KR20240066484A - Compound for targeting cancer comprising EGFR L858R mutation and uses thereof - Google Patents

Compound for targeting cancer comprising EGFR L858R mutation and uses thereof Download PDF

Info

Publication number
KR20240066484A
KR20240066484A KR1020220141673A KR20220141673A KR20240066484A KR 20240066484 A KR20240066484 A KR 20240066484A KR 1020220141673 A KR1020220141673 A KR 1020220141673A KR 20220141673 A KR20220141673 A KR 20220141673A KR 20240066484 A KR20240066484 A KR 20240066484A
Authority
KR
South Korea
Prior art keywords
cancer
targeting
compound
egfr
targeting compound
Prior art date
Application number
KR1020220141673A
Other languages
Korean (ko)
Inventor
김대응
Original Assignee
원광대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 원광대학교산학협력단 filed Critical 원광대학교산학협력단
Priority to KR1020220141673A priority Critical patent/KR20240066484A/en
Publication of KR20240066484A publication Critical patent/KR20240066484A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/08Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
    • A61K51/088Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins conjugates with carriers being peptides, polyamino acids or proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/0474Organic compounds complexes or complex-forming compounds, i.e. wherein a radioactive metal (e.g. 111In3+) is complexed or chelated by, e.g. a N2S2, N3S, NS3, N4 chelating group
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/60Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances involving radioactive labelled substances

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

본 발명은 EGFR L858R 돌연변이를 포함하는 암을 표적하는 화합물에 관한 것으로, 상기 EGFR L858R 돌연변이를 포함하는 암을 표적하는 화합물을 포함하는 이중 방식 조영제, 암 진단용 조성물 및 암 모니터링을 위한 정보제공방법에 관한 것이다. 본 발명에 따른 EGFR L858R 돌연변이를 포함하는 암을 표적하는 화합물은 생체 내 기관 또는 조직에 처리할 경우, 암 조직에 섭취되어 방사선 영상과 형광영상을 동시에 취득할 수 있고, 이들은 각각 EGFR-양성 암 진단 및 병기 설정과 수술 가이드용 영상으로 제공될 수 있어, 분자 이미징 기법을 적용한 암 진단 및 치료에 활용될 수 있다.The present invention relates to a compound targeting cancer containing the EGFR L858R mutation, a dual-modality contrast agent containing a compound targeting cancer containing the EGFR L858R mutation, a composition for diagnosing cancer, and a method of providing information for cancer monitoring. will be. When the cancer-targeting compound containing the EGFR L858R mutation according to the present invention is treated with an organ or tissue in vivo, it is ingested into the cancer tissue and radiological images and fluorescence images can be acquired simultaneously, and each of them can diagnose EGFR-positive cancer. And it can be provided as an image for staging and surgical guidance, so it can be used for cancer diagnosis and treatment using molecular imaging techniques.

Description

EGFR L858R 돌연변이를 포함하는 암을 표적하는 화합물 및 이의 용도{Compound for targeting cancer comprising EGFR L858R mutation and uses thereof}Compound for targeting cancer comprising EGFR L858R mutation and uses thereof}

본 발명은 EGFR L858R 돌연변이를 포함하는 암을 표적하는 화합물에 관한 것으로, 상기 EGFR L858R 돌연변이를 포함하는 암을 표적하는 화합물을 포함하는 이중 방식 조영제, 암 진단용 조성물 및 암 모니터링을 위한 정보제공방법에 관한 것이다.The present invention relates to a compound targeting cancer containing the EGFR L858R mutation, a dual-modality contrast agent containing a compound targeting cancer containing the EGFR L858R mutation, a composition for diagnosing cancer, and a method of providing information for cancer monitoring. will be.

표피 성장 인자 수용체(Epidermal growth factor receptor, EGFR)는 1,186개 아미노산으로 구성된 막횡단 당단백질로 세포 성장, 분화, 증식, 세포자멸사 등 여러 세포 과정에 관여한다. EGFR은 악성 종양에서 과발현되며 혈관 신생, 진행 및 전이와 관련이 있다. 비소세포폐암(non-small cell lung carcinoma, NSCLC) 종양에서 EGFR의 돌연변이 상태는 예후 및 치료 반응과 상관관계가 있다. 858번 위치(L858R)에서 류신이 아르기닌으로 대체되는 엑손 21의 키나제 도메인 돌연변이는 EGFR 티로신 키나제 억제제(tyrosine kinase inhibitor, TKI)에 대한 반응성과 관련이 있다. L858R 돌연변이 EGFR 환자는 야생형 EGFR 환자에 비해 TKI 치료 후 개선된 전체 생존 및 무진행 생존(progression-free survival)을 보여준다. 따라서 EGFR 키나제 도메인의 활성화 돌연변이는 TKI 치료로부터 혜택을 받을 환자를 선택하는 데 유용한 바이오마커이다.Epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein composed of 1,186 amino acids and is involved in various cellular processes such as cell growth, differentiation, proliferation, and apoptosis. EGFR is overexpressed in malignant tumors and is associated with angiogenesis, progression, and metastasis. The mutation status of EGFR in non-small cell lung carcinoma (NSCLC) tumors is correlated with prognosis and treatment response. A kinase domain mutation in exon 21 resulting in a substitution of leucine for arginine at position 858 (L858R) is associated with responsiveness to EGFR tyrosine kinase inhibitors (TKIs). Patients with L858R mutant EGFR show improved overall survival and progression-free survival after TKI treatment compared to patients with wild-type EGFR. Therefore, activating mutations in the EGFR kinase domain are useful biomarkers for selecting patients who will benefit from TKI treatment.

임상에서 EGFR 돌연변이 검사는 종양 조직 생검을 통해 비소세포폐암에 대해 수행된다. 그러나 종양 생검은 종양 조직이 이질적이기 때문에 제한된 정보를 제공하는 침습적 절차이다. 생검에서 얻은 종양의 작은 부분은 전체 종양 및 전이성 질환의 돌연변이 상태를 나타내지 않을 수 있다. 대조적으로, 양전자 방출 단층 촬영(positron emission tomography, PET) 및 단일 광자 방출 컴퓨터 단층 촬영(single-photon emission computed tomography, SPECT)을 포함한 분자 영상 기술은 비침습적 검출을 가능하게 하고 EGFR의 돌연변이 상태에 관한 정보를 제공한다. 이와 관련하여 L858R 변이가 있는 EGFR을 표적으로 하는 분자 영상화제의 개발은 TKI 치료 환자의 선택 및 모니터링에 도움이 될 수 있다.In clinical practice, EGFR mutation testing is performed for non-small cell lung cancer through tumor tissue biopsies. However, tumor biopsy is an invasive procedure that provides limited information due to the heterogeneity of tumor tissue. Small portions of tumor obtained from biopsy may not represent the mutational status of the entire tumor and metastatic disease. In contrast, molecular imaging techniques, including positron emission tomography (PET) and single-photon emission computed tomography (SPECT), enable noninvasive detection and determination of the mutational status of EGFR. Provides information. In this regard, the development of molecular imaging agents targeting EGFR with the L858R mutation may be helpful in the selection and monitoring of patients treated with TKIs.

이에 본 발명자들은 방사성 동위원소 및 형광물질로 표지된 암 표적용 화합물을 개발함으로써, 본 발명을 완성하게 되었다.Accordingly, the present inventors completed the present invention by developing a cancer-targeting compound labeled with a radioactive isotope and a fluorescent substance.

따라서 본 발명의 목적은 암을 특이적으로 검출할 수 있는 암 표적용 화합물을 제공하는 것이다.Therefore, the purpose of the present invention is to provide a cancer-targeting compound that can specifically detect cancer.

본 발명의 다른 목적은 암 표적용 화합물을 포함하는 이중 방식 조영제, 암 진단용 조성물과, 암 표적용 화합물을 이용한 암 모니터링 방법을 제공하는 것이다.Another object of the present invention is to provide a dual-modality contrast agent containing a cancer-targeting compound, a cancer diagnostic composition, and a cancer monitoring method using the cancer-targeting compound.

상기 목적을 달성하기 위하여, 본 발명은 형광물질, 방사성 동위원소와 결합하며 서열번호 3의 아미노산 서열로 표시되는 킬레이팅 리간드 및 서열번호 1의 아미노산 서열로 표시되는 암 표적 펩타이드를 포함하는 암 표적용 화합물을 제공한다.In order to achieve the above object, the present invention provides a cancer targeting peptide that binds to a fluorescent substance and a radioactive isotope and includes a chelating ligand represented by the amino acid sequence of SEQ ID NO: 3 and a cancer targeting peptide represented by the amino acid sequence of SEQ ID NO: 1. Provides a compound.

또한 본 발명은 상기 암 표적용 화합물을 포함하는 이중 방식 조영제를 제공한다. Additionally, the present invention provides a dual-modality contrast agent containing the cancer-targeting compound.

또한 본 발명은 상기 암 표적용 화합물을 포함하는 암 진단용 조성물을 제공한다.Additionally, the present invention provides a composition for diagnosing cancer containing the cancer targeting compound.

또한 본 발명은 상기 암 표적용 화합물을 생물학적 시료에 처리하는 단계를 포함하는 암 모니터링을 위한 정보제공방법을 제공한다.Additionally, the present invention provides a method of providing information for cancer monitoring, including the step of treating a biological sample with the cancer-targeting compound.

본 발명에 따른 EGFR L858R 돌연변이를 포함하는 암을 표적하는 화합물은 생체 내 기관 또는 조직에 처리할 경우, 암 조직에 섭취되어 방사선 영상과 형광영상을 동시에 취득할 수 있고, 이들은 각각 EGFR-양성 암 진단 및 병기 설정과 수술 가이드용 영상으로 제공될 수 있어, 분자 이미징 기법을 적용한 암 진단 및 치료에 활용될 수 있다.When the cancer-targeting compound containing the EGFR L858R mutation according to the present invention is treated with an organ or tissue in vivo, it is ingested into the cancer tissue and radiological images and fluorescence images can be acquired simultaneously, and each of them can diagnose EGFR-positive cancer. And it can be provided as an image for staging and surgical guidance, so it can be used for cancer diagnosis and treatment using molecular imaging techniques.

도 1은 본 발명에 따른 암 표적용 화합물의 화학구조를 나타낸 도이다.
도 2는 본 발명에 따른 암 표적용 화합물의 시험관 내 수용체 결합 친화도를 분석한 결과를 나타낸 도이다.
도 3은 공초점 현미경을 이용하여 본 발명에 따른 암 표적용 화합물의 세포흡수 분석 결과를 나타낸 도이다.
도 4는 종양 마우스 모델에서 본 발명에 따른 암 표적용 화합물의 생체 내 감마 카메라 이미징 결과를 나타낸 도이다.
도 5는 희생된 종양 마우스 모델에서 본 발명에 따른 암 표적용 화합물의 생체 외 형광 이미징 결과를 나타낸 도이다(Lu; 폐, Hr; 심장, Lv; 간, St; 위, Sp; 비장, Co; 결장, Kd; 신장, Mu; 근육, Tu1; NCI-H1975 종양, Tu2; NCI-H1650 종양).
도 6은 희생된 종양 마우스 모델 유래 종양 조직에서 본 발명에 따른 암 표적용 화합물의 면역 조직 화학 염색 결과를 나타낸 도이다.
1 is a diagram showing the chemical structure of a cancer targeting compound according to the present invention.
Figure 2 is a diagram showing the results of analyzing the in vitro receptor binding affinity of the cancer targeting compound according to the present invention.
Figure 3 is a diagram showing the results of cell uptake analysis of a compound for targeting cancer according to the present invention using a confocal microscope.
Figure 4 is a diagram showing the results of in vivo gamma camera imaging of the cancer targeting compound according to the present invention in a tumor mouse model.
Figure 5 is a diagram showing the in vitro fluorescence imaging results of the cancer-targeting compound according to the present invention in a sacrificed tumor mouse model (Lu; lung, Hr; heart, Lv; liver, St; stomach, Sp; spleen, Co; Colon, Kd; Muscle, NCI-H1975 tumor; Tu2;
Figure 6 is a diagram showing the results of immunohistochemical staining of a cancer-targeting compound according to the present invention in tumor tissue derived from a sacrificed tumor mouse model.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 형광물질, 방사성 동위원소와 결합하며 서열번호 3의 아미노산 서열로 표시되는 킬레이팅 리간드 및 서열번호 1의 아미노산 서열로 표시되는 암 표적 펩타이드를 포함하는 암 표적용 화합물을 제공한다.The present invention provides a compound for targeting cancer, which binds to a fluorescent substance and a radioactive isotope and includes a chelating ligand represented by the amino acid sequence of SEQ ID NO: 3 and a cancer targeting peptide represented by the amino acid sequence of SEQ ID NO: 1.

본 발명에 있어서, 암(cancer)은 악성 종양으로서 과잉 성장에 의해 비정상적으로 자라난 덩어리를 의미한다. 포함한다. 상기 암은 폐암, 결장직장암, 전립선암, 방광암, 유방암, 자궁경부암, 대장결장암, 아교모세포종, 두경부암, 신장암, 간암, 신경아교종, 난소암, 췌장암, 위암, 갑상선암 및 자궁암으로 이루어진 군으로부터 선택되는 것일 수 있다.In the present invention, cancer refers to a malignant tumor that grows abnormally due to excessive growth. Includes. The cancer is selected from the group consisting of lung cancer, colorectal cancer, prostate cancer, bladder cancer, breast cancer, cervical cancer, colorectal cancer, glioblastoma, head and neck cancer, kidney cancer, liver cancer, glioma, ovarian cancer, pancreatic cancer, stomach cancer, thyroid cancer, and uterine cancer. It may be possible.

또한 상기 암은 EGFR(epidermal growth factor receptor, EGFR) L858R 돌연변이를 포함하는 것이 바람직하다.Additionally, the cancer preferably contains the epidermal growth factor receptor (EGFR) L858R mutation.

본 발명에 있어서, 형광물질은 특정 파장의 빛에 반응하여 발색되는 물질로서 그 종류를 제한하지 않는다. 형광물질로는 여기 상태(exited state)에서 발광하는 발광 분자, 형광 단백질, 금속이온, 착화합물, 유기염료, 도체, 반도체, 부도체, 양자점 또는 양자선 등이 있다.In the present invention, the fluorescent material is a material that develops color in response to light of a specific wavelength, and its type is not limited. Fluorescent substances include light-emitting molecules that emit light in an excited state, fluorescent proteins, metal ions, complex compounds, organic dyes, conductors, semiconductors, insulators, quantum dots, or quantum wires.

상기 형광물질의 예로서, EGFP(enhanced green fluorescent protein), ECFP(enhanced cyan fluorescent protein), EBFP(enhanced blue fluorescent protein), EYFP(enhanced yellow fluorescent protein) 및 RFP(red fluorescent protein) 등의 형광 단백질이 있다.Examples of the above fluorescent substances include fluorescent proteins such as EGFP (enhanced green fluorescent protein), ECFP (enhanced cyan fluorescent protein), EBFP (enhanced blue fluorescent protein), EYFP (enhanced yellow fluorescent protein), and RFP (red fluorescent protein). there is.

또한, 상기 형광물질의 예로서, 파이렌(Pyrene) 또는 이의 유도체, 시아닌(Cyanine, Cy) 시리즈, 알렉사플루오르(Alexa Fluor) 시리즈, 보디피(BODIPY) 시리즈, DY 시리즈, 로다민 (rhodamine) 또는 이의 유도체, 플루오레신(Fluorescein) 또는 이의 유도체, 쿠마린 (coumarin) 또는 이의 유도체, 아크리딘 호모다이머(Acridine homodimer) 또는 이의 유도체, 아크리딘 오렌지(Acridine Orange) 또는 이의 유도체, 7-아미노액티노마이신 D(7-aminoactinomycin D, 7-AAD) 또는 이의 유도체, 액티노마이신 D(Actinomycin D) 또는 이의 유도체, 에이씨엠에이(ACMA, 9-amino-6-chloro-2-methoxyacridine) 또는 이의 유도체, 디에이피아이(DAPI) 또는 이의 유도체, 디하이드로에티듐(Dihydroethidium) 또는 이의 유도체, 에티듐 브로마이드(Ethidium bromide) 또는 이의 유도체, 에티듐 호모다이머-1(EthD-1) 또는 이의 유도체, 에티듐 호모다이머-2(EthD-2) 또는 이의 유도체, 에티듐 모노아자이드(Ethidium monoazide) 또는 이의 유도체, 헥시디움 아이오다이드(Hexidium iodide) 또는 이의 유도체, 비스벤지마이드(bisbenzimide, Hoechst 33258) 또는 이의 유도체, 호에크스트 33342(Hoechst 33342) 또는 이의 유도체, 호에크스트 34580(Hoechst 34580) 또는 이의 유도체, 하이드로옥시스티바미딘(hydroxystilbamidine) 또는 이의 유도체, 엘디에스 751(LDS 751) 또는 이의 유도체, 프로피디움 아이오다이드(Propidium Iodide, PI) 또는 이의 유도체, 칼세인(Calcein) 또는 이의 유도체, 오레건 그린(Oregon Green) 또는 이의 유도체, 마그네슘 그린(Magnesium Green) 또는 이의 유도체, 칼슘 그린(Calcium Green) 또는 이의 유도체, JOE 또는 이의 유도체, 테트라메틸로다민(Tetramethylrhodamine) 또는 이의 유도체, TRITC 또는 이의 유도체, 탐라 (N,N,N',N'-tetrametyl-6-carboxyrhodamine , TAMRA) 또는 이의 유도체, 피로닌 Y(Pyronin Y) 또는 이의 유도체, 리싸민(Lissamine) 또는 이의 유도체, ROX 또는 이의 유도체, 칼슘크림선(Calcium Crimson) 또는 이의 유도체, 텍사스 레드(Texas Red) 또는 이의 유도체, 나일 레드(Nile Red) 또는 이의 유도체, 티아디카복시아닌(Thiadicarbocyanine) 또는 이의 유도체, 단실아마이드(dansylamide) 또는 이의 유도체, 캐스캐이드 블루(cascade blue), DAPI(4',6-diamidino-2-phenylindole)일 수 있다.Additionally, examples of the fluorescent substances include Pyrene or its derivatives, Cyanine (Cy) series, Alexa Fluor series, BODIPY series, DY series, rhodamine or Its derivatives, Fluorescein or its derivatives, coumarin or its derivatives, Acridine homodimer or its derivatives, Acridine Orange or its derivatives, 7-amino solution 7-aminoactinomycin D (7-AAD) or a derivative thereof, Actinomycin D (Actinomycin D) or a derivative thereof, 9-amino-6-chloro-2-methoxyacridine (ACMA) or a derivative thereof , DAPI or a derivative thereof, Dihydroethidium or a derivative thereof, Ethidium bromide or a derivative thereof, Ethidium homodimer-1 (EthD-1) or a derivative thereof, ethidium homo Dimer-2 (EthD-2) or a derivative thereof, Ethidium monoazide or a derivative thereof, Hexidium iodide or a derivative thereof, bisbenzimide (Hoechst 33258) or a derivative thereof , Hoechst 33342 or a derivative thereof, Hoechst 34580 or a derivative thereof, hydroxystilbamidine or a derivative thereof, LDS 751 or a derivative thereof, propidium Propidium Iodide (PI) or a derivative thereof, Calcein or a derivative thereof, Oregon Green or a derivative thereof, Magnesium Green or a derivative thereof, Calcium Green or a derivative thereof Derivative, JOE or a derivative thereof, Tetramethylrhodamine or a derivative thereof, TRITC or a derivative thereof, Tamra (N,N,N',N'-tetrametyl-6-carboxyrhodamine, TAMRA) or a derivative thereof, Pyronin Y (Pyronin Y) or a derivative thereof, Lissamine or a derivative thereof, ROX or a derivative thereof, Calcium Crimson or a derivative thereof, Texas Red or a derivative thereof, Nile Red or It may be a derivative thereof, thiadicarboxyanine or a derivative thereof, dansylamide or a derivative thereof, cascade blue, or DAPI (4',6-diamidino-2-phenylindole).

상기 형광물질로서 양자점이 사용될 수 있는데, 양자점은 나노크기의 Ⅱ-Ⅳ 또는 Ⅲ-Ⅴ 반도체입자가 중심을 이루고 있는 입자로, 약 2∼10nm 크기의 중심(core)과 주로 ZnS 등으로 이루어진 껍질(shell)로 구성되며, 동일한 물질이라 하더라도 입자의 크기에 따라 형광파장이 달라져 다양한 파장대의 형광을 얻을 수 있다. 상기 양자점을 이루는 Ⅱ-Ⅵ 또는 Ⅲ-Ⅴ족 화합물은 CdSe, CdSe/ZnS, CdTe/CdS, CdTe/CdTe, ZnSe/ZnS, ZnTe/ZnSe, PbSe, PbS InAs, InP, InGaP, InGaP/ZnS 및 HgTe로 구성된 군에서 선택될 수 있고, 단일 코어(core) 또는 코어(core)/쉘(shell) 형태일 수 있다.Quantum dots can be used as the fluorescent material. Quantum dots are particles centered on nano-sized II-IV or III-V semiconductor particles, and have a core of about 2 to 10 nm in size and a shell (mainly made of ZnS, etc.) shell), and even if it is the same material, the fluorescence wavelength varies depending on the size of the particle, allowing fluorescence in various wavelength ranges to be obtained. Group II-VI or III-V compounds constituting the quantum dots include CdSe, CdSe/ZnS, CdTe/CdS, CdTe/CdTe, ZnSe/ZnS, ZnTe/ZnSe, PbSe, PbS InAs, InP, InGaP, InGaP/ZnS and HgTe. It may be selected from the group consisting of, and may be in the form of a single core or core/shell.

본 발명의 일 실시예에서는 상기 형광물질로서 TAMRA를 이용하였다.In one embodiment of the present invention, TAMRA was used as the fluorescent substance.

본 발명에 있어서, 방사성 동위원소는 원자핵이 불안정하여 방사선을 방출하며 안정된 원자핵으로 전환하는 동위원소로서 그 종류를 제한하지 않는다. 상기 방사성 동위원소의 예로서, 테크테늄-99m(Technetium-99m, Tc-99m), 갈륨-67, 갈륨-68, 구리-64, 구리-67, 금-198, 납-210, 니켈-63, 디스프로슘-165, 레늄-186, 레늄-188, 루비듐-82, 루테늄-177, 망가니즈-177, 몰리브데넘-99, 플루오린-18, 비스무트-213, 사마륨-153, 산소-15, 세슘-137, 셀레늄-75, 소듐-24, 스트론튬-85, 스트론튬-89, 스트론튬-90, 아메리슘-241, 아연-65, 어븀-169, 염소-36, 아이오딘-123, 아이오딘-124, 아이오딘-125, 아이오딘-129, 아이오딘-131, 우라늄-234, 우라늄-235, 은-110m, 이리듐-192, 이터븀-169, 이터븀-177, 이트륨-90, 인-32, 인-33, 인듐-111, 저마늄-68, 제논-133, 질소-13, 철-55, 카드뮴-109, 칼슘-47, 캘리포늄-252, 코발트-57, 코발트-60, 쿼륨-244,크로뮴-51, 크립톤-81, 크립톤-85, 탄소-11, 탄소-14, 탈륨-201, 탈륨-204, 토리아 텅스텐, 토륨-229, 토륨-230, 트리튬, 팔라듐-103, 포타슘-42, 폴로늄-210, 프로메튬-147, 플루토늄-238, 홀뮴-166 및 황-35 등의 치료용 방사성 동위원소가 있다.In the present invention, the radioactive isotope is an isotope whose atomic nucleus is unstable, emits radiation, and converts into a stable atomic nucleus, and its type is not limited. Examples of the radioactive isotopes include Technetium-99m (Technetium-99m, Tc-99m), Gallium-67, Gallium-68, Copper-64, Copper-67, Gold-198, Lead-210, Nickel-63, Dysprosium-165, Rhenium-186, Rhenium-188, Rubidium-82, Ruthenium-177, Manganese-177, Molybdenum-99, Fluorine-18, Bismuth-213, Samarium-153, Oxygen-15, Cesium- 137, Selenium-75, Sodium-24, Strontium-85, Strontium-89, Strontium-90, Americium-241, Zinc-65, Erbium-169, Chlorine-36, Iodine-123, Iodine-124, Iodine -125, Iodine-129, Iodine-131, Uranium-234, Uranium-235, Silver-110m, Iridium-192, Ytterbium-169, Ytterbium-177, Yttrium-90, Phosphorus-32, Phosphorus-33 , Indium-111, Germanium-68, Xenon-133, Nitrogen-13, Iron-55, Cadmium-109, Calcium-47, California-252, Cobalt-57, Cobalt-60, Quarium-244, Chromium-51 , Krypton-81, Krypton-85, Carbon-11, Carbon-14, Thallium-201, Thallium-204, Thorium-229, Thorium-230, Tritium, Palladium-103, Potassium-42, Polonium-210, There are therapeutic radioactive isotopes such as promethium-147, plutonium-238, holmium-166, and sulfur-35.

본 발명의 일 실시예에서는 상기 방사성 동위원소로서 테크테늄-99m(Technetium-99m, Tc-99m)을 이용하였다.In one embodiment of the present invention, Technetium-99m (Tc-99m) was used as the radioactive isotope.

본 발명에 있어서, 킬레이팅 리간드는 서열번호 3의 아미노산 서열로 표시되는 것이 바람직하다. 상기 킬레이팅 리간드는 특히 방사성 동위원소 Tc-99m과 강력하고 안정한 킬레이션(chelation)을 보인다. In the present invention, the chelating ligand is preferably represented by the amino acid sequence of SEQ ID NO: 3. The chelating ligand shows particularly strong and stable chelation with the radioactive isotope Tc-99m.

본 발명에 있어서, 펩타이드는 펩타이드 결합에 의해 아미노산 잔기들이 서로 결합되어 형성된 선형의 분자를 의미한다. 상기 펩타이드는 당업계에 공지된 화학적 합성방법에 따라 제조될 수 있으며, 바람직하게는 고체상 합성기술에 따라 제조될 수 있으나, 이에 한정하지 않는다.In the present invention, a peptide refers to a linear molecule formed by linking amino acid residues to each other through peptide bonds. The peptide may be manufactured according to chemical synthesis methods known in the art, and preferably, may be manufactured according to solid phase synthesis technology, but is not limited thereto.

상기 암 표적 펩타이드는 서열번호 1의 아미노산 서열로 표시되는 것이 바람직하다. 상기 암 표적 펩타이드는 암세포의 EGFR, 특히 L858R 돌연변이를 포함하는 EGFR을 표적하며, 이를 통해 암 조직에 축적된다는 것을 실시예를 통해 확인하였다.The cancer targeting peptide is preferably represented by the amino acid sequence of SEQ ID NO: 1. It was confirmed through examples that the cancer targeting peptide targets EGFR of cancer cells, especially EGFR containing the L858R mutation, and thus accumulates in cancer tissues.

상기 암 표적용 화합물은 암 표적 펩타이드의 형광 교란을 감소시키기 위한 스페이서를 더 포함할 수 있다. 상세하게는 상기 스페이서는 서열번호 2의 아미노산 서열로 표시되는 것이 바람직하다. 또한 스페이서로서 펩타이드하이드라지노니코틴아미드(peptidehydrazinonicotinamide, HYNIC)의 접합체의 서열에 히스티딘이 삽입된 것이 사용될 수 있다. 암 표적용 화합물에 전술한 바와 같은 스페이서를 삽입함으로써, 시험관 내(in vitro) 및 생체 내(in vivo)에서 종양-표적화(tumor-targeting) 성능을 향상시킬 수 있다. 또한 암 표적용 화합물의 암 표적 펩타이드와 형광물질의 교란을 감소시킬 수 있다.The cancer targeting compound may further include a spacer to reduce fluorescence disturbance of the cancer targeting peptide. In detail, the spacer is preferably represented by the amino acid sequence of SEQ ID NO: 2. Additionally, as a spacer, a histidine inserted into the sequence of a conjugate of peptidehydrazinonicotinamide (HYNIC) can be used. By inserting the above-described spacer into a cancer targeting compound, tumor-targeting performance can be improved in vitro and in vivo. In addition, it can reduce the disturbance of cancer-targeting peptides and fluorescent substances of cancer-targeting compounds.

상기 암 표적용 화합물은 하기 구조식 1의 형태로 배열되는 것이 바람직하다.The cancer targeting compound is preferably arranged in the form of structural formula 1 below.

[구조식 1][Structural Formula 1]

암 표적 펩타이드-스페이서-킬레이팅 리간드-형광물질Cancer targeting peptide-spacer-chelating ligand-fluorescent substance

상기 암 표적용 화합물은 하기 화학식 1로 표시되는 것이 바람직하다.The cancer targeting compound is preferably represented by the following formula (1).

[화학식 1][Formula 1]

다른 양태로서, 본 발명은 암 표적용 화합물을 포함하는 이중 방식 조영제를 제공한다.In another aspect, the present invention provides a dual-modality contrast agent containing a cancer-targeting compound.

본 발명에 있어서, 조영제는 방사선 검사 시 영상의 대조도를 높이기 위하여 조직에 주입하는 물질로서, 이에 한정하지 않는다. 종래 조영제를 사용할 경우, 자기공명영상(MRI) 또는 컴퓨터 단층(CT) 촬영과 같은 방사선 영상만을 취득할 수 있었다. 그러나 본 발명에 따른 암 표적용 화합물을 포함하는 이중 방식 조영제를 사용할 경우 방사선 영상과 형광 영상을 동시에 취득할 수 있다.In the present invention, the contrast medium is a substance injected into tissue to increase the contrast of the image during radiological examination, but is not limited thereto. When using a conventional contrast agent, only radiological images such as magnetic resonance imaging (MRI) or computed tomography (CT) could be acquired. However, when using a dual-modality contrast agent containing the cancer-targeting compound according to the present invention, radiological images and fluorescence images can be acquired simultaneously.

상기 암 표적용 화합물을 포함하는 이중 방식 조영제는 약제학적으로 허용되는 담체를 포함할 수 있다. 약제학적으로 허용되는 담체는 제제 시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다. The dual-modality contrast agent containing the cancer-targeting compound may include a pharmaceutically acceptable carrier. Pharmaceutically acceptable carriers are those commonly used in preparation, such as lactose, dextrose, sucrose, sorbitol, mannitol, starch, gum acacia, calcium phosphate, alginate, gelatin, calcium silicate, microcrystalline cellulose, poly Includes, but is not limited to, vinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, and mineral oil.

상기 이중 방식 조영제는 개체에 비경구 방식으로 투여되는 것이 바람직하다. 비경구 투여를 하는 경우, 정맥내 주입, 근육내 주입, 관절내(intra-articular) 주입, 활액내(intra-synovial) 주입, 수망강내 주입, 간내(intrahepatic) 주입, 병변내(intralesional) 주입 또는 두 개강내(intracranial) 주입 등으로 투여할 수 있다. 상기 이중 방식 조영제의 적합한 투여량은 제제화 방법, 투여 방식, 환자의 연령, 체중, 성, 병적 상태, 음식, 투여 시간, 투여경로, 배설 속도 및 반응 감응성과 같은 요인들에 의해 다양하게 처방될 수 있다. The dual mode contrast agent is preferably administered to the subject parenterally. When administered parenterally, intravenous injection, intramuscular injection, intra-articular injection, intra-synovial injection, intrathecal injection, intrahepatic injection, intralesional injection, or It can be administered by intracranial injection. The appropriate dosage of the dual-modality contrast agent can be prescribed in various ways depending on factors such as formulation method, administration method, patient's age, weight, sex, pathological condition, food, administration time, administration route, excretion rate, and reaction sensitivity. there is.

상기 이중 방식 조영제를 이용하여 방사선 영상과 형광 영상을 얻는 방법은 종래의 방법에 따라 실시할 수 있다.The method of obtaining a radiological image and a fluorescence image using the dual contrast agent can be performed according to a conventional method.

또 다른 양태로서, 본 발명은 암 표적용 화합물을 포함하는 암 진단용 조성물을 제공한다. In another aspect, the present invention provides a composition for diagnosing cancer containing a cancer targeting compound.

본 발명에 있어서, 진단은 의학적으로 병명·병인·병형·경중·병상의 양태, 및 예후를 판단하는 것으로서 이에 한정하지 않는다. In the present invention, diagnosis refers to medically determining the name, etiology, type, severity, condition, and prognosis of the disease, and is not limited thereto.

상기 암 진단용 조성물은 투여를 위해서 상기 기재한 유효성분 이외에 추가로 약제학적으로 허용되는 담체를 포함할 수 있다. 약제학적으로 허용되는 담체는 제제 시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다. For administration, the composition for diagnosing cancer may further include a pharmaceutically acceptable carrier in addition to the active ingredients described above. Pharmaceutically acceptable carriers are those commonly used in preparation, such as lactose, dextrose, sucrose, sorbitol, mannitol, starch, gum acacia, calcium phosphate, alginate, gelatin, calcium silicate, microcrystalline cellulose, poly Includes, but is not limited to, vinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, and mineral oil.

상기 암 표적용 화합물을 포함하는 암 진단용 조성물은 암 진단 키트로 활용될 수 있다.A cancer diagnostic composition containing the cancer targeting compound can be used as a cancer diagnostic kit.

또 다른 양태로서, 본 발명은 암 표적용 화합물을 생물학적 시료에 처리하는 단계를 포함하는 암 모니터링을 위한 정보제공방법을 제공한다.In another aspect, the present invention provides a method of providing information for cancer monitoring, including the step of treating a biological sample with a cancer-targeting compound.

상기 생물학적 시료는 다양한 생체 내 기관 또는 조직인 것이 바람직하다. The biological sample is preferably a variety of living organs or tissues.

상기 암 모니터링을 위한 정보제공방법은 생체 내(in vivo) 또는 시험관 내(in vitro)에서 암에 대한 위치, 예후 및 치료과정과 같은 정보를 제공하는 것이 바람직하다.The method of providing information for the above cancer monitoring is preferably one that provides information such as the location, prognosis, and treatment process of the cancer in vivo or in vitro.

암 표적용 화합물이 처리된 시료는 종래 방법에 따라 감마 카메라 이미징 및 광학 이미징을 수행함으로써, 방사선 영상과 형광 영상을 동시에 취득할 수 있다. 취득 된 방사선 영상과 형광 영상을 통해 암의 위치, 예후 및 치료과정 등의 모니터링에 필요한 객관적인 기초정보를 제공할 수 있으며, 의사의 임상학적 판단 또는 소견은 제외된다.A sample treated with a cancer-targeting compound can be subjected to gamma camera imaging and optical imaging according to a conventional method, thereby simultaneously acquiring a radiological image and a fluorescence image. The acquired radiological images and fluorescence images can provide objective basic information necessary for monitoring the location, prognosis, and treatment process of cancer, and the doctor's clinical judgment or opinion is excluded.

중복되는 내용은 본 명세서의 복잡성을 고려하여 생략하며, 본 명세서에서 달리 정의되지 않은 용어들은 본 발명이 속하는 기술분야에서 통상적으로 사용되는 의미를 갖는 것이다.Redundant content is omitted in consideration of the complexity of the present specification, and terms not otherwise defined in this specification have meanings commonly used in the technical field to which the present invention pertains.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention, and it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as limited by these examples.

실시예 1. 실험 재료Example 1. Experimental Materials

아세톤, 1N-HCl, 1M NaOH, SnCl2 및 타르타르산나트륨(sodium tartrate)은 Sigma Aldrich Korea(서울, 한국)에서 구입했다. Tc-99m pertechnetate는 본 기관의 상업용 테크네튬 발생기(EnviroKorea, 대전, 한국)에서 용출되었다. 실리카 물질로 채워진 Radio-Cap® capillary column(cat. FC-D1012, silica gel size = 38-75 μm; Futurechem, Seoul, Korea)을 라디오 크로마토그래피(radio-chromatography)에 사용했다. NCI-H1975(L858R 돌연변이가 있는 EGFR을 발현하는 인간 NSCLC 세포) 및 NCI-H1650(L858R 돌연변이 없이 EGFR을 발현하는 인간 NSCLC 세포) 세포주는 한국 세포주 은행(서울, 한국)으로부터 입수하였다.Acetone, 1N-HCl, 1M NaOH, SnCl 2 and sodium tartrate were purchased from Sigma Aldrich Korea (Seoul, Korea). Tc-99m pertechnetate was eluted from our institution's commercial technetium generator (EnviroKorea, Daejeon, Korea). A Radio-Cap ® capillary column (cat. FC-D1012, silica gel size = 38-75 μm; Futurechem, Seoul, Korea) filled with silica material was used for radio-chromatography. NCI-H1975 (human NSCLC cells expressing EGFR with the L858R mutation) and NCI-H1650 (human NSCLC cells expressing EGFR without the L858R mutation) cell lines were obtained from the Korean Cell Line Bank (Seoul, Korea).

실시예 2. 암 표적용 화합물(STHHYYP-GHEG-ECG-TAMRA)의 합성Example 2. Synthesis of cancer targeting compound (STHHYYP-GHEG-ECG-TAMRA)

2-1. 암 표적용 화합물 합성2-1. Synthesis of compounds targeting cancer

암 표적용 화합물(STHHYYP-GHEG-ECG-K(TAMRA))는 Peptron, Inc.(대전, 한국)에서 합성하였다. 상기 암 표적용 화합물은 EGFR L858R 표적 펩타이드(서열번호 1), 스페이서(서열번호 2), 킬레이팅 리간드(서열번호 3) 및 형광물질이 순차적으로 작동가능하게 연결된 것이다. 암 표적용 화합물의 화학구조는 도 1에 나타내었다.The cancer targeting compound (STHHYYP-GHEG-ECG-K(TAMRA)) was synthesized by Peptron, Inc. (Daejeon, Korea). The cancer targeting compound is an EGFR L858R targeting peptide (SEQ ID NO: 1), a spacer (SEQ ID NO: 2), a chelating ligand (SEQ ID NO: 3), and a fluorescent substance sequentially and operably linked. The chemical structure of the cancer targeting compound is shown in Figure 1.

구체적으로, EGFR L858R 표적 펩타이드(서열번호 1)는 Fmoc 기반 고상 펩타이드 합성(solid-phase peptide synthesis, SPPS)을 사용하여 합성하였다. 그 다음, 펩티드 결합된 수지를 N-메틸-2-피롤리돈에서 TAMRA-숙신이미딜 에스테르 및 디이소프로필에틸아민으로 처리하였다. 생성된 화합물을 C18 분석 컬럼(C18, 5 μm, 100Å 컬럼, 4.6 x 250 mm; Shimadzu, Kyoto, Japan)이 있는 역상 고성능 액체 크로마토그래피(reverse phase high-performance liquid chromatography, RP-HPLC)를 사용하여 정제했다. 용리와 관련하여, 0.1% 트리플루오로아세트산(trifluoroacetic acid, TFA)을 함유하는 물 중 0 내지 70% 아세토니트릴의 선형 구배를 사용하였다. 합성된 펩타이드의 질량은 질량분석기(AXIMA-CFR, MALDI-TOF Mass Spectrometer, Shimadzu)로 분석하였다.Specifically, the EGFR L858R target peptide (SEQ ID NO: 1) was synthesized using Fmoc-based solid-phase peptide synthesis (SPPS). The peptide-bound resin was then treated with TAMRA-succinimidyl ester in N-methyl-2-pyrrolidone and diisopropylethylamine. The resulting compounds were analyzed using reverse phase high-performance liquid chromatography (RP-HPLC) with a C18 analytical column (C18, 5 μm, 100 Å column, 4.6 x 250 mm; Shimadzu, Kyoto, Japan). refined. For elution, a linear gradient from 0 to 70% acetonitrile in water containing 0.1% trifluoroacetic acid (TFA) was used. The mass of the synthesized peptide was analyzed by mass spectrometry (AXIMA-CFR, MALDI-TOF Mass Spectrometer, Shimadzu).

후술되는 실시예에서 암 표적용 화합물을 ‘STHHYYP-GHEG-ECG-TAMRA’로 기재하였다.In the examples described later, the cancer targeting compound was described as ‘STHHYYP-GHEG-ECG-TAMRA’.

2-2. Tc-99m을 이용한 암 표적용 화합물의 방사성 표지2-2. Radiolabeling of cancer targeting compounds using Tc-99m

상기 실시예 2-1에서 합성된 암 표적용 화합물을 Tc-99m로 방사성 표지하였다. 구체적으로, 암 표적용 화합물(nitrogen-purged water 300㎕ 중 0.005 mg/ml) 및 주석산나트륨(nitrogen-purged water 300㎕ 중 100mg/ml)을 미세원심분리기 튜브에서 혼합하였다. 그 다음, Tc-99m 퍼테크네테이트(1.0ml, 약 1,110MBq) 및 SnCl2(nitrogen-purged 0.01M HCl 30㎕ 중 1mg/ml)를 첨가하였다. 용액을 95℃에서 15분 동안 가열하고 실온에서 냉각시켰다. Gilson 321 HPLC 펌프(Gilson, Inc., Middleton, WI, USA), Bioscan FC-1000 방사선 검출기(Bioscan, Inc., Washington D.C., USA), Trilution LC 소프트웨어(Gilson, Inc.) 및 YMC-Triart C18 컬럼(4.6 × 100 mm, YMC, Kyoto, Japan)을 사용하여 방사성 표지된 암 표적용 화합물(Tc-99m STHHYYP-GHEG-ECG-TAMRA)를 분석했다. 용매 A 및 B는 각각 물 및 아세토니트릴 중 0.1% TFA였다. 분석에는 1.0 ml/min의 유속에서 17분에 걸쳐 3%에서 70% 용매 B로의 선형 구배를 사용하였다. 모니터링을 위해 자외선 검출기(230 nm) 및 감마 방사선 검출기를 사용하였다.The cancer targeting compound synthesized in Example 2-1 was radioactively labeled with Tc-99m. Specifically, cancer targeting compounds (0.005 mg/ml in 300 μl of nitrogen-purged water) and sodium tartrate (100 mg/ml in 300 μl of nitrogen-purged water) were mixed in a microcentrifuge tube. Next, Tc-99m pertechnetate (1.0 ml, approximately 1,110 MBq) and SnCl 2 (1 mg/ml in 30 μl nitrogen-purged 0.01 M HCl) were added. The solution was heated at 95°C for 15 minutes and cooled to room temperature. Gilson 321 HPLC pump (Gilson, Inc., Middleton, WI, USA), Bioscan FC-1000 radiation detector (Bioscan, Inc., Washington DC, USA), Trilution LC software (Gilson, Inc.) and YMC-Triart C18 column. (4.6 × 100 mm, YMC, Kyoto, Japan) was used to analyze a radiolabeled cancer targeting compound (Tc-99m STHHYYP-GHEG-ECG-TAMRA). Solvents A and B were 0.1% TFA in water and acetonitrile, respectively. The analysis used a linear gradient from 3% to 70% solvent B over 17 minutes at a flow rate of 1.0 ml/min. An ultraviolet detector (230 nm) and a gamma radiation detector were used for monitoring.

방사성 표지된 암 표적용 화합물(Tc-99m STHHYYP-GHEG-ECG-TAMRA)의 방사성 화학적 안정성을 평가하기 위해, 실온에서 0.9ml의 식염수와 함께 표지된 복합체(0.1 ml)를 배양하고 37°C에서 갓 수집한 인간 혈청을 배양했다. 샘플은 30분과 1, 3, 24 시간에 두 개의 이동상, 식염수(Rf of Tc-99m STHHYYP-GHEG-ECG-TAMRA and free pertechnetate = 0.9-1.0, Rf of colloid = 0.0-0.1)와 아세톤(Rf of free pertechnetate = 0.9-1.0, Rf of Tc-99m STHHYYP-GHEG-ECG-TAMRA and colloid = 0.0-0.1)이 있는 모세관 컬럼을 사용하여 분석하였다. 모든 실험은 3회 반복 수행하였다(n=3).To evaluate the radiochemical stability of the radiolabeled cancer targeting compound (Tc-99m STHHYYP-GHEG-ECG-TAMRA), the labeled complex (0.1 ml) was incubated with 0.9 ml of saline at room temperature and incubated at 37°C. Freshly collected human serum was cultured. Samples were incubated at 30 minutes and 1, 3, and 24 hours in two mobile phases, saline (Rf of Tc-99m STHHYYP-GHEG-ECG-TAMRA and free pertechnetate = 0.9-1.0, Rf of colloid = 0.0-0.1) and acetone (Rf of Analysis was performed using a capillary column with free pertechnetate = 0.9-1.0, Rf of Tc-99m STHHYYP-GHEG-ECG-TAMRA and colloid = 0.0-0.1). All experiments were repeated three times (n=3).

후술되는 실시예에서 방사성 표지된 암 표적용 화합물을 ‘Tc-99m STHHYYP-GHEG-ECG-TAMRA’로 기재하였다.In the examples described later, the radioactively labeled cancer targeting compound was described as ‘Tc-99m STHHYYP-GHEG-ECG-TAMRA’.

2-3. 암 표적용 화합물의 특성 분석2-3. Characterization of cancer-targeting compounds

상기 실시예 2-1에서 합성된 암 표적용 화합물(STHHYYP-GHEG-ECG-TAMRA)); 및 상기 실시예 2-2의 방사성 표지된 암 표적용 화합물(Tc-99m STHHYYP-GHEG-ECG-TAMRA);의 특성을 분석하였다.The cancer targeting compound synthesized in Example 2-1 (STHHYYP-GHEG-ECG-TAMRA)); and the radioactively labeled cancer-targeting compound (Tc-99m STHHYYP-GHEG-ECG-TAMRA) of Example 2-2; were analyzed.

특성 분석 결과, 합성된 암 표적용 화합물(STHHYYP-GHEG-ECG-TAMRA)는 화학식은C98H120N24O28S1이고, 분자량은 2113.13임을 확인하였다.As a result of the characterization, it was confirmed that the synthesized cancer targeting compound (STHHYYP-GHEG-ECG-TAMRA) had a chemical formula of C 98 H 120 N 24 O 28 S 1 and a molecular weight of 2113.13.

Tc-99m으로 방사성 표지한 후, RP-HPLC는 단일 방사성 화합물을 검출했다(체류 시간 = 6.6분). 그 결과, Tc-99m STHHYYP-GHEG-ECG-TAMRA의 방사화학적 순도(radiochemical purity)는 라벨링 후 93% 이상임을 확인하였다. 또한, Tc-99m STHHYYP-GHEG-ECG-TAMRA는 24시간 동안 염수 및 혈청에서 높은 안정성을 나타냈다. 식염수에서 실리카 물질로 채워진 모세관 컬럼으로 측정한 Tc-99m STHHYYP-GHEG-ECG-TAMRA의 손상되지 않은 백분율은 30분 1시간 3에서 93.1 ± 0.4, 92.7 ± 0.5, 91.9 ± 1.1 및 90.8 ± 1.9%였다. 시간 및 24시간, 각각. 혈청에서는 30분, 1시간, 3시간, 24시간에 각각 92.6±0.7, 92.4±0.8, 91.6±1.0, 90.3±1.6%였다.After radiolabeling with Tc-99m, RP-HPLC detected a single radioactive compound (retention time = 6.6 min). As a result, it was confirmed that the radiochemical purity of Tc-99m STHHYYP-GHEG-ECG-TAMRA was over 93% after labeling. Additionally, Tc-99m STHHYYP-GHEG-ECG-TAMRA showed high stability in saline and serum for 24 hours. The intact percentage of Tc-99m STHHYYP-GHEG-ECG-TAMRA measured with a capillary column filled with silica material in saline solution was 93.1 ± 0.4, 92.7 ± 0.5, 91.9 ± 1.1 and 90.8 ± 1.9% at 30 min 1 h 3 . hour and 24 hours, respectively. In serum, it was 92.6±0.7, 92.4±0.8, 91.6±1.0, and 90.3±1.6% at 30 minutes, 1 hour, 3 hours, and 24 hours, respectively.

실시예 3. 시험관 내 수용체 결합 친화도Example 3. In vitro receptor binding affinity

Tc-99m STHHYYP-GHEG-ECG-TAMRA의 세포 친화도는 NCI-H1975 인간 NSCLC 세포주를 사용하여 결정하였다. 구체적으로, NCI-H1975 세포를 37°C에서 5% CO2 및 가습 조건에서 배양하였다. 세포는 10% 소 태아 혈청, 4 mM L-글루타민, 1 mM 피루브산나트륨, 10 mM HEPES(N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid), D-글루코스( 2.5 mg/mL) 및 겐타마이신(50 mg/mL)을 포함하는 RPMI-1640 배지에서 배양하였다. 그 후 세포를 1 x 104 cells/well의 밀도로 96-well plate에 접종하고 37°C에서 밤새 배양했다. 실험 당일, ice-cold binding buffer(25 mM HEPES 및 1% bovine serum albumin)을 사용하여 세포를 2회(각 5분) 세척하였다.The cell affinity of Tc-99m STHHYYP-GHEG-ECG-TAMRA was determined using the NCI-H1975 human NSCLC cell line. Specifically, NCI-H1975 cells were cultured at 37°C in 5% CO 2 and humidified conditions. Cells were incubated with 10% fetal bovine serum, 4 mM L-glutamine, 1 mM sodium pyruvate, 10 mM HEPES (N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid), D-glucose (2.5 mg/mL), and gentamicin ( were cultured in RPMI-1640 medium containing 50 mg/mL). Afterwards, cells were inoculated into a 96-well plate at a density of 1 x 10 4 cells/well and cultured at 37°C overnight. On the day of the experiment, cells were washed twice (5 minutes each) using ice-cold binding buffer (25 mM HEPES and 1% bovine serum albumin).

표지된 펩타이드를 표지되지 않은 펩티드의 500배 과량의 존재(비-특이적 결합) 또는 부재(총 결합) 하에 상이한 농도(3.6, 10, 20, 36, 50, 80, 130, 200 및 360 nM)로 웰에 첨가하였다. 각 웰의 총 부피는 200 μl이고, 세포는 37°C에서 1시간 동안 유지하였다. 이후 배양된 배지를 제거하고 차가운 결합 완충액을 사용하여 세포를 2회 세척하였다. 마지막으로, 세포를 1M NaOH로 용해하고, 각 웰의 용액을 감마 계수기(1480 Wizard 3 gamma counter; PerkinElmer Life and Analytical Sciences, Wallingford, CT, USA)를 이용하여 계수하였다. 평형 해리 상수(Equilibrium dissociation constant, Kd)는 GraphPad Prism 소프트웨어 버전 5.03(GraphPad Software, La Jolla, CA, USA)을 사용하는 단일 사이트 결합 모델에 따라 데이터의 비선형 회귀로 결정하였다. 각 데이터 포인트는 4개 값의 평균값이다. 시험관 내 수용체 결합 친화도를 분석한 결과를 도 2에 나타내었다.Labeled peptides were incubated at different concentrations (3.6, 10, 20, 36, 50, 80, 130, 200, and 360 nM) in the presence (non-specific binding) or absence (total binding) of a 500-fold excess of unlabeled peptide. was added to the well. The total volume of each well was 200 μl, and cells were maintained at 37°C for 1 hour. Afterwards, the culture medium was removed and the cells were washed twice using cold binding buffer. Finally, the cells were lysed with 1M NaOH, and the solution in each well was counted using a gamma counter (1480 Wizard 3 gamma counter; PerkinElmer Life and Analytical Sciences, Wallingford, CT, USA). Equilibrium dissociation constant (K d ) was determined by nonlinear regression of the data according to a single-site binding model using GraphPad Prism software version 5.03 (GraphPad Software, La Jolla, CA, USA). Each data point is the average of four values. The results of in vitro receptor binding affinity analysis are shown in Figure 2.

도 2에 나타낸 바와 같이, NCI-H1975 세포에 대한 Tc-99m STHHYYP-GHEG-ECG-TAMRA의 Kd 값은 130.6 ± 29.2 nM으로 추정되었고 Bmax는 6353 ± 647 fmol/mg임을 확인하였다.As shown in Figure 2, the Kd value of Tc-99m STHHYYP-GHEG-ECG-TAMRA for NCI-H1975 cells was estimated to be 130.6 ± 29.2 nM, and B max was confirmed to be 6353 ± 647 fmol/mg.

실시예 4. 공초점 현미경을 이용한 세포흡수 분석Example 4. Cellular uptake analysis using confocal microscopy

NCI-H1975 및 NCI-H1650 세포(1 x 105 세포)를 커버 슬립 슬라이드의 상단에 접종한 후 37°C에서 24시간 동안 배양하였다. 세포를 Tc-99m STHHYYP-GHEG-ECG-TAMRA(200 nM)를 함유하는 신선한 무혈청 배지(500 μL)에서 배양하였다. 배양된 세포를 37℃에서 1시간 동안 배양하였다. 이들 세포를 인산염 완충 식염수로 3회 세척하였다. 세포를 anti-human L858R mutant-specific EGFR antibody(cat. 3197S; Cell Signaling Technology, Danvers, MA, USA) 및 Alexa Fluor® 488-conjugated goat anti-rabbit secondary antibody(cat. 111-545-003, 1:100 dilution; Jackson Immuno Research Inc., West Grove, PA, USA)로 염색하였다. 그 후, 커버 슬립 슬라이드에 형광 마운팅 배지(Dako, Glostrup, Denmark)를 추가하고 슬라이드를 덮개 유리로 닫았다. 현미경 이미징 연구는 40x 오일 침지 렌즈가 있는 FV1200 공초점 현미경(Olympus, Pittsburgh, PA, USA)으로 수행하였다. 공초점 현미경을 이용한 세포흡수 분석 결과는 도 3에 나타내었다.NCI-H1975 and NCI-H1650 cells (1 x 105 cells) were seeded on the top of a cover slip slide and incubated at 37°C for 24 hours. Cells were cultured in fresh serum-free medium (500 μL) containing Tc-99m STHHYYP-GHEG-ECG-TAMRA (200 nM). The cultured cells were incubated at 37°C for 1 hour. These cells were washed three times with phosphate-buffered saline. Cells were incubated with anti-human L858R mutant-specific EGFR antibody (cat. 3197S; Cell Signaling Technology, Danvers, MA, USA) and Alexa Fluor® 488-conjugated goat anti-rabbit secondary antibody (cat. 111-545-003, 1: 100 dilution; Jackson Immuno Research Inc., West Grove, PA, USA). Afterwards, fluorescent mounting medium (Dako, Glostrup, Denmark) was added to the cover slip slide and the slide was closed with a cover glass. Microscopic imaging studies were performed with an FV1200 confocal microscope (Olympus, Pittsburgh, PA, USA) with a 40x oil immersion lens. The results of cell uptake analysis using a confocal microscope are shown in Figure 3.

도 3에 나타낸 바와 같이, NCI-H1975 세포는 STHHYYP-GHEG-ECG-TAMRA의 형광 활성이 검출되었다. 병합된 이미지에서 STHHYYP-GHEG-ECG-TAMRA(빨간색)의 활성은 항-L858R 돌연변이 EGFR 신호(녹색, 도 3a)와 잘 일치되었다. 이와 대조적으로, STHHYYP-GHEG-ECG-TAMRA 및 항-L858R 돌연변이체 EGFR의 형광 활성은 NCI-H1650 세포에서 거의 검출되지 않았다(도 3b).As shown in Figure 3, the fluorescence activity of STHHYYP-GHEG-ECG-TAMRA was detected in NCI-H1975 cells. In the merged image, the activity of STHHYYP-GHEG-ECG-TAMRA (red) matched well with the anti-L858R mutant EGFR signal (green, Figure 3A). In contrast, the fluorescence activity of STHHYYP-GHEG-ECG-TAMRA and anti-L858R mutant EGFR was barely detectable in NCI-H1650 cells (Figure 3B).

상기 결과는 Tc-99m STHHYYP-GHEG-ECG-TAMRA가 L858R 돌연변이가 있는 EGFR을 영상화하는데 유용하다는 것을 의미한다.These results indicate that Tc-99m STHHYYP-GHEG-ECG-TAMRA is useful for imaging EGFR with the L858R mutation.

실시예 5. 종양 마우스 모델Example 5. Tumor mouse model

모든 동물 연구는 한국 동물 보호법에 따라 엄격하게 수행하였다. 실험동물의 관리 및 사용에 관한 지침(법률 제14651호, 2017). 프로토콜은 원광대학교 동물연구소 동물관리위원회(제2019-07-004호)의 승인을 받았다. 모든 동물 실험은 케타민/자일라진 마취하에 수행되었다. 동물은 깊은 마취 하에 경추 탈구로 희생시켰으며 동물의 고통과 희생을 최소화하기 위해 모든 노력을 기울였다.All animal studies were conducted strictly in accordance with the Korean Animal Protection Act. Guidelines for the care and use of laboratory animals (Law No. 14651, 2017). The protocol was approved by the Animal Care Committee of Wonkwang University Animal Research Institute (No. 2019-07-004). All animal experiments were performed under ketamine/xylazine anesthesia. Animals were sacrificed by cervical dislocation under deep anesthesia, and every effort was made to minimize animal suffering and sacrifice.

6주령 암컷 동형접합 무흉선 BALB/c nu/nu 마우스(무게 16-18g)를 다물사이언스(대전, 한국)에서 구입하여 케이지에 보관하였다. 그들은 알팔파가 없는(alfalfa-free)(형광이 없는) 음식과 물을 자유롭게 이용하게 하였다. 실험실 조건에 적응한 지 1주일 후, 마우스에 1 × 107 NCI-H1975(L858R 돌연변이 양성) 및 NCI-H1650(L858R 돌연변이 음성) 세포(0.1 ml PBS)를 각각 앞가슴 부위의 왼쪽 및 오른쪽에 피하 접종했다. 부피가 약 350 내지 450 mm3까지 성장하도록 사육하였다. 종양 부피는 계산식 1을 사용하여 계산되었다. Six-week-old female homozygous athymic BALB/c nu/nu mice (weight 16-18 g) were purchased from Damul Science (Daejeon, Korea) and kept in cages. They had access to alfalfa-free (non-fluorescent) food and water ad libitum. After 1 week of adaptation to laboratory conditions, mice were inoculated subcutaneously with 1 × 10 7 NCI-H1975 (L858R mutation positive) and NCI-H1650 (L858R mutation negative) cells (0.1 ml PBS) on the left and right sides of the prothoracic region, respectively. did. They were raised to grow to a volume of about 350 to 450 mm 3 . Tumor volume was calculated using equation 1.

[계산식 1][Calculation Formula 1]

V(mm3) = 0.5 × a × b2, V(mm 3 ) = 0.5 × a × b 2 ,

여기서 a 및 b는 각각 캘리퍼스 측정에 의한 종양의 장경 및 수직 단경을 나타낸다.where a and b represent the long axis and vertical short axis of the tumor by caliper measurement, respectively.

접종 약 28일 후에 감마 카메라 영상 및 생체 분포 연구를 수행했다.Gamma camera imaging and biodistribution studies were performed approximately 28 days after inoculation.

실시예 6. 생체 내 감마 카메라 이미징Example 6. In vivo gamma camera imaging

케타민(60 mg/kg)과 자일라진(5 mg/kg)을 복강 내 주사하여 종양이 있는 마우스를 마취시켰다. 마취된 마우스에 55.5 MBq(150 μL에서 200 nM)의 Tc-99m STHHYYP-GHEG-ECG-TAMRA를 정맥 주사했다. 주입 후 1, 2 및 3시간 후에 생체 내 영상화를 수행했다. 3mm pinhole collimator(window setting 140 keV, width 20%)가 장착된 감마 카메라(Vertex; ADAC Laboratories, Milpitas, CA, USA)를 사용했다. 획득 시간은 150초, 이미지의 매트릭스 크기는 512 × 512였다. 관심 영역(Regions of interest, ROI)(15 × 15 pixel)은 흉벽의 종양에 그렸다. 정상적인 근육 흡수를 평가하기 위해 오른쪽 팔 근육에 추가 ROI를 그렸다(n = 5). ROI의 픽셀당 평균 수를 측정하고 목표 대 정상 근육 흡수 비율을 계산했다. 생체 내 감마 카메라 이미징 결과는 도 4에 나타내었다.Tumor-bearing mice were anesthetized by intraperitoneal injection of ketamine (60 mg/kg) and xylazine (5 mg/kg). Anesthetized mice were injected intravenously with 55.5 MBq (200 nM in 150 μL) of Tc-99m STHHYYP-GHEG-ECG-TAMRA. In vivo imaging was performed 1, 2, and 3 hours after injection. A gamma camera (Vertex; ADAC Laboratories, Milpitas, CA, USA) equipped with a 3 mm pinhole collimator (window setting 140 keV, width 20%) was used. The acquisition time was 150 seconds, and the matrix size of the image was 512 × 512. Regions of interest (ROI) (15 × 15 pixels) were drawn on the tumor of the chest wall. Additional ROIs were drawn on the right arm muscles to assess normal muscle uptake (n = 5). The average number per pixel in the ROI was measured and the target-to-normal muscle uptake ratio was calculated. The in vivo gamma camera imaging results are shown in Figure 4.

도 4에 나타낸 바와 같이, Tc-99m STHHYYP-GHEG-ECG-TAMRA 주입 후 1시간에 확산 신장 흡수가 관찰되었으며, 이는 결합되지 않은 Tc-99m STHHYYP-GHEG-ECG-TAMRA가 주로 신장 시스템을 통해 배설된다는 것을 의미한다. 또한 2시간 및 3시간에 간과 결장에서 방사능이 검출되었는데, 이는 Tc-99m STHHYYP-GHEG-ECG-TAMRA의 일부가 간담도계를 통해 체내에서 제거되었음을 시사한다.As shown in Figure 4, diffuse renal uptake was observed 1 h after injection of Tc-99m STHHYYP-GHEG-ECG-TAMRA, indicating that unbound Tc-99m STHHYYP-GHEG-ECG-TAMRA is mainly excreted through the renal system. It means that it becomes. Additionally, radioactivity was detected in the liver and colon at 2 and 3 hours, suggesting that part of Tc-99m STHHYYP-GHEG-ECG-TAMRA was eliminated from the body through the hepatobiliary system.

Tc-99m STHHYYP-GHEG-ECG-TAMRA는 NCI-H1975 종양에 실질적으로 축적되었다(도 4a, 화살표). Tc-99m STHHYYP-GHEG-ECG-TAMRA의 종양 대 정상 근육 흡수 비율은 시간이 지남에 따라 증가했다(1, 2, 3시간에 각각 3.1 ± 0.4, 4.7 ± 0.7, 5.9 ± 0.9).Tc-99m STHHYYP-GHEG-ECG-TAMRA accumulated substantially in NCI-H1975 tumors (Figure 4A, arrow). The tumor to normal muscle uptake ratio of Tc-99m STHHYYP-GHEG-ECG-TAMRA increased over time (3.1 ± 0.4, 4.7 ± 0.7, and 5.9 ± 0.9 at 1, 2, and 3 h, respectively).

이와 대조적으로, Tc-99m STHHYYP-GHEG-ECG-TAMRA는 NCI-H1650 종양에서 유의하게 축적되지 않았다(도 4a, 화살촉). NCI-H1650 종양 대 정상 근육 흡수 비율(1, 2 및 3시간에서 각각 2.0 ± 0.2, 2.2 ± 0.4 및 2.7 ± 0.5)은 NCI-H1975 종양보다 유의하게 낮았다(p &lt; 0.05, *, 도 4b).In contrast, Tc-99m STHHYYP-GHEG-ECG-TAMRA did not significantly accumulate in NCI-H1650 tumors (Figure 4A, arrowhead). The NCI-H1650 tumor-to-normal muscle uptake ratio (2.0 ± 0.2, 2.2 ± 0.4, and 2.7 ± 0.5 at 1, 2, and 3 h, respectively) was significantly lower than that of NCI-H1975 tumors (p < 0.05, *, Fig. 4b). .

실시예 7. 생체 외 형광 이미징 및 면역 조직 화학 염색Example 7. In vitro fluorescence imaging and immunohistochemical staining

7-1. 생체 외 형광 이미징7-1. In vitro fluorescence imaging

생체 내 감마 카메라 이미징 연구 후, 마우스(n = 5)를 경추 탈구하여 희생시켰다. 여러 다른 장기와 종양을 절제하고 형광 이미징 시스템(VISQUE™ InVivo Smart-LF, Vieworks, Anyang, Korea)을 사용하여 생체 외 형광 이미징 연구를 수행했다. 520~675 nm의 방출 대역은 TAMRA에 사용되었다(피크 흡광도 및 피크 방출 파장 = 각각 565 및 580 nm). 노출 시간은 이미지당 5.0초였다. 이미지는 전용 소프트웨어(CluVue™, Vieworks, 안양, 한국)를 사용하여 분석되었다. 생체 외 형광 이미징 결과는 도 5에 나타내었다.After in vivo gamma camera imaging studies, mice (n = 5) were sacrificed by cervical dislocation. Several different organs and tumors were resected and ex vivo fluorescence imaging studies were performed using a fluorescence imaging system (VISQUE™ InVivo Smart-LF, Vieworks, Anyang, Korea). The emission band from 520 to 675 nm was used for TAMRA (peak absorbance and peak emission wavelength = 565 and 580 nm, respectively). Exposure time was 5.0 seconds per image. Images were analyzed using dedicated software (CluVue™, Vieworks, Anyang, Korea). The in vitro fluorescence imaging results are shown in Figure 5.

도 5에 나타낸 바와 같이, 생쥐 장기의 생체 외 형광 이미지에서 건강한 장기 중 신장에서는 Tc-99m STHHYYP-GHEG-ECG-TAMRA의 높은 형광 활성이 관찰되었고, 근육은 TAMRA 활성이 희미한 것을 확인하였다. NCI-H1975 종양(화살표)은 NCI-H1650 종양(화살촉)보다 유의하게 더 높은 형광 활성을 나타냈다. 생체 외 형광 이미징의 결과는 생체 내 감마 카메라 이미징과 유사한 경향성을 나타내는 것을 확인하였다.As shown in Figure 5, in the in vitro fluorescence images of mouse organs, among healthy organs, high fluorescence activity of Tc-99m STHHYYP-GHEG-ECG-TAMRA was observed in the kidney, and muscle showed faint TAMRA activity. NCI-H1975 tumors (arrows) showed significantly higher fluorescence activity than NCI-H1650 tumors (arrowheads). The results of in vitro fluorescence imaging were confirmed to show similar trends to in vivo gamma camera imaging.

7-2. 면역 조직 화학 염색7-2. Immunohistochemical staining

생체 외 형광 이미징 연구 후, 종양은 액체 질소를 이용하여 급속 동결시켰다. 동결된 종양을 슬라이스(두께 10μm)로 절단했다. 실온에서 건조시킨 후, 슬라이스를 얼음처럼 차가운 아세톤으로 10분 동안 고정하였다. 그 후, 슬라이스를 실온에서 20분 동안 공기 건조하고 5% 염소 혈청으로 실온에서 30분 동안 유지하여 비특이적 결합을 차단했다. 그 후, 종양 절편을 실온에서 1시간 동안 항-인간 L858R 돌연변이체 특이적 EGFR 항체로 염색하였다. PBS로 세척한 후 종양 슬라이드를 Alexa Fluor® 488-conjugated goat anti-rabbit secondary antibody와 함께 배양했다. 종양 슬라이드를 PBS로 3회 세척했다. 세척된 종양 슬라이드를 4',6-디아미디노-2-페닐인돌(4',6-diamidino-2-phenylindole, DAPI)(Invitrogen, Carlsbad, CA, USA)이 포함된 Prolong® Gold Antifade Reagent에 담그고 덮개 유리를 닫았다. 이미징 연구는 20x 렌즈가 있는 FV1200 공초점 현미경(Olympus)을 사용하여 수행하였다. 면역 조직 화학 염색 결과는 도 6에 나타내었다.After ex vivo fluorescence imaging studies, tumors were snap frozen using liquid nitrogen. Frozen tumors were cut into slices (10 μm thick). After drying at room temperature, the slices were fixed in ice-cold acetone for 10 min. Afterwards, the slices were air-dried at room temperature for 20 min and maintained at room temperature for 30 min with 5% goat serum to block nonspecific binding. Afterwards, tumor sections were stained with anti-human L858R mutant specific EGFR antibody for 1 hour at room temperature. After washing with PBS, tumor slides were incubated with Alexa Fluor ® 488-conjugated goat anti-rabbit secondary antibody. Tumor slides were washed three times with PBS. Washed tumor slides were incubated in Prolong ® Gold Antifade Reagent containing 4',6-diamidino-2-phenylindole (DAPI) (Invitrogen, Carlsbad, CA, USA). Soaked and closed the cover glass. Imaging studies were performed using an FV1200 confocal microscope (Olympus) with a 20x lens. The results of immunohistochemical staining are shown in Figure 6.

도 6에 나타낸 바와 같이, NCI-H1975 종양 조직은 유의미한 Tc-99m STHHYYP-GHEG-ECG-TAMRA의 형광이 검출되었다. 형광은 항-L858R 돌연변이 EGFR 항체의 형광 활성과 상관관계가 있었다(도 6a). 그러나 TAMRA 및 항-L858R 돌연변이체 EGFR 항체의 형광 활성은 NCI-H1650 종양 조직에서 거의 검출되지 않았다(도 6b).As shown in Figure 6, significant fluorescence of Tc-99m STHHYYP-GHEG-ECG-TAMRA was detected in NCI-H1975 tumor tissue. The fluorescence correlated with the fluorescence activity of the anti-L858R mutant EGFR antibody (Figure 6A). However, the fluorescence activity of TAMRA and anti-L858R mutant EGFR antibodies was barely detectable in NCI-H1650 tumor tissue (Figure 6b).

실시예 8. 생체 분포 연구Example 8. Biodistribution study

18.5 MBq의 Tc-99m STHHYYP-GHEG-ECG-TAMRA를 주사한 후 1시간 및 3시간 후에 종양과 선택된 장기의 작은 부분을 절제했다. 조직을 칭량하고 미리 칭량한 감마 카운터 튜브에 넣었다. 감마 계수기(1480 Wizard 3; PerkinElmer Life and Analytical Sciences)를 사용하여 조직의 방사능을 계수하고 결과적인 분당 계수를 붕괴 보정했다. 주사 전후의 주사기의 방사능을 측정하여 동물 당 총 주사된 방사능을 계산하였다. 결과는 조직 그램당 주입된 용량의 백분율(%ID/g)로 표시하였다. 생체 분포 연구 결과는 표 1에 나타내었다.Tumors and small portions of selected organs were excised 1 and 3 hours after injection of 18.5 MBq of Tc-99m STHHYYP-GHEG-ECG-TAMRA. Tissue was weighed and placed into pre-weighed gamma counter tubes. Tissue radioactivity was counted using a gamma counter (1480 Wizard 3; PerkinElmer Life and Analytical Sciences), and the resulting minute counts were decay corrected. The total injected radioactivity per animal was calculated by measuring the radioactivity of the syringe before and after injection. Results were expressed as percentage of dose injected per gram of tissue (%ID/g). The results of the biodistribution study are shown in Table 1.

OrganOrgan Mean %ID/g (SD)Mean %ID/g (SD) 1 h1h 3 h3h LungsLungs 1.37 (0.72)1.37 (0.72) 0.85 (0.33)0.85 (0.33) HeartHeart 1.04 (0.13)1.04 (0.13) 0.73 (0.28)0.73 (0.28) BloodBlood 2.59 (0.95)2.59 (0.95) 1.64 (0.45)1.64 (0.45) LiverLiver 1.93 (0.43)1.93 (0.43) 1.94 (0.58)1.94 (0.58) StomachStomach 1.79 (0.77)1.79 (0.77) 0.96 (0.24)0.96 (0.24) ColonColon 0.64 (0.24)0.64 (0.24) 0.55 (0.18)0.55 (0.18) KidneysKidneys 19.76 (3.00)19.76 (3.00) 9.18 (2.18)9.18 (2.18) MusclesMuscles 0.83 (0.24)0.83 (0.24) 0.61 (0.34)0.61 (0.34) NCI-H1975 tumor
(EGFR with L858R mutation)
NCI-H1975 tumor
(EGFR with L858R mutation)
2.77 (0.70)2.77 (0.70) 3.48 (1.01)3.48 (1.01)
NCI-H1650 tumor
(EGFR without L858R mutation)
NCI-H1650 tumor
(EGFR without L858R mutation)
1.84 (0.55)1.84 (0.55) 1.47 (0.64)1.47 (0.64)

표 1에 나타낸 바와 같이, 1시간째에는 신장이 가장 높은 활성을 보였고, 다음으로는 혈액, 위, 폐, 간에서 상대적으로 높은 활성을 보였다. 3시간째에는 신장을 제외한 정상 기관의 활동이 크게 감소하여 Tc-99m STHHYYP-GHEG-ECG-TAMRA 표적 대 비-표적 비율(Tc-99m STHHYYP-GHEG-ECG-TAMRA target-to-non-target ratio)이 개선되었다. NCI-H1975 종양에 대한 %ID/g 값은 NCI-H1650 종양의 값보다 유의하게 높았다. %ID/g 값의 NCI-H1975 종양 대 정상 근육 흡수 비율은 1시간 및 3시간에 각각 3.35 ± 0.12 및 6.20 ± 1.83이었다.As shown in Table 1, the kidney showed the highest activity at 1 hour, followed by the blood, stomach, lung, and liver. At 3 hours, the activity of normal organs except the kidneys decreased significantly, resulting in a Tc-99m STHHYYP-GHEG-ECG-TAMRA target-to-non-target ratio. ) has been improved. The %ID/g values for NCI-H1975 tumors were significantly higher than those for NCI-H1650 tumors. The NCI-H1975 tumor to normal muscle uptake ratio of %ID/g values was 3.35 ± 0.12 and 6.20 ± 1.83 at 1 and 3 hours, respectively.

실시예 9. 통계 분석Example 9. Statistical analysis

데이터 분석에는 SPSS 버전 18.0(IBM Corp., Armonk, NY, USA)을 사용하였다. 실험 결과는 평균 ± 표준 편차(standard deviation, SD)로 표시하였다. 감마 카메라 영상의 표적 대 정상 근육 흡수 비율(Target-to-normal muscle uptake ratio)은 일원 분산 분석(ANOVA)과 적절한 사후 테스트를 사용하여 비교하였다. 모든 테스트에서 p-값 &lt;0.05는 통계적 유의함을 표시하였다.SPSS version 18.0 (IBM Corp., Armonk, NY, USA) was used for data analysis. The experimental results were expressed as mean ± standard deviation (SD). Target-to-normal muscle uptake ratio of gamma camera images was compared using one-way analysis of variance (ANOVA) with appropriate post hoc tests. In all tests, a p-value <0.05 indicated statistical significance.

종합적으로 본 발명자들은 방사성 동위원소 표지된 암 표적용 화합물이 EGFR L858R 돌연변이가 있는 암 조직에 투여되었을 때 흡수 비율과 생체분포 값이 높은 것을 확인하였다. 이는 방사성 표지된 암 표적용 화합물 투여 시 방사선 영상과 형광 영상을 함께 얻을 수 있다는 것을 의미하는 바, 본 발명의 암 표적용 화합물은 암 진단 분야에서 다양하게 활용될 수 있다.Overall, the present inventors confirmed that radioisotope-labeled cancer-targeting compounds had high absorption rates and biodistribution values when administered to cancer tissues with the EGFR L858R mutation. This means that radiographic images and fluorescence images can be obtained together when administering a radioactively labeled cancer-targeting compound, and the cancer-targeting compound of the present invention can be used in a variety of ways in the field of cancer diagnosis.

이상, 본 발명내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의해 정의된다고 할 것이다. As above, specific parts of the present invention have been described in detail, and it is clear to those skilled in the art that these specific techniques are merely preferred embodiments and do not limit the scope of the present invention. something to do. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

서열목록 전자파일 첨부Sequence list electronic file attached

Claims (11)

형광물질,
방사성 동위원소와 결합하며 서열번호 3의 아미노산 서열로 표시되는 킬레이팅 리간드 및
서열번호 1의 아미노산 서열로 표시되는 암 표적 펩타이드를 포함하는 암 표적용 화합물.
fluorescent substance,
A chelating ligand that binds to a radioactive isotope and is represented by the amino acid sequence of SEQ ID NO: 3, and
A cancer-targeting compound comprising a cancer-targeting peptide represented by the amino acid sequence of SEQ ID NO: 1.
제1항에 있어서,
상기 형광물질은 발광 분자, 형광 단백질, 금속이온, 착화합물, 유기염료, 도체, 반도체, 부도체, 양자점 또는 양자선인, 암 표적용 화합물.
According to paragraph 1,
The fluorescent substance is a light-emitting molecule, fluorescent protein, metal ion, complex compound, organic dye, conductor, semiconductor, insulator, quantum dot or quantum wire, and a cancer targeting compound.
제1항에 있어서,
상기 암은 폐암, 결장직장암, 전립선암, 방광암, 유방암, 자궁경부암, 대장결장암, 아교모세포종, 두경부암, 신장암, 간암, 신경아교종, 난소암, 췌장암, 위암, 갑상선암 및 자궁암으로 이루어진 군으로부터 선택되는 것인, 암 표적용 화합물.
According to paragraph 1,
The cancer is selected from the group consisting of lung cancer, colorectal cancer, prostate cancer, bladder cancer, breast cancer, cervical cancer, colorectal cancer, glioblastoma, head and neck cancer, kidney cancer, liver cancer, glioma, ovarian cancer, pancreatic cancer, stomach cancer, thyroid cancer, and uterine cancer. A compound targeting cancer.
제1항에 있어서,
상기 암은 EGFR(epidermal growth factor receptor, EGFR) L858R 돌연변이를 포함하는 것인, 암 표적용 화합물.
According to paragraph 1,
A compound for targeting cancer, wherein the cancer contains the epidermal growth factor receptor (EGFR) L858R mutation.
제1항에 있어서,
상기 암 표적용 화합물은 표적 펩타이드의 형광 교란을 감소시키기 위한 스페이서를 더 포함하는, 암 표적용 화합물.
According to paragraph 1,
The cancer targeting compound further includes a spacer to reduce fluorescence disturbance of the targeting peptide.
제5항에 있어서,
상기 스페이서는 서열번호 2의 아미노산 서열로 표시되는 것인, 암 표적용 화합물.
According to clause 5,
A compound for targeting cancer, wherein the spacer is represented by the amino acid sequence of SEQ ID NO: 2.
제5항에 있어서,
상기 암 표적용 화합물은 구조식 1의 형태로 배열되는 것인, 암 표적용 화합물.
[구조식 1]
암 표적 펩타이드-스페이서-킬레이팅 리간드-형광물질
According to clause 5,
The cancer targeting compound is arranged in the form of structural formula 1.
[Structural Formula 1]
Cancer targeting peptide-spacer-chelating ligand-fluorescent substance
제5항에 있어서,
상기 암 표적용 화합물은 화학식 1로 표시되는 것을 특징으로 하는 암 표적용 화합물
[화학식 1]

According to clause 5,
The cancer-targeting compound is a cancer-targeting compound, characterized in that represented by Formula 1
[Formula 1]

제1항 내지 제8항 중 어느 한 항에 따른 암 표적용 화합물을 포함하는 이중 방식(dual modality) 조영제.
A dual modality contrast agent comprising the cancer-targeting compound according to any one of claims 1 to 8.
제1항 내지 제8항 중 어느 한 항에 따른 암 표적용 화합물을 포함하는 암 진단용 조성물.
A composition for diagnosing cancer comprising the cancer targeting compound according to any one of claims 1 to 8.
제1항 내지 제8항 중 어느 한 항에 따른 암 표적용 화합물을 생물학적 시료에 처리하는 단계를 포함하는 암 모니터링을 위한 정보제공방법.
A method of providing information for cancer monitoring, comprising the step of treating a biological sample with the cancer-targeting compound according to any one of claims 1 to 8.
KR1020220141673A 2022-10-28 2022-10-28 Compound for targeting cancer comprising EGFR L858R mutation and uses thereof KR20240066484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220141673A KR20240066484A (en) 2022-10-28 2022-10-28 Compound for targeting cancer comprising EGFR L858R mutation and uses thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220141673A KR20240066484A (en) 2022-10-28 2022-10-28 Compound for targeting cancer comprising EGFR L858R mutation and uses thereof

Publications (1)

Publication Number Publication Date
KR20240066484A true KR20240066484A (en) 2024-05-16

Family

ID=91276492

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220141673A KR20240066484A (en) 2022-10-28 2022-10-28 Compound for targeting cancer comprising EGFR L858R mutation and uses thereof

Country Status (1)

Country Link
KR (1) KR20240066484A (en)

Similar Documents

Publication Publication Date Title
EP2491953B1 (en) Optical imaging contrast agent, use and device thereof
CN111358965A (en) 68Ga-labeled NOTA-modified EGFR molecular imaging probe and preparation and application thereof
WO2020238795A1 (en) Rk polypeptide radiopharmaceutical targeting her2, and preparation method therefor
Xia et al. Comparative evaluation of 68 Ga-labelled TATEs: the impact of chelators on imaging
Lawrentschuk et al. Positron emission tomography (PET), immuno-PET and radioimmunotherapy in renal cell carcinoma: a developing diagnostic and therapeutic relationship.
Hicks Functional imaging techniques for evaluation of sarcomas
Kim et al. A novel dual-labeled small peptide as a multimodal imaging agent for targeting wild-type EGFR in tumors
KR102423777B1 (en) Targeting compound of prostate-specific membrane antigen and use thereof
Cai et al. Non-invasive monitoring of HER2 expression in breast cancer patients with 99mTc-Affibody SPECT/CT
Raderer et al. 123I-labelled vasoactive intestinal peptide receptor scintigraphy in patients with colorectal cancer
KR20240066484A (en) Compound for targeting cancer comprising EGFR L858R mutation and uses thereof
KR101957420B1 (en) Targeting compound of cancer and use thereof
Mokoala et al. Radionuclide imaging of hypoxia: where are we now? Special attention to cancer of the cervix uteri
KR102150415B1 (en) Targeting compound of cancer and use thereof
Hou et al. Development and first-in-human study of PSMA-targeted PET tracers with improved pharmacokinetic properties
US6458336B1 (en) Detectably labeled porphyrin compound for identifying the sentinel lymph node
KR101957416B1 (en) Targeting compound of cancer and use thereof
KR20230115613A (en) Targeting compound of EGFR-positive cancer and use thereof
Oliveira et al. Nuclear medicine in oncology
CN112004560A (en) Radiolabeled progastrin in cancer diagnosis
Milani et al. Production and evaluation of a 67 Ga-labeled anti-Ror1 monoclonal antibody in a mouse model of breast cancer
Lin et al. Biological Evaluation of [18F] AlF-NOTA-NSC-GLU as a Positron Emission Tomography Tracer for Hepatocellular Carcinoma
RU2780943C1 (en) Method for detecting metastasis to regional lymph nodes in breast cancer patients with her2/neu hyperexpression
Hou et al. Synthesis and preclinical evaluation of 68Ga-labeled PSMA tracers with improved pharmacological properties
Kim et al. A Novel Dual-labeled Peptide for Multimodal Imaging of EGFR with L858R Mutation