그라모스팀 [Sargramostim (Prokine®)]; 소라페닙 [sorafenib (Nexavar®)]; 스트렙타조신 [streptozocin (Zanosar®)]; 수니티닙 말리에이트 [sunitinib maleate (Sutent®)]; 탈크 [talc (Sclerosol®)]; 타목시펜 [tamoxifen (Nolvadex®)]; 테모졸로마이드 [temozolomide (Temodar®)]; 테니포사이드 [teniposide, VM-26 (Vumon®)]; 테스톨락톤 [testolactone (Teslac®)]; 티오구아닌 [thioguanine, 6-TG (thioguanine®)]; 티오테파 [thiotepa (thioplex®)]; 토포테칸 [topotecan (Hycamtin®)]; 토레미펜 [toremifene (Fareston®)]; 토시투모맙 [Tositumomab (Bexxar®)]; 토시투모맙/I-131 토시투모맙 (Bexxar®); 트라스투주맙 [Trastuzumab (Herceptin®)]; 트레티노인 [tretinoin, ATRA (Vesanoid®)]; 우라실 머스타드 [Uracil Mustard (Uracil Mustard Capsules®)]; 발루비신 [valrubicin (Valstar®)]; 빈블라스틴 [vinblastine (Velban®)]; 빈크리스틴 [vincristine (Oncovin®)]; 비노렐빈 [vinorelbine (Navelbine®)]; 졸레드로네이트 [zoledronate (Zometa®)], 이의 약학적으로 허용가능한 염, 및 이들의 혼합물 등을 포함할 수 있다. The anticancer agent includes abarelix (Plenaxis depot ® )]; aldesleukin (Prokine ® )]; Aldesleukin (Proleukin ® )]; Alemtuzumab (Campath ® )]; alitretinoin (Panretin ® )]; allopurinol (Zyloprim ® )]; altretamine (Hexalen ® )]; amifostine (Ethyol ® )]; anastrozole (Arimidex ® )]; arsenic trioxide (Trisenox ® )]; asparaginase (Elspar ® )]; azacitidine (Vidaza ® )]; bevacuzimab (Avastin ® )]; bexarotene capsules (Targretin ® )]; bexarotene gel (Targretin ® )]; bleomycin (Blenoxane ® )]; bortezomib (Velcade ® )]; busulfan intravenous (Busulfex ® )]; oral busulfan [busulfan oral (Myleran ® )]; calusterone (Methosarb ® )]; capecitabine (Xeloda ® )]; carboplatin (Paraplatin ® )]; carmustine (BCNU ® , BiCNU ® )]; carmustine (Gliadel ® )]; Carmustine and Polifeprosan 20 Implant (Gliadel Wafer ® ); celecoxib (Celebrex ® )]; cetuximab (Erbitux ® )]; chlorambucil (Leukeran ® )]; cisplatin (Platinol ® )]; cladribine (Leustatin ® ) 2-CdA ® ]; clofarabine (Clolar ® )]; cyclophosphamide (Cytoxan ® , Neosar ® )]; cyclophosphamide (Cytoxan Injection ® )]; cyclophosphamide (Cytoxan Tablet ® )]; cytarabine (Cytosar-U ® )]; cytarabine liposomal (DepoCyt ® )]; dacarbazine (DTIC-Dome ® )]; dactinomycin, actinomycin D (Cosmegen ® )]; Darbepoetin alfa (Aranesp ® )]; daunorubicin liposomal (Danuoxome ® )]; daunorubicin, daunomycin (Daunorubicin ® )]; daunorubicin, daunomycin (Cerubidine ® )]; Denileukin diftitox (Ontak ® )]; dexrazoxane (Zinecard ® )]; docetaxel ( Taxotere® )]; doxorubicin (Adriamycin PFS ® )]; doxorubicin (Adriamycin ® , Rubex ® )]; doxorubicin (Adriamycin PFS Injection ® )]; doxorubicin liposomal (Doxil ® )]; dromostanolone propionate (dromostanolone ® )]; dromostanolone propionate (masterone injection ® )]; Elliott's B Solution (Elliott's B Solution ® )]; epirubicin (Ellence ® )]; Epoetin alfa (epogen ® )]; erlotinib (Tarceva ® )]; estramustine (Emcyt ® )]; etoposide phosphate (Etopophos ® )]; etoposide, VP-16 (Vepesid ® ); exemestane (Aromasin ® )]; Filgrastim (Neupogen ® )]; floxuridine (intraarterial) (FUDR ® )]; fludarabine (Fludara ® )]; Fluorouracil [Fluorouracil, 5-FU (Adrucil ® )]; folvestrant (Faslodex ® )]; gefitinib (Iressa ® )]; gemcitabine (Gemzar ® )]; gemtuzumab ozogamicin (Mylotarg ® )]; goserelin acetate (Zoladex Implant ® )]; goserelin acetate (Zoladex ® )]; histrelin acetate (Histrelin implant ® )]; hydroxyurea (Hydrea ® )]; Ibritumomab Tiuxetan (Zevalin ® )]; idarubicin (Idamycin ® )]; ifosfamide (IFEX ® )]; imatinib mesylate (Gleevec ® )]; interferon alfa-2a (Roferon A ® )]; Interferon alfa-2b (Intron A ® )]; irinotecan (Camptosar ® )]; lenalidomide (Revlimid ® )]; letrozole (Femara ® )]; leucovorin (Wellcovorin ® , Leucovorin ® )]; Leuprolide Acetate (Eligard ® )]; levamisole (Ergamisol ® )]; lomustine-CCNU [lomustine-CCNU (CeeBU ® )]; meclorethamine, nitrogen mustard (Mustargen ® ); megestrol acetate ( Megace® )]; melphalan, L-PAM (Alkeran ® ); mercaptopurine [mercaptopurine, 6-MP (purinethol ® )]; mesna (Mesnex ® )]; mesna [mesna (Mesnex tabs ® )]; methotrexate (methotraxate ® )]; methoxsalen (Uvadex ® )]; mitomycin C (Mutamycin ® )]; mitotane (Lysodren ® )]; mitoxantrone (Novantrone ® )]; nandrolone phenpropionate (Durabolin-50 ® )]; nelarabine (Arranon ® )]; Nofetumomab (Verluma ® )]; Oprelvekin (Neumega ® )]; oxaliplatin (Eloxatin ® )]; paclitaxel (Paxene ® )]; paclitaxel (Taxol ® )]; paclitaxel protein-bound particles (Abraxane ® )]; palifermin (Kepivance ® )]; pamidronate (Aredia ® )]; pegademas [pegademase (Adagen (Pegademase Bovine) ® )]; pegaspargase [pegaspargase (Oncaspar ® )]; Pegfilgrastim (Neulasta ® )]; pemetrexed disodium (Alimta ® )]; pentostatin (Nipent ® )]; pipobroman (Vercyte ® )]; plicamycin, mithramycin (Mithracin ® ); porfimer sodium (Photofrin ® )]; procarbazine (Matulane ® )]; quinacrine (Atabrine ® )]; Rasburicase ( Elitek® )]; Rituximab (Rituxan ® )]; sargramostim (Leukine ® )]; Sargramostim (Prokine ® )]; sorafenib (Nexavar ® )]; streptozocin (Zanosar ® )]; sunitinib maleate (Sutent ® )]; Talc [talc (Sclerosol ® )]; tamoxifen (Nolvadex ® )]; temozolomide (Temodar ® )]; teniposide, VM-26 (Vumon ® )]; testolactone (Teslac ® )]; Thioguanine [thioguanine, 6-TG (thioguanine ® )]; thiotepa (thioplex ® )]; topotecan (Hycamtin ® )]; toremifene (Fareston ® )]; Tositumomab (Bexxar ® )]; Tositumomab/I-131 Tositumomab (Bexxar ® ); Trastuzumab (Herceptin ® )]; Tretinoin [tretinoin, ATRA ( Vesanoid® )]; Uracil Mustard (Uracil Mustard Capsules ® )]; valrubicin (Valstar ® )]; vinblastine (Velban ® )]; vincristine (Oncovin ® )]; vinorelbine (Navelbine ® )]; It may include zoledronate (Zometa ® )], its pharmaceutically acceptable salt, and mixtures thereof.

상기 GST-Afb-MOFs 나노 입자는, 상기 질환 세포, 즉, 상기 Afb가 표적하는 질환 세포 (예컨대, 상기 Afb가 표적하는 질환-연관 인자를 가지는 세포)에 특이적으로 흡수되어 세포 내에서 담지된 약물을 방출하는 것일 수 있다.The GST-Afb-MOFs nanoparticles are specifically absorbed into the disease cells, that is, disease cells targeted by the Afb (e.g., cells having a disease-related factor targeted by the Afb) and stored within the cells. It may be releasing drugs.

따라서, 일 구체예에 따르면, 상기 GST-Afb-MOFs 나노 입자는, 표적 세포 특이적 약물 전달 효과를 나타낼 수 있다. Therefore, according to one embodiment, the GST-Afb-MOFs nanoparticles may exhibit a target cell-specific drug delivery effect.

일 구체예에 따르면, 상기 GST-Afb-MOFs 나노 입자의 평균 직경은 약 100 내지 500, 150 내지 400, 150 내지 350, 150 내지 300, 200 내지 400, 200 내지 350, 또는 200 내지 300 nm인 것일 수 있다. 가장 바람직하게는, 상기 GST-Afb-MOFs 나노 입자의 평균 직경은 약 200 내지 300 nm인 것일 수 있다. 상기 GST-Afb-MOFs 나노 입자의 평균 직경이 상기 수치범위 내인 경우, 상기 GST-Afb-MOFs 나노 입자는 우수한 안정성, 단백질 흡착 차단능, 세포 표적능, 세포 흡수능, 약물 봉입률, 약물 전달능, 또는 광반응성 ROS 생성능 등을 나타내어 단백질 흡착 차단 효과, 세포 표적 효과, 표적 세포 특이적 약물 전달 효과, 또는 표적 세포 특이적 광반응성 세포 사멸 효과가 증가할 수 있다. 또한, 상기 GST-Afb-MOFs 나노 입자의 평균 직경이 상기 수치범위 미만인 경우, 약물 봉입률 또는 세포 표적능 등이 감소할 수 있고, 상기 수치범위 초과인 경우, 안정성, 단백질 흡착 차단능, 세포 흡수능, 또는 약물 전달능 등이 감소할 수 있다. 따라서, 상기 GST-Afb-MOFs 나노 입자의 평균 직경이 상기 수치범위를 벗어나는 경우, 상기 GST-Afb-MOFs 나노 입자의 단백질 흡착 차단 효과, 세포 표적 효과, 표적 세포 특이적 약물 전달 효과, 또는 표적 세포 특이적 광반응성 세포 사멸 효과가 감소할 수 있다.According to one embodiment, the average diameter of the GST-Afb-MOFs nanoparticles is about 100 to 500, 150 to 400, 150 to 350, 150 to 300, 200 to 400, 200 to 350, or 200 to 300 nm. You can. Most preferably, the average diameter of the GST-Afb-MOFs nanoparticles may be about 200 to 300 nm. When the average diameter of the GST-Afb-MOFs nanoparticles is within the above numerical range, the GST-Afb-MOFs nanoparticles have excellent stability, protein adsorption blocking ability, cell targeting ability, cell uptake ability, drug encapsulation rate, drug delivery ability, Alternatively, it may exhibit photoreactive ROS generation ability, thereby increasing protein adsorption blocking effect, cell targeting effect, target cell specific drug delivery effect, or target cell specific photoreactive cell death effect. In addition, if the average diameter of the GST-Afb-MOFs nanoparticles is less than the above numerical range, the drug encapsulation rate or cell targeting ability may be reduced, and if it is greater than the above numerical range, stability, protein adsorption blocking ability, and cell uptake ability may be reduced. , or drug delivery ability may be reduced. Therefore, when the average diameter of the GST-Afb-MOFs nanoparticles is outside the above numerical range, the protein adsorption blocking effect, cell targeting effect, target cell-specific drug delivery effect, or target cell effect of the GST-Afb-MOFs nanoparticles The specific photoreactive cell killing effect may be reduced.

일 구체예에 따르면, 상기 GST-Afb-MOFs 나노 입자의 표면 전하 (또는 제타 전위)는 약 -10 내지 -1, -9 내지 -1, -8 내지 -1, -7 내지 -1, -6 내지 -1, -5 내지 -1, -10 내지 -2, -9 내지 -2, -8 내지 -2, -7 내지 -2, -6 내지 -2, -5 내지 -2, -10 내지 -3, -9 내지 -3, -8 내지 -3, -7 내지 -3, -6 내지 -3, 또는 -5 내지 -3 mV인 것일 수 있다. 상기 GST-Afb-MOFs 나노 입자의 표면 전하 (또는 제타 전위)가 상기 수치범위 내인 경우, 상기 GST-Afb-MOFs 나노 입자는 우수한 안정성, 단백질 흡착 차단능, 세포 표적능, 세포 흡수능, 약물 봉입률, 약물 전달능, 또는 광반응성 ROS 생성능 등을 나타내어 단백질 흡착 차단 효과, 세포 표적 효과, 표적 세포 특이적 약물 전달 효과, 또는 표적 세포 특이적 광반응성 세포 사멸 효과가 증가할 수 있다. 또한, 상기 GST-Afb-MOFs 나노 입자의 표면 전하 (또는 제타 전위)가 상기 수치범위 미만인 경우, 안정성, 세포 흡수능, 약물 전달능, 또는 광반응성 ROS 생성능 등이 감소할 수 있고, 상기 수치범위 초과인 경우, 안정성, 단백질 흡착 차단능, 또는 세포 표적능 등이 감소할 수 있다. 따라서, 상기 GST-Afb-MOFs 나노 입자의 표면 전하 (또는 제타 전위)가 상기 수치범위를 벗어나는 경우, 상기 GST-Afb-MOFs 나노 입자의 단백질 흡착 차단 효과, 세포 표적 효과, 표적 세포 특이적 약물 전달 효과, 또는 표적 세포 특이적 광반응성 세포 사멸 효과가 감소할 수 있다.According to one embodiment, the surface charge (or zeta potential) of the GST-Afb-MOFs nanoparticles is about -10 to -1, -9 to -1, -8 to -1, -7 to -1, -6. to -1, -5 to -1, -10 to -2, -9 to -2, -8 to -2, -7 to -2, -6 to -2, -5 to -2, -10 to - It may be 3, -9 to -3, -8 to -3, -7 to -3, -6 to -3, or -5 to -3 mV. When the surface charge (or zeta potential) of the GST-Afb-MOFs nanoparticles is within the above numerical range, the GST-Afb-MOFs nanoparticles have excellent stability, protein adsorption blocking ability, cell targeting ability, cell uptake ability, and drug encapsulation rate. , drug delivery ability, or photoreactive ROS generation ability, etc. may increase the protein adsorption blocking effect, cell targeting effect, target cell specific drug delivery effect, or target cell specific photoreactive cell killing effect. In addition, if the surface charge (or zeta potential) of the GST-Afb-MOFs nanoparticles is less than the above numerical range, stability, cell uptake ability, drug delivery ability, or photoreactive ROS generation ability may be reduced, and if it exceeds the above numerical range, In this case, stability, protein adsorption blocking ability, or cell targeting ability may be reduced. Therefore, when the surface charge (or zeta potential) of the GST-Afb-MOFs nanoparticles is outside the above numerical range, the protein adsorption blocking effect, cell targeting effect, and target cell-specific drug delivery of the GST-Afb-MOFs nanoparticles The effect, or target cell-specific photoreactive cell death effect, may be reduced.

다른 양상은 상기 GST-Afb-MOFs 나노 입자를 유효 성분으로 포함하는 표적 세포 특이적 약물 전달용 조성물 (또는 약물 전달용 약학적 조성물)을 제공한다.Another aspect provides a target cell-specific drug delivery composition (or drug delivery pharmaceutical composition) containing the GST-Afb-MOFs nanoparticles as an active ingredient.

또 다른 양상은 상기 GST-Afb-MOFs 나노 입자를 유효 성분으로 포함하는 표적 세포 특이적 광반응성 세포 사멸용 조성물 (또는 세포 사멸용 약학적 조성물)을 제공한다.Another aspect provides a composition for target cell-specific photoreactive cell death (or pharmaceutical composition for cell death) comprising the GST-Afb-MOFs nanoparticles as an active ingredient.

상기 표적 세포는 상기 Afb가 표적하는 질환 세포 (예컨대, 상기 Afb가 표적하는 질환-연관 인자를 가지는 세포)일 수 있고, 상기 질환 세포는 암 세포일 수 있다.The target cell may be a disease cell targeted by the Afb (eg, a cell having a disease-related factor targeted by the Afb), and the disease cell may be a cancer cell.

또 다른 양상은 상기 GST-Afb-MOFs 나노 입자를 유효 성분으로 포함하는 암 예방 또는 치료용 약학적 조성물을 제공한다.Another aspect provides a pharmaceutical composition for preventing or treating cancer containing the GST-Afb-MOFs nanoparticles as an active ingredient.

상기 GST-Afb-MOFs 나노 입자는 상술한 바와 같다.The GST-Afb-MOFs nanoparticles are as described above.

상기 GST-Afb-MOFs 나노 입자는 내부에 약물이 담지되어 있는 것일 수 있고, 상기 약물은 상술한 바와 같다.The GST-Afb-MOFs nanoparticles may have a drug loaded therein, and the drug is as described above.

일 구체예에 따르면, 상기 GST-Afb-MOFs 나노 입자는 그 자체로서 표적 세포 특이적인 광반응성 세포 독성을 나타내어 표적하는 암 세포를 사멸시킬 수 있으므로, 내부에 약물이 담지되어 있지 않더라도, 상기 GST-Afb-MOFs 나노 입자는 상기 표적 세포 특이적 광반응성 세포 사멸용 조성물 (또는 세포 사멸용 약학적 조성물) 또는 암 예방 또는 치료용 약학적 조성물에 유효 성분으로서 포함될 수 있다.According to one embodiment, the GST-Afb-MOFs nanoparticles themselves exhibit target cell-specific photoreactive cytotoxicity and can kill targeted cancer cells, so even if no drug is loaded therein, the GST- Afb-MOFs nanoparticles may be included as an active ingredient in the target cell-specific photoreactive cell killing composition (or cell killing pharmaceutical composition) or cancer prevention or treatment pharmaceutical composition.

또한, 일 구체예에 따르면, 내부에 약물이 담지된 상기 GST-Afb-MOFs 나노 입자의 경우에는, 약물에 의한 화학 요법 및 광반응성 세포 독성에 의한 광역학 요법 (photodynamic therapy: PDT)의 시너지 효과를 유도하여 현저히 우수한 표적 세포 (예컨대, 표적 암 세포)에 대한 사멸 효과를 나타낼 수 있다.In addition, according to one embodiment, in the case of the GST-Afb-MOFs nanoparticles with a drug loaded therein, the synergistic effect of chemotherapy by the drug and photodynamic therapy (PDT) by photoreactive cytotoxicity It can induce a significantly better killing effect on target cells (eg, target cancer cells).

상기 암은, 뇌종양, 양성성상세포종, 악성성상세포종, 뇌하수체 선종, 뇌수막종, 뇌림프종, 핍지교종, 두개내인종, 상의세포종, 뇌간종양, 두경부 종양, 후두암, 구인두암, 비강/부비동암, 비인두암, 침샘암, 하인두암, 갑상선암, 구강암, 흉부종양, 소세포성 폐암, 비소세포성 폐암, 흉선암, 종격동 종양, 식도암, 유방암, 남성유방암, 복부종양, 위암, 간암, 담낭암, 담도암, 췌장암, 소장암, 대장암, 항문암, 방광암, 신장암, 전립선암, 자궁경부암, 자궁내막암, 난소암, 자궁육종, 및 피부암으로 이루어진 군으로부터 선택된 1 종 이상인 것일 수 있다. 또한, 상기 암은, 항암제에 대한 내성 (예를 들면, 다제 내성)을 갖는 위암, 유방암, 폐암, 간암, 식도암, 및 전립선암으로 이루어진 군으로부터 선택되는 어느 하나 이상인 것일 수 있다.The cancers include brain tumor, benign astrocytoma, malignant astrocytoma, pituitary adenoma, meningioma, brain lymphoma, oligodendroglioma, intracranial tumor, ependymoma, brainstem tumor, head and neck tumor, laryngeal cancer, oropharyngeal cancer, nasal cavity/paranasal sinus cancer, nasopharyngeal cancer, Salivary gland cancer, hypopharyngeal cancer, thyroid cancer, oral cancer, thoracic tumor, small cell lung cancer, non-small cell lung cancer, thymus cancer, mediastinal tumor, esophageal cancer, breast cancer, male breast cancer, abdominal tumor, stomach cancer, liver cancer, gallbladder cancer, biliary tract cancer, pancreatic cancer, small intestine cancer. , colon cancer, anal cancer, bladder cancer, kidney cancer, prostate cancer, cervical cancer, endometrial cancer, ovarian cancer, uterine sarcoma, and skin cancer. In addition, the cancer may be any one or more selected from the group consisting of stomach cancer, breast cancer, lung cancer, liver cancer, esophageal cancer, and prostate cancer that has resistance to anticancer drugs (e.g., multidrug resistance).

용어 "유효 성분 (effective ingredient)"은 이롭거나 바람직한 임상적 또는 생화학적 결과에 영향을 주는 적절한 유효량의 성분을 의미한다. 구체적으로는, 유효량의 상기 GST-Afb-MOFs 나노 입자를 의미할 수 있다.The term “effective ingredient” means an appropriately effective amount of an ingredient that affects a beneficial or desirable clinical or biochemical outcome. Specifically, it may refer to an effective amount of GST-Afb-MOFs nanoparticles.

상기 유효량은 한번 또는 그 이상 투여될 수 있고, 질병을 예방하거나, 질병 상태를 비제한적으로, 증상의 완화, 질병 범위의 감소, 질병 상태의 안정화 (즉, 악화되지 않음), 질병 진행의 지연 또는 속도의 감소, 또는 질병 상태의 개선 또는 일시적 완화 및 경감 (부분적이거나 전체적으로)을 위한 적절한 양일 수 있다.The effective amount may be administered once or more and may prevent the disease, treat the disease state, including but not limited to, alleviate symptoms, reduce the extent of the disease, stabilize the disease state (i.e., not worsen), delay disease progression, or It may be an appropriate amount for reduction of the rate, or improvement or temporary relief and alleviation (partial or total) of the disease state.

용어 "예방"은 상기 조성물의 투여로 인해 질병, 예컨대 암의 발병을 억제 또는 지연시키는 모든 행위를 의미한다.The term “prevention” refers to any action that inhibits or delays the onset of a disease, such as cancer, due to administration of the composition.

용어 "치료"는 상기 조성물의 투여로 인해 이미 유발된 질병, 예컨대 암의 증세가 호전되거나 이롭게 되는 모든 행위를 의미한다.The term “treatment” refers to any action that improves or benefits the symptoms of a disease that has already been caused, such as cancer, by administering the composition.

상기 조성물은 약학적으로 허용 가능한 부형제, 희석제 또는 담체를 추가로 포함할 수 있다. 상기 "약학적으로 허용 가능한 부형제, 희석제 또는 담체"란 생물체를 자극하지 않으면서, 주입되는 화합물 또는 유효 성분의 생물학적 활성 및 특성을 저해하지 않는 부형제, 희석제 또는 담체를 의미할 수 있다. 여기서 "약학적으로 허용되는" 의미는 유효 성분의 활성을 억제하지 않으면서 적용 (처방) 대상이 적응 가능한 이상의 독성을 지니지 않는다는 의미이다.The composition may further include pharmaceutically acceptable excipients, diluents, or carriers. The term “pharmaceutically acceptable excipient, diluent or carrier” may mean an excipient, diluent or carrier that does not irritate living organisms and does not inhibit the biological activity and properties of the injected compound or active ingredient. Here, “pharmaceutically acceptable” means that it does not inhibit the activity of the active ingredient and does not have toxicity beyond what is acceptable for the subject of application (prescription).

상기 약학적으로 허용 가능한 담체로서, 경구 투여 시에는 결합제, 활탁제, 붕해제, 부형제, 가용화제, 분산제, 안정화제, 현탁화제, 색소, 향료 등을 사용할 수 있으며, 주사제의 경우에는 완충제, 보존제, 무통화제, 가용화제, 등장제, 안정화제 등을 혼합하여 사용할 수 있으며, 국소투여용의 경우에는 기제, 부형제, 윤활제, 보존제 등을 사용할 수 있다.As the pharmaceutically acceptable carrier, binders, lubricants, disintegrants, excipients, solubilizers, dispersants, stabilizers, suspending agents, colorants, flavors, etc. can be used for oral administration, and buffers and preservatives for injections. , analgesics, solubilizers, isotonic agents, stabilizers, etc. can be mixed and used, and for topical administration, bases, excipients, lubricants, preservatives, etc. can be used.

상기 조성물은 각각 통상의 방법에 따라 산제, 과립제, 정제, 캡슐제, 현탁액, 에멀젼, 시럽, 에어로졸 등의 경구형 제형, 외용제, 좌제 또는 단위 투약 앰플 또는 다수회 투약 형태의 주사제의 형태로 제제화하여 사용될 수 있다. 상기 조성물을 제제화할 경우, 일반적으로 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 또는 계면활성제 등의 희석제 또는 부형제를 추가하여 조제될 수 있다.The composition is formulated in the form of oral dosage forms such as powders, granules, tablets, capsules, suspensions, emulsions, syrups, and aerosols, external preparations, suppositories, unit dosage ampoules, or injections in the form of multiple dosages according to conventional methods. can be used When formulating the composition, it may be prepared by adding diluents or excipients such as commonly used fillers, extenders, binders, wetting agents, disintegrants, or surfactants.

상기 조성물이 비경구용 제형으로 제조될 경우, 적합한 담체와 함께 당업계에 공지된 방법에 따라 주사제, 경피 투여제, 비강 흡입제 및 좌제의 형태로 제제화될 수 있다. 주사제로 제제화활 경우 적합한 담체로서는 멸균수, 에탄올, 글리세롤이나 프로필렌 글리콜 등의 폴리올 또는 이들의 혼합물을 들 수 있으며, 바람직하게는 링거 용액, 트리에탄올 아민이 함유된 PBS (phosphate buffered saline)나 주사용 멸균수, 5% 덱스트로스 같은 등장 용액 등을 사용할 수 있다. 경피 투여제로 제제화할 경우 연고제, 크림제, 로션제, 겔제, 외용액제, 파스타제, 리니멘트제, 에어롤제 등의 형태로 제제화될 수 있다. 비강 흡입제의 경우 디클로로플루오로메탄, 트리클로로플루오로메탄, 디클로로테트라플루오로에탄, 이산화탄소 등의 적합한 추진제를 사용하여 에어로졸 스프레이 형태로 제제화될 수 있으며, 좌제로 제제화할 경우 그 기제로는 위텝솔 (witepsol), 트윈 (tween) 61, 폴리에틸렌글리콜류, 카카오지, 라우린지, 폴리옥시에틸렌 소르비탄 지방산 에스테르류, 폴리옥시에틸렌 스테아레이트류, 소르비탄 지방산 에스테르류 등이 사용될 수 있다. 또한, 상기 조성물은 생리식염수 또는 유기용매와 같이 약제로 허용된 여러 전달체 (Carrier)를 추가로 포함하거나 그들과 혼합하여 사용될 수 있고, 안정성이나 흡수성을 증가시키기 위하여 글루코스, 수크로스 또는 덱스트란과 같은 탄수화물, 아스코르브산 (Ascorbic acid) 또는 글루타치온 (Glutathione)과 같은 항산화제 (Antioxidants), 킬레이트화제 (Chelating agents), 저분자 단백질 또는 다른 안정화제 (Stabilizers)들을 추가로 포함하거나 그들과 혼합하여 사용될 수 있다.When the composition is prepared as a parenteral formulation, it can be formulated in the form of injections, transdermal administration, nasal inhalation, and suppositories along with a suitable carrier according to methods known in the art. When formulated as an injection, suitable carriers include sterilized water, ethanol, polyols such as glycerol or propylene glycol, or mixtures thereof, preferably Ringer's solution, PBS (phosphate buffered saline) containing triethanolamine, or sterile injectable carrier. Isotonic solutions such as water or 5% dextrose can be used. When formulated for transdermal administration, it can be formulated in the form of ointments, creams, lotions, gels, external solutions, paste preparations, linear preparations, and aerol preparations. In the case of nasal inhalation, it can be formulated in the form of an aerosol spray using suitable propellants such as dichlorofluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, and carbon dioxide. When formulated as a suppository, the base is Wethepsol ( witepsol), Tween 61, polyethylene glycols, cocoa fat, laurel paper, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene stearates, sorbitan fatty acid esters, etc. can be used. In addition, the composition may additionally contain or be mixed with various pharmaceutically acceptable carriers, such as physiological saline or organic solvents, and may be used in combination with carriers such as glucose, sucrose, or dextran to increase stability or absorption. Carbohydrates, antioxidants such as ascorbic acid or glutathione, chelating agents, low molecular weight proteins or other stabilizers may be additionally included or used in combination with them.

상기 조성물의 투여 경로는 목적 조직에 도달할 수 있는 한 어떠한 일반적인 경로를 통하여 투여될 수 있으며, 구체적으로 상기 조성물은 근육 투여용, 피하 투여용, 복강 투여용, 정맥 투여용, 경구 투여용, 진피 투여용, 안구 투여용, 및 뇌 내 투여용 조성물로 이루어진 군으로부터 선택되는 것일 수 있다.The composition may be administered through any general route as long as it can reach the target tissue. Specifically, the composition may be administered for intramuscular administration, subcutaneous administration, intraperitoneal administration, intravenous administration, oral administration, or dermal administration. It may be selected from the group consisting of compositions for administration, ocular administration, and intracerebral administration.

상기 조성물은 약학적으로 유효한 양으로 투여될 수 있는데, 상기 용어 "약학적으로 유효한 양"이란 의학적 치료 또는 예방에 적용 가능한 합리적인 수혜/위험 비율로 질병을 치료 또는 예방하기에 충분한 양을 의미하며, 유효 용량 수준은 질병의 중증도, 약물의 활성, 환자의 연령, 체중, 건강, 성별, 환자의 약물에 대한 민감도, 사용된 본 발명 조성물의 투여 시간, 투여 경로 및 배출 비율 치료기간, 사용된 본 발명 조성물과 배합 또는 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다. 상기 조성물은 단독으로 투여하거나 공지된 특정 질병 (예컨대 암)에 대한 예방 또는 치료 효과를 나타내는 것으로 알려진 성분과 병용하여 투여될 수 있다. 상기 요소를 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하다.The composition may be administered in a pharmaceutically effective amount, where the term "pharmaceutically effective amount" means an amount sufficient to treat or prevent a disease with a reasonable benefit/risk ratio applicable to medical treatment or prevention, The effective dose level is determined by the severity of the disease, the activity of the drug, the patient's age, weight, health, gender, the patient's sensitivity to the drug, the administration time, route of administration and excretion rate of the composition of the present invention used, the treatment period, and the present invention used. It can be determined based on factors including drugs combined or used simultaneously with the composition and other factors well known in the medical field. The composition can be administered alone or in combination with ingredients known to exhibit preventive or therapeutic effects on certain known diseases (eg, cancer). It is important to consider all of the above factors and administer the amount that will achieve the maximum effect with the minimum amount without side effects.

상기 조성물의 투여량은 사용목적, 질병의 중독도, 환자의 연령, 체중, 성별, 기왕력, 또는 유효 성분으로서 사용되는 물질의 종류 등을 고려하여 당업자가 결정할 수 있다. 예를 들어, 본 발명의 조성물은 성인 1인당 약 0.1 ng 내지 약 1,000 mg/kg, 바람직하게는 1 ng 내지 약 100 mg/kg로 투여할 수 있고, 본 발명의 조성물의 투여빈도는 특별히 제한되지 않으나, 1일 1회 투여하거나 또는 용량을 분할하여 수회 투여할 수 있다. 상기 투여량 또는 투여횟수는 어떠한 면으로든 본 발명의 범위를 한정하는 것은 아니다.The dosage of the composition can be determined by a person skilled in the art in consideration of the purpose of use, the degree of addiction of the disease, the patient's age, weight, gender, medical history, or the type of substance used as an active ingredient. For example, the composition of the present invention can be administered at about 0.1 ng to about 1,000 mg/kg, preferably 1 ng to about 100 mg/kg per adult, and the frequency of administration of the composition of the present invention is not particularly limited. However, it can be administered once a day, or the dose can be divided and administered several times. The above dosage or frequency of administration does not limit the scope of the present invention in any way.

상기 조성물에서 언급된 용어 또는 요소 중 상기 나노 입자에 대한 설명에서 언급된 것과 같은 것은, 앞에서 상기 나노 입자에 대한 설명에서 언급된 바와 같은 것으로 이해된다.Among the terms or elements mentioned in the composition, those mentioned in the description of the nanoparticles are understood to be the same as previously mentioned in the description of the nanoparticles.

또 다른 양상은 상기 GST-Afb-MOFs 나노 입자, 또는 이를 유효 성분으로 포함하는, 표적 세포 특이적 약물 전달용 조성물 (또는 약물 전달용 약학적 조성물), 표적 세포 특이적 광반응성 세포 사멸용 조성물 (또는 세포 사멸용 약학적 조성물), 또는 암 예방 또는 치료용 약학적 조성물을 개체에 투여하는 단계를 포함하는 암을 예방 또는 치료하는 방법을 제공한다.Another aspect is the GST-Afb-MOFs nanoparticles, or a composition for target cell-specific drug delivery (or pharmaceutical composition for drug delivery) containing the same as an active ingredient, or a composition for target cell-specific photoreactive cell killing ( or a pharmaceutical composition for cell death), or a pharmaceutical composition for cancer prevention or treatment is provided to a subject.

상기 GST-Afb-MOFs 나노 입자 및 이를 유효 성분으로 포함하는 상기 조성물은 상술한 바와 같다. The GST-Afb-MOFs nanoparticles and the composition containing the same as an active ingredient are as described above.

상기 개체는 암이 발병되거나 발병할 위험이 있는 소, 말, 양, 돼지, 염소, 낙타, 영양, 개, 고양이, 쥐, 가축, 인간 등을 포함하는 포유동물, 양식어류, 인간을 제외한 포유동물 등을 제한 없이 포함할 수 있다. The above-mentioned entities include mammals including cattle, horses, sheep, pigs, goats, camels, antelopes, dogs, cats, rats, livestock, humans, farmed fish, and mammals other than humans that develop or are at risk of developing cancer. etc. may be included without limitation.

용어 "투여"란, 적절한 방법으로 개체에게 소정의 물질을 도입하는 것을 의미하며, 본 발명의 조성물의 투여 경로는 목적 조직에 도달할 수 있는 한 어떠한 일반적인 경로를 통하여 투여될 수 있다. 복강내 투여, 정맥내 투여, 근육내 투여, 피하 투여, 피내 투여, 경구 투여, 국소 투여, 비내 투여, 폐내 투여, 직장내 투여될 수 있지만, 이에 제한되지 않는다. 그러나 경구 투여시, 단백질은 소화가 되기 때문에 경구용 조성물은 활성 약제를 코팅하거나 위에서의 분해로부터 보호되도록 제형화 하는 것이 바람직하다. 또한, 제약 조성물은 활성 물질이 표적 세포로 이동할 수 있는 임의의 장치에 의해 투여될 수 있다.The term “administration” means introducing a predetermined substance into an individual by an appropriate method, and the composition of the present invention can be administered through any general route as long as it can reach the target tissue. It may be administered intraperitoneally, intravenously, intramuscularly, subcutaneously, intradermally, orally, topically, intranasally, intrapulmonaryly, or rectally, but is not limited thereto. However, when administered orally, proteins are digested, so it is desirable for oral compositions to be coated with the active agent or formulated to protect them from decomposition in the stomach. Additionally, pharmaceutical compositions can be administered by any device that can transport the active agent to target cells.

상기 조성물은 개별 치료제로 투여하거나 다른 치료제와 병용하여 투여될 수 있고 종래의 치료제와는 순차적 또는 동시에 투여될 수 있다. 그리고 단일 또는 다중 투여될 수 있다. 상기 요소를 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 당업자에 의해 용이하게 결정될 수 있다.The composition may be administered as an individual therapeutic agent or in combination with other therapeutic agents, and may be administered sequentially or simultaneously with conventional therapeutic agents. And it can be administered single or multiple times. Considering all of the above factors, it is important to administer an amount that can achieve maximum effect with the minimum amount without side effects, and can be easily determined by a person skilled in the art.

상기 방법에서 언급된 용어 또는 요소 중 상기 나노 입자 및 조성물에 대한 설명에서 언급된 것과 같은 것은, 앞에서 상기 나노 입자 및 조성물에 대한 설명에서 언급된 바와 같은 것으로 이해된다.Among the terms or elements mentioned in the above method, those mentioned in the description of the nanoparticles and composition are understood to be the same as previously mentioned in the description of the nanoparticles and composition.

또 다른 양상은 상기 GST-Afb-MOFs 나노 입자의 표적 세포 특이적 약물 전달 용도, 표적 세포 특이적 광반응성 세포 사멸 용도, 또는 암 예방 또는 치료 용도를 제공한다.Another aspect provides the use of the GST-Afb-MOFs nanoparticles for target cell-specific drug delivery, target cell-specific photoreactive cell killing, or cancer prevention or treatment.

또 다른 양상은 상기 GST-Afb-MOFs 나노 입자의, 표적 세포 특이적 약물 전달용 조성물 (또는 약물 전달용 약학적 조성물), 표적 세포 특이적 광반응성 세포 사멸용 조성물 (또는 세포 사멸용 약학적 조성물), 또는 암 예방 또는 치료용 약학적 조성물을 제조하기 위한 용도를 제공한다.Another aspect is a composition for target cell-specific drug delivery (or pharmaceutical composition for drug delivery), a composition for target cell-specific photoreactive cell death (or pharmaceutical composition for cell death) of the GST-Afb-MOFs nanoparticles. ), or for preparing a pharmaceutical composition for preventing or treating cancer.

상기 GST-Afb-MOFs 나노 입자는 상술한 바와 같다.The GST-Afb-MOFs nanoparticles are as described above.

상기 용도에서 언급된 용어 또는 요소 중 상기 나노 입자, 조성물, 및 방법에 대한 설명에서 언급된 것과 같은 것은, 앞에서 상기 나노 입자, 조성물, 및 방법에 대한 설명에서 언급된 바와 같은 것으로 이해된다. Among the terms or elements mentioned in the above uses, those mentioned in the description of the nanoparticles, compositions, and methods are understood to be the same as previously mentioned in the description of the nanoparticles, compositions, and methods.

일 양상에 따른 금속-유기 프레임워크 나노 입자에 따르면, 우수한 단백질 흡착 차단 효과, 세포 표적 효과, 표적 세포 특이적 약물 전달 효과, 및 표적 세포 내에서 광반응성 ROS 생성에 의한 세포 사멸 효과를 나타내어 표적 세포 특이적 약물 전달체 또는 질환 치료제 (예컨대, 암 치료제)로서 유용하게 사용될 수 있으며, 특히, 암 세포 사멸에 대한 광역학 요법 및 화학 요법의 시너지 효과를 유도할 수 있다.According to one aspect, metal-organic framework nanoparticles exhibit excellent protein adsorption blocking effect, cell targeting effect, target cell-specific drug delivery effect, and cell killing effect by generating photoreactive ROS within target cells, thereby killing target cells. It can be useful as a specific drug carrier or disease treatment agent (eg, cancer treatment), and in particular, it can induce a synergistic effect of photodynamic therapy and chemotherapy on cancer cell death.

도 1은 일 실시예에 따른 GST-Afb-MOFs 복합체의 구조, 단백질 흡착 차단 작용, 세포 표적화 작용, 표적 세포 특이적 약물 전달 작용, 및 표적 세포 내에서의 광반응성 ROS 생성 작용을 개략적으로 나타낸 모식도이다.
도 2는 일 실시예에 따른 GST-Afb-MOFs 복합체인, GST-HER2가 PCN의 표면에 코팅된 GST-H-PCN; 및 GST-EGFR이 PCN의 표면에 코팅된 GST-E-PCN의 형태를 개략적으로 나타낸 모식도이다.
도 3은 일 실시예에 따른 GST-Afb-MOFs 복합체인, GST-H-PCN 및 GST-E-PCN에 대하여 수행된 TEM 촬영 이미지이다.
도 4는 일 실시예에 따른 GST-Afb-MOFs 복합체인, GST-H-PCN 및 GST-E-PCN과 대조군 (PCN)에 대하여 PXRD 분석을 수행한 결과를 나타낸 그래프이다.
도 5는 일 실시예에 따른 GST-Afb-MOFs 복합체인, GST-H-PCN 및 GST-E-PCN과 대조군 (PCN)의 사이즈를 입도분석기 (DLS)로 측정한 결과를 나타낸 그래프이다.
도 6은 일 실시예에 따른 GST-Afb-MOFs 복합체인, GST-H-PCN 및 GST-E-PCN과 대조군 (PCN, GST-HER2, 및 GST-EGFR)의 제타 전위를 측정한 결과를 나타낸 그래프이다.
도 7은 일 실시예에 따른 GST-Afb-MOFs 복합체인, 혈청 배지에서 배양된 GST-H-PCN 및 GST-E-PCN과 대조군 (PCN)의 단백질 흡착 정도의 차이를 보여주는 모식도 (a), 겔 전기영동 결과 이미지 (b), 및 FITC 변형 혈청 단백질에 의한 형광 방출 세기를 측정한 결과 그래프 (c)이다.
도 8은 일 실시예에 따른 GST-Afb-MOFs 복합체의 MOFs와 GST-Afb의 연결 (또는 흡착) 구조를 예측한 분자 역학 (MD) 시뮬레이션 모식도이다 (a: GST-Afb 내 연결 부위; b: MOFs 내 연결 부위; c: GST-Afb-PCN 복합체에 대해 예측된 연결 구조).
도 9는 일 실시예에 따른 GST-Afb-MOFs 복합체인, GST-Afb-PCN 복합체의 PCN과 GST-Afb의 연결 (또는 흡착) 구조를 보여주는 분자 역학 (MD) 시뮬레이션 모식도이다.
도 10은 방사형 분포 함수 (RDF)를 사용하여, 일 실시예에 따른 GST-Afb-MOFs 복합체인, GST-Afb-PCN 복합체에서, GST의 G-사이트와 PCN의 Zr6 노드 사이의 정전기적 상호작용을 유도하는 GST 내 잔기를 분석한 결과 그래프이다.
도 11은 일 실시예에 따른 GST-Afb-MOFs 복합체인, GST-Afb-PCN 복합체에서, GST의 특정 영역 (G-사이트 또는 측면 영역)과 PCN의 표면 중 특정 영역 (프레임 또는 기공) 사이에서의 상호작용 에너지를 분석한 결과 그래프이다.
도 12는 일 실시예에 따른 GST-Afb-MOFs 복합체인, GST-Afb-PCN 복합체에서, GST-Afb의 힌지 영역, GST 영역, 또는 Afb 영역과 PCN 표면 사이에서의 총 상호작용 에너지를 분석한 결과 그래프이다.
도 13은 일 실시예에 따른 GST-Afb-MOFs 복합체인, GST-H-PCN 및 GST-E-PCN 각각의 SK-BR-3 세포 및 MDA-MB-468 세포 각각에 대한 표적능을 보여주는 세포 형광 염색 이미징 분석 결과를 나타낸 이미지이다.
도 14는 일 실시예에 따른 GST-Afb-MOFs 복합체인, GST-E/H-PCN의 SK-BR-3 세포 및 MDA-MB-468 세포 모두를 동시에 표적하는 다중 세포 표적능을 보여주는 세포 형광 염색 이미징 분석 결과를 나타낸 이미지이다.
도 15는 일 실시예에 따른 GST-Afb-MOFs 복합체인, GST-H-PCN 및 GST-E-PCN 각각의 SK-BR-3 세포 및 MDA-MB-468 세포 각각에 대한 표적능을 보여주는 유세포 분석 측정 결과를 나타낸 이미지이다.
도 16은 일 실시예에 따른 GST-Afb-MOFs 복합체인, GST-E-PCN의 세포 내에서의 광반응성 ROS 생성능을 분석한 결과를 나타낸 이미지이다.
도 17은 일 실시예에 따른 GST-Afb-MOFs 복합체인, GST-H-PCN 및 GST-E-PCN이 나타내는, 약물 전달 및 방출능, 및 광조사에 의한 세포 독성에 의한 암 세포 사멸 효과를 보여주는 결과 그래프이다.
도 18은 일 실시예에 따른 GST-Afb-MOFs 복합체가 나타내는, 표적 세포 특이적 약물 전달 효과, 표적 세포 내에서 광반응성 ROS 생성에 의한 세포 사멸 효과, 및 이로 인한 암 세포 사멸에 대한 광역학 요법 및 화학 요법의 시너지 효과를 개략적으로 나타낸 모식도이다.
도 19는 일 실시예에 따른 GST-Afb-MOFs 복합체인, GST-H-PCN이 주입된 종양 동물 모델에 대한 생체 내 광학 형광 이미징 분석 결과를 나타낸 이미지이다.
도 20은 일 실시예에 따른 GST-Afb-MOFs 복합체인, GST-H-PCN이 주입된 종양 동물 모델로부터 적출된 장기 및 종양에 대한 생체외 형광 검출 분석 결과를 나타낸 그래프이다.
Figure 1 is a schematic diagram schematically showing the structure, protein adsorption blocking function, cell targeting function, target cell-specific drug delivery function, and photoreactive ROS generation function in target cells of a GST-Afb-MOFs complex according to an embodiment. am.
Figure 2 shows GST-H-PCN coated on the surface of PCN with GST-HER2, a GST-Afb-MOFs complex according to an embodiment; And this is a schematic diagram schematically showing the form of GST-E-PCN with GST-EGFR coated on the surface of PCN.
Figure 3 is a TEM image performed on GST-H-PCN and GST-E-PCN, which are GST-Afb-MOFs complexes according to an example.
Figure 4 is a graph showing the results of PXRD analysis on GST-Afb-MOFs complexes, GST-H-PCN and GST-E-PCN, and a control group (PCN) according to an example.
Figure 5 is a graph showing the results of measuring the sizes of GST-Afb-MOFs complexes, GST-H-PCN and GST-E-PCN, and the control group (PCN) according to an example using a particle size analyzer (DLS).
Figure 6 shows the results of measuring the zeta potential of GST-Afb-MOFs complexes, GST-H-PCN and GST-E-PCN, and the control group (PCN, GST-HER2, and GST-EGFR) according to an example. It's a graph.
Figure 7 is a schematic diagram showing the difference in protein adsorption degree between GST-H-PCN and GST-E-PCN cultured in serum medium, which are GST-Afb-MOFs complexes according to an example, and the control group (PCN) (a); An image of the gel electrophoresis result (b), and a graph of the result of measuring the intensity of fluorescence emission by FITC-modified serum protein (c).
Figure 8 is a molecular dynamics (MD) simulation schematic diagram predicting the connection (or adsorption) structure of the MOFs of the GST-Afb-MOFs complex and GST-Afb according to one embodiment (a: connection site in GST-Afb; b: Linkage site in MOFs; c: predicted linkage structure for GST-Afb-PCN complex).
Figure 9 is a molecular dynamics (MD) simulation schematic diagram showing the connection (or adsorption) structure of PCN and GST-Afb of the GST-Afb-PCN complex, which is a GST-Afb-MOFs complex according to an embodiment.
Figure 10 shows the electrostatic interaction between the G-site of GST and the Zr 6 node of PCN in the GST-Afb-PCN complex, a GST-Afb-MOFs complex according to one embodiment, using the radial distribution function (RDF). This is a graph showing the results of analyzing the residues in GST that induce its action.
Figure 11 shows a GST-Afb-PCN complex, a GST-Afb-MOFs complex according to an embodiment, between a specific region of GST (G-site or side region) and a specific region (frame or pore) on the surface of PCN. This is a graph showing the results of analyzing the interaction energy.
Figure 12 shows the total interaction energy between the hinge region, GST region, or Afb region of GST-Afb and the PCN surface in the GST-Afb-PCN complex, which is a GST-Afb-MOFs complex according to an embodiment. This is the result graph.
Figure 13 shows the targeting ability of GST-Afb-MOFs complex, GST-H-PCN and GST-E-PCN, on SK-BR-3 cells and MDA-MB-468 cells, respectively, according to an example. This image shows the results of fluorescence staining imaging analysis.
Figure 14 is a cell fluorescence showing the multi-cell targeting ability of GST-E/H-PCN, a GST-Afb-MOFs complex according to one embodiment, targeting both SK-BR-3 cells and MDA-MB-468 cells simultaneously. This image shows the results of dye imaging analysis.
Figure 15 is a flow cytometry showing the targeting ability of GST-H-PCN and GST-E-PCN, which are GST-Afb-MOFs complexes according to an example, against SK-BR-3 cells and MDA-MB-468 cells, respectively. This is an image showing the analysis measurement results.
Figure 16 is an image showing the results of analyzing the photoreactive ROS generation ability in cells of GST-E-PCN, a GST-Afb-MOFs complex according to an example.
Figure 17 shows the drug delivery and release ability of GST-Afb-MOFs complexes, GST-H-PCN and GST-E-PCN, according to an embodiment, and the cancer cell killing effect by cytotoxicity due to light irradiation. This is the result graph showing.
Figure 18 shows the target cell-specific drug delivery effect of the GST-Afb-MOFs complex according to one embodiment, the cell death effect by photoreactive ROS generation in the target cell, and the resulting photodynamic therapy for cancer cell death. and a schematic diagram schematically showing the synergistic effect of chemotherapy.
Figure 19 is an image showing the results of in vivo optical fluorescence imaging analysis on a tumor animal model injected with GST-H-PCN, a GST-Afb-MOFs complex according to an example.
Figure 20 is a graph showing the results of in vitro fluorescence detection analysis of organs and tumors extracted from a tumor animal model injected with GST-H-PCN, a GST-Afb-MOFs complex according to an embodiment.

이하 본 발명을 실험예 및 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실험예 및 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실험예 및 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through experimental examples and examples. However, these experimental examples and examples are for illustrative purposes only and the scope of the present invention is not limited to these experimental examples and examples.

또한, 본 명세서에서 특별한 정의가 없으면, 본 명세서에 사용된 모든 과학적 및 기술적인 용어는 본 발명이 속하는 기술 분야에서 당업자에 의하여 통상적으로 이해되는 것과 동일한 의미를 가질 수 있다.In addition, unless there is a special definition in this specification, all scientific and technical terms used in this specification may have the same meaning as commonly understood by a person skilled in the art in the technical field to which the present invention pertains.

실시예 1. MOFs 나노 입자의 제조 및 특성 확인Example 1. Preparation and characterization of MOFs nanoparticles

MOFs 나노 입자로서, PCN-224를 제조하였다. As MOFs nanoparticles, PCN-224 was prepared.

구체적으로, 약 100 mg의 메조-테트라(4-카르복시페닐)포르핀 (meso-tetra(4-carboxyphenyl)porphine: TCPP), 약 300 mg의 ZrOCl2·8H2O, 약 2.8 g의 벤조산을 둥근 바닥 플라스크 (250 mL)에서 약 100 mL의 디메틸포름아미드 (Dimethylformamide: DMF)에 용해시켜 혼합물을 수득하였다. 상기 혼합물을 균일하게 교반하면서 약 5시간 동안 약 90℃로 가열한 다음 실온까지 냉각시킨 후, 원심분리하여 수집된 생성물을 신선한 DMF로 3회 및 아세톤으로 4회 세척한 후, 약 90°C에서 약 12시간 동안 진공 하에 건조시켜 PCN-224를 수득하였다.Specifically, about 100 mg of meso-tetra(4-carboxyphenyl)porphine (TCPP), about 300 mg of ZrOCl 2 ·8H 2 O, and about 2.8 g of benzoic acid were mixed into a round shape. A mixture was obtained by dissolving in about 100 mL of dimethylformamide (DMF) in a bottom flask (250 mL). The mixture was heated to about 90°C for about 5 hours with uniform stirring, then cooled to room temperature, centrifuged, and the collected product was washed three times with fresh DMF and four times with acetone, then incubated at about 90°C. PCN-224 was obtained by drying under vacuum for about 12 hours.

상기 수득된 PCN에 대하여 TEM (Transmission Electron Microscope) 촬영 및 핵자기공명 (H1 NMR) 분석을 수행하였다. 그 결과, 상기 수득된 PCN은 직경 약 90±10 nm 크기의 구형 입자의 형태를 가지며, 유기 리간드 분자로서, 메조-테트라(4-카르복시페닐)포르핀 (meso-tetra(4-carboxyphenyl)porphine: TCPP) 및 금속 이온으로서, ZrOCl2·8H2O를 포함하는 것으로 확인되었다. TEM (Transmission Electron Microscope) imaging and nuclear magnetic resonance (H 1 NMR) analysis were performed on the obtained PCN. As a result, the obtained PCN has the form of a spherical particle with a diameter of about 90 ± 10 nm, and is an organic ligand molecule, meso-tetra (4-carboxyphenyl) porphine: TCPP) and as a metal ion, it was confirmed to contain ZrOCl 2 ·8H 2 O.

또한, 질소 수착 분석 (Nitrogen sorption analysis)을 수행한 결과, 상기 수득된 PCN은 약 2,300±50 m2/g의 large Brunauer-Emett-Teller 표면적과 약 1.8±0.2 nm의 기본 기공 크기를 나타냄을 확인하였다.In addition, as a result of nitrogen sorption analysis, it was confirmed that the obtained PCN had a large Brunauer-Emett-Teller surface area of about 2,300 ± 50 m 2 /g and a basic pore size of about 1.8 ± 0.2 nm. did.

본 실시예를 통해, MOFs 나노 입자인 PCN-224를 제조하였고, 상기 PCN-224는, TCPP의 유기 리간드 분자와 Zr의 금속 이온이 결합되어 형성된 다공성 3차원 구조를 가지는 것으로 확인되었다.Through this example, PCN-224, a MOFs nanoparticle, was manufactured, and the PCN-224 was confirmed to have a porous three-dimensional structure formed by combining the organic ligand molecule of TCPP and the metal ion of Zr.

실시예 2. 효소-MOFs 복합체의 제조 및 특성 확인Example 2. Preparation and characterization of enzyme-MOFs complex

트립신 (trypsin: Tr), 히알루로니다제 (hyaluronidase: HA), 트랜스페린 (transferrin: Tf), 및 베타-갈락토시다제 (beta-galactosidase: β-gal)의 기존 효소를 사용하여 효소-MOFs 상호작용을 테스트하였다. 구체적으로, 상기 효소 단백질 각각을 MOFs 나노 입자, 즉, 상기 실시예 1에서 수득된 PCN과 함께 약 4°C에서 약 20분 동안 PBS에서 혼합한 후 격렬하게 교반하고 원심분리하여 수집된 입자를 정제함으로써, 상기 효소 단백질이 상기 PCN의 표면에 코팅된 효소-MOFs 복합체 (효소-PCN 복합체)를 수득하였다.Enzyme-MOFs interaction using existing enzymes such as trypsin (Tr), hyaluronidase (HA), transferrin (Tf), and beta-galactosidase (β-gal) The action was tested. Specifically, each of the above enzyme proteins was mixed with MOFs nanoparticles, i.e., PCN obtained in Example 1, in PBS at about 4°C for about 20 minutes, then vigorously stirred and centrifuged to purify the collected particles. By doing so, an enzyme-MOFs complex (enzyme-PCN complex) in which the enzyme protein was coated on the surface of the PCN was obtained.

상기 수득된 효소-PCN 복합체를 입도분석기 (Dynamic Light Scattering: DLS)로 측정한 결과, 상기 PCN의 초기 유체역학적 직경 (약 180±20 nm)은 상기 효소 단백질과의 혼합 후에 약 390±30 nm로 증가되었음을 확인하였다. 이를 통해, 상기 수득된 효소-PCN 복합체는 상기 효소 단백질이 상기 PCN의 표면에 코팅되어 있는 것임을 알 수 있었다. As a result of measuring the obtained enzyme-PCN complex using a particle size analyzer (Dynamic Light Scattering: DLS), the initial hydrodynamic diameter of the PCN (about 180 ± 20 nm) was reduced to about 390 ± 30 nm after mixing with the enzyme protein. It was confirmed that there was an increase. Through this, it was found that the obtained enzyme-PCN complex was one in which the enzyme protein was coated on the surface of the PCN.

또한, ZETASIZER NANOTM (Malvern 사) 기기를 이용하여, 상기 수득된 효소-PCN 복합체의 표면 전하, 즉, 제타 전위를 측정한 결과, 상기 효소 단백질과 혼합 전의 상기 PCN의 초기 표면 전하 (또는 제타 전위)는 약 15 내지 35 mV (구체적으로, 약 23±4 mV)였으나, Tr-PCN (트립신-PCN 복합체)의 경우 표면 전하가 약 6.06±2 mV로 변화되었고, HA-PCN (히알루로니다제-PCN 복합체)의 경우 표면 전하가 약 -13.4±2 mV로 변화되었고, Tf-PCN (트랜스페린-PCN 복합체)의 경우 표면 전하가 약 -15.2±3 mV로 변화되었고, β-gal-PCN (베타-갈락토시다제-PCN 복합체)의 경우 표면 전하가 약 -14.2±2 mV로 변화되어, 상기 수득된 효소-PCN 복합체의 표면 전하가 각 효소의 표면 전하와 유사한 값을 가짐을 확인하였다. 이를 통해, 상기 수득된 효소-PCN 복합체는 상기 효소 단백질이 상기 PCN의 표면에 코팅되어 있는 것임을 알 수 있었다.In addition, the surface charge, i.e., zeta potential, of the obtained enzyme-PCN complex was measured using a ZETASIZER NANO TM (Malvern) instrument. As a result, the initial surface charge (or zeta potential) of the PCN before mixing with the enzyme protein was measured. ) was about 15 to 35 mV (specifically, about 23 ± 4 mV), but in the case of Tr-PCN (trypsin-PCN complex), the surface charge changed to about 6.06 ± 2 mV, and HA-PCN (hyaluronidase -PCN complex), the surface charge changed to about -13.4±2 mV, for Tf-PCN (transferrin-PCN complex), the surface charge changed to about -15.2±3 mV, and β-gal-PCN (beta In the case of -galactosidase-PCN complex), the surface charge changed to about -14.2±2 mV, confirming that the surface charge of the obtained enzyme-PCN complex had a similar value to the surface charge of each enzyme. Through this, it was found that the obtained enzyme-PCN complex was one in which the enzyme protein was coated on the surface of the PCN.

또한, 상기 수득된 효소-PCN 복합체에 대하여 Powder X-ray diffraction (PXRD) 패턴 분석을 수행한 결과, 효소 코팅 후 PCN의 특징적인 결정성이 잘 유지되었음을 확인하였다.In addition, as a result of performing powder X-ray diffraction (PXRD) pattern analysis on the obtained enzyme-PCN complex, it was confirmed that the characteristic crystallinity of PCN was well maintained after enzyme coating.

더하여, 효소 분석 키트 (Beta-Gal assay kit, Thermo fisher 사)를 사용하여 상기 수득된 효소-PCN 복합체에 대하여 효소 활성을 측정하였다. 대표적으로, β-gal-PCN에 대하여 실험을 수행하였다. 그 결과, β-gal-PCN이 나타내는 β-gal 활성은, PCN에 부착되지 않은 β-gal의 활성과 비교하여 약 40% 감소하였음을 확인하였다. 이는 효소-PCN 복합체의 경우, 효소 단백질이 MOFs 입자, 즉, PCN의 표면에 부착됨으로써 효소 활성이 감소하는 것으로 이해된다.In addition, the enzyme activity of the obtained enzyme-PCN complex was measured using an enzyme assay kit (Beta-Gal assay kit, Thermo Fisher). Typically, experiments were performed on β-gal-PCN. As a result, it was confirmed that the β-gal activity shown by β-gal-PCN was reduced by about 40% compared to the activity of β-gal not attached to PCN. This is understood that in the case of the enzyme-PCN complex, the enzyme activity decreases as the enzyme protein attaches to the surface of the MOFs particles, that is, PCN.

실시예 3. GST-Afb-MOFs 복합체의 제조 및 특성 확인Example 3. Preparation and characterization of GST-Afb-MOFs complex

상기 실시예 2를 통해 단백질이 화학적 부착 없이 MOFs 입자, 즉, PCN 표면에 견고하게 코팅됨이 입증됨에 따라, 세포 표적 펩티드 (Afb)를 사용하여 효과적인 질병 치료 나노 시스템을 구축하였다.As Example 2 demonstrated that proteins were firmly coated on the surface of MOFs particles, i.e., PCN, without chemical attachment, an effective disease treatment nanosystem was constructed using cell-targeting peptide (Afb).

구체적으로, 다양한 암 종에서 과발현되는 HER2 (H) 또는 EGFR (E) 수용체를 표적하는 두 종류의 Afb 단백질을 사용하였고, 상기 Afb 단백질 각각을 글루타싸이온전달효소 (Glutathione S-transferase: GST)와 융합시켜 GST-Afb 융합 단백질 (GST-HER2 및 GST-EGFR)을 수득하였다. 더욱 구체적으로, 링커 서열 (서열번호 6: GGGLVPRGSGGGCGGGGTGGGSGGG)을 포함하는 HER2 또는 EGFR의 인코딩 유전자를, N-말단에 헥사히스티딘 태그 및 GST-암호화 유전자를 포함하는 플라스미드 벡터인 IPTG 유도 pETDuet 플라스미드 벡터에 삽입하였고, 상기 벡터를 E. coli 균주, BL21 (DE)로 도입시켜 형질전환 균주를 수득하였다. 상기 형질전환 균주는 약 30°C에서 약 16시간 동안 LB 배지에서 배양되어 GST-HER2 또는 GST-EGFR을 과발현하도록 유도되었다. 배양 후, 배양액을 약 5000 g에서 약 10분 동안 약 4°C에서 원심분리하였고, 수집된 펠릿을 인산염 완충액 (약 50 mM 인산나트륨 및 약 100 mM 염화나트륨, pH 6.5)에 재현탁하였다. 상기 현탁액을 실온에서 약 20분 동안 라이소자임과 함께 인큐베이션하고 각 인큐베이션 사이에 약 30초 간격으로 약 10분 동안 초음파 처리한 후, 약 4°C에서 약 1시간 동안 약 12000 g에서 원심분리하였다. 원심분리 후 얻어진 상청액을, FPLC (Fast protein liquid chromatography)를 사용하여 고정화 금속 친화성 크로마토그래피 (1 mL HisTrap FF 컬럼, GE HealthCare)로 정제하여 GST-Afb 융합 단백질인 GST-HER2 및 GST-EGFR을 수득하였다. 수득된 GST-HER2 및 GST-EGFR을 PBS (pH 7.4)에서 밤새 투석하였다.Specifically, two types of Afb proteins targeting HER2 (H) or EGFR (E) receptors that are overexpressed in various cancer types were used, and each of the Afb proteins was activated by glutathione S-transferase (GST). was fused with to obtain GST-Afb fusion proteins (GST-HER2 and GST-EGFR). More specifically, the gene encoding HER2 or EGFR containing the linker sequence (SEQ ID NO: 6: GGGLVPRGSGGGCGGGGTGGGSGGG) was inserted into the IPTG-derived pETDuet plasmid vector, which is a plasmid vector containing a hexahistidine tag at the N-terminus and a GST-encoding gene. , the vector was introduced into E. coli strain, BL21 (DE) to obtain a transformed strain. The transformed strain was induced to overexpress GST-HER2 or GST-EGFR by culturing it in LB medium at about 30°C for about 16 hours. After incubation, the culture was centrifuged at approximately 5000 g for approximately 10 min at approximately 4°C, and the collected pellet was resuspended in phosphate buffer (approximately 50 mM sodium phosphate and approximately 100 mM sodium chloride, pH 6.5). The suspension was incubated with lysozyme for approximately 20 minutes at room temperature, sonicated for approximately 10 minutes with approximately 30 seconds between each incubation, and then centrifuged at approximately 12000 g for approximately 1 hour at approximately 4°C. The supernatant obtained after centrifugation was purified by immobilized metal affinity chromatography (1 mL HisTrap FF column, GE HealthCare) using FPLC (Fast protein liquid chromatography) to produce GST-Afb fusion proteins GST-HER2 and GST-EGFR. Obtained. The obtained GST-HER2 and GST-EGFR were dialyzed in PBS (pH 7.4) overnight.

그 후, 약 0.5 mg의 MOFs 나노 입자 (상기 실시예 1에서 수득된 PCN) 및 약 0.5 mg의 GST-HER2 또는 GST-EGFR을, 약 2 mL의 중성 PBS에서 약 4°C에서 약 20분 동안 혼합한 후 원심분리 (3220 xg, Eppendorf Centrifuge 5415R)하여 미반응 유리 단백질을 제거하고, GST-Afb-MOFs 복합체 (GST-Afb-PCN 복합체)를 분리 및 수집하였다. 구체적으로, GST-HER2가 PCN의 표면에 코팅된 GST-Afb-PCN 복합체 (GST-H-PCN) 및 GST-EGFR이 PCN의 표면에 코팅된 GST-Afb-PCN 복합체 (GST-E-PCN)를 수득하였다 (도 2). 얻어진 GST-Afb-PCN 복합체를 물로 1회 세척하고 PBS에 재분산시켰다.Then, about 0.5 mg of MOFs nanoparticles (PCN obtained in Example 1 above) and about 0.5 mg of GST-HER2 or GST-EGFR were incubated in about 2 mL of neutral PBS at about 4°C for about 20 minutes. After mixing, unreacted free proteins were removed by centrifugation (3220 xg, Eppendorf Centrifuge 5415R), and GST-Afb-MOFs complex (GST-Afb-PCN complex) was separated and collected. Specifically, GST-Afb-PCN complex with GST-HER2 coated on the surface of PCN (GST-H-PCN) and GST-Afb-PCN complex with GST-EGFR coated on the surface of PCN (GST-E-PCN). was obtained (Figure 2). The obtained GST-Afb-PCN complex was washed once with water and redispersed in PBS.

상기 GST-Afb-PCN 복합체에 대하여 TEM 촬영을 수행한 결과, 도 3에 나타낸 바와 같이, 상기 GST-Afb-PCN 복합체는 구형 입자의 형태를 나타냄을 확인하였다.As a result of TEM imaging of the GST-Afb-PCN complex, it was confirmed that the GST-Afb-PCN complex had the shape of a spherical particle, as shown in Figure 3.

또한, 상기 GST-Afb-PCN 복합체에 대하여 PXRD 분석을 수행한 결과, 도 4에 나타낸 바와 같이, 상기 GST-Afb-PCN 복합체는 표면에 GST-Afb가 코팅되었음에도 PCN의 결정질 프레임워크가 손상되지 않고 잘 유지되어 있음을 확인하였다.In addition, as a result of performing PXRD analysis on the GST-Afb-PCN complex, as shown in Figure 4, the crystalline framework of the GST-Afb-PCN complex was not damaged even though GST-Afb was coated on the surface of the GST-Afb-PCN complex. It was confirmed that it was well maintained.

또한, 상기 GST-Afb-PCN 복합체를 입도분석기 (Dynamic Light Scattering: DLS)로 측정한 결과, 도 5에 나타낸 바와 같이, 상기 GST-Afb와 혼합 전의 상기 PCN의 초기 유체역학적 직경 (약 180±20 nm)은 상기 GST-Afb와 혼합 후에 더욱 증가하였음을 확인하였다 (GST-H-PCN: 약 260±20 nm; GST-E-PCN: 약 250±20 nm). 이를 통해, 상기 GST-Afb-PCN 복합체는 상기 GST-Afb가 상기 PCN의 표면에 코팅되어 있는 것임을 알 수 있었다.In addition, as a result of measuring the GST-Afb-PCN complex using a particle size analyzer (Dynamic Light Scattering: DLS), as shown in Figure 5, the initial hydrodynamic diameter of the PCN before mixing with the GST-Afb (about 180 ± 20 nm) was confirmed to have further increased after mixing with GST-Afb (GST-H-PCN: approximately 260±20 nm; GST-E-PCN: approximately 250±20 nm). Through this, it was found that the GST-Afb-PCN complex consisted of GST-Afb coated on the surface of the PCN.

또한, ZETASIZER NANOTM (Malvern 사) 기기를 이용하여, 상기 GST-Afb-PCN 복합체의 표면 전하, 즉, 제타 전위를 측정한 결과, 도 6에 나타낸 바와 같이, 상기 GST-Afb와 혼합 전의 상기 PCN의 초기 표면 전하 (또는 제타 전위)는 약 15 내지 35 mV (구체적으로, 약 20 내지 30 mV)였으나, GST-H-PCN의 경우 표면 전하가 약 -6 내지 -1 mV (구체적으로, 약 -3.85±1 mV)로 변화되었고, GST-E-PCN의 경우 표면 전하가 약 -8 내지 -1 mV (구체적으로, 약 -4.3±2.5 mV)로 변화되어, 상기 GST-Afb-PCN 복합체의 표면 전하가 상기 GST-Afb의 표면 전하 (GST-HER2: 약 -5.34±2 mV; GST-EGFR: 약 -3.8±1 mV)와 유사한 값을 가짐을 확인하였다. 이를 통해, 상기 GST-Afb-PCN 복합체는 상기 GST-Afb가 상기 PCN의 표면에 코팅되어 있는 것임을 알 수 있었다.In addition, as a result of measuring the surface charge, i.e., zeta potential, of the GST-Afb-PCN complex using a ZETASIZER NANO TM (Malvern) instrument, as shown in Figure 6, the PCN before mixing with the GST-Afb The initial surface charge (or zeta potential) of was about 15 to 35 mV (specifically, about 20 to 30 mV), whereas for GST-H-PCN, the surface charge was about -6 to -1 mV (specifically, about - 3.85 ± 1 mV), and in the case of GST-E-PCN, the surface charge changed to about -8 to -1 mV (specifically, about -4.3 ± 2.5 mV), so that the surface charge of the GST-Afb-PCN complex It was confirmed that the charge had a similar value to the surface charge of GST-Afb (GST-HER2: about -5.34 ± 2 mV; GST-EGFR: about -3.8 ± 1 mV). Through this, it was found that the GST-Afb-PCN complex consisted of GST-Afb coated on the surface of the PCN.

실시예 4. GST-Afb-MOFs 복합체의 단백질 흡착 차단 효과 확인Example 4. Confirmation of protein adsorption blocking effect of GST-Afb-MOFs complex

기존의 MOFs 나노 입자를 이용한 약물 전달 시스템의 경우, 생물학적 환경에서 MOFs 나노 입자에 불필요한 단백질이 흡착되어 단백질 코로나가 형성되고, 이로 인해, MOFs 나노 입자의 약물 전달 기능이 방해받는 문제점이 있다. 따라서, 상기 실시예 3에서 수득된 GST-Afb-MOFs 복합체의 경우, 상기 문제점을 해소할 수 있는지, 즉, 생물학적 환경에서 단백질 흡착 차단능을 가지는지 확인하였다.In the case of existing drug delivery systems using MOFs nanoparticles, there is a problem in that unnecessary proteins are adsorbed to MOFs nanoparticles in a biological environment, forming a protein corona, which disrupts the drug delivery function of MOFs nanoparticles. Therefore, in the case of the GST-Afb-MOFs complex obtained in Example 3, it was confirmed whether the above problem could be solved, that is, whether it had the ability to block protein adsorption in a biological environment.

구체적으로, 상기 GST-Afb로 코팅되기 전의 PCN, 상기 GST-HER2로 표면 코팅된 상기 GST-Afb-PCN 복합체 (GST-H-PCN), 및 상기 GST-EGFR로 표면 코팅된 상기 GST-Afb-PCN 복합체 (GST-E-PCN) 각각을 약 37°C에서 약 1시간 동안 약 50%의 혈청 배지에서 배양하고 원심분리에 의해 정제한 후 겔 전기영동으로 분석되었다.Specifically, the PCN before being coated with the GST-Afb, the GST-Afb-PCN complex (GST-H-PCN) surface coated with the GST-HER2, and the GST-Afb- surface coated with the GST-EGFR. Each PCN complex (GST-E-PCN) was cultured in approximately 50% serum medium for approximately 1 hour at approximately 37°C, purified by centrifugation, and analyzed by gel electrophoresis.

그 결과, 도 7에 나타낸 바와 같이, 상기 GST-Afb로 코팅되기 전의 PCN의 경우 강한 혈청 단백질 신호가 검출되었고, 상기 GST-Afb-PCN 복합체 (GST-H-PCN 및 GST-E-PCN)의 경우, 상기 PCN 대비 약 9배 감소된 약한 혈청 단백질 신호가 검출되었음을 확인하였다 (도 7의 b).As a result, as shown in Figure 7, a strong serum protein signal was detected in the case of PCN before coating with GST-Afb, and the GST-Afb-PCN complex (GST-H-PCN and GST-E-PCN) In this case, it was confirmed that a weak serum protein signal decreased by about 9 times compared to the PCN was detected (Figure 7b).

또한, 상기 GST-Afb-PCN 복합체의 단백질 흡착 차단능을 더욱 명확히 하기 위해, 상기 PCN, 상기 GST-H-PCN, 및 상기 GST-E-PCN 각각을 FITC 변형 혈청 알부민과 함께 약 8시간 동안 배양한 후 생성된 입자에서 형광 방출을 측정하였다.In addition, to further clarify the protein adsorption blocking ability of the GST-Afb-PCN complex, each of the PCN, GST-H-PCN, and GST-E-PCN was incubated with FITC modified serum albumin for about 8 hours. After this, the fluorescence emission from the generated particles was measured.

그 결과, 도 7에 나타낸 바와 같이, 상기 GST-Afb로 코팅되기 전의 PCN의 경우 강한 형광 신호가 검출되었고, 상기 GST-Afb-PCN 복합체 (GST-H-PCN 및 GST-E-PCN)의 경우, 상기 PCN 대비 현저히 감소된 형광 신호가 검출되었음을 확인하였다 (도 7의 c).As a result, as shown in Figure 7, a strong fluorescence signal was detected in the case of PCN before coating with GST-Afb, and in the case of the GST-Afb-PCN complex (GST-H-PCN and GST-E-PCN) , it was confirmed that a significantly reduced fluorescence signal was detected compared to the PCN (Figure 7c).

본 실시예를 통해, 상기 GST-Afb로 코팅되기 전의 PCN의 경우 많은 혈청 단백질이 상기 PCN의 표면에 흡착된 반면, 상기 GST-Afb-PCN 복합체 (GST-H-PCN 및 GST-E-PCN)의 경우, 혈청 단백질의 흡착이 현저히 감소되었음을 확인하였다. 이를 통해, GST-Afb-MOFs 복합체의 경우, 생물학적 환경에서, 현저히 우수한 단백질 흡착 차단능을 나타내 단백질 코로나의 형성이 차단될 수 있음을 확인하였다. 이로 인해, 상기 GST-Afb-MOFs 복합체는 고 효율로 표적 세포에 흡수되어 우수한 약물 전달 효과를 나타낼 수 있고, 그 결과, 기존 기술의 문제점을 해소할 수 있음을 확인하였다.Through this example, in the case of PCN before being coated with GST-Afb, many serum proteins were adsorbed to the surface of the PCN, whereas the GST-Afb-PCN complex (GST-H-PCN and GST-E-PCN) In the case of , it was confirmed that the adsorption of serum proteins was significantly reduced. Through this, it was confirmed that the GST-Afb-MOFs complex exhibits a significantly excellent protein adsorption blocking ability in a biological environment and can block the formation of a protein corona. As a result, it was confirmed that the GST-Afb-MOFs complex can be absorbed into target cells with high efficiency and exhibit excellent drug delivery effects, and as a result, the problems of existing technology can be resolved.

실시예 5. GST-Afb-MOFs 복합체의 MOFs 나노 입자의 표면에서 GST-Afb의 연결 (또는 흡착) 부위 예측Example 5. Prediction of GST-Afb binding (or adsorption) site on the surface of MOFs nanoparticles of GST-Afb-MOFs complex

상기 실시예 3에서 수득된 GST-Afb-MOFs 복합체에 있어서, MOFs 나노 입자와 GST-Afb의 연결 (또는 흡착) 구조를 분자 역학 (MD) 시뮬레이션을 사용하여 이론적으로 예측하였다.In the GST-Afb-MOFs complex obtained in Example 3, the connection (or adsorption) structure of MOFs nanoparticles and GST-Afb was theoretically predicted using molecular dynamics (MD) simulation.

그 결과, 도 8에 나타낸 바와 같이, GST-Afb의 다양한 영역 (GST의 G-사이트 (G-site), 측면 영역 (Side), 말단 영역 (Terminal), 및 GST-Afb의 힌지 영역 (Hinge), 및 Afb 영역) (도 8의 a)과 MOFs 나노 입자인 PCN의 표면 중 두 영역 (프레임 (Frame) 및 기공 (Pore)) (도 8의 b)이 연결될 수 있음을 확인하였고, GST-Afb-PCN 복합체에 있어서, 가능성이 높은 5 가지의 연결 구조를 다음과 같이 예측하였다 (도 8의 c):As a result, as shown in Figure 8, various regions of GST-Afb (G-site, Side, Terminal, and Hinge of GST-Afb) , and Afb regions) (a in Figure 8) and two regions (Frame and Pore) (b) on the surface of PCN, which is a MOFs nanoparticle, were confirmed to be connected, and GST-Afb In the -PCN complex, five likely linking structures were predicted as follows (Figure 8c):

1. GST의 G-사이트와 PCN의 표면 기공의 연결1. Linkage of the G-site of GST and the surface pore of PCN

2. GST의 G-사이트와 PCN의 표면 프레임의 연결2. Association of the G-site of GST with the surface frame of PCN

3. GST의 측면 영역과 PCN의 표면 프레임의 연결3. Connection of the lateral regions of GST with the surface frame of PCN

4. GST-Afb의 힌지 영역과 PCN의 표면 프레임의 연결4. Connection of the hinge region of GST-Afb with the surface frame of PCN

5. Afb 영역과 PCN의 표면 프레임의 연결.5. Connection of the Afb region with the superficial frame of the PCN.

더하여, 방사형 분포 함수 (Radial Distribution Function: RDF)를 사용하여 분석한 결과, 도 9에 나타낸 바와 같이, GST-Afb-PCN 복합체의 경우, 주로 GST의 G-사이트와 PCN의 표면에 노출된 Zr6 노드 사이에서 정전기적 상호작용이 가장 강하게 발생하고, 이로 인해 PCN과 GST-Afb이 연결된 구조를 가짐을 확인하였다. 특히, GST의 G-사이트에서 글루탐산 (glutamic acid: GLU)의 카르복실레이트기 (carboxylate group)는 정전기적 상호작용을 통해 PCN의 표면 Zr6 노드에 가깝게 위치하는 것으로 확인되었다. 또한, 상기 GST의 G-사이트와 PCN의 표면에 노출된 Zr6 노드 사이에서의 정전기적 상호작용이 가장 강한 것은, GST의 극성 아미노산 잔기 (SER, THR, ASN, GLN, GLY 및 PRO)와 음전하를 띤 아미노산 잔기 (GLU 및 ASP)에 의한 것으로 예측되었다 (도 10). 더하여, GST의 G-사이트와 PCN의 표면 기공 사이의 상호작용 에너지는 GST의 G-사이트와 PCN의 표면 프레임 또는 GST의 측면 영역과 PCN의 표면 기공 사이의 상호작용 에너지보다 더 큰 것으로 확인되었고 (도 11), GST-Afb의 힌지 영역 또는 Afb 영역과 PCN 표면 사이의 총 상호작용 에너지는, GST와 PCN 표면 사이의 총 상호작용 에너지 대비 현저히 낮은 것으로 확인되었다 (도 12).In addition, as a result of analysis using the Radial Distribution Function (RDF), as shown in Figure 9, in the case of the GST-Afb-PCN complex, Zr 6 mainly exposed to the G-site of GST and the surface of PCN. It was confirmed that the strongest electrostatic interaction occurred between nodes, and that PCN and GST-Afb had a connected structure. In particular, the carboxylate group of glutamic acid (GLU) at the G-site of GST was confirmed to be located close to the surface Zr 6 node of PCN through electrostatic interaction. In addition, the strongest electrostatic interaction between the G-site of GST and the Zr 6 node exposed on the surface of PCN is due to the polar amino acid residues (SER, THR, ASN, GLN, GLY, and PRO) of GST and the negative charge. It was predicted to be due to amino acid residues (GLU and ASP) (Figure 10). In addition, the interaction energy between the G-site of GST and the surface pore of PCN was found to be larger than that between the G-site of GST and the surface frame of PCN or the lateral region of GST and the surface pore of PCN ( 11), the total interaction energy between the hinge region or Afb region of GST-Afb and the PCN surface was confirmed to be significantly lower than the total interaction energy between GST and the PCN surface (FIG. 12).

본 실시예를 통해, GST-Afb-MOFs 복합체의 경우, GST-Afb 융합 단백질이 GST를 통해 MOFs 나노 입자의 표면에 연결되고, Afb는 외부로 노출된 구조를 가지는 것으로 확인되었다. 특히, GST-Afb-MOFs 복합체의 경우, GST의 G-사이트와 MOFs 나노 입자의 표면 기공 부위가 상호작용하여, GST-Afb와 MOFs가 연결된 구조를 가지는 것으로 확인되었다. 더욱 구체적으로는, GST-Afb-MOFs 복합체의 경우, GST의 G-사이트와 MOFs 나노 입자의 표면에 노출된 금속 노드 (예컨대, PCN의 경우 Zr6 노드) 사이에서 발생된 정전기적 상호작용에 의해, GST-Afb와 MOFs가 연결된 구조를 가지는 것으로 확인되었다.Through this example, it was confirmed that in the case of the GST-Afb-MOFs complex, the GST-Afb fusion protein is linked to the surface of the MOFs nanoparticle through GST, and Afb has a structure exposed to the outside. In particular, in the case of the GST-Afb-MOFs complex, it was confirmed that the G-site of GST interacted with the surface pore area of the MOFs nanoparticle, resulting in a structure in which GST-Afb and MOFs were connected. More specifically, in the case of the GST-Afb-MOFs complex, the electrostatic interaction occurs between the G-site of GST and the metal node exposed on the surface of the MOFs nanoparticle (e.g., Zr 6 node in the case of PCN). , it was confirmed that GST-Afb and MOFs had a connected structure.

이러한 결과들을 통해, GST-Afb-MOFs 복합체는 GST-Afb 융합 단백질이 MOFs 나노 입자의 표면에서 특정 방향으로 잘 조직화되어 있음을 알 수 있었다. 따라서, GST-Afb-MOFs 복합체는 생물학적 환경에서 혈청 단백질과 같은 불필요한 단백질의 흡착으로부터 충분히 보호될 수 있고, 이로 인해, 우수한 표적화 및 약물 전달 능력이 잘 유지될 수 있음을 알 수 있었다.Through these results, it was found that the GST-Afb-MOFs complex was well organized in a specific direction with the GST-Afb fusion protein on the surface of the MOFs nanoparticle. Therefore, it was found that the GST-Afb-MOFs complex can be sufficiently protected from the adsorption of unnecessary proteins such as serum proteins in a biological environment, and thus, excellent targeting and drug delivery capabilities can be well maintained.

실시예 6. GST-Afb-MOFs 복합체의 세포 표적화 효과 확인Example 6. Confirmation of cell targeting effect of GST-Afb-MOFs complex

상기 실시예 3에서 수득된 GST-Afb-MOFs 복합체의 세포 표적화 효율을 분석하였다. The cell targeting efficiency of the GST-Afb-MOFs complex obtained in Example 3 was analyzed.

구체적으로, 상기 실시예 3에서 수득된 GST-Afb-PCN 복합체인, GST-H-PCN (HER2 수용체를 표적하는 Afb와 GST의 융합 단백질 (GST-HER2)이 PCN의 표면에 코팅됨) 및 GST-E-PCN (EGFR 수용체를 표적하는 Afb와 GST의 융합 단백질 (GST-EGFR)이 PCN의 표면에 코팅됨) 각각에 DiI 염료를 로딩하여 준비하였다 (적재 용량 = ~ 20 wt%). 또한, 인간 유방암 세포인 SK-BR-3 또는 MDA-MB-468 (각각 HER2 및 EGFR 수용체가 과발현됨) 세포를 8-well chambered cover-glass (Lab Tek II, Thermo Scientific)에 웰당 약 4×104 세포의 밀도로 시딩하고 10% FBS 조건에서 약 24시간 동안 배양하였다. 그 후, 상기 염료가 로딩된 GST-H-PCN 및 GST-E-PCN 각각을 상기 배양된 SK-BR-3 또는 MDA-MB-468 세포와 함께 50% FBS에서 약 3시간 동안 배양하였다. 그 후, 배양된 세포를 다광자 LSM780 공초점 현미경으로 공초점 형광 이미징을 수행하여 GST-H-PCN 및 GST-E-PCN의 세포 내 흡수를 검출하였다.Specifically, the GST-Afb-PCN complex obtained in Example 3, GST-H-PCN (a fusion protein of Afb and GST targeting the HER2 receptor (GST-HER2) is coated on the surface of PCN) and GST -E-PCN (a fusion protein of Afb and GST targeting the EGFR receptor (GST-EGFR) is coated on the surface of the PCN) was prepared by loading DiI dye (loading capacity = ~ 20 wt%). Additionally, human breast cancer cells, SK-BR-3 or MDA-MB-468 (overexpressing HER2 and EGFR receptors, respectively) cells were seeded at approximately 4 × 10 per well in an 8-well chambered cover-glass (Lab Tek II, Thermo Scientific). They were seeded at a density of 4 cells and cultured for about 24 hours in 10% FBS conditions. Afterwards, each of GST-H-PCN and GST-E-PCN loaded with the dye was cultured with the cultured SK-BR-3 or MDA-MB-468 cells in 50% FBS for about 3 hours. Afterwards, confocal fluorescence imaging of the cultured cells was performed using a multiphoton LSM780 confocal microscope to detect the intracellular uptake of GST-H-PCN and GST-E-PCN.

그 결과, 도 13에 나타낸 바와 같이, GST-H-PCN과 함께 배양된 SK-BR-3 세포에서는 강한 DiI 형광이 검출된 반면, GST-H-PCN과 함께 배양된 MDA-MB-468 세포에서는 형광이 검출되지 않음을 확인하였다 (도 13의 상단). 또한, GST-E-PCN과 함께 배양된 MDA-MB-468 세포에서는 강한 DiI 형광이 검출된 반면, GST-E-PCN과 함께 배양된 SK-BR-3 세포에서는 형광이 검출되지 않음을 확인하였다 (도 13의 하단). 이를 통해, 상기 GST-Afb-PCN 복합체는 Afb가 타깃하는 세포만을 표적할 수 있고, 이로 인해, 표적 세포 특이적인 세포 내 흡수가 가능함을 확인하였다.As a result, as shown in Figure 13, strong DiI fluorescence was detected in SK-BR-3 cells cultured with GST-H-PCN, while MDA-MB-468 cells cultured with GST-H-PCN It was confirmed that no fluorescence was detected (top of Figure 13). In addition, strong DiI fluorescence was detected in MDA-MB-468 cells cultured with GST-E-PCN, whereas no fluorescence was detected in SK-BR-3 cells cultured with GST-E-PCN. (bottom of Figure 13). Through this, it was confirmed that the GST-Afb-PCN complex can only target cells targeted by Afb, thereby enabling target cell-specific intracellular uptake.

또한, GST-HER2 및 GST-EGFR 모두가 동시에 PCN의 표면에 코팅되어 제조된 GST-Afb-PCN 복합체인, GST-E/H-PCN에 DiI 염료를 로딩하고, 상기 염료가 로딩된 GST-E/H-PCN을 SK-BR-3 또는 MDA-MB-468 세포 각각과 배양한 후, 배양된 세포에 대해 공초점 형광 이미징을 수행하여 GST-E/H-PCN의 세포 내 흡수를 검출하였다.In addition, DiI dye was loaded onto GST-E/H-PCN, a GST-Afb-PCN complex prepared by coating both GST-HER2 and GST-EGFR simultaneously on the surface of PCN, and the dye-loaded GST-E After culturing /H-PCN with SK-BR-3 or MDA-MB-468 cells, respectively, confocal fluorescence imaging was performed on the cultured cells to detect intracellular uptake of GST-E/H-PCN.

그 결과, 도 14에 나타낸 바와 같이, SK-BR-3 및 MDA-MB-468 세포 모두에서 DiI 형광이 검출됨을 확인하였다. 이를 통해, 상기 GST-Afb-PCN 복합체는 다중 세포 표적화가 가능함을 확인하였다.As a result, as shown in Figure 14, it was confirmed that DiI fluorescence was detected in both SK-BR-3 and MDA-MB-468 cells. Through this, it was confirmed that the GST-Afb-PCN complex is capable of targeting multiple cells.

더하여, 유세포 분석 측정을 위해, SK-BR-3 또는 MDA-MB-468 세포를 6웰 플레이트에 웰당 약 2x105 세포 밀도로 시딩하여 약 24시간 동안 배양한 후, 배양된 세포에 DiI 염료가 로딩된 GST-H-PCN 및 GST-E-PCN 각각을 처리하고 약 3시간 동안 추가 배양을 수행하였다. 배양 후, 세포를 트립신 처리하여 수집하고 BD FACSVerse 유세포 분석기 (BD Biosciences, USA)를 사용하여 분석하였다.In addition, for flow cytometry measurements, SK-BR-3 or MDA-MB-468 cells were seeded in a 6-well plate at a density of about 2x10 5 cells per well and cultured for about 24 hours, and then the cultured cells were loaded with DiI dye. GST-H-PCN and GST-E-PCN were each treated and further cultured for about 3 hours. After incubation, cells were trypsinized, collected, and analyzed using a BD FACSVerse flow cytometer (BD Biosciences, USA).

그 결과, 도 15에 나타낸 바와 같이, 대조군 (DiI 로딩된 PCN으로 처리된 세포) 대비 DiI 로딩된 GST-H-PCN 또는 GST-E-PCN으로 처리된 세포에서 더욱 강한 적색 DiI 형광이 검출됨을 확인하였다. 특히, 상기 대조군의 경우 적색 DiI 형광이 현저히 낮은 수준으로 검출되었는데, 이는 DiI 및 입자 처리를 하지 않은 순수 세포에서 측정된 수준과 동일한 수준임을 확인하였다. 이는 GST-Afb가 코팅되지 않은 PCN의 경우, GST-Afb가 코팅된 GST-H-PCN 및 GST-E-PCN과 달리, 세포 내 흡수가 거의 이루어지지 않았음을 의미한다. As a result, as shown in Figure 15, it was confirmed that stronger red DiI fluorescence was detected in cells treated with DiI-loaded GST-H-PCN or GST-E-PCN compared to the control group (cells treated with DiI-loaded PCN). did. In particular, in the case of the control group, red DiI fluorescence was detected at a significantly low level, which was confirmed to be the same level as measured in pure cells without DiI and particle treatment. This means that, in the case of PCN not coated with GST-Afb, almost no cellular uptake occurred, unlike GST-H-PCN and GST-E-PCN coated with GST-Afb.

본 실시예를 통해, GST-Afb-MOFs 복합체는 세포 내 흡수를 위한 우수한 안정성 및 세포 특이성을 나타냄을 확인하였다. 구체적으로, GST-Afb-MOFs 복합체는 표면 코팅된 GST-Afb에 의하여, 생물학적 환경에서 불필요한 단백질의 흡착이 차단되어 기존 MOFs 나노 입자 대비 세포 내 흡수가 더욱 용이할 뿐만 아니라, Afb가 타깃하는 세포만을 표적하여 표적 세포 특이적인 세포 내 흡수가 가능함을 확인하였다.Through this example, it was confirmed that the GST-Afb-MOFs complex exhibits excellent stability and cell specificity for cellular uptake. Specifically, the GST-Afb-MOFs complex blocks the adsorption of unnecessary proteins in the biological environment by surface-coating GST-Afb, which not only makes it easier to absorb into cells compared to existing MOFs nanoparticles, but also allows Afb to target only the cells. It was confirmed that target cell-specific intracellular absorption was possible.

실시예 7. GST-Afb-MOFs 복합체의 광반응성 ROS 생성능 확인Example 7. Confirmation of photoreactive ROS generation ability of GST-Afb-MOFs complex

상기 실시예 3에서 수득된 GST-Afb-MOFs 복합체가 흡수된 세포에 광조사하는 경우, 세포내에서 GST-Afb-MOFs 복합체의 프레임워크에 존재하는 감광성 포르피린 그룹에 의하여 활성산소 (reactive oxygen species: ROS)가 생성되는지 확인하였다.When the cells into which the GST-Afb-MOFs complex obtained in Example 3 is absorbed are irradiated with light, reactive oxygen species (reactive oxygen species: ROS) was confirmed to be generated.

구체적으로, MDA-MB-468 세포를 웰당 약 2×104 세포 밀도로 Lab Tek II 슬라이드 챔버에 접종하여 약 24시간 동안 배양한 후, 배양된 세포에 상기 실시예 3에서 수득된 GST-Afb-PCN 복합체인, GST-E-PCN (EGFR 수용체를 표적하는 Afb와 GST의 융합 단백질 (GST-EGFR)이 PCN의 표면에 코팅됨)을 처리하고 약 2시간 동안 배양하였다. 그 후, 세포 배양 배지를 교체하고 태양광 시뮬레이터를 이용하여 약 10분 동안 광조사 (광밀도 = 40 mW·cm-2)를 수행한 후, 약 2시간 동안 추가 배양을 수행하였다. 그 후, 배양된 세포를 PBS로 세척하고 ROS 표시 염료인 DHE (dihydroethidium)로 염색한 후 Carl Zeiss LSM 780 NLO 다광자 현미경을 사용하여 이미지화하였다. 대조군으로서 GST-Afb로 코팅되기 전의 PCN을 사용하였다. Specifically, MDA-MB-468 cells were inoculated into Lab Tek II slide chambers at a density of about 2 A PCN complex, GST-E-PCN (a fusion protein of Afb and GST targeting the EGFR receptor (GST-EGFR) coated on the surface of PCN) was treated and cultured for about 2 hours. Afterwards, the cell culture medium was replaced and light irradiation (light density = 40 mW·cm -2 ) was performed for about 10 minutes using a solar simulator, and then additional culture was performed for about 2 hours. Afterwards, the cultured cells were washed with PBS, stained with DHE (dihydroethidium), a ROS indicator dye, and imaged using a Carl Zeiss LSM 780 NLO multiphoton microscope. As a control, PCN before coating with GST-Afb was used.

그 결과, 도 16에 나타낸 바와 같이, GST-Afb로 코팅되기 전의 PCN과 함께 배양된 후 광조사된 MDA-MB-468 세포, 및 GST-E-PCN과 함께 배양되었으나 광조사되지 않은 MDA-MB-468 세포의 경우, DHE에 의하여 전혀 염색되지 않은 반면, GST-E-PCN과 함께 배양된 후 광조사된 MDA-MB-468 세포의 경우, DHE에 의하여 염색되어 형광을 방출함을 확인하였다. 이를 통해, GST-Afb로 코팅되기 전의 PCN은 세포 내 흡수를 거의 겪지 못하였고, 반면, GST-E-PCN은 표적 세포인 MDA-MB-468 세포 내로 흡수된 후 광조사에 의하여 세포 내에서 일중항산소 (singlet oxygen) 등의 ROS를 생성하였음을 알 수 있었다.As a result, as shown in Figure 16, MDA-MB-468 cells cultured with PCN before being coated with GST-Afb and then irradiated with light, and MDA-MB cultured with GST-E-PCN but not irradiated with light. In the case of -468 cells, there was no staining by DHE at all, whereas in the case of MDA-MB-468 cells cultured with GST-E-PCN and then irradiated with light, it was confirmed that they were stained by DHE and emit fluorescence. Through this, PCN before being coated with GST-Afb hardly experienced intracellular uptake, whereas GST-E-PCN was absorbed into the target cell, MDA-MB-468 cells, and then worked within the cells by light irradiation. It was found that ROS such as singlet oxygen were generated.

본 실시예를 통해, GST-Afb-MOFs 복합체는 우수한 효율로 표적 세포 내로 흡수된 후 세포 내에서 광반응성 ROS 생성능을 나타냄을 확인하였고, 이로 인해, GST-Afb-MOFs 복합체는 광역학 치료 (photodynamic therapy: PDT)를 위해 사용될 수 있음을 확인하였다.Through this example, it was confirmed that the GST-Afb-MOFs complex exhibits the ability to generate photoreactive ROS within the target cells after being absorbed into the target cells with excellent efficiency. As a result, the GST-Afb-MOFs complex was used for photodynamic therapy (photodynamic therapy). It was confirmed that it can be used for therapy (PDT).

실시예 8. GST-Afb-MOFs 복합체의 표적 세포 특이적 약물 전달 및 세포 사멸 효과 확인Example 8. Confirmation of target cell-specific drug delivery and cell death effects of GST-Afb-MOFs complex

약물이 봉입된 GST-Afb-MOFs 복합체가 나타내는 암 세포 사멸에 대한 PDT와 화학 요법의 시너지 효과를 확인하였다.The synergistic effect of PDT and chemotherapy on cancer cell death shown by the drug-encapsulated GST-Afb-MOFs complex was confirmed.

구체적으로, GST-Afb로 표면을 코팅하기 전에, 상기 실시예 1에서 수득된 PCN의 내부에 항종양 약물인 캄토테신 (camptothecin: CPT)을 봉입하였다 (적재 용량 = ~ 88 wt%). 구체적으로, 약 5 mg의 CPT와 약 5 mg의 상기 실시예 1에서 수득된 PCN을, 약 1 mL의 DMSO 용액에서 약 48 시간 동안 상온에서 혼합하였다. 혼합 후 약 13000 rpm으로 약 5 분 동안 원심분리하여 약물 (CPT)이 봉입된 PCN 입자를 분리하였다. 그 후, 상기 실시예 3에 기재된 방법과 동일한 방법으로 상기 약물이 봉입된 PCN의 표면에 GST-Afb 융합 단백질을 코팅하여, 내부에 약물이 봉입된 GST-Afb-PCN 복합체를 수득하였다. 그 후, SK-BR-3 또는 MDA-MB-468 세포를 96-웰 플레이트에 웰당 약 5×103 세포 밀도로 시딩하고 약 24시간 동안 배양한 후, 내부에 약물이 봉입된 GST-Afb-PCN 복합체 또는 내부에 약물이 봉입되지 않은 GST-Afb-PCN 복합체를 상기 배양된 세포에 각기 다른 농도로 처리하고 (약 0.5 ㎍/ml, 약 1.0 ㎍/ml, 약 1.5 ㎍/ml, 약 2.0 ㎍/ml), 약 24시간 동안 배양하였다. 그 후, 배지를 교체하고, 태양광 시뮬레이터를 이용하여 약 10분 동안 광조사 (광밀도 = 40 mW·cm-2)를 수행한 후, 약 24시간 동안 추가 배양을 수행하였다. 그 다음, 배양된 세포에 3(4,5-dimethyl-thyzoyl-2-yl)2,5 diphenyltetrazolium bromide (MTT)를 처리하고 ELISA 플레이트 판독기를 사용하여 세포 생존율을 측정하였다 (λ = 570 nm, n = 3). 본 실험에 사용된 실험군은 다음과 같다:Specifically, before coating the surface with GST-Afb, the antitumor drug camptothecin (CPT) was encapsulated inside the PCN obtained in Example 1 (loading capacity = ~ 88 wt%). Specifically, about 5 mg of CPT and about 5 mg of PCN obtained in Example 1 were mixed in about 1 mL of DMSO solution at room temperature for about 48 hours. After mixing, the mixture was centrifuged at about 13000 rpm for about 5 minutes to separate the PCN particles encapsulated with the drug (CPT). Afterwards, GST-Afb fusion protein was coated on the surface of the PCN encapsulated with the drug in the same manner as described in Example 3, to obtain a GST-Afb-PCN complex with the drug encapsulated inside. Afterwards, SK-BR-3 or MDA-MB-468 cells were seeded in a 96-well plate at a density of about 5 The cultured cells were treated with PCN complex or GST-Afb-PCN complex without drug encapsulated at different concentrations (about 0.5 μg/ml, about 1.0 μg/ml, about 1.5 μg/ml, about 2.0 μg). /ml), and cultured for about 24 hours. Afterwards, the medium was replaced, light irradiation (light density = 40 mW·cm -2 ) was performed for about 10 minutes using a solar simulator, and additional culture was performed for about 24 hours. Next, the cultured cells were treated with 3(4,5-dimethyl-thyzoyl-2-yl)2,5 diphenyltetrazolium bromide (MTT), and cell viability was measured using an ELISA plate reader (λ = 570 nm, n = 3). The experimental groups used in this experiment were as follows:

1) SK-BR-3 세포의 생존율 측정1) Measurement of survival rate of SK-BR-3 cells

i) GST-H-PCN: HER2 수용체를 표적하는 Afb와 GST의 융합 단백질 (GST-HER2)이 PCN의 표면에 코팅된 GST-Afb-PCN 복합체인 GST-H-PCN 만을 처리 (약물 봉입 및 광조사 없음)i) GST-H-PCN: Only GST-H-PCN, a GST-Afb-PCN complex coated on the surface of the PCN with a fusion protein of Afb and GST (GST-HER2) targeting the HER2 receptor, was treated (drug encapsulation and light treatment) no survey)

ii) CPT@GST-H-PCN: CPT 약물이 내부에 봉입된 GST-H-PCN 만을 처리 (광조사 없음)ii) CPT@GST-H-PCN: Process only GST-H-PCN with CPT drug encapsulated inside (no light irradiation)

iii) Light@GST-H-PCN: GST-H-PCN 처리 후 광조사 수행 (약물 봉입 없음)iii) Light@GST-H-PCN: Light irradiation performed after GST-H-PCN treatment (no drug encapsulation)

iv) Light/CPT@GST-H-PCN: CPT 약물이 내부에 봉입된 GST-H-PCN 처리 후 광조사 수행iv) Light/CPT@GST-H-PCN: Light irradiation after treatment of GST-H-PCN with CPT drug encapsulated inside

2) MDA-MB-468 세포의 생존율 측정2) Measurement of survival rate of MDA-MB-468 cells

i) GST-E-PCN: EGFR 수용체를 표적하는 Afb와 GST의 융합 단백질 (GST-EGFR)이 PCN의 표면에 코팅된 GST-Afb-PCN 복합체인 GST-E-PCN 만을 처리 (약물 봉입 및 광조사 없음)i) GST-E-PCN: Process only GST-E-PCN, which is a GST-Afb-PCN complex coated on the surface of PCN with a fusion protein of Afb and GST (GST-EGFR) targeting the EGFR receptor (drug encapsulation and light treatment) no survey)

ii) CPT@GST-E-PCN: CPT 약물이 내부에 봉입된 GST-E-PCN 만을 처리 (광조사 없음)ii) CPT@GST-E-PCN: Process only GST-E-PCN with CPT drug encapsulated inside (no light irradiation)

iii) Light@GST-E-PCN: GST-E-PCN 처리 후 광조사 수행 (약물 봉입 없음)iii) Light@GST-E-PCN: Light irradiation performed after GST-E-PCN treatment (no drug encapsulation)

iv) Light/CPT@GST-E-PCN: CPT 약물이 내부에 봉입된 GST-E-PCN 처리 후 광조사 수행iv) Light/CPT@GST-E-PCN: Light irradiation after treatment of GST-E-PCN with CPT drug encapsulated inside

그 결과, 도 17에 나타낸 바와 같이, 약물이 내부에 봉입되지 않은 GST-H-PCN 또는 GST-E-PCN을 광조사 없이 세포에 처리하는 경우, 세포 생존률이 약 90% 이상으로 유지되는 것을 확인하였고, 이를 통해, GST-H-PCN 및 GST-E-PCN 자체는 세포 독성을 유발하지 않는 안전한 입자임을 확인하였다. 더하여, CPT 약물이 내부에 봉입된 GST-H-PCN 또는 GST-E-PCN을 광조사 없이 세포에 처리하는 경우 및 약물이 내부에 봉입되지 않은 GST-H-PCN 또는 GST-E-PCN을 세포에 처리한 후 광조사하는 경우 모두, 처리 농도가 증가할수록 암 세포 사멸율이 증가하였고, 처리 농도가 약 2.0 ㎍/ml인 경우에는, 암 세포가 약 25% 이상 사멸됨을 확인하였다. 이를 통해, GST-H-PCN 및 GST-E-PCN은 표적 암 세포 특이적인 세포 내 약물 전달 및 방출 효과를 나타내며, 약물 봉입이 없는 경우에도 표적 암 세포 내에서 광반응성 세포 독성을 나타내어 GST-H-PCN 및 GST-E-PCN 자체로도 암 세포 사멸 효과를 나타냄을 확인하였다. 또한, CPT 약물이 내부에 봉입된 GST-H-PCN 또는 GST-E-PCN을 세포에 처리한 후 광조사하는 경우, 처리 농도가 증가할수록 암 세포 사멸율이 증가하였고, 처리 농도가 약 1.0 ㎍/ml 이상인 경우에는, 암 세포가 최소 약 60% 이상 사멸되어 현저히 우수한 암 세포 사멸 효과를 나타냄을 확인하였다. 이를 통해, 약물이 봉입된 GST-H-PCN 및 GST-E-PCN은, 표적 암 세포 특이적인 우수한 약물 전달 및 방출 효과 및 광조사에 의한 세포 독성 효과를 동시에 나타내어 암 세포 사멸에 대한 시너지 효과를 유도할 수 있음을 알 수 있었다.As a result, as shown in Figure 17, it was confirmed that when GST-H-PCN or GST-E-PCN with no drug encapsulated inside was treated with cells without light irradiation, the cell viability was maintained at about 90% or more. Through this, it was confirmed that GST-H-PCN and GST-E-PCN themselves are safe particles that do not cause cytotoxicity. In addition, when GST-H-PCN or GST-E-PCN with the CPT drug encapsulated inside is treated with cells without light irradiation, and when GST-H-PCN or GST-E-PCN without the drug encapsulated inside the cells is treated with In all cases of light irradiation after treatment, the cancer cell death rate increased as the treatment concentration increased, and when the treatment concentration was about 2.0 ㎍/ml, it was confirmed that more than 25% of the cancer cells were killed. Through this, GST-H-PCN and GST-E-PCN exhibit target cancer cell-specific intracellular drug delivery and release effects, and even in the absence of drug encapsulation, GST-H-PCN exhibits photoreactive cytotoxicity within target cancer cells. -PCN and GST-E-PCN themselves were confirmed to have a cancer cell killing effect. In addition, when cells were treated with GST-H-PCN or GST-E-PCN with CPT drug encapsulated inside and then irradiated with light, the cancer cell death rate increased as the treatment concentration increased, and the treatment concentration was about 1.0 μg. In the case of /ml or more, it was confirmed that at least about 60% of cancer cells were killed, showing a significantly excellent cancer cell killing effect. Through this, the drug-encapsulated GST-H-PCN and GST-E-PCN simultaneously exhibit excellent drug delivery and release effects specific to target cancer cells and cytotoxic effects by light irradiation, creating a synergistic effect on cancer cell death. It was found that it could be induced.

본 실시예를 통해, 도 18에 나타낸 바와 같이, GST-Afb-MOFs 복합체는, 표면에 코팅된 GST-Afb에 의하여 고 효율로 표적 세포에 흡수되어 내부에 봉입된 약물을 표적 세포 내로 전달하고 방출할 수 있으며, MOFs에 존재하는 감광성 포르피린 그룹에 의하여 표적 세포 내에서 광반응성 세포 독성을 나타내어 표적 세포를 사멸시킬 수 있음을 확인하였다. 따라서, GST-Afb-MOFs 복합체는 표적 세포 특이적 약물 전달체로서 기능함과 동시에, 그 자체로도 표적 세포 특이적 광반응성 질환 치료제 (예컨대, 암 치료제)로서 기능할 수 있음을 알 수 있었다. 또한, 약물이 봉입된 GST-Afb-MOFs 복합체는 암 세포 사멸에 대한 PDT와 화학 요법의 시너지 효과를 유도할 수 있음을 알 수 있었다.Through this example, as shown in Figure 18, the GST-Afb-MOFs complex is absorbed into target cells with high efficiency by GST-Afb coated on the surface, and delivers and releases the drug encapsulated inside into the target cells. It was confirmed that the photosensitive porphyrin group present in MOFs can cause photoreactive cytotoxicity within target cells and kill them. Therefore, it was found that the GST-Afb-MOFs complex functions as a target cell-specific drug carrier and at the same time can itself function as a target cell-specific photoreactive disease treatment (eg, cancer treatment). In addition, it was found that the drug-encapsulated GST-Afb-MOFs complex can induce a synergistic effect of PDT and chemotherapy on cancer cell death.

실시예 9. 동물 모델 실험을 통한 GST-Afb-MOFs 복합체의 생체 내 종양 세포 표적화 효과 확인Example 9. Confirmation of in vivo tumor cell targeting effect of GST-Afb-MOFs complex through animal model experiments

상기 실시예 3에서 수득된 GST-Afb-MOFs 복합체의 생체 내 종양 세포 표적화 효과를 동물 모델 실험을 통해 확인하였다. The in vivo tumor cell targeting effect of the GST-Afb-MOFs complex obtained in Example 3 was confirmed through animal model experiments.

구체적으로, 상기 실시예 3에서 수득된 GST-Afb-PCN 복합체인, GST-H-PCN (HER2 수용체를 표적하는 Afb와 GST의 융합 단백질 (GST-HER2)이 PCN의 표면에 코팅됨)에 원적외선 형광 DiD 염료를 로딩하여 (DiD 로딩 용량 = ~ 15 wt%), DiD 염료가 로딩된 GST-H-PCN을 준비하였고, 약 20 μg의 DiD 염료가 로딩된 GST-H-PCN을 약 100 μL의 중성 PBS에 분산시켜 입자 시료를 준비하였다. 또한, balb/c 누드 암컷 마우스 (Orient bio, Korea)의 오른쪽 옆구리에 SK-BR-3 세포를 주입하여 종양 이종 이식 모델을 생성하였고, 종양은 상기 마우스 내에서 ~ 150 mm3의 크기로 발달하였음을 확인하였다. 상기 종양이 있는 마우스 (n = 3)에 상기 DiD 염료가 로딩된 GST-H-PCN을 포함하는 입자 시료를 정맥 주사하고 다양한 시점 (주사 후 0, 2, 4, 8, 24시간)에서 상기 마우스에 대하여 생체 내 광학 이미징 시스템 (Bruker Xtreme 모델)을 사용하여 형광 촬영을 수행하였다 (λex = 630 nm, λem = 700 nm). 또한, 각 시료의 생체 분포는 정맥 주사 후 약 24시간 후에 마우스에서 추출된 장기 및 종양의 생체외 이미지화에 의해 평가되었다. 대조군 시료로서, DiD 염료가 로딩된 PCN 및 DiD 염료 자체를 사용하였고, 모든 동물 연구는 UNIST 동물 보호 및 사용 위원회에서 승인한 프로토콜에 따라 수행되었다.Specifically, the GST-Afb-PCN complex obtained in Example 3, GST-H-PCN (a fusion protein of Afb and GST targeting the HER2 receptor (GST-HER2) coated on the surface of the PCN), was exposed to far-infrared rays. GST-H-PCN loaded with DiD dye was prepared by loading fluorescent DiD dye (DiD loading capacity = ~ 15 wt%), and about 20 μg of GST-H-PCN loaded with DiD dye was added to about 100 μL. Particle samples were prepared by dispersing in neutral PBS. Additionally, a tumor xenograft model was created by injecting SK-BR-3 cells into the right flank of balb/c nude female mice (Orient bio, Korea), and tumors developed to a size of ~150 mm 3 in the mice. was confirmed. The tumor-bearing mice (n = 3) were intravenously injected with particle samples containing GST-H-PCN loaded with the DiD dye and incubated at various time points (0, 2, 4, 8, 24 hours after injection). Fluorescence imaging was performed using an in vivo optical imaging system (Bruker Xtreme model) (λex = 630 nm, λem = 700 nm). Additionally, the biodistribution of each sample was assessed by ex vivo imaging of organs and tumors extracted from mice approximately 24 hours after intravenous injection. As control samples, PCN loaded with DiD dye and DiD dye itself were used, and all animal studies were performed according to protocols approved by the UNIST Animal Care and Use Committee.

그 결과, 도 19 및 20에 나타낸 바와 같이, GST-H-PCN는 종양 세포에서 과발현 되는 HER2 수용체를 표적하는 Afb와 GST의 융합 단백질 (GST-HER2)이 PCN의 표면에 코팅된 MOFs 나노 입자로서, HER2 수용체를 발현하는 세포 즉, 종양 세포를 표적화하도록 디자인된 MOFs 나노 입자인데, 실제로, GST-H-PCN은 종양 마우스의 생체 내에서 현저히 높은 효율로 종양 조직을 표적화함을 확인하였고, 반면, GST-HER2가 표면 코팅되지 않은 PCN의 경우, 종양 마우스의 생체 내에서 종양 조직을 거의 표적화하지 못함을 확인하였다. As a result, as shown in Figures 19 and 20, GST-H-PCN is a MOFs nanoparticle coated on the surface of PCN with a fusion protein of Afb and GST (GST-HER2) targeting the HER2 receptor overexpressed in tumor cells. , MOFs nanoparticles designed to target cells expressing the HER2 receptor, that is, tumor cells. In fact, GST-H-PCN was confirmed to target tumor tissue with significantly high efficiency in vivo in tumor mice; In the case of PCN whose surface was not coated with GST-HER2, it was confirmed that it hardly targeted tumor tissue in vivo in tumor mice.

본 실시예를 통해, 단백질 흡착을 차단하고 종양 세포를 표적하는 GST-Afb로 표면 코팅된 GST-Afb-MOFs 복합체는, 상기 GST-Afb에 의하여 생체 내에서 고 효율로 종양 조직만을 특이적으로 표적화할 수 있으므로, 암 치료를 위한 약물 전달체 또는 치료제로서 적용될 수 있음을 알 수 있었다. Through this example, the GST-Afb-MOFs complex surface-coated with GST-Afb, which blocks protein adsorption and targets tumor cells, specifically targets tumor tissue with high efficiency in vivo by GST-Afb. Therefore, it was found that it can be applied as a drug carrier or therapeutic agent for cancer treatment.

서열목록 전자파일 첨부Sequence list electronic file attached

Claims (14)

글루타싸이온전달효소 (Glutathione S-transferase: GST) 및 질환 세포 표적 펩티드가 연결된 융합 단백질이 표면에 코팅된 금속-유기 프레임워크 (Metal-Organic framework: MOFs) 나노 입자.Metal-organic framework (MOFs) nanoparticles coated on the surface with a fusion protein linked to glutathione S-transferase (GST) and disease cell targeting peptide. 청구항 1에 있어서, 상기 금속-유기 프레임워크는 유기분자 사이에 금속 노드가 연결되어 다공성인 3차원 구조를 가지는 것인, 금속-유기 프레임워크 나노 입자.The metal-organic framework nanoparticle according to claim 1, wherein the metal-organic framework has a porous three-dimensional structure in which metal nodes are connected between organic molecules. 청구항 2에 있어서, 상기 융합 단백질에서, 상기 글루타싸이온전달효소의 상기 질환 세포 표적 펩티드와 연결되지 않은 부위가 상기 금속-유기 프레임워크의 표면에 노출된 상기 금속 노드에 연결되어 있는 것인, 금속-유기 프레임워크 나노 입자.The method of claim 2, wherein, in the fusion protein, a portion of the glutathione transferase that is not connected to the disease cell targeting peptide is connected to the metal node exposed on the surface of the metal-organic framework. Metal-organic framework nanoparticles. 청구항 3에 있어서, 상기 글루타싸이온전달효소의 G-사이트 (G-site) 부위가 상기 금속-유기 프레임워크의 표면에 노출된 금속 노드에 연결되어 있는 것인, 금속-유기 프레임워크 나노 입자.The metal-organic framework nanoparticle according to claim 3, wherein the G-site site of the glutathione transferase is connected to a metal node exposed on the surface of the metal-organic framework. . 청구항 1에 있어서, 상기 질환 세포는 암 세포인 것인, 금속-유기 프레임워크 나노 입자.The metal-organic framework nanoparticle of claim 1, wherein the diseased cell is a cancer cell. 청구항 1에 있어서, 상기 질환 세포 표적 펩티드는 질환 세포 상의 HER2 (human epidermal growth factor receptor 2) 또는 EGFR (epidermal growth factor receptor)을 표적하는 것인, 금속-유기 프레임워크 나노 입자. The metal-organic framework nanoparticle according to claim 1, wherein the disease cell targeting peptide targets HER2 (human epidermal growth factor receptor 2) or EGFR (epidermal growth factor receptor) on disease cells. 청구항 1에 있어서, 상기 질환 세포 표적 펩티드는 서열번호 2 또는 서열번호 3의 아미노산 서열을 포함하는 것인, 금속-유기 프레임워크 나노 입자.The metal-organic framework nanoparticle of claim 1, wherein the disease cell targeting peptide comprises the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 3. 청구항 1에 있어서, 상기 융합 단백질은 서열번호 4 또는 서열번호 5의 아미노산 서열을 포함하는 것인, 금속-유기 프레임워크 나노 입자. The metal-organic framework nanoparticle according to claim 1, wherein the fusion protein comprises the amino acid sequence of SEQ ID NO: 4 or SEQ ID NO: 5. 청구항 2에 있어서, 상기 유기분자는 빛에 반응하여 활성산소 (reactive oxygen species: ROS)를 생성하는 광감작제 (photosensitizer)인 것인, 금속-유기 프레임워크 나노 입자.The metal-organic framework nanoparticle according to claim 2, wherein the organic molecule is a photosensitizer that generates reactive oxygen species (ROS) in response to light. 청구항 9에 있어서, 상기 금속-유기 프레임워크 나노 입자는, 상기 질환 세포에 특이적으로 흡수되어 세포 내에서 빛에 반응하여 활성산소를 생성함으로써 상기 질환 세포만을 특이적으로 사멸시키는 것인, 금속-유기 프레임워크 나노 입자.The method of claim 9, wherein the metal-organic framework nanoparticles are specifically absorbed into the diseased cells and produce active oxygen in response to light within the cells, thereby specifically killing only the diseased cells. Organic framework nanoparticles. 청구항 1에 있어서, 상기 금속-유기 프레임워크 내부에 약물이 담지되어 있는 것인, 금속-유기 프레임워크 나노 입자.The metal-organic framework nanoparticle according to claim 1, wherein a drug is supported inside the metal-organic framework. 청구항 11에 있어서, 상기 금속-유기 프레임워크 나노 입자는, 상기 질환 세포에 특이적으로 흡수되어 세포 내에서 담지된 약물을 방출하는 것인, 금속-유기 프레임워크 나노 입자.The metal-organic framework nanoparticle according to claim 11, wherein the metal-organic framework nanoparticle is specifically absorbed into the diseased cell and releases the drug contained within the cell. 청구항 1 내지 12 중 어느 한 항의 금속-유기 프레임워크 나노 입자를 유효 성분으로 포함하는, 표적 세포 특이적 약물 전달용 조성물.A composition for target cell-specific drug delivery, comprising the metal-organic framework nanoparticle of any one of claims 1 to 12 as an active ingredient. 청구항 1 내지 12 중 어느 한 항의 금속-유기 프레임워크 나노 입자를 유효 성분으로 포함하는, 암 예방 또는 치료용 약학적 조성물.A pharmaceutical composition for preventing or treating cancer, comprising the metal-organic framework nanoparticle of any one of claims 1 to 12 as an active ingredient.
KR1020220167056A 2022-12-02 2022-12-02 Metal-organic framework (MOFs) nanoparticles coated with a fusion protein of Glutathione S-transferase and peptides targeting diseased cells and use thereof KR20240086776A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020220167056A KR20240086776A (en) 2022-12-02 2022-12-02 Metal-organic framework (MOFs) nanoparticles coated with a fusion protein of Glutathione S-transferase and peptides targeting diseased cells and use thereof
PCT/KR2023/019273 WO2024117717A1 (en) 2022-12-02 2023-11-27 Metal-organic framework (mof) nanoparticles surface-coated with fusion proteins of glutathione transferase and disease cell-targeting peptides, and uses thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220167056A KR20240086776A (en) 2022-12-02 2022-12-02 Metal-organic framework (MOFs) nanoparticles coated with a fusion protein of Glutathione S-transferase and peptides targeting diseased cells and use thereof

Publications (1)

Publication Number Publication Date
KR20240086776A true KR20240086776A (en) 2024-06-19

Family

ID=91324466

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220167056A KR20240086776A (en) 2022-12-02 2022-12-02 Metal-organic framework (MOFs) nanoparticles coated with a fusion protein of Glutathione S-transferase and peptides targeting diseased cells and use thereof

Country Status (2)

Country Link
KR (1) KR20240086776A (en)
WO (1) WO2024117717A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107896A1 (en) * 2017-11-28 2019-06-06 울산과학기술원 Fusion protein comprising glutathione-s-transferase and protein having binding affinity target cell or target protein, and use thereof
KR102264231B1 (en) * 2019-07-19 2021-06-11 울산과학기술원 Biopolymers and metal-organic frameworks conjugated complexes and uses thereof
KR20220120910A (en) * 2021-02-24 2022-08-31 주식회사 케이엠디바이오 EGFR-GST-Ulixertinib complex, and pharmaceutical composition for preventing or treating cancer comprising the same

Also Published As

Publication number Publication date
WO2024117717A1 (en) 2024-06-06

Similar Documents

Publication Publication Date Title
KR102264231B1 (en) Biopolymers and metal-organic frameworks conjugated complexes and uses thereof
Ning et al. Type-I AIE photosensitizer loaded biomimetic system boosting cuproptosis to inhibit breast cancer metastasis and rechallenge
Bai et al. Nanotransferrin-based programmable catalysis mediates three-pronged induction of oxidative stress to enhance cancer immunotherapy
Wang et al. Cancer cytomembrane-cloaked prussian blue nanoparticles enhance the efficacy of mild-temperature photothermal therapy by disrupting mitochondrial functions of cancer cells
Dong et al. Chemical modulation of glucose metabolism with a fluorinated CaCO3 nanoregulator can potentiate radiotherapy by programming antitumor immunity
US8557290B2 (en) Multifunction nanoconjugates for imaging applications and targeted treatment
Sudarev et al. Ferritin self-assembly, structure, function, and biotechnological applications
Cai et al. Hybrid cell membrane-functionalized biomimetic nanoparticles for targeted therapy of osteosarcoma
Van de Steen et al. Bioengineering bacterial encapsulin nanocompartments as targeted drug delivery system
Chen et al. Orchestration of biomimetic membrane coating and nanotherapeutics in personalized anticancer therapy
Yang et al. Precisely assembled nanoparticles against cisplatin resistance via cancer-specific targeting of mitochondria and imaging-guided chemo-photothermal therapy
Zhao et al. Smart biomimetic nanocomposites mediate mitochondrial outcome through aerobic glycolysis reprogramming: a promising treatment for lymphoma
Tian et al. Tobacco mosaic virus-based 1D nanorod-drug carrier via the integrin-mediated endocytosis pathway
Wang et al. Magnetotactic bacteria-based drug-loaded micromotors for highly efficient magnetic and biological double-targeted tumor therapy
Sang et al. Remodeling macrophages by an iron nanotrap for tumor growth suppression
Zhao et al. Regulating photosensitizer metabolism with DNAzyme-loaded nanoparticles for amplified mitochondria-targeting photodynamic immunotherapy
Wang et al. Engineered cell-assisted photoactive nanoparticle delivery for image-guided synergistic photodynamic/photothermal therapy of cancer
Liang et al. Protein‐based nanoplatforms for tumor imaging and therapy
Zhang et al. A vanadium-based nanoplatform synergizing ferroptotic-like therapy with glucose metabolism intervention for enhanced cancer cell death and antitumor immunity
Wang et al. Ferritin nanocages: a versatile platform for nanozyme design
Fernandes et al. Metal-organic frameworks applications in synergistic cancer photo-immunotherapy
Shen et al. Multifunctional human serum albumin fusion protein as a docetaxel nanocarrier for chemo-photothermal synergetic therapy of ovarian cancer
Xia et al. Facilitating pro-survival mitophagy for alleviating Parkinson’s disease via sequence-targeted lycopene nanodots
Zhang et al. A cancer cell specific targeting nanocomplex for combination of mRNA-responsive photodynamic and chemo-therapy
Zhang et al. Targeting inorganic nanoparticles to tumors using biological membrane‐coated technology