KR20240069943A - Composite structural metal with special properties by compounding metals with low melting points, such as low-melting-point alloys and tin alloys, with high-strength metals, non-ferrous metals, ceramics, and metals with low specific gravity - Google Patents
Composite structural metal with special properties by compounding metals with low melting points, such as low-melting-point alloys and tin alloys, with high-strength metals, non-ferrous metals, ceramics, and metals with low specific gravity Download PDFInfo
- Publication number
- KR20240069943A KR20240069943A KR1020220151141A KR20220151141A KR20240069943A KR 20240069943 A KR20240069943 A KR 20240069943A KR 1020220151141 A KR1020220151141 A KR 1020220151141A KR 20220151141 A KR20220151141 A KR 20220151141A KR 20240069943 A KR20240069943 A KR 20240069943A
- Authority
- KR
- South Korea
- Prior art keywords
- metals
- low
- metal
- melting
- composite structural
- Prior art date
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 79
- 239000002184 metal Substances 0.000 title claims abstract description 79
- 239000002131 composite material Substances 0.000 title claims abstract description 33
- 238000002844 melting Methods 0.000 title claims abstract description 18
- 230000008018 melting Effects 0.000 title claims abstract description 16
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 8
- 239000000956 alloy Substances 0.000 title claims abstract description 8
- 230000005484 gravity Effects 0.000 title claims description 3
- 150000002739 metals Chemical class 0.000 title abstract description 29
- -1 ferrous metals Chemical class 0.000 title abstract description 3
- 239000000919 ceramic Substances 0.000 title description 5
- 238000013329 compounding Methods 0.000 title description 2
- 229910001128 Sn alloy Inorganic materials 0.000 title 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000000843 powder Substances 0.000 claims abstract description 8
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims abstract description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 6
- 239000010937 tungsten Substances 0.000 claims abstract description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000011777 magnesium Substances 0.000 claims abstract description 4
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 4
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract description 3
- 239000004917 carbon fiber Substances 0.000 claims abstract description 3
- 229910052742 iron Inorganic materials 0.000 claims abstract description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 3
- 239000010935 stainless steel Substances 0.000 claims abstract description 3
- 229910001220 stainless steel Inorganic materials 0.000 claims abstract description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract 2
- 239000003365 glass fiber Substances 0.000 claims abstract 2
- 229910052725 zinc Inorganic materials 0.000 claims abstract 2
- 239000011701 zinc Substances 0.000 claims abstract 2
- 238000002156 mixing Methods 0.000 claims description 4
- 238000003756 stirring Methods 0.000 claims description 3
- 239000011362 coarse particle Substances 0.000 claims description 2
- 238000001035 drying Methods 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims 1
- MUBKMWFYVHYZAI-UHFFFAOYSA-N [Al].[Cu].[Zn] Chemical compound [Al].[Cu].[Zn] MUBKMWFYVHYZAI-UHFFFAOYSA-N 0.000 claims 1
- 229910052797 bismuth Inorganic materials 0.000 claims 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims 1
- 239000000835 fiber Substances 0.000 claims 1
- 229910002804 graphite Inorganic materials 0.000 claims 1
- 239000010439 graphite Substances 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 claims 1
- 239000011133 lead Substances 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 claims 1
- 239000002105 nanoparticle Substances 0.000 claims 1
- 239000004332 silver Substances 0.000 claims 1
- 238000005507 spraying Methods 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 4
- 238000005245 sintering Methods 0.000 abstract description 4
- 239000007921 spray Substances 0.000 abstract description 3
- 239000010936 titanium Substances 0.000 abstract description 3
- 229910052719 titanium Inorganic materials 0.000 abstract description 3
- 238000005096 rolling process Methods 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 description 6
- 239000000155 melt Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 2
- 238000010146 3D printing Methods 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/12—Metallic powder containing non-metallic particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
- B33Y70/10—Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C13/00—Alloys based on tin
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Civil Engineering (AREA)
- Composite Materials (AREA)
- Structural Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Powder Metallurgy (AREA)
Abstract
본 발명은 복합금속에 관한 발명으로 3D 프린터 생활화 및 전기자동차와 드론과 같은 초경량 특수 물성을 가진 소재의 욕구가 많아진 현실에 부응하여 낮은 소결 온도의 저용융점 합금 및 SAC 및 알루미늄 등의 용융이 잘되는 금속을 용융 시킨후에 티타늄, 아연, 철, 스테인리스강, 알루미나, 텅스텐, 마그네슘, 그라스파이버, 카본화이버 등 용도에 맞는 물질을 첨가하여 교반 분산 시킨후 일정 형태의 거푸집이나 압연을 통한 판재 및 스프레이드라이어를 통한 파우더를 만들어 사용함으로써 기존의 금속 비철금속의 영역을 확장 시킬수 있는 새로운 금속의 시대를 열 수 있는 계기가 되었다.The present invention relates to composite metals, and in response to the increasing need for materials with ultra-light and special properties such as 3D printers and electric vehicles and drones, the invention relates to low-melting point alloys with low sintering temperatures and metals that melt easily, such as SAC and aluminum. After melting, materials suitable for the purpose, such as titanium, zinc, iron, stainless steel, alumina, tungsten, magnesium, glass fiber, and carbon fiber, are added, stirred and dispersed, and then processed into a certain form of mold or plate through rolling and a spray dryer. By making and using powder, it became an opportunity to open a new era of metals that could expand the scope of existing metals and non-ferrous metals.
Description
금속의 복합화에 해당하는 기술 분야로 낮은 온도에서 녹는 금속을 용융시켜 특징이 다양한 금속들의 파우더를 혼합하여 낮은 온도에서 녹으면서 높은 강도를 갖는 금속이나 낮은 온도에서 녹으면서 가볍고 단단한 특성을 갖는 금속 등 목적에 따라 선정한 금속을 녹은 금속에 혼합하여 분산시킨 후 건조하여 낮은 온도에서 녹는 성질과 복합화한 금속의 특징을 같이 구현하여 사용할 수 있어서 3D 프린터에 아주 적합한 복합구조금속을 제조하는 기술 분야이다. 즉 SAC(Sn,Ag,Cu 합금)을 용융 시킨후 텅스텐 파우더를 복합화시켜 복합구조금속으로 만들 경우 300도 이하의 낮은 온도에서 용융이 되고 복합구조금속의 압축강도나 인장강도를 증대시킬 수 있기 때문에 기존의 합금 분야와 다른 성질을 구현할 수 있다. 즉 기존의 합금은 두가지 이상의 금속을 용융시켜 반응시키는 것과 달리 복합구조금속은 상대적으로 낮은 용융점을 가진 금속을 용융시키고 상대적으로 높은 용융점을 가진 금속, 비철금속, 세라믹의 파우더를 분산시켜 복합구조금속을 제조하는 새로운 기술 분야이다. This is a technical field that deals with the compositing of metals. It is a field of technology that melts metals that melt at low temperatures and mixes powders of metals with various characteristics, such as metals that melt at low temperatures and have high strength or metals that melt at low temperatures and have light and hard properties. This is a field of technology that manufactures composite structural metals that are very suitable for 3D printers, as they can be used by mixing and dispersing selected metals into molten metals and drying them to embody the properties of melting at low temperatures and the characteristics of composite metals. In other words, if you melt SAC (Sn, Ag, Cu alloy) and then composite tungsten powder to make a composite structure metal, it melts at a low temperature of 300 degrees or less and can increase the compressive strength or tensile strength of the composite structure metal. It is possible to realize properties that are different from those in the existing alloy field. In other words, unlike existing alloys that melt and react two or more metals, composite metal structures are manufactured by melting metals with relatively low melting points and dispersing powders of metals, non-ferrous metals, and ceramics with relatively high melting points. It is a new field of technology.
SAC은 섭씨 240도 정도에서 멜팅이 되는 금속으로 이렇게 녹은 금속을 기저 금속으로 사용하여 티타늄, 알루미늄, 텅스텐, 스테인리스, 철 등 각종 금속 조대 입자를 SAC의 녹은 금속에 혼합하여 낮은 온도에서 녹고 혼합된 금속의 특성을 살릴수 있도록 분산시켜 복합화하는 기술 분야로 일반 소결이나 합금과는 차별화가 되는 새로운 기술 분야이다.SAC is a metal that melts at about 240 degrees Celsius. This molten metal is used as a base metal, and various metal coarse particles such as titanium, aluminum, tungsten, stainless steel, and iron are mixed into the molten metal of SAC to melt and mix at a low temperature. It is a new technology field that differentiates it from general sintering or alloying by dispersing and compounding it to take advantage of its characteristics.
기존의 합금은 여러 가지 금속을 녹여서 새로운 금속으로 만드는 방법이지만 본 발명은 저용융점 금속을 용융시켜 그 속에 특수 물성을 갖는 금속이나 세라믹을 혼합하여 특성을 갖는 금속이나 세라믹을 분산시켜 사용하는 금속 세라믹 복합화 기술이다.Existing alloys are a method of melting various metals to create a new metal, but the present invention is a metal-ceramic composite that melts a low-melting point metal and mixes metals or ceramics with special properties into it to disperse the metals or ceramics with special properties. It's technology.
3D 프린터의 생활화 및 전기자동차의 보급 활성화로 가벼운 금속 특수 형태의 모양으로 소결이 필요한 금속 등에 관한 요구가 많이 발생하고 있다. 이러한 환경의 변화에 따른 특수 기능성 금속에 대한 욕구가 빗발치고 있지만 기존의 금속 및 합금으로는 극복할 수 있는 한계가 있어서 이러한 고객의 욕구에 부응할 수가 없다. 즉, 3D 프린터에서 금속을 사용할 경우 높은 고열을 필요로 하기때문에 3D 프린터에 의해 성형되는 금속에 센서나 반도체 등 전자 장비를 장착할 경우 고열 때문에 센서나 전자 장비가 훼손되어 장착에 어려움이 있다. 본 발명에서 만들어진 저용융점 복합구조금속을 사용할 경우 섭씨 200도 이내에서 3D프린팅 작업을 진행할 수 있기때문에 높은 온도때문에 발생하는 문제점들을 해결할수 있다. 또한, 금속의 사용 분야 중 높은 온도에서 사용하는 용도를 제외하고 다양한 분야에서 적용이 가능할 것으로 보인다. 특히 무인 드론이나 전기 자동차 등 무게가 성능에 민감한 역할을 하는 분야에 적용시 매우 효과적으로 적용할 수 있다. 즉, 알루미늄을 용융시킨 후 여기에 마그네슘과 다공성 알루미나를 섞어서 복합금속을 제조할 경우 복합구조 금속의 비중이 2 이하가 되는 새로운 개념의 복합구조금속이 만들어지는 것이다. 따라서 지금까지 상용화되지 않은 신개념의 복합구조금속이 만들어지는 것이다.With the adoption of 3D printers and the popularization of electric vehicles, there is a growing demand for light metals that require sintering into special shapes. Due to these changes in the environment, there is a surge in demand for special functional metals, but existing metals and alloys have limitations that can be overcome, making it impossible to meet these customer needs. In other words, when using metal in a 3D printer, high heat is required, so when mounting electronic devices such as sensors or semiconductors on metal formed by a 3D printer, the sensors or electronic devices are damaged due to the high heat, making mounting difficult. When using the low melting point composite structural metal made in the present invention, 3D printing work can be performed within 200 degrees Celsius, thereby solving problems caused by high temperatures. In addition, it appears that it can be applied in a variety of fields, excluding those where metal is used at high temperatures. In particular, it can be applied very effectively in fields where weight plays a sensitive role in performance, such as unmanned drones or electric vehicles. In other words, when aluminum is melted and then mixed with magnesium and porous alumina to produce a composite metal, a new concept of composite metal is created in which the specific gravity of the composite metal is 2 or less. Therefore, a new concept of composite structural metal that has not been commercialized until now is created.
..
꿈의 금속 출현이 가능하게 되었다. 즉 소결 온도 240도에 알루미늄보다 가벼운 금속을 3D 프린터로 원하는 형태대로 소결하는 것이 가능하게 되어 3D 프린터의 혁명이 이루어질 수 있게 되었다. 또한, 카본화이버와 같은 특수 소재를 금속과 복합화하는 기술이 기존에는 없어서 플라스틱과 복합화하여 사용하였으나 금속과 복합화할 수 있는 길이 열릴수 있을것으로 예상되며 알루미나처럼 특수 기능을 가진 소재를 금속과 복합화하여 사용하는 것이 가능해져서 금속의 혁명 시대를 초래 할수 있을 것으로 기대된다. 즉 SAC을 용융한후 다공성 알루미나 파우더를 혼합하여 복합구조 금속을 제조할 수 있으며, 알루미나의 입자 크기가 작을수록 복합금속의 강도는 높아지기 때문에 초초두랄루민이나 특수 금속의 대체가 가능할 것으로 보여 복합금속이 새로운 금속의 장을 열 것으로 기대된다. 특히 알루미늄의 경우 알루미나의 비중은 높으나 다공성 알루미나 입자와 복합화 시 지금까지 사용되었던 알루미늄 합금 제품보다 훨씬 가볍고 강력한 새로운 복합구조금속이 만들어진다. The emergence of dream metal has become possible. In other words, it became possible to sinter a metal lighter than aluminum into the desired shape with a 3D printer at a sintering temperature of 240 degrees, making it possible to achieve a revolution in 3D printers. In addition, there was no existing technology to composite special materials such as carbon fiber with metal, so they were used in composite with plastic. However, it is expected that a path to composite with metal may be opened, and materials with special functions such as alumina can be used by composite with metal. It is expected that this will become possible and bring about a revolutionary era in metal. In other words, a composite metal structure can be manufactured by melting SAC and then mixing porous alumina powder. The smaller the alumina particle size, the higher the strength of the composite metal, so it is expected to be possible to replace ultra-superduralumin or special metals, making the composite metal a new type of metal. It is expected to open the metal market. In particular, in the case of aluminum, the proportion of alumina is high, but when composited with porous alumina particles, a new composite structural metal is created that is much lighter and stronger than the aluminum alloy products used so far.
도 1은 금속 복합화의 기본 개념도이다. SAC금속을 섭씨 240도에서 용융하여 알루미나 텅스텐, 티타늄, 마그네슘 등 특징을 갖는 금속 입자를 희석하여 교반한 다음 복합금속 괴(덩어리)나 판형 및 스프레이 드라이어를 통한 파우더를 만들어 제품화 할수 있다. 이렇게 제조된 금속의 판형이나 파우더 등을 목적에 맞게 일반 금속처럼 사용하면 된다. 단 이렇게 제조된 금속은 낮은 용융 온도와 하이브리드된 금속의 특징을 같이 구현할 수 있어서 기존의 금속은 녹기 어렵고 낮은 온도에서 녹은 금속은 매우 무르다는 편견을 없앨수 있는 신개념의 금속이 탄생할 수 있다. Figure 1 is a basic conceptual diagram of metal complexation. SAC metal can be commercialized by melting it at 240 degrees Celsius, diluting and stirring metal particles with characteristics such as alumina, tungsten, titanium, and magnesium, and then making composite metal lumps or powder through a plate or spray dryer. The metal plates or powders manufactured in this way can be used like ordinary metal according to the purpose. However, the metal manufactured in this way can realize both the low melting temperature and the characteristics of hybrid metal, so a new concept of metal can be created that can eliminate the prejudice that existing metals are difficult to melt and metals melted at low temperatures are very soft.
[실시예][Example]
먼저 전기용융로를 마련하여 섭씨 240도에서 SAC을 용융하여 준비한다. 용융된 SAC에 파우더 형태의 텅스텐 미크론 입자를 교반하면서 SAC 부피의 20%까지 혼합하여 30분 이상 고속 교반하여 텅스텐 미크론 입자를 분산시킨다. 교반된 복합구조금속을 금형에 부어서 건조시키거나 압연 공정을 거쳐 판상으로 제작하거나 스프레이 드라이어로 건조 시켜 파우더로 제작할수 있다. 동일한 방법으로 다양한 종류의 복합구조금속을 제조 할수 있다.First, prepare an electric melting furnace and melt the SAC at 240 degrees Celsius. While stirring the molten SAC, powder-type tungsten micron particles are mixed up to 20% of the SAC volume and stirred at high speed for more than 30 minutes to disperse the tungsten micron particles. The stirred composite structural metal can be poured into a mold and dried, produced into a plate shape through a rolling process, or dried with a spray dryer and made into powder. Various types of composite structural metals can be manufactured using the same method.
Claims (4)
특수 물성을 지닌 티타늄 파우더를 10~80V%를 혼합하는 단계;
혼합된 복합구조 금속을 교반하여 분산 시키는 단계; 교반된 복합구조 금속을 용융로에서 일정 형태의 거푸집에 부어 복합구조금속 괴를 만드는 단계;
또는 고압 스프레이를 하여 건조시켜 복합구조금속 분말을 제조하는 단계를 거쳐 제조된 녹는 온도와 비중 및 강도에 특성을 가진 복합구조금속Putting SAC in a melting furnace and heating it to over 250 degrees to make SAC molten;
Mixing 10~80V% of titanium powder with special properties;
Stirring and dispersing the mixed composite structure metal; Pouring the stirred composite structure metal into a mold of a certain shape in a melting furnace to create a composite structure metal ingot;
Or, a composite structural metal with characteristics of melting temperature, specific gravity, and strength manufactured through the step of manufacturing composite structural metal powder by high-pressure spraying and drying.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220151141A KR20240069943A (en) | 2022-11-13 | 2022-11-13 | Composite structural metal with special properties by compounding metals with low melting points, such as low-melting-point alloys and tin alloys, with high-strength metals, non-ferrous metals, ceramics, and metals with low specific gravity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220151141A KR20240069943A (en) | 2022-11-13 | 2022-11-13 | Composite structural metal with special properties by compounding metals with low melting points, such as low-melting-point alloys and tin alloys, with high-strength metals, non-ferrous metals, ceramics, and metals with low specific gravity |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20240069943A true KR20240069943A (en) | 2024-05-21 |
Family
ID=91320412
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020220151141A KR20240069943A (en) | 2022-11-13 | 2022-11-13 | Composite structural metal with special properties by compounding metals with low melting points, such as low-melting-point alloys and tin alloys, with high-strength metals, non-ferrous metals, ceramics, and metals with low specific gravity |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20240069943A (en) |
-
2022
- 2022-11-13 KR KR1020220151141A patent/KR20240069943A/en unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4753690A (en) | Method for producing composite material having an aluminum alloy matrix with a silicon carbide reinforcement | |
US20160273075A1 (en) | Aluminium alloy refiner and preparation method and application thereof | |
EP1493517B1 (en) | Process for producing materials reinforced with nanoparticles and articles formed thereby | |
CN104789805B (en) | A kind of preparation method of carbon nano-tube reinforced metal-matrix composite material | |
CN110423915B (en) | Preparation method of aluminum-based composite material | |
CN110423914B (en) | Preparation method of rare earth magnesium alloy composite material | |
CN110438379B (en) | Preparation method of lithium-containing magnesium/aluminum-based composite material | |
CN110434350A (en) | A kind of metal powder with low melting point and its preparation method and application | |
CN110625127A (en) | Preparation method of cobalt-chromium-nickel-tungsten alloy brazing filler metal powder | |
CN110438373B (en) | Preparation method of magnesium-based composite material | |
CN105154729A (en) | Cast aluminum-zinc-magnesium-copper-tantalum alloy and manufacturing method thereof | |
CN105618723A (en) | Inert atmosphere-based skull melting and casting process adopting consumable titanium alloy electrode | |
CN102268563B (en) | Casting high temperature alloy refiner and high temperature alloy casting method using the same | |
KR20240069943A (en) | Composite structural metal with special properties by compounding metals with low melting points, such as low-melting-point alloys and tin alloys, with high-strength metals, non-ferrous metals, ceramics, and metals with low specific gravity | |
CN105908020B (en) | A kind of preparation method of aluminium composite tungsten material | |
CA2297064A1 (en) | Cast metal-matrix composite material and its use | |
CN108374134B (en) | Metal toughened ceramic matrix composite and preparation method thereof | |
KR20100092055A (en) | Magnesium-based composite material having ti particles dispersed therein, and method for production thereof | |
CN108517433B (en) | Solidification preparation method of Cu-Cr electrical contact alloy | |
CN102989999B (en) | Zinc alloy chilling alcoholic-group coating absorbing heat by using melting of substance | |
CN102021359B (en) | Cu-Ni-Si alloy with high Ni and Si content and preparation method thereof | |
US5435828A (en) | Cobalt-boride dispersion-strengthened copper | |
JP4121733B2 (en) | Method for producing graphite-containing aluminum alloy and sliding member | |
CN108672702A (en) | Damper knuckle support | |
WO2003080881A1 (en) | Process for the production of al-fe-v-si alloys |