KR20240078737A - Method and apparatus for improving efficiency in pyrolysis oil gasification and syngas power generation process - Google Patents

Method and apparatus for improving efficiency in pyrolysis oil gasification and syngas power generation process Download PDF

Info

Publication number
KR20240078737A
KR20240078737A KR1020220161187A KR20220161187A KR20240078737A KR 20240078737 A KR20240078737 A KR 20240078737A KR 1020220161187 A KR1020220161187 A KR 1020220161187A KR 20220161187 A KR20220161187 A KR 20220161187A KR 20240078737 A KR20240078737 A KR 20240078737A
Authority
KR
South Korea
Prior art keywords
pyrolysis oil
gasification
reactor
gasification reactor
internal pipe
Prior art date
Application number
KR1020220161187A
Other languages
Korean (ko)
Inventor
최항석
황재규
최명규
홍성완
Original Assignee
연세대학교 원주산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 원주산학협력단 filed Critical 연세대학교 원주산학협력단
Priority to KR1020220161187A priority Critical patent/KR20240078737A/en
Publication of KR20240078737A publication Critical patent/KR20240078737A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Industrial Gases (AREA)

Abstract

본 발명은 가스화 반응기, 싸이클론 장치, 촉매반응용 반응기, 워터 스크러버 및 집진기를 포함하며, 가스화 반응기의 외부 하단에는 열분해오일과 산화제를 가스화 반응기 내부로 분사하여 투입할 수 있는 분사 장치가 구비된 열분해오일 가스화 장치에 관한 것이다. The present invention includes a gasification reactor, a cyclone device, a reactor for catalytic reaction, a water scrubber, and a dust collector, and is equipped with a spray device at the outer bottom of the gasification reactor that can spray and inject pyrolysis oil and oxidant into the gasification reactor. It relates to oil gasification equipment.

Description

열분해오일 가스화 및 합성가스 발전 공정에서 그 효율을 향상시키기 위한 방법 및 장치{METHOD AND APPARATUS FOR IMPROVING EFFICIENCY IN PYROLYSIS OIL GASIFICATION AND SYNGAS POWER GENERATION PROCESS} Method and device for improving efficiency in pyrolysis oil gasification and synthesis gas power generation process {METHOD AND APPARATUS FOR IMPROVING EFFICIENCY IN PYROLYSIS OIL GASIFICATION AND SYNGAS POWER GENERATION PROCESS}

본 발명은 열분해오일의 가스화 공정의 효율을 높이기 위한 것으로, 보다 상세하게는 가스화 반응기 내부 형상의 변화로 가스화 효율을 향상시키고 열분해오일의 가스화 과정에서 생성 되는 합성가스 내 타르의 저감 또는 발열량을 증가시키는 The present invention is intended to increase the efficiency of the gasification process of pyrolysis oil. More specifically, it improves the gasification efficiency by changing the internal shape of the gasification reactor and reduces tar in the synthesis gas generated during the gasification process of pyrolysis oil or increases the calorific value.

실험방법 및 그 장치에 관한 것이다.It relates to experimental methods and equipment.

최근 에너지 수요는 점점 증가하고 있으며, 이로 인한 화석연료 사용의 증가로 지구온난화 및 다양한 기후, 환경오염 문제들이 야기되고 있다. 따라서 화석연료 의존도를 줄이고, 기후, 환경오염 문제를 해결하기 위한 신재생에너지에 대한 연구가 국제적으로 이루어지고 있다. 이러한 신재생에너지는 수력, 풍력, 태양열, 수소, 바이오, 폐기물 등의 다양한 에너지원이 포함되며 그 중 탄소고정을 통해 대기 중 이산화탄소 농도를 변화시키지 않아 탄소중립적인 에너지인 바이오에너지는 친환경적인 에너지원으로 각광받고 있다.Recently, energy demand has been increasing, and the resulting increase in fossil fuel use is causing global warming and various climate and environmental pollution problems. Therefore, research on new and renewable energy is being conducted internationally to reduce dependence on fossil fuels and solve climate and environmental pollution problems. These new and renewable energies include various energy sources such as hydropower, wind power, solar power, hydrogen, bio, and waste. Among them, bioenergy, which is carbon-neutral energy as it does not change the concentration of carbon dioxide in the atmosphere through carbon fixation, is an eco-friendly energy source. is in the spotlight.

또한, CO2 배출량 감축, 바이오에너지 비중 확대 및 신재생연료 의무혼합제도(RFS) 등의 국가적인 목표와 제도에 맞추어 국내에서도 많은 관심과 연구가 이루어지고 있다. In addition, much interest and research is being conducted domestically in line with national goals and systems such as reducing CO2 emissions, increasing the proportion of bioenergy, and the mandatory blending system for renewable fuels (RFS).

우리나라는 기후변화 협약에 따라 2030년 까지 온실가스 배출전망 대비 37%저감을 목표로 하고있다. 또한 2012년 RPS (신재생에너지 공급의무화)제도, 2015년RFS (신재생연료 의무 혼합)제도의 시행에 이어 RHO (신재생열에너지 공급의무화)제도가 시행될 예정에 있다. 이에 따라 전력, 수송용 에너지 및 열에너지 전반에 걸쳐 신재생에너지를 의무적으로 사용하여야 한다. In accordance with the climate change agreement, Korea aims to reduce greenhouse gas emissions by 37% compared to projected emissions by 2030. In addition, following the implementation of the RPS (mandatory renewable energy supply) system in 2012 and the RFS (mandatory blending of new and renewable fuels) system in 2015, the RHO (mandatory new and renewable energy supply) system is scheduled to be implemented. Accordingly, the use of new and renewable energy is mandatory across electric power, transportation energy, and thermal energy.

공기를 산화제로 이용해 생산되는 합성가스(syngas)는 엔진, 보일러, 가스터빈 등의 기존 연소기기에 혼소 또는 전소 형태로 활용되어 전기 및 열에너지를 생산하는 용도로 활용할 수 있다. Syngas, which is produced using air as an oxidizing agent, can be used in the form of co-firing or combustion in existing combustion devices such as engines, boilers, and gas turbines to produce electricity and heat energy.

증기 또는 산소를 가스화제로 할 경우 공기에 비해 높은 발열량을 가지는 합성가스(Syn-gas) 생산이 가능하며 적절한 정제 공정 및 조성제어 공정을 거쳐 합성천연가스, FT 디젤, 메탄올, 에탄올, 수소 또는 DME 등의 고부가 합성 연료 생산에 활용이 가능하다. When steam or oxygen is used as a gasification agent, it is possible to produce synthetic gas (Syn-gas), which has a higher calorific value compared to air. Through an appropriate purification process and composition control process, it can be produced into synthetic natural gas, FT diesel, methanol, ethanol, hydrogen or DME. It can be used to produce high value-added synthetic fuels such as

이외에도 생물학적 전환을 통한 연료 생산 기술도 개발 되고 있다. 바이오매스 직접 가스화의 TCI (total capital investment; 바이오매스 2000 t/day 처리 기준)는 560 $million 이고, 급속열분해와 열분해오일 가스화의 TCI(바이오매스 2000 In addition, fuel production technology through biological conversion is also being developed. The TCI (total capital investment; based on processing 2000 t/day of biomass) for direct biomass gasification is 560 $million, and the TCI for fast pyrolysis and pyrolysis oil gasification (biomass 2000 t/day)

t/day 처리 기준)는 510 $million 으로 열분해오일 가스화가 경제적으로 유리하다.(based on t/day processing) is 510 $million, making pyrolysis oil gasification economically advantageous.

열분해오일 가스화 기술은 바이오매스 가스화 기술 보다 합성가스 내 타르농도가 낮고, 수소와 일산화탄소의 수율이 높기 때문에 고품질의 합성가스 생산이 가능하다. The pyrolysis oil gasification technology has a lower tar concentration in the synthesis gas than the biomass gasification technology and has a higher yield of hydrogen and carbon monoxide, making it possible to produce high-quality synthesis gas.

이러한 과제를 해결하기 위한 본 발명은 열분해오일의 가스화 과정에서 반응효율을 향상시켜 배출되는 합성가스 내 타르함량의 감소와 더불어 고부가 합성연료 생산에 유리한 높은 수소농도를 가지는 합성가스를 생산하는 방법 및 가스화 시스템을 제공하는 것을 목적으로 한다. In order to solve these problems, the present invention improves the reaction efficiency in the gasification process of pyrolysis oil, reduces the tar content in the discharged synthesis gas, and provides a method and gasification method for producing synthesis gas with a high hydrogen concentration, which is advantageous for producing high value-added synthetic fuel. The purpose is to provide a system.

이러한 과제를 해결하기 위한 본 발명의 열분해오일 가스화 시스템은 가스화반응기로 열분해오일 및 산화제를 주입할 수 있는 장치, 열분해오일을 가스화하기 위한 가스화 반응기 및 상기 가스화 반응기로부터 생성되는 합성가스 내 분진, ash를 제거하기 위한 싸이클론 장치, 합성가스 내 타르제거 및 개질을 위한 촉매반응용 반응기 및 후단공정(워터 스크러버, 전기집진기 등)으로 구성되어있다. The pyrolysis oil gasification system of the present invention to solve these problems includes a device for injecting pyrolysis oil and oxidizing agent into a gasification reactor, a gasification reactor for gasifying the pyrolysis oil, and dust and ash in the synthesis gas generated from the gasification reactor. It consists of a cyclone device for removal of tar, a reactor for catalytic reaction to remove and reform tar in synthesis gas, and downstream processes (water scrubber, electrostatic precipitator, etc.).

열분해오일은 시료의 특성 상 고체 바이오매스에 비해 함수율이 높기 때문에 완전히 가스화되기 위해서는 충분한 체류시간이 필요하다. 또한 분류층 가스화기를 사용하기 때문에 분사각도가 넓으면 가스화가 완료되기 이전에 반응기 벽면과 접촉하게되어 반응의 효율이 저하된다. 따라서 가스화에 필요한 반응기의 부피가 크다. Due to the nature of the sample, pyrolysis oil has a higher water content than solid biomass, so sufficient residence time is required for complete gasification. In addition, because a split bed gasifier is used, if the injection angle is wide, it comes into contact with the reactor wall before gasification is completed, reducing the efficiency of the reaction. Therefore, the volume of the reactor required for gasification is large.

본 발명에서는 이를 해결하기 위해 가스화 반응기의 하단에서 열분해오일과 산화제를 분사하여 체류시간을 증가시켰으며 반응기 내부에 동심원 모양의 inner pipe를 설치하여 생선 된 합성가스가 바로 반응기 상부로 배출되는 것을 방지하였다. 이와같이 충분한 반응시간을 통해 생성 된 합성가스는 타르저감 효과가 있으며, In the present invention, to solve this problem, pyrolysis oil and oxidizing agent were sprayed from the bottom of the gasification reactor to increase the residence time, and a concentric circle-shaped inner pipe was installed inside the reactor to prevent the produced synthetic gas from being discharged directly to the top of the reactor. . In this way, the synthetic gas generated through sufficient reaction time has a tar reduction effect.

합성가스 내 수소, 일산화탄소 수율 또한 상승한다. 또한 가스화 반응기 후단에 촉매반응기를 이용하여 합성가스를 개질하게 되면 목표로 하는 조성에 적합한 합성가스를 생산할 수 있다. The yield of hydrogen and carbon monoxide in synthesis gas also increases. In addition, if the synthesis gas is reformed using a catalytic reactor at the rear of the gasification reactor, synthesis gas suitable for the target composition can be produced.

본 발명의 열분해오일 가스화 장치를 이용하면 합성가스 내 수소, 일산화탄소 수율을 향상시킬 수 있으며, 충분한 반응시간을 통해 생성 된 합성가스는 타르저감 효과가 있다. By using the pyrolysis oil gasification device of the present invention, the yield of hydrogen and carbon monoxide in synthesis gas can be improved, and the synthesis gas produced through a sufficient reaction time has a tar reduction effect.

도 1은 열분해오일 가스화 시스템을 도시한 구성. Figure 1 shows the configuration of a pyrolysis oil gasification system.

본 발명의 일 양태에 따르면, 본 발명은 가스화 반응기, 싸이클론 장치, 촉매반응용 반응기, 워터 스크러버 및 집진기를 포함하며, 가스화 반응기의 외부 하단에는 열분해오일과 산화제를 가스화 반응기 내부로 분사하여 투입할 수 있는 분사 장치가 구비된 열분해오일 가스화 장치를 제공한다. According to one aspect of the present invention, the present invention includes a gasification reactor, a cyclone device, a reactor for catalytic reaction, a water scrubber, and a dust collector, and pyrolysis oil and an oxidizing agent are sprayed and introduced into the gasification reactor at the outer bottom of the gasification reactor. Provided is a pyrolysis oil gasification device equipped with an injection device that can

본 발명의 다른 양태에 따르면 본 발명의 상기 가스화 반응기 내부에는 하부면이 개방되고 상부면이 폐쇠된 내부파이프가 구비되고, 상기 열분해오일과 산화제는 상기 내부파이프의 내부로 분사되며, 내부파이프 내에서 반응을 통해 생성된 합성가스는 상기 내부파이프 하단과 가스화 반응기 벽면 사이 공간을 통해 배출되는 것을 특징으로 하는 열분해오일 가스화 장치를 제공한다. According to another aspect of the present invention, the gasification reactor of the present invention is provided with an internal pipe having an open lower surface and a closed upper surface, and the pyrolysis oil and the oxidizing agent are injected into the internal pipe, and within the internal pipe. A pyrolysis oil gasification device is provided, wherein the synthesis gas generated through the reaction is discharged through the space between the bottom of the internal pipe and the wall of the gasification reactor.

100: 열분해오일 투입장치 110: 산화제 투입장치
120: 열분해오일 가스화 반응기 130: 싸이클론
140: 합성가스 개질 반응기 150: 워터 스크러버
160: 전기집진기
100: Pyrolysis oil input device 110: Oxidizing agent input device
120: Pyrolysis oil gasification reactor 130: Cyclone
140: Syngas reforming reactor 150: Water scrubber
160: Electrostatic precipitator

Claims (2)

가스화 반응기, 싸이클론 장치, 촉매반응용 반응기, 워터 스크러버 및 집진기를 포함하며, 가스화 반응기의 외부 하단에는 열분해오일과 산화제를 가스화 반응기 내부로 분사하여 투입할 수 있는 분사 장치가 구비된 열분해오일 가스화 장치.
A pyrolysis oil gasification device that includes a gasification reactor, cyclone device, catalytic reaction reactor, water scrubber, and dust collector, and is equipped with a spray device at the outer bottom of the gasification reactor that can inject pyrolysis oil and oxidant into the gasification reactor. .
제 1항에 있어서 상기 가스화 반응기 내부에는 하부면이 개방되고 상부면이 폐쇠된 내부파이프가 구비되고, 상기 열분해오일과 산화제는 상기 내부파이프의 내부로 분사되며, 내부파이프 내에서 반응을 통해 생성된 합성가스는 상기 내부파이프 하단과 가스화 반응기 벽면 사이 공간을 통해 배출되는 것을 특징으로 하는 열분해오일 가스화 장치.
The method of claim 1, wherein the gasification reactor is provided with an internal pipe having an open lower surface and a closed upper surface, the pyrolysis oil and the oxidizing agent are injected into the internal pipe, and the pyrolysis oil and the oxidizing agent are injected into the internal pipe, and the pyrolysis oil and the oxidizing agent are generated through reaction within the internal pipe. A pyrolysis oil gasification device, characterized in that the synthesis gas is discharged through the space between the bottom of the internal pipe and the wall of the gasification reactor.
KR1020220161187A 2022-11-28 2022-11-28 Method and apparatus for improving efficiency in pyrolysis oil gasification and syngas power generation process KR20240078737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220161187A KR20240078737A (en) 2022-11-28 2022-11-28 Method and apparatus for improving efficiency in pyrolysis oil gasification and syngas power generation process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220161187A KR20240078737A (en) 2022-11-28 2022-11-28 Method and apparatus for improving efficiency in pyrolysis oil gasification and syngas power generation process

Publications (1)

Publication Number Publication Date
KR20240078737A true KR20240078737A (en) 2024-06-04

Family

ID=91466105

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220161187A KR20240078737A (en) 2022-11-28 2022-11-28 Method and apparatus for improving efficiency in pyrolysis oil gasification and syngas power generation process

Country Status (1)

Country Link
KR (1) KR20240078737A (en)

Similar Documents

Publication Publication Date Title
Dalena et al. Methanol production and applications: an overview
US8236072B2 (en) System and method for producing substitute natural gas from coal
Detchusananard et al. Biomass gasification integrated with CO2 capture processes for high-purity hydrogen production: process performance and energy analysis
Udomsirichakorn et al. Review of hydrogen-enriched gas production from steam gasification of biomass: the prospect of CaO-based chemical looping gasification
Chhiti et al. Thermal conversion of biomass, pyrolysis and gasification
Hayashi et al. Gasification of low-rank solid fuels with thermochemical energy recuperation for hydrogen production and power generation
EA200870369A1 (en) IMPROVING CARBON EFFICIENCY IN THE PRODUCTION OF HYDROCARBONS
US20220112429A1 (en) Gasification process
CN103013568B (en) Plasma gasification treatment system of solid organic waste
Kaur et al. Thermochemical route for biohydrogen production
Budzianowski Low-carbon power generation cycles: the feasibility of CO2 capture and opportunities for integration
WO2017060704A1 (en) Sustainable energy system
Moneti et al. Simulations of a plant with a fluidized bed gasifier WGS and PSA
Zhang et al. Solid-oxide electrolyzer coupled biomass-to-methanol systems
Yang et al. Zero/negative carbon emission coal and biomass staged co-gasification power generation system via biomass heating
Demirbaş et al. Catalytic steam reforming of biomass and heavy oil residues to hydrogen
de Jong Sustainable hydrogen production by thermochemical biomass processing
CN203096004U (en) Power generation system based on classification and transformation of hydrocarbon components of coal
KR20240078737A (en) Method and apparatus for improving efficiency in pyrolysis oil gasification and syngas power generation process
Narnaware et al. Bio-Hydrogen Production Through Gasification of Agro-residues
KR20210110158A (en) Method and apparatus for controlling tar in synthetic gas and composition of synthetic gas in bio-crude gasification process
JP2011236394A (en) Woody gas producer
Livi et al. Pyrogasification to produce biogas and biomethane from wood wastes
Aleshina From resinous wood distillation to hydrogen energy (questions of the history of pyrogenation)
Gnanapragasam et al. Hydrogen production using solid fuels