KR20240063694A - Method for Purifying AAV - Google Patents

Method for Purifying AAV Download PDF

Info

Publication number
KR20240063694A
KR20240063694A KR1020220145631A KR20220145631A KR20240063694A KR 20240063694 A KR20240063694 A KR 20240063694A KR 1020220145631 A KR1020220145631 A KR 1020220145631A KR 20220145631 A KR20220145631 A KR 20220145631A KR 20240063694 A KR20240063694 A KR 20240063694A
Authority
KR
South Korea
Prior art keywords
filtration
aav
nacl
column
buffer
Prior art date
Application number
KR1020220145631A
Other languages
Korean (ko)
Inventor
배경동
주연수
Original Assignee
주식회사 헬릭스미스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 헬릭스미스 filed Critical 주식회사 헬릭스미스
Priority to KR1020220145631A priority Critical patent/KR20240063694A/en
Publication of KR20240063694A publication Critical patent/KR20240063694A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/02Separating microorganisms from their culture media
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/24Methods of sampling, or inoculating or spreading a sample; Methods of physically isolating an intact microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2509/00Methods for the dissociation of cells, e.g. specific use of enzymes
    • C12N2509/10Mechanical dissociation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14151Methods of production or purification of viral material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

본 발명은 Adenovirus-associated virus (AAV)의 정제 방법에 관한 것이다. 본 발명의 정제 방법은 종래의 방법과 다른 순서와 조건의 정제방법으로 구성되어 있으며, 높은 수율로 AAV를 수득할 수 있다. The present invention relates to a method for purifying Adenovirus-associated virus (AAV). The purification method of the present invention consists of a purification method with a different order and conditions than the conventional method, and can obtain AAV in high yield.

Description

AAV의 정제 방법 {Method for Purifying AAV}Method for purifying AAV {Method for Purifying AAV}

본 발명은 AAV의 정제 방법에 관한 것이다. 보다 구체적으로는 AAV의 생산성을 향상하기 위한 AAV의 정제 방법에 관한 것이다.The present invention relates to a method for purifying AAV. More specifically, it relates to a method for purifying AAV to improve the productivity of AAV.

아데노-관련 바이러스 (Adenovirus-associated Virus, AAV)는 인간의 유전자 치료를 위하여 사용되는 가장 유망한 바이러스 벡터 중 하나이다. AAV는 인간의 증식세포 뿐만 아니라 비증식 세포도 효과적으로 감염시키는 능력을 가지며, 비교적 무해한 면역원성 프로파일을 가지고, 어떠한 질병과도 관련되지 않는다. 이러한 관점에서 재조합 아데노-관련 바이러스는 혈우병, 낭포성 섬유증 등 여러가지 질환에 대한 유전자 치료의 임상시험에서 평가되고 있다. 2012년 AAV 기반 약물인 유니큐어의 글리베라가 유럽의약품청(EMA)에서 신약으로 시판허가를 받았으며, 노바티스의 척수성근위축증(SMA) 치료제 졸겐스마 등 AAV를 이용한 치료제가 개발되고 있는 상황이다. Adenovirus-associated virus (AAV) is one of the most promising viral vectors used for human gene therapy. AAV has the ability to effectively infect human proliferating as well as non-proliferating cells, has a relatively harmless immunogenic profile, and is not associated with any disease. From this perspective, recombinant adeno-related viruses are being evaluated in clinical trials of gene therapy for various diseases such as hemophilia and cystic fibrosis. In 2012, Unicur's Glybera, an AAV-based drug, received marketing approval as a new drug from the European Medicines Agency (EMA), and treatments using AAV, such as Novartis' spinal muscular atrophy (SMA) treatment Zolgensma, are being developed.

AAV를 유전자 치료제로 개발하기 위해서는 AAV의 생산성이 매우 중요한 요소 중 하나이다. 또한, AAV는 세포와 AAV의 배양을 통하여 생산이 되므로, 단백질, 핵산을 비롯한 AAV 벡터와 관련된 불순물이 다량 함께 생산될 수밖에 없어 불순물을 제거하는 정제과정이 필수적이다. 특히 임상적으로 사용가능한 인간 유전제 치료제로서 사용하기 위해서는 높은 순도로 AAV를 정제하는 공정을 개발하는 것이 대단히 어렵고도 중요하다. In order to develop AAV as a gene therapy, the productivity of AAV is a very important factor. In addition, since AAV is produced through culturing of cells and AAV, a large amount of impurities related to the AAV vector, including proteins and nucleic acids, are inevitably produced, so a purification process to remove impurities is essential. In particular, it is extremely difficult and important to develop a process to purify AAV to high purity in order to use it as a clinically usable human genetic therapeutic.

본 발명자들은 AAV의 생산성이 개선된 AAV의 정제 방법을 개발하고자 예의 연구 노력하였다. 그 결과, AAV의 정제 방법을 이루는 세포의 파쇄방법, 크로마토그래피의 종류 및 조건 등을 조정함으로써 AAV 정제의 시간을 단축하면서도 생산 효율을 크게 개선할 수 있음을 규명함으로써, 본 발명을 완성하게 되었다. The present inventors have made extensive research efforts to develop a method for purifying AAV with improved AAV productivity. As a result, the present invention was completed by demonstrating that the AAV purification time can be shortened and production efficiency can be greatly improved by adjusting the cell disruption method and the type and conditions of chromatography that make up the AAV purification method.

본 발명의 일 양태에 따르면, 본 발명은 다음 단계를 포함하는 Adenovirus-associated virus (AAV)의 정제 방법을 제공한다:According to one aspect of the present invention, the present invention provides a method for purifying Adenovirus-associated virus (AAV) comprising the following steps:

(a) AAV를 생산하는 세포를 파쇄하는 단계;(a) disrupting the cells producing AAV;

(b) 상기 파쇄된 세포를 포함하는 상층액을 여과하는 단계;(b) filtering the supernatant containing the disrupted cells;

(c) 상기 단계에서 여과된 여과액을 양이온 교환 크로마토그래피를 수행하여 컬럼 용출액을 생산하는 단계;(c) performing cation exchange chromatography on the filtrate filtered in the above step to produce a column effluent;

(d) 상기 컬럼 용출액을 친화성 크로마토그래피를 수행하여 컬럼 용출액을 생산하는 단계;(d) producing a column effluent by subjecting the column effluent to affinity chromatography;

(e) 상기 컬럼 용출액을 음이온 교환 크로마토그래피를 수행하여 컬럼 용출액을 생산하는 단계; 및(e) producing a column effluent by subjecting the column effluent to anion exchange chromatography; and

(f) 상기 컬럼 용출액을 여과하여 정제된 AAV를 생산하는 단계.(f) filtering the column eluate to produce purified AAV.

본 명세서에서 "아데노-관련 바이러스"는 파보비리데(Parvoviridae)과 디펜도바이러스(Dependovirus) 속에 속하는 바이러스에 해당하고, 가장 작은 DNA 바이러스의 하나로 바이러스 입자의 지름이 18 내지 25 nm이고, single stranded DNA 바이러스이다. 아데노-관련 바이러스는 복제를 위하여 헬퍼 아데노바이러스가 필요한 비병원성의 위성바이러스로, 상대적으로 작은 ~4.7 kb 크기의 유전자를 탑재할 수 있다. AAV의 게놈에는 ITR(Inverted terminal repeats)이 포함되고, 비-구조(non-structural) 복제(Rep) 단백질 및 구조(VP) 단백질을 위한 독특한 코딩 뉴클레오티드 서열의 옆(flank)에 위치한다. 상기 VP 단백질(VP1, -2 및 -3)은 캡시드를 형성한다. 상기 ITR의 말단은 약 100 내지 150 nt의 길이를 가지며 자기-상보적(self-complementary)이고 따라서 T형 헤어핀의 형태일 수 있는 에너지적으로 안정한 분자 내 이중 구조로 구성되어 있다. 이러한 헤어핀 구조는 바이러스 DNA 복제를 위한 원점(origin)으로 작용하며 세포 DNA 폴리머라제 복합체에 대한 프라이머로 작용한다. In this specification, “adeno-related virus” corresponds to a virus belonging to the genera Parvoviridae and Dependovirus, and is one of the smallest DNA viruses, with a virus particle diameter of 18 to 25 nm and single stranded DNA. It's a virus. Adeno-related viruses are non-pathogenic satellite viruses that require a helper adenovirus for replication and can carry relatively small genes of ~4.7 kb in size. The genome of AAV contains inverted terminal repeats (ITRs), which flank unique coding nucleotide sequences for non-structural replication (Rep) and structural (VP) proteins. The VP proteins (VP1, -2 and -3) form the capsid. The terminal of the ITR has a length of about 100 to 150 nt and is self-complementary and therefore consists of an energetically stable intramolecular duplex structure that may be in the form of a T-type hairpin. This hairpin structure serves as the origin for viral DNA replication and as a primer for the cellular DNA polymerase complex.

상기 AAV는 AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8 또는 AAV9의 혈청형을 가지나, 이에 한정되는 것은 아니고, 이외에도 다양한 천연 또는 재조합 AAV의 혈청형이 알려져 있다. 이들 혈청형의 ITR, Rep, 또는 VP는 적어도 70%, 75%, 80%, 85%, 90%, 또는 95% 이상의 뉴클레오티드 및/또는 아미노산 서열의 상동성을 가진다. 본 발명의 일 구현예에 있어서 사용된 AAV는 AAV1의 혈청형이다.The AAV has serotypes of AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8 or AAV9, but is not limited thereto, and various other serotypes of natural or recombinant AAV are known. The ITR, Rep, or VP of these serotypes have at least 70%, 75%, 80%, 85%, 90%, or 95% nucleotide and/or amino acid sequence homology. AAV used in one embodiment of the present invention is a serotype of AAV1.

본 발명의 일 구현예에 있어서, 상기 단계 (a)의 세포는 AAV를 생산하는 세포 및 그의 세포배양 상층액을 포함하는 세포배양물로부터 유래한 것이다. In one embodiment of the present invention, the cells in step (a) are derived from a cell culture containing AAV-producing cells and their cell culture supernatant.

본 발명의 일 구현예에 있어서, 상기 AAV를 생산하는 세포는 인간 세포 또는 곤충 세포이다. 상기 인간 세포와 곤충 세포는 예컨대 HEK293, sf9 등의 세포주를 사용할 수 있으나, 이에 한정되는 것은 아니고 당업계에서 사용가능한 세포주라면 제한없이 사용될 수 있다. In one embodiment of the invention, the cells producing the AAV are human cells or insect cells. The human cells and insect cells may be cell lines such as HEK293 and sf9, but are not limited thereto, and any cell line available in the art may be used without limitation.

본 발명의 일 구현예에 있어서, 상기 세포 파쇄방법은 마이크로플루다이저(microfludizer)에 의해 수행되는 것이다.In one embodiment of the present invention, the cell disruption method is performed using a microfludizer.

본 발명의 일 구현예에 있어서, 상기 마이크로플루다이저는 1500-3500 psi, 1500-3000 psi, 1500-2500 psi, 1500-2000 psi, 1500 psi, 2000 psi, 2500 psi, 또는 3000 psi의 조건으로 수행될 수 있으나 이에 한정되는 것은 아니다. In one embodiment of the present invention, the microfluidizer is performed under conditions of 1500-3500 psi, 1500-3000 psi, 1500-2500 psi, 1500-2000 psi, 1500 psi, 2000 psi, 2500 psi, or 3000 psi. It may be possible, but it is not limited to this.

본 발명의 일 구현예에 있어서, 상기 세포 파쇄는 1 사이클이상 수행되는 것이다. 예컨대, 상기 세포 파쇄는 1 사이클, 2 사이클, 또는 3 사이클 수행될 수 있다. In one embodiment of the present invention, the cell disruption is performed in one or more cycles. For example, the cell disruption may be performed in 1 cycle, 2 cycles, or 3 cycles.

본 발명의 다른 일 구현예에 있어서, 상기 세포 파쇄방법은 freeze & thawing (F&T) 방식을 사용할 수 있다. 다만, 본 발명의 구체적인 구현예에 따르면, 종래의 F&T 방식보다는 상술한 마이크로플루다이저에 의한 방식의 수율이 더 우수하게 나타난다. In another embodiment of the present invention, the cell disruption method may use a freeze & thawing (F&T) method. However, according to a specific embodiment of the present invention, the yield of the method using the above-described microfluidizer appears to be superior to that of the conventional F&T method.

본 발명의 일 구현예에 있어서, 상기 단계 (b)의 여과는 멤브레인 필터에 의해 이루어진 것이다. In one embodiment of the present invention, the filtration in step (b) is performed by a membrane filter.

본 발명의 일 구현예에 있어서, 상기 단계 (b)의 여과는 1회 이상 수행된다.In one embodiment of the present invention, the filtration in step (b) is performed one or more times.

본 발명의 일 구현예에 있어서, 상기 단계 (b)의 여과는 1회 이상, 예컨대, 1회, 2회, 또는 3회 반복하여 이루어질 수 있으나, 이에 한정되는 것은 아니다. In one embodiment of the present invention, the filtration of step (b) may be repeated one or more times, for example, once, twice, or three times, but is not limited thereto.

본 발명의 일 구현예에 있어서, 상기 단계 (b)의 여과는 심층여과(depth filtration) 장치에 의해 수행되는 것이다. In one embodiment of the present invention, the filtration in step (b) is performed by a depth filtration device.

본 발명의 일 구현예에 있어서, 상기 심층여과 장치는 세포 배양 후 분리단계 배양후 배양액의 세포 파쇄물 및 동물세포를 제거하여 배양액을 분리하기 위한 목적으로 주로 사용된다. In one embodiment of the present invention, the deep filtration device is mainly used for the purpose of separating the culture fluid by removing cell fragments and animal cells from the culture fluid after the separation step after cell culture.

본 발명의 일 구현예에 있어서, 상기 단계 (b)의 여과는 절대여과 등급(absolute grade)의 여과 장치에 의해 수행되는 것이다.In one embodiment of the present invention, the filtration in step (b) is performed by an absolute grade filtration device.

본 발명의 일 구현예에 있어서, 절대여과 등급이란 여과장치(필터)에 표시된 사이즈 이상의 크기를 가진입자를 99.98% 이상 제거할 수 있음을 의미한다. In one embodiment of the present invention, absolute filtration grade means that more than 99.98% of particles with a size larger than that indicated on the filtration device (filter) can be removed.

본 발명의 일 구현예에 있어서, 상기 절대여과 등급의 멤브레인 필터로는 Sartobran P, Bottle Top Vacuum Filter, Millipore Express® SHC 등이 사용될 수 있으나, 이는 예시적인 것일 뿐 이에 한정되는 것은 아니다. In one embodiment of the present invention, the absolute filtration grade membrane filter includes Sartobran P, Bottle Top Vacuum Filter, Millipore Express® SHC, etc. may be used, but this is only illustrative and not limiting.

본 발명의 일 구현예에 있어서, 상기 단계 (b)의 여과는 심층여과 장치 및 절대여과 등급의 여과 장치에 의해 순차적으로 수행되는 것이다. In one embodiment of the present invention, the filtration in step (b) is performed sequentially by a depth filtration device and an absolute filtration grade filtration device.

본 발명의 일 구현예에 있어서, 상기 멤브레인 필터는 셀룰로오스 아세테이트, 또는 폴리에테르설폰 소재의 멤브레인 필터이다. 본 발명의 구체적인 구현예에 있어서, 상기 멤브레인 필터는 폴리에테르 설폰 소재의 멤브레인 필터인 것이 바람직하다.In one embodiment of the present invention, the membrane filter is a membrane filter made of cellulose acetate or polyethersulfone. In a specific embodiment of the present invention, the membrane filter is preferably made of polyether sulfone material.

본 발명의 일 구현예에 있어서, 상기 멤브레인 필터의 포어 사이즈는 0.2 내지 0.7 μm일 수 있다. 보다 구체적으로는 0.2 내지 0.65 μm, 0.2 내지 0.5 μm, 0.2 내지 0.45 μm, 0.22 내지 0.65 μm, 0.22 내지 0.5 μm, 또는 0.22 내지 0.45 μm 이나, 이에 한정되는 것은 아니다. In one embodiment of the present invention, the pore size of the membrane filter may be 0.2 to 0.7 μm. More specifically, 0.2 to 0.65 μm, 0.2 to 0.5 μm, 0.2 to 0.45 μm, 0.22 to 0.65 μm, 0.22 to 0.5 μm, or 0.22 to 0.45 μm, but is not limited thereto.

본 발명의 구체적인 구현예에 있어서, 상기 멤브페인 필터의 포어 사이즈는 절대여과 등급의 멤브레인 필터의 포어 사이즈일 수 있다.In a specific embodiment of the present invention, the pore size of the membrane filter may be the pore size of an absolute filtration grade membrane filter.

본 발명의 일 구현예에 있어서, 상기 단계 (b)에 의한 여과액은 접선 유동 여과(Tangential Flow Filtration, TFF)에 의하여 여과되는 것이다.In one embodiment of the present invention, the filtrate obtained in step (b) is filtered by tangential flow filtration (TFF).

상기 '접선 유동 여과'는 멤브레인 필터 표면과 평행하게 유체를 이동시켜 여과하는 방식으로, 액체 중 용해되거나 분산된 물질을 입자크기나 분자량 크기별로 분리할 수 있는 여과방법이며, 압력차를 추진력으로 사용한다. 상기 접선 유동 여과 방식은 백신 및 생물의약품 등의 생산 시 단백질 정제를 위하여 크기에 따른 불순물 제거, 단백질 농축, 버퍼 교환 등에 자주 활용된다. 공정 중 온도, 전도도, 유량, 압력 등의 조건을 모니터링 할 수 있다.The 'tangential flow filtration' is a method of filtering a fluid by moving it parallel to the membrane filter surface. It is a filtration method that can separate dissolved or dispersed substances in a liquid by particle size or molecular weight, and uses the pressure difference as a driving force. do. The tangential flow filtration method is often used to remove impurities according to size, concentrate proteins, and exchange buffers for protein purification during the production of vaccines and biological drugs. During the process, conditions such as temperature, conductivity, flow rate, and pressure can be monitored.

본 발명의 일 구현예에 있어서, 상기 접선 유동 여과는 Tris, NaCl, 또는 이들의 조합을 포함하는 용출 버퍼에 의해 수행되는 것이다.In one embodiment of the present invention, the tangential flow filtration is performed using an elution buffer containing Tris, NaCl, or a combination thereof.

본 발명의 일 구현예에 있어서, 상기 Tris는 5-50 mM, 5-40 mM, 5-30 mM, 5-25 mM, 5-20 mM, 7.5-50 mM, 7.5-40 mM, 7.5-30 mM, 7.5-25 mM, 7.5-20 mM, 8-50 mM, 8-40 mM, 8-30 mM, 8-25 mM, 8-20 mM, 10-50 mM, 10-40 mM, 10-30 mM, 10-25 mM, 10-20 mM, 15-50 mM, 15-40 mM, 15-30 mM, 15-25 mM, 15-20 mM, 보다 구체적으로는 10 mM 또는 20 mM의 농도로 상기 용출 버퍼에 포함되나, 이에 한정되는 것은 아니다. In one embodiment of the present invention, the Tris is 5-50mM, 5-40mM, 5-30mM, 5-25mM, 5-20mM, 7.5-50mM, 7.5-40mM, 7.5-30mM 7.5-25mM, 7.5-20mM, 8-50mM, 8-40mM, 8-30mM, 8-25mM, 8-20mM, 10-50mM, 10-40mM, 10-30mM 10-25mM, 10-20mM, 15-50mM, 15-40mM, 15-30mM, 15-25mM, 15-20mM, more specifically at a concentration of 10mM or 20mM. It is included in the elution buffer, but is not limited thereto.

본 발명의 일 구현예에 있어서, 상기 NaCl은 50-150 mM, 50 mM, 100 mM, 또는 150 mM의 농도로 상기 용출 버퍼에 포함되고, 보다 구체적으로는 100 mM의 농도로 상기 용출 버퍼에 포함되나, 이에 한정되는 것은 아니다. In one embodiment of the present invention, the NaCl is included in the elution buffer at a concentration of 50-150mM, 50mM, 100mM, or 150mM, and more specifically, it is included in the elution buffer at a concentration of 100mM. However, it is not limited to this.

본 발명의 일 구현예에 있어서, 상기 용출 버퍼는 pH 7-10, pH 7-9.5, pH 7-9, pH 7-8.5, pH 7-8, pH 7-7.5,또는 pH 7.5 일 수 있으나, 이에 한정되는 것은 아니다.In one embodiment of the present invention, the elution buffer may be pH 7-10, pH 7-9.5, pH 7-9, pH 7-8.5, pH 7-8, pH 7-7.5, or pH 7.5. It is not limited to this.

본 발명의 일 구현예에 있어서, 상기 단계 (b)에 의한 여과액은 뉴클레아제(nuclease)로 처리되는 것이다.In one embodiment of the present invention, the filtrate from step (b) is treated with nuclease.

본 발명의 일 구현예에 있어서, 상기 뉴클레아제는 37℃에서 10분-2시간, 15분-2시간, 20분-2시간, 25분-2시간, 0.5-2시간, 0.5-1시간, 1-2시간, 10분, 15분, 20분, 25분, 0.5시간, 1시간, 1.5시간, 또는 2시간 동안 처리되는 것이나, 이에 한정되는 것은 아니다. In one embodiment of the present invention, the nuclease is incubated at 37°C for 10 minutes - 2 hours, 15 minutes - 2 hours, 20 minutes - 2 hours, 25 minutes - 2 hours, 0.5 - 2 hours, 0.5 - 1 hours. , 1-2 hours, 10 minutes, 15 minutes, 20 minutes, 25 minutes, 0.5 hours, 1 hour, 1.5 hours, or 2 hours, but is not limited thereto.

본 발명의 일 구현예에 있어서, 상기 뉴클레아제는 벤조에이즈(benzoase)이다.In one embodiment of the present invention, the nuclease is benzoase.

본 발명의 단계 (c)는 양이온 교환 크로마토그래피 수행 단계이다. 양이온 교환 크로마토그래피는 상기 여과된 여과액으로부터 AAV 입자를 분리하는 기능을 한다. Step (c) of the present invention is a step of performing cation exchange chromatography. Cation exchange chromatography functions to separate AAV particles from the filtered filtrate.

상기 양이온 교환 크로마토그래피를 구성하는 수지로는 아릴 및 알킬 치환된 설포네이트 수지 등 설폰산 기반의 수지와 카르복실산 기반의 수지를 제한없이 포함할 수 있다. 예컨대, 카르복시메틸(CM), 메틸 설포네이트(S) 및 설포프로필(SP) 수지를 포함한다.Resins constituting the cation exchange chromatography may include, without limitation, sulfonic acid-based resins, such as aryl and alkyl substituted sulfonate resins, and carboxylic acid-based resins. Examples include carboxymethyl (CM), methyl sulfonate (S) and sulfopropyl (SP) resins.

상기 양이온 교환 크로마토그래피는 다양한 완충액으로 평형화, 세척 및 용출 단계를 거칠 수 있다.The cation exchange chromatography may undergo equilibration, washing, and elution steps with various buffer solutions.

본 발명의 일 구현예에 있어서, 상기 단계 (c)의 양이온 교환 크로마토그래피는 Tris, NaCl, 또는 이들의 조합을 포함하는 용출 버퍼에 의해 용출되는 것이다.In one embodiment of the present invention, the cation exchange chromatography in step (c) is eluted with an elution buffer containing Tris, NaCl, or a combination thereof.

본 발명의 일 구현예에 있어서, 상기 Tris는 5-50 mM, 5-40 mM, 5-30 mM, 5-25 mM, 5-20 mM, 7.5-50 mM, 7.5-40 mM, 7.5-30 mM, 7.5-25 mM, 7.5-20 mM, 8-50 mM, 8-40 mM, 8-30 mM, 8-25 mM, 8-20 mM, 10-50 mM, 10-40 mM, 10-30 mM, 10-25 mM, 10-20 mM, 15-50 mM, 15-40 mM, 15-30 mM, 15-25 mM, 15-20 mM, 보다 구체적으로는 10 mM 또는 20 mM의 농도로 상기 용출 버퍼에 포함되나, 이에 한정되는 것은 아니다. In one embodiment of the present invention, the Tris is 5-50mM, 5-40mM, 5-30mM, 5-25mM, 5-20mM, 7.5-50mM, 7.5-40mM, 7.5-30mM 7.5-25mM, 7.5-20mM, 8-50mM, 8-40mM, 8-30mM, 8-25mM, 8-20mM, 10-50mM, 10-40mM, 10-30mM 10-25mM, 10-20mM, 15-50mM, 15-40mM, 15-30mM, 15-25mM, 15-20mM, more specifically at a concentration of 10mM or 20mM. It is included in the elution buffer, but is not limited thereto.

본 발명의 일 구현예에 있어서, 상기 NaCl은 50-150 mM, 50 mM, 100 mM, 또는 150 mM의 농도로 상기 용출 버퍼에 포함되고, 보다 구체적으로는 100 mM의 농도로 상기 용출 버퍼에 포함되나, 이에 한정되는 것은 아니다. In one embodiment of the present invention, the NaCl is included in the elution buffer at a concentration of 50-150mM, 50mM, 100mM, or 150mM, and more specifically, it is included in the elution buffer at a concentration of 100mM. However, it is not limited to this.

본 발명의 일 구현예에 있어서, 상기 용출 버퍼는 pH 7-10, pH 7-9.5, pH 7-9, pH 7-8.5, pH 7-8, pH 7-7.5, pH 7-10, pH 7-9.5, pH 7-9, pH 7-8.5, pH 7-8, pH 7-7.5, 또는 pH 7.5 일 수 있으나, 이에 한정되는 것은 아니다.In one embodiment of the present invention, the elution buffer is pH 7-10, pH 7-9.5, pH 7-9, pH 7-8.5, pH 7-8, pH 7-7.5, pH 7-10, pH 7. It may be -9.5, pH 7-9, pH 7-8.5, pH 7-8, pH 7-7.5, or pH 7.5, but is not limited thereto.

본 발명의 단계 (d)는 친화성 크로마토그래피 수행 단계이다. 친화성 크로마토그래피는 상기 양이온 교환 크로마토그래피의 용출액에 포함되어 있는 AAV 입자를 분리하는 기능을 한다.Step (d) of the present invention is a step of performing affinity chromatography. Affinity chromatography functions to separate AAV particles contained in the eluate of the cation exchange chromatography.

상기 친화성 크로마토그래피에는 세파로스(Sepharose) 및 다른 물질을 포함하는 컬럼이 제한없이 사용될 수 있다. Columns containing Sepharose and other materials can be used without limitation in the affinity chromatography.

상기 친화성 크로마토그래피는 다양한 완충액으로 평형화, 세척 및 용출 단계를 거칠 수 있다.The affinity chromatography may undergo equilibration, washing, and elution steps with various buffer solutions.

본 발명의 일 구현예에 있어서, 상기 단계 (d)의 친화성 크로마토그래피는 Sodium Acetate, NaCl, 또는 이들의 조합을 포함하는 용출 버퍼에 의해 용출된다.In one embodiment of the present invention, the affinity chromatography in step (d) is eluted with an elution buffer containing Sodium Acetate, NaCl, or a combination thereof.

본 발명의 일 구현예에 있어서, 상기 Sodium Acetate는 50-200 mM, 50-180 mM, 50-150 mM, 50-140 mM, 50-130 mM, 50-125 mM, 50-120 mM, 50-110 mM, 50-100 mM, 60-200 mM, 60-180 mM, 60-150 mM, 60-140 mM, 60-130 mM, 60-125 mM, 60-120 mM, 60-110 mM, 60-100 mM, 70-200 mM, 70-180 mM, 70-150 mM, 70-140 mM, 70-130 mM, 70-125 mM, 70-120 mM, 70-110 mM, 70-100 mM, 80-200 mM, 80-180 mM, 80-150 mM, 80-140 mM, 80-130 mM, 80-125 mM, 80-120 mM, 80-110 mM, 80-100 mM, 90-200 mM, 90-180 mM, 90-150 mM, 90-140 mM, 90-130 mM, 90-125 mM, 90-120 mM, 90-110 mM, 90-100 mM, 80 mM, 90 mM, 또는 100 mM의 농도로 상기 용출 버퍼에 포함되나, 이에 한정되는 것은 아니다.In one embodiment of the present invention, the Sodium Acetate is 50-200mM, 50-180mM, 50-150mM, 50-140mM, 50-130mM, 50-125mM, 50-120mM, 50- 110mM, 50-100mM, 60-200mM, 60-180mM, 60-150mM, 60-140mM, 60-130mM, 60-125mM, 60-120mM, 60-110mM, 60- 100mM, 70-200mM, 70-180mM, 70-150mM, 70-140mM, 70-130mM, 70-125mM, 70-120mM, 70-110mM, 70-100mM, 80- 200mM, 80-180mM, 80-150mM, 80-140mM, 80-130mM, 80-125mM, 80-120mM, 80-110mM, 80-100mM, 90-200mM, 90- at concentrations of 180mM, 90-150mM, 90-140mM, 90-130mM, 90-125mM, 90-120mM, 90-110mM, 90-100mM, 80mM, 90mM, or 100mM. It is included in the elution buffer, but is not limited thereto.

본 발명의 일 구현예에 있어서, 상기 NaCl은 50-200 mM, 50-180 mM, 50-150 mM, 50-140 mM, 50-130 mM, 50-125 mM, 50-120 mM, 50-110 mM, 50-100 mM, 60-200 mM, 60-180 mM, 60-150 mM, 60-140 mM, 60-130 mM, 60-125 mM, 60-120 mM, 60-110 mM, 60-100 mM, 70-200 mM, 70-180 mM, 70-150 mM, 70-140 mM, 70-130 mM, 70-125 mM, 70-120 mM, 70-110 mM, 70-100 mM, 80-200 mM, 80-180 mM, 80-150 mM, 80-140 mM, 80-130 mM, 80-125 mM, 80-120 mM, 80-110 mM, 80-100 mM, 90-200 mM, 90-180 mM, 90-150 mM, 90-140 mM, 90-130 mM, 90-125 mM, 90-120 mM, 90-110 mM, 90-100 mM, 80 mM, 90 mM, 또는 100 mM의 농도로 상기 용출 버퍼에 포함되나, 이에 한정되는 것은 아니다.In one embodiment of the present invention, the NaCl is 50-200mM, 50-180mM, 50-150mM, 50-140mM, 50-130mM, 50-125mM, 50-120mM, 50-110mM mM, 50-100mM, 60-200mM, 60-180mM, 60-150mM, 60-140mM, 60-130mM, 60-125mM, 60-120mM, 60-110mM, 60-100 70-180mM, 70-200mM, 70-180mM, 70-150mM, 70-140mM, 70-130mM, 70-125mM, 70-120mM, 70-110mM, 70-100mM, 80-200mM 80-180mM, 80-150mM, 80-140mM, 80-130mM, 80-125mM, 80-120mM, 80-110mM, 80-100mM, 90-200mM, 90-180mM at concentrations of 90-150mM, 90-140mM, 90-130mM, 90-125mM, 90-120mM, 90-110mM, 90-100mM, 80mM, 90mM, or 100mM. It is included in the elution buffer, but is not limited thereto.

본 발명의 일 구현예에 있어서, 상기 컬럼의 용출에 사용되는 용출 버퍼의 pH는 pH 2-5, pH 2-4, pH 2-3, pH 2-2.5, 또는 pH 2.5일 수 있으나, 이에 한정되는 것은 아니다. In one embodiment of the present invention, the pH of the elution buffer used for elution of the column may be pH 2-5, pH 2-4, pH 2-3, pH 2-2.5, or pH 2.5, but is limited thereto. It doesn't work.

본 발명의 단계 (e)는 음이온 교환 크로마토그래피 수행 단계이다. 음이온 교환 크로마토그래피는 상기 친화성 크로마토그래피의 용출액에 포함되어 있는 AAV 입자를 분리하는 기능을 한다.Step (e) of the present invention is a step of performing anion exchange chromatography. Anion exchange chromatography functions to separate AAV particles contained in the eluate of the affinity chromatography.

상기 음이온 교환 크로마토그래피에는 폴리아민 수지, 트리알킬벤질 암모늄 수지, 아미노에틸(AE), 디에틸아미노에틸(DEAE), 디에틸아미노프로필(DEPE) 및 4차 아미노 에틸(QAE) 수지 및 다른 물질을 포함하는 컬럼이 제한없이 사용될 수 있다. The anion exchange chromatography includes polyamine resins, trialkylbenzyl ammonium resins, aminoethyl (AE), diethylaminoethyl (DEAE), diethylaminopropyl (DEPE) and quaternary amino ethyl (QAE) resins and other materials. Columns can be used without restrictions.

상기 음이온 교환 크로마토그래피는 다양한 완충액으로 평형화, 세척 및 용출 단계를 거칠 수 있다.The anion exchange chromatography may undergo equilibration, washing, and elution steps with various buffer solutions.

본 발명의 일 구현예에 있어서, 상기 단계 (e)의 음이온 교환 크로마토그래피는 Bis-Tris-Propane (BTP), NaCl, 또는 이들의 조합을 포함하는 용출 버퍼에 의해 용출되는 것이나, 이에 한정되는 것은 아니다.In one embodiment of the present invention, the anion exchange chromatography in step (e) is eluted with an elution buffer containing Bis-Tris-Propane (BTP), NaCl, or a combination thereof, but is limited thereto. no.

본 발명의 일 구현예에 있어서, 상기 Bis-Tris-Propane (BTP)는 5-100 mM, 5-80 mM, 5-60 mM, 5-50 mM, 5-40 mM, 5-30 mM, 5-20 mM, 10-100 mM, 10-80 mM, 10-60 mM, 10-50 mM, 10-40 mM, 10-30 mM, 10-20 mM, 15-100 mM, 15-80 mM, 15-60 mM, 15-50 mM, 15-40 mM, 15-30 mM, 15-20 mM, 또는 20 mM의 농도로 상기 용출 버퍼에 포함되나, 이에 한정되는 것은 아니다.In one embodiment of the present invention, the Bis-Tris-Propane (BTP) is 5-100mM, 5-80mM, 5-60mM, 5-50mM, 5-40mM, 5-30mM, 5 -20mM, 10-100mM, 10-80mM, 10-60mM, 10-50mM, 10-40mM, 10-30mM, 10-20mM, 15-100mM, 15-80mM, 15 It is included in the elution buffer at a concentration of -60mM, 15-50mM, 15-40mM, 15-30mM, 15-20mM, or 20mM, but is not limited thereto.

본 발명의 일 구현예에 있어서, 상기 용출 버퍼는 pH 8-10, pH 8.5-10, pH 9-10, pH 8-9.5, pH 8.5-9.5, pH 9-9.5, pH 8-9, pH 8.5-9, 또는 pH 9일 수 있으나, 이에 한정되는 것은 아니다. In one embodiment of the present invention, the elution buffer is pH 8-10, pH 8.5-10, pH 9-10, pH 8-9.5, pH 8.5-9.5, pH 9-9.5, pH 8-9, pH 8.5. It may be -9, or pH 9, but is not limited thereto.

본 발명의 일 구현예에 있어서, 상기 단계 (e)의 음이온 교환 크로마토그래피는 흘려주는 용출 버퍼 내 NaCl의 농도를 점차 상승시키면서 용출시키는 것이다. In one embodiment of the present invention, the anion exchange chromatography in step (e) is performed by eluting while gradually increasing the concentration of NaCl in the flowing elution buffer.

본 발명의 일 구현예에 있어서, 상기 용출액 내 NaCl의 농도는 100 mM 내지 300 mM, 100 mM 내지 280 mM, 100 mM 내지 260 mM, 100 mM 내지 250 mM, 100 mM 내지 240 mM, 100 mM 내지 230 mM, 100 mM 내지 220 mM, 100 mM 내지 210 mM, 100 mM 내지 200 mM, 100 mM 내지 190 mM, 120 mM 내지 300 mM, 120 mM 내지 280 mM, 120 mM 내지 260 mM, 120 mM 내지 250 mM, 120 mM 내지 240 mM, 120 mM 내지 230 mM, 120 mM 내지 220 mM, 120 mM 내지 210 mM, 120 mM 내지 200 mM, 120 mM 내지 190 mM, 140 mM 내지 300 mM, 140 mM 내지 280 mM, 140 mM 내지 260 mM, 140 mM 내지 250 mM, 140 mM 내지 240 mM, 140 mM 내지 230 mM, 140 mM 내지 220 mM, 140 mM 내지 210 mM, 140 mM 내지 200 mM, 140 mM 내지 190 mM, 150 mM 내지 300 mM, 150 mM 내지 280 mM, 150 mM 내지 260 mM, 150 mM 내지 250 mM, 150 mM 내지 240 mM, 150 mM 내지 230 mM, 150 mM 내지 220 mM, 150 mM 내지 210 mM, 150 mM 내지 200 mM, 150 mM 내지 190 mM, 160 mM 내지 300 mM, 160 mM 내지 280 mM, 160 mM 내지 260 mM, 160 mM 내지 250 mM, 160 mM 내지 240 mM, 160 mM 내지 230 mM, 160 mM 내지 220 mM, 160 mM 내지 210 mM, 160 mM 내지 200 mM, 160 mM 내지 190 mM, 170 mM 내지 300 mM, 170 mM 내지 280 mM, 170 mM 내지 260 mM, 170 mM 내지 250 mM, 170 mM 내지 240 mM, 170 mM 내지 230 mM, 170 mM 내지 220 mM, 170 mM 내지 210 mM, 170 mM 내지 200 mM, 또는 170 mM 내지 190 mM이나, 이에 한정되는 것은 아니다.In one embodiment of the present invention, the concentration of NaCl in the eluate is 100mM to 300mM, 100mM to 280mM, 100mM to 260mM, 100mM to 250mM, 100mM to 240mM, 100mM to 230mM. 100mM to 220mM, 100mM to 210mM, 100mM to 200mM, 100mM to 190mM, 120mM to 300mM, 120mM to 280mM, 120mM to 260mM, 120mM to 250mM, 120mM to 240mM, 120mM to 230mM, 120mM to 220mM, 120mM to 210mM, 120mM to 200mM, 120mM to 190mM, 140mM to 300mM, 140mM to 280mM, 140mM to 260mM, 140mM to 250mM, 140mM to 240mM, 140mM to 230mM, 140mM to 220mM, 140mM to 210mM, 140mM to 200mM, 140mM to 190mM, 150mM to 300mM 150mM to 280mM, 150mM to 260mM, 150mM to 250mM, 150mM to 240mM, 150mM to 230mM, 150mM to 220mM, 150mM to 210mM, 150mM to 200mM, 150mM to 190mM, 160mM to 300mM, 160mM to 280mM, 160mM to 260mM, 160mM to 250mM, 160mM to 240mM, 160mM to 230mM, 160mM to 220mM, 160mM to 210mM, 160mM to 200mM, 160mM to 190mM, 170mM to 300mM, 170mM to 280mM, 170mM to 260mM, 170mM to 250mM, 170mM to 240mM, 170mM to 230mM 170mM to 220mM, 170mM to 210mM, 170mM to 200mM, or 170mM to 190mM, but is not limited thereto.

본 발명의 일 구현예에 있어서, 상기 용출액은 단계당 1-3 컬럼 부피(column volume, CV)의 용출 버퍼를 주입하여 용출시키는 것일 수 있다. 보다 구체적으로는 1-3 CV, 1-2.5 CV, 1-2 CV, 1-1.5 CV, 1.5-3 CV, 1.5-2.5 CV, 1.5-2 CV, 1 CV, 1.5 CV, 2 CV, 2.5 CV, 또는 3 CV일 수 있으나, 이에 한정되는 것은 아니다. In one embodiment of the present invention, the eluate may be eluted by injecting 1-3 column volumes (CV) of elution buffer per step. More specifically, 1-3 CV, 1-2.5 CV, 1-2 CV, 1-1.5 CV, 1.5-3 CV, 1.5-2.5 CV, 1.5-2 CV, 1 CV, 1.5 CV, 2 CV, 2.5 CV. , or 3 CV, but is not limited thereto.

본 발명의 구체적인 구현예에 있어서, 상기 용출액은 단계당 1.5 컬럼 부피(column volume, CV)의 용출 버퍼를 주입하여 용출시키는 것이나, 이에 한정되는 것은 아니다. In a specific embodiment of the present invention, the eluate is eluted by injecting 1.5 column volumes (CV) of elution buffer per step, but is not limited thereto.

본 발명의 구체적인 구현예에 있어서, 상기 용출액은 예컨대 170 mM 농도에서 190 mM 농도로 NaCl의 농도를 1-5 mM씩 상승시키면서 단계당 1-3 컬럼 부피의 용출 버퍼를 주입하여 용출시킬 수 있다. 상기 1-3 컬럼 부피당 상승되는 NaCl의 농도는 1-5 mM, 1.2-5 mM, 1.3-5 mM, 1.4-5 mM, 1.5-5 mM, 1.6-5 mM, 1.7-5 mM, 1.8-5 mM, 1.9-5 mM, 2-5 mM, 2.1-5 mM, 2.2-5 mM, 2.3-5 mM, 2.4-5 mM,2.5-5 mM, 2.6-5 mM, 2.7-5 mM, 2.8-5 mM, 2.9-5 mM, 3-5 mM, 3.2-5 mM, 3.4-5 mM, 3.6-5 mM, 3.8-5 mM, 4-5 mM, 4.2-5 mM, 4.4-5 mM, 4.6-5 mM, 4.8-5 mM, 1-4 mM, 1.2-4 mM, 1.3-4 mM, 1.4-4 mM, 1.5-4 mM, 1.6-4 mM, 1.7-4 mM, 1.8-4 mM, 1.9-4 mM, 2-4 mM, 2.1-4 mM, 2.2-4 mM, 2.3-4 mM, 2.4-4 mM,2.5-4 mM, 2.6-4 mM, 2.7-4 mM, 2.8-4 mM, 2.9-4 mM, 3-4 mM, 3.2-4 mM, 3.4-4 mM, 3.6-4 mM, 3.8-4 mM, 1-3.5 mM, 1.2-3.5 mM, 1.3-3.5 mM, 1.4-3.5 mM, 1.5-3.5 mM, 1.6-3.5 mM, 1.7-3.5 mM, 1.8-3.5 mM, 1.9-3.5 mM, 2-3.5 mM, 2.1-3.5 mM, 2.2-3.5 mM, 2.3-3.5 mM, 2.4-3.5 mM,2.5-3.5 mM, 2.6-3.5 mM, 2.7-3.5 mM, 2.8-3.5 mM, 2.9-3.5 mM, 3-3.5 mM, 3.2-3.5 mM, 3.4-3.5 mM, 1-3 mM, 1.2-3 mM, 1.3-3 mM, 1.4-3 mM, 1.5-3 mM, 1.6-3 mM, 1.7-3 mM, 1.8-3 mM, 1.9-3 mM, 2-3 mM, 2.1-3 mM, 2.2-3 mM, 2.3-3 mM, 2.4-3 mM,2.5-3 mM, 2.6-3 mM, 2.7-3 mM, 2.8-3 mM, 2.9-3 mM, 1-2.5 mM, 1.2-2.5 mM, 1.3-2.5 mM, 1.4-2.5 mM, 1.5-2.5 mM, 1.6-2.5 mM, 1.7-2.5 mM, 1.8-2.5 mM, 1.9-2.5 mM, 2-2.5 mM, 2.1-2.5 mM, 2.2-2.5 mM, 2.3-2.5 mM, 2.4-2.5 mM, 1-2 mM, 1.2-2 mM, 1.3-2 mM, 1.4-2 mM, 1.5-2 mM, 1.6-2 mM, 1.7-2 mM, 1.8-2 mM, 1.9-2 mM, 1 mM, 1.5 mM, 2 mM, 2.5 mM, 3 mM, 3.5 mM, 4 mM, 4.5 mM, 또는 5 mM 이나, 이에 한정되는 것은 아니다.In a specific embodiment of the present invention, the eluate can be eluted by injecting 1-3 column volumes of elution buffer per step while increasing the NaCl concentration by 1-5mM from, for example, 170mM to 190mM. The concentration of NaCl raised per 1-3 column volumes is 1-5mM, 1.2-5mM, 1.3-5mM, 1.4-5mM, 1.5-5mM, 1.6-5mM, 1.7-5mM, 1.8-5M mM, 1.9-5mM, 2-5mM, 2.1-5mM, 2.2-5mM, 2.3-5mM, 2.4-5mM,2.5-5mM, 2.6-5mM, 2.7-5mM, 2.8-5mM mM, 2.9-5mM, 3-5mM, 3.2-5mM, 3.4-5mM, 3.6-5mM, 3.8-5mM, 4-5mM, 4.2-5mM, 4.4-5mM, 4.6-5 mM, 4.8-5mM, 1-4mM, 1.2-4mM, 1.3-4mM, 1.4-4mM, 1.5-4mM, 1.6-4mM, 1.7-4mM, 1.8-4mM, 1.9-4 mM, 2-4mM, 2.1-4mM, 2.2-4mM, 2.3-4mM, 2.4-4mM,2.5-4mM, 2.6-4mM, 2.7-4mM, 2.8-4mM, 2.9-4 mM, 3-4mM, 3.2-4mM, 3.4-4mM, 3.6-4mM, 3.8-4mM, 1-3.5mM, 1.2-3.5mM, 1.3-3.5mM, 1.4-3.5mM, 1.5-3.5 mM, 1.6-3.5mM, 1.7-3.5mM, 1.8-3.5mM, 1.9-3.5mM, 2-3.5mM, 2.1-3.5mM, 2.2-3.5mM, 2.3-3.5mM, 2.4-3.5mM,2.5-3.5 mM, 2.6-3.5mM, 2.7-3.5mM, 2.8-3.5mM, 2.9-3.5mM, 3-3.5mM, 3.2-3.5mM, 3.4-3.5mM, 1-3mM, 1.2-3mM, 1.3-3 1.4-3mM, 1.5-3mM, 1.6-3mM, 1.7-3mM, 1.8-3mM, 1.9-3mM, 2-3mM, 2.1-3mM, 2.2-3mM, 2.3-3mM mM, 2.4-3mM,2.5-3mM, 2.6-3mM, 2.7-3mM, 2.8-3mM, 2.9-3mM, 1-2.5mM, 1.2-2.5mM, 1.3-2.5mM, 1.4-2.5 1.5-2.5mM, 1.6-2.5mM, 1.7-2.5mM, 1.8-2.5mM, 1.9-2.5mM, 2-2.5mM, 2.1-2.5mM, 2.2-2.5mM, 2.3-2.5mM, 2.4-2.5mM mM, 1-2mM, 1.2-2mM, 1.3-2mM, 1.4-2mM, 1.5-2mM, 1.6-2mM, 1.7-2mM, 1.8-2mM, 1.9-2mM, 1mM, 1.5mM, 2mM, 2.5mM, 3mM, 3.5mM, 4mM, 4.5mM, or 5mM, but is not limited thereto.

본 발명은 AAV의 생산성이 개선된 AAV의 정제 방법을 제공한다. 본 발명의 AAV 정제 방법을 이용하는 경우, AAV의 생산성을 크게 개선할 수 있다. The present invention provides a method for purifying AAV with improved productivity of AAV. When using the AAV purification method of the present invention, the productivity of AAV can be greatly improved.

도 1은 본 발명의 정제 방법의 단계 (c)와 관련하여 여과액을 양이온 교환 크로마토그래피 또는 음이온 교환 크로마토그래피를 수행함에 따른 AAV 벡터의 수율을 나타낸 도이다.
도 2는 본 발명의 정제 방법의 단계 (a)와 관련하여 AAV 생산 세포의 파쇄방법(freeze and thawing; 또는 microfluidization)에 따른 AAV 벡터의 수율을 나타낸 도이다.
도 3은 본 발명의 정제 방법의 단계 (b)와 관련하여 세포파쇄액을 여과하는 필터의 종류에 따른 벡터의 수율을 나타낸 도이다.
도 4는 본 발명의 정제 방법의 단계 (b)와 관련하여 세포파쇄액을 여과하기 위한 접선유동여과 방식의 필터의 종류와 효소의 조건에 따른 벡터의 수율을 나타낸 도이다.
도 5는 본 발명의 정제 방법의 단계 (d)와 관련하여, 친화성 크로마토 그래피의 용출에 사용되는 용출 버퍼의 pH (2.5/3.5)와 sodium acetate 염의 농도(0.05 M, 0.1 M)에 따른 벡터의 수율을 나타낸 도이다.
도 6은 본 발명의 정제 방법의 단계 (d)와 관련하여, 친화성 크로마토 그래피의 용출에 사용되는 용출 버퍼의 NaCl 염의 농도(0.1 M, 0.25 M, 0.5 M)에 따른 벡터의 수율을 나타낸 도이다.
도 7은 본 발명의 정제 방법의 단계 (e) 음이온 교환 크로마토그래피와 관련하여 용출의 볼륨과 버퍼내 염의 농도에 따른 벡터의 수율을 나타낸 도이다.
도 8은 본 발명의 정제 방법의 단계 (e) 음이온 교환 크로마토그래피와 관련하여 용출의 볼륨과 버퍼내 염의 농도에 따른 벡터의 full/empty 비율을 나타낸 도이다.
도 9는 본 발명의 정제 방법의 전체 공정에 따른 AAV 벡터의 수율을 나타낸 도이다.
도 10은 본 발명의 실시예에서 각 조건에 따라 정제된 AAV 벡터를 실버스테이닝한 결과를 나타낸 도이다.
도 11은 본 발명에서 최종 확정된 정제방법에 의해 정제된 AAV의 품질을 Analytical Ultracentrifuge를 이용하여 분석한 결과를 나타낸 도이다.
Figure 1 is a diagram showing the yield of AAV vectors when the filtrate is subjected to cation exchange chromatography or anion exchange chromatography in relation to step (c) of the purification method of the present invention.
Figure 2 is a diagram showing the yield of AAV vectors according to a method of disrupting AAV producing cells (freeze and thawing; or microfluidization) in relation to step (a) of the purification method of the present invention.
Figure 3 is a diagram showing the vector yield according to the type of filter for filtering the cell lysate in relation to step (b) of the purification method of the present invention.
Figure 4 is a diagram showing the vector yield according to the type of tangential flow filtration filter and enzyme conditions for filtering the cell lysate in relation to step (b) of the purification method of the present invention.
Figure 5 shows the vector according to the pH (2.5/3.5) of the elution buffer used for elution of affinity chromatography and the concentration of sodium acetate salt (0.05 M, 0.1 M) in relation to step (d) of the purification method of the present invention. This is a diagram showing the yield.
Figure 6 is a diagram showing the yield of the vector according to the NaCl salt concentration (0.1 M, 0.25 M, 0.5 M) of the elution buffer used for elution of affinity chromatography in relation to step (d) of the purification method of the present invention. am.
Figure 7 is a diagram showing the vector yield according to the elution volume and salt concentration in the buffer in relation to step (e) anion exchange chromatography of the purification method of the present invention.
Figure 8 is a diagram showing the full/empty ratio of the vector according to the elution volume and salt concentration in the buffer in relation to step (e) anion exchange chromatography of the purification method of the present invention.
Figure 9 is a diagram showing the yield of AAV vector according to the overall process of the purification method of the present invention.
Figure 10 is a diagram showing the results of silver staining of AAV vectors purified according to each condition in an example of the present invention.
Figure 11 is a diagram showing the results of analyzing the quality of AAV purified by the final purification method in the present invention using an Analytical Ultracentrifuge.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention in more detail, and it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples according to the gist of the present invention. .

실시예Example

본 명세서 전체에 걸쳐, 특정 물질의 농도를 나타내기 위하여 사용되는 "%"는 별도의 언급이 없는 경우, 고체/고체는 (중량/중량) %, 고체/액체는 (중량/부피) %, 그리고 액체/액체는 (부피/부피) %이다.Throughout this specification, “%” used to indicate the concentration of a specific substance means (weight/weight) % for solid/solid, (weight/volume) % for solid/liquid, and Liquid/liquid is (volume/volume) %.

실시예 1: AAV 초기 정제 ProcessExample 1: AAV initial purification process

본 발명자들은 상기와 같은 순서로 초기 정제 공정을 확립하였다. 공정 별 공정 조건은 하기 표 1에 나타내었다.The present inventors established the initial purification process in the above order. Process conditions for each process are shown in Table 1 below.

150 mL 기준 Process ConditionsProcess Conditions based on 150 mL Process StepProcess Step InputInput Process ConditionsProcess Conditions Equipment & ConsumablesEquipment & Consumables Cell Pellet
[Input Titer (3 F/Ts)]
Cell Pellet
[Input Titer (3 F/Ts)]
150150 2500 g, 29 min and storage at -80℃, min 24hrs2500 g, 29 min and storage at -80℃, min 24hrs Centrifuge, FreezerCentrifuge, Freezer
SuspensionSuspension 55 20 mM Tris + 100 mM NaCl, pH 7.520mM Tris + 100mM NaCl, pH 7.5 Stirring MixerStirring Mixer Cell DisruptionCell Disruption 150150 -80℃, ~12 hrs-80℃, ~12 hours FreezerFreezer SupernatantSupernatant 150150 8000 g, 30 min8000g, 30min CentrifugeCentrifuge Nucleic acid DigestionNucleic acid digestion 150150 25 unit/mL, 37℃, 30 min25 units/mL, 37℃, 30 min Stirring MixerStirring Mixer Filtration 1Filtration 1 150150 180 cm2 180cm2 ~5 um Filter (Sartorius)~5 um Filter (Sartorius) Filtration 2Filtration 2 200200 34 cm2 34cm2 0.22 um Bottle Top filter0.22 um Bottle Top filter CEXCEX 200200 5 mL Column5mL Column Capto S (Cytiva)Capto S (Cytiva) AEX 1AEX 1 200200 5 mL Column5mL Column Capto Q (Cytiva)Capto Q (Cytiva) AffinityAffinity 200200 1 mL Column1mL Column Capto AVB (Cytiva)Capto AVB (Cytiva) Buffer AdjustmentBuffer Adjustment 66 20 mM BTP + 50 mM NaCl, pH 9.020mM BTP + 50mM NaCl, pH 9.0 Manual ShakingManual Shaking AEX 2AEX 2 120120 1 mL1mL CIMmultus QA (Bia)CIMultus QA (Bia) 100 kDa Filtration100 kDa Filtration 1515 100 kDa100 kDa Amicon (Merck)Amicon (Merck) Frozen DS(Output Titer)Frozen DS (Output Titer) 0.20.2 FreezerFreezer

실시예 2: CEX 및 AEX 칼럼의 선택Example 2: Selection of CEX and AEX columns

본 발명자들은 상기 AAV의 초기 정제 공정을 개선하기 위하여, 양이온 교환 크로마토그래피(CEX)와 음이온 교환 크로마토그래피(AEX) 칼럼 중 어느 것이 더 적합한지 확인하고자 하기 표 2에 나타낸 바와 같이, 칼럼의 종류, pH, 및 버퍼의 조성을 변경하면서 AAV 벡터의 수율을 측정하였다.In order to improve the initial purification process of the AAV, the present inventors wanted to determine which of the cation exchange chromatography (CEX) and anion exchange chromatography (AEX) columns was more suitable. As shown in Table 2 below, the types of columns, The yield of the AAV vector was measured while changing the pH and composition of the buffer.

CEX 및 AEX 중 칼럼 후보의 선택Selection of column candidates between CEX and AEX Process StepProcess Step Process Candidates (CEX or AEX prior to Affinity)Process Candidates (CEX or AEX prior to Affinity) CEX, pH7.5_10mMCEX, pH7.5_10mM CEX, pH7.5_20mMCEX, pH7.5_20mM CEX, pH9.0_10mMCEX, pH9.0_10mM CEX, pH9.0_20mMCEX, pH9.0_20mM AEX, pH7.5_10mMAEX, pH7.5_10mM AEX, pH7.5_20mMAEX, pH7.5_20mM AEX, pH9.0_10mMAEX, pH9.0_10mM AEX, pH9.0_20mMAEX, pH9.0_20mM Cell pelletCell pellet 100100 100100 100100 100100 100100 100100 100100 100100 Input titer (3 F/Ts)Input titer (3 F/Ts) 1.05E+121.05E+12 1.18E+121.18E+12 1.05E+121.05E+12 1.18E+121.18E+12 1.05E+121.05E+12 1.18E+121.18E+12 1.05E+121.05E+12 1.18E+121.18E+12 SuspensionSuspension Cell disruption (1 F/T)Cell disruption (1 F/T) SupernatantSupernatant 9090 9191 9090 9191 9090 9191 9090 9191 Nucleic acid digestionNucleic acid digestion Filtration IFiltration I 7474 7474 7474 7474 7474 7474 7474 7474 Filtration IIFiltration II 5959 5959 5959 5959 5959 5959 5959 5959 CEXCEX 4848 4848 5050 5050 N/AN/A N/AN/A N/AN/A N/AN/A AEX IAEX I N/AN/A N/AN/A N/AN/A N/AN/A 1515 1313 4747 5050 AffinityAffinity 1515 1717 2121 1818 55 44 1616 1717 Buffer adjustmentBuffer adjustment AEX IIAEX II 99 1212 1616 1313 1One 1One 99 1111 100 kDa filtration100 kDa filtration 66 77 1111 88 00 00 66 88 Frozen DSFrozen DS 5.75.7 7.27.2 11.211.2 8.18.1 0.40.4 0.30.3 5.95.9 7.57.5 Output titerOutput titer 6.0E+106.0E+10 8.5E+108.5E+10 1.2E+111.2E+11 9.5E+109.5E+10 3.3E+093.3E+09 3.7E+093.7E+09 6.2E+106.2E+10 7.9E+107.9E+10

상기와 같은 조건으로 여과 후 CEX 또는 AEX를 수행하여 AAV 벡터의 수율을 측정하였다. After filtration under the same conditions as above, CEX or AEX was performed to measure the yield of the AAV vector.

구체적으로, Filtration 2 단계까지 완료한 Sample을 준비하고, 다음의 4가지 조건으로 Buffer를 제조하였다.Specifically, a sample that had completed Filtration step 2 was prepared, and a buffer was manufactured under the following four conditions.

pH 7.5pH 7.5 pH 9.0pH 9.0 10 mM Tris + 100 mM NaCl10mM Tris + 100mM NaCl 20 mM Tris + 100 mM NaCl20mM Tris + 100mM NaCl 10 mM Tris + 100 mM NaCl10mM Tris + 100mM NaCl 20 mM Tris + 100 mM NaCl20mM Tris + 100mM NaCl

Capto S 5 mL Column (CEX, cation exchange chromatography)을 AKTA Avant와 연결하였다. 다음으로 상기 표 3에 나타낸 조건으로 제조한 Buffer를 사용하여 Column Equilibrium을 수행하였다. Sample Pump를 이용하여 Filtration을 거친 Sample을 CEX Column에 Binding 하였다. Flow through 방식으로 제조한 Buffer를 흘려서 Elution을 진행하였다. Elution이 종료되면 Column CIP (cleaning in place)를 수행하였다. 상기 과정을 반복하면서 4종류의 Buffer를 모두 확인하였다. 4종류의 Buffer에 대한 실험을 모두 종료하면, Capto S 5mL Column에 Storage Buffer를 채운 후 AKTA Avant와 분리하였다. Capto S 5 mL Column (CEX, cation exchange chromatography) was connected to AKTA Avant. Next, Column Equilibrium was performed using the buffer prepared under the conditions shown in Table 3 above. The sample that had undergone filtration was bound to the CEX Column using the Sample Pump. Elution was performed by flowing the buffer prepared using the flow through method. When elution was completed, column CIP (cleaning in place) was performed. By repeating the above process, all four types of buffers were confirmed. When the experiment with all four types of buffers was completed, the Capto S 5mL Column was filled with Storage Buffer and separated from the AKTA Avant.

Capto Q 5mL Column (AEX, anion exchange chromatography)을 이용하여 상기와 동일한 방법으로 4종류의 buffer에 대해 실험을 진행하였다.Experiments were conducted on four types of buffers in the same manner as above using Capto Q 5mL Column (AEX, anion exchange chromatography).

상기 과정을 통하여 회수한 총 8가지 Sample의 후속 공정을 모두 수행하고 최종 Sample의 Output Titer를 측정하여 비교하였다. 결과는 도 1에 나타내었다.All subsequent processes for a total of eight samples recovered through the above process were performed, and the output titer of the final sample was measured and compared. The results are shown in Figure 1.

IEX Column은 Cation Exchange Column(CEX)과 Anion Exchange Column(AEX)으로 나뉘어 사용되게 되는데, 상기 도 1에 나타낸 바와 같이, 실험 결과 AEX를 사용하였을 때에 비해 CEX를 사용하였을 때의 Vg Yield가 평균적으로 약 2.3배 높은 것을 확인할 수 있었다. The IEX Column is divided into a Cation Exchange Column (CEX) and an Anion Exchange Column (AEX). As shown in FIG. 1, the experimental results show that the Vg Yield when using CEX is on average about 10% lower than when using AEX. It was confirmed that it was 2.3 times higher.

또한, CEX를 사용할 때의 Buffer 조성은 pH 7.5의 중성 환경에서 보다 pH 9.0의 약염기 환경에서 Vg Yield가 약 1.5배 높게 나타났다. 하지만, 후속 공정인 Affinity Chromatography를 사용하기 위해 권장되는 pH 환경이 중성이기 때문에 pH 7.5를 선정하였다. 해당 결과를 바탕으로 Affinity Column(AC)을 사용하기 전 전처리 단계로 CEX Column을 사용하며, 이 때의 버퍼 조성은 20 mM Tris + 100 mM NaCl, pH 7.5으로 선정하였다.In addition, the buffer composition when using CEX showed that the Vg Yield was about 1.5 times higher in a weak base environment of pH 9.0 than in a neutral environment of pH 7.5. However, pH 7.5 was selected because the recommended pH environment for using the subsequent process, Affinity Chromatography, is neutral. Based on the results, the CEX Column was used as a pretreatment step before using the Affinity Column (AC), and the buffer composition at this time was selected as 20mM Tris + 100mM NaCl, pH 7.5.

상기 결과를 바탕으로 Capto S 5 mL Column (CEX)과 20 mM Tris + 100 mM NaCl, pH 7.5 Buffer 조건을 선정한 후, 3회 반복하여 실험을 수행한 결과, 각 각의 Vg Yield는 15.1, 11.5, 10.9%로 측정되었고, 평균은 12.5, 표준 편차는 2.3, CV는 약 18%로 확인되었다. 해당 결과를 통하여 150 mL Scale에서의 공정 재현성이 있는 것으로 판단하였다. Based on the above results, Capto S 5 mL Column (CEX), 20mM Tris + 100mM NaCl, pH 7.5 Buffer conditions were selected, and the experiment was repeated three times. As a result, the Vg Yield was 15.1, 11.5, respectively. It was measured at 10.9%, the average was 12.5, the standard deviation was 2.3, and the CV was confirmed to be about 18%. Based on the results, it was determined that the process was reproducible on a 150 mL scale.

또한, 상기 150 ml에서 재현성이 있는 것을 확인하고, Filtration 2 단계에서의 Filter Area를 33 cm2에서 55 cm2로, CEX Volume을 5 mL에서 10 mL로 volume을 2배로 올려 300 ml scale에서 재현성을 확인하였다. 해당 실험은 총 3회 반복하여 수행하였고, 실험 결과, 각각의 Vg Yield는 13.5, 10.5, 13.1%로 측정되었으며, 평균은 12.4, 표준 편차는 1.6, CV는 약 13%로 확인되었다.In addition, it was confirmed that there was reproducibility at the 150 ml scale, and the Filter Area in the Filtration 2 step was doubled from 33 cm 2 to 55 cm 2 and the CEX Volume was doubled from 5 mL to 10 mL to ensure reproducibility at the 300 ml scale. Confirmed. The experiment was repeated a total of three times, and as a result of the experiment, each Vg Yield was measured as 13.5, 10.5, and 13.1%, with an average of 12.4, standard deviation of 1.6, and CV of about 13%.

실시예 3: 세포 파쇄방법Example 3: Cell disruption method

본 발명자들은 또한, 상기 AAV의 초기 정제 공정을 개선하기 위하여, 세포 파쇄 방법을 변경하면서 AAV 벡터의 수율을 측정하였다.The present inventors also measured the yield of the AAV vector while changing the cell disruption method in order to improve the initial purification process of the AAV.

세포 파쇄 방법Cell disruption method Process StageProcess Stage Partial Disruption (1 time F/T)Partial Disruption (1 time F/T) Complete Disruption (MF)Complete Disruption (MF) Cell pelletCell pellet 100100 100100 100100 100100 Input titer (3 F/Ts)Input titer (3 F/Ts) 6.65E+116.65E+11 1.36E+121.36E+12 6.65E+116.65E+11 1.36E+121.36E+12 SuspensionSuspension Cell disruptionCell disruption SupernatantSupernatant 9999 9191 249249 176176 Nucleic acid digestionNucleic acid digestion Filtration IFiltration I 8080 7676 212212 146146 Filtration IIFiltration II 7171 6060 127127 9696 CEXCEX 5656 5151 105105 7272 AffinityAffinity 2525 1515 2525 1818 Buffer adjustmentBuffer adjustment AEX IIAEX II 1616 1313 1616 1515 100 kDa filtration100 kDa filtration 1212 1111 1212 1212 Frozen DSFrozen DS 11.511.5 10.910.9 12.412.4 12.312.3 Output titerOutput titer 7.70E+107.70E+10 1.48E+111.48E+11 7.90E+107.90E+10 1.68E+111.68E+11

구체적으로, Sample Preparation과정을 거쳐서 준비한 Sample을 1:1로 나누어 준비하고, Sample 중 절반은 Freezing & Thawing(F/T) 과정을 1 cycle 거쳐서 Cell Disruption을 수행하고, 나머지 Sample 절반은 High Pressure Homogenizer (Microfluidization)를 이용하여 2500 psi 조건으로 1 cycle 거쳐서 Cell Disruption을 수행하였다. 상기 과정을 2회 수행함으로써 회수한 총 4개 Sample의 후속 공정을 모두 수행하고 최종 Sample의 Output Titer를 측정하여 비교하였다.Specifically, the samples prepared through the Sample Preparation process are divided 1:1, half of the samples undergo Cell Disruption through one cycle of Freezing & Thawing (F/T) process, and the remaining half of the samples are subjected to High Pressure Homogenizer ( Cell disruption was performed through one cycle under 2500 psi conditions using microfluidization. By performing the above process twice, all subsequent processes were performed on a total of 4 samples recovered, and the output titer of the final sample was measured and compared.

결과는 도 2에 나타내었다.The results are shown in Figure 2.

도 2에 나타낸 바와 같이, 첫번째 실험에서는 F/T 방식과 MF 방식의 Vg Yield값이 각각, 11.5와 12.4로 나타남에 따라 MF 방식이 약 8% 높은 것으로 나타났다. 두번째 실험에서는 F/T 방식과 MF 방식의 Vg Yield값이 각각, 10.9와 12.3으로 나타남에 따라 MF 방식이 약 13% 높은 것으로 나타났다. 해당 실험 결과를 바탕으로 Cell Disruption 방식으로 MF 방식을 선정하였다.As shown in Figure 2, in the first experiment, the Vg Yield values of the F/T method and the MF method were 11.5 and 12.4, respectively, showing that the MF method was about 8% higher. In the second experiment, the Vg Yield values of the F/T method and MF method were 10.9 and 12.3, respectively, showing that the MF method was about 13% higher. Based on the experimental results, the MF method was selected as the cell disruption method.

실시예 4: 여과 방법 선택Example 4: Filtration Method Selection

본 발명자들은 또한, 상기 AAV의 초기 정제 공정을 개선하기 위하여, 여과방법을 변경하면서 AAV 벡터의 수율을 측정하였다.The present inventors also measured the yield of the AAV vector while changing the filtration method in order to improve the initial purification process of the AAV.

Process StageProcess Stage RunsRuns Satobran PSatobran P Bottle Top vacuum FilterBottle Top Vacuum Filter Millipore Express® SHCMillipore Express® SHC Cell pelletCell pellet 100100 100100 100100 Input titer (3 F/Ts)Input titer (3 F/Ts) 1.64E+121.64E+12 1.64E+121.64E+12 1.64E+121.64E+12 SuspensionSuspension Cell disruptionCell disruption SupernatantSupernatant 9999 9999 9999 Nucleic acid digestionNucleic acid digestion Filtration IFiltration I 7979 7979 7979 Filtration IIFiltration II 7171 6767 6767 CEXCEX 6363 5757 5656 AffinityAffinity 1313 1616 1818 Buffer adjustmentBuffer adjustment AEX IIAEX II 1010 1313 1616 100 kDa filtration100 kDa filtration 99 1111 1212 Frozen DSFrozen DS 8.58.5 10.810.8 11.811.8 Output titerOutput titer 1.40E+111.40E+11 1.59E+111.59E+11 1.98E+111.98E+11

구체적으로, 먼저 Filter 1 (Depth) 과정을 거쳐서 준비한 Sample을 3등분으로 나누어 준비하였다.Specifically, the sample prepared through Filter 1 (Depth) process was first divided into three equal parts.

Filter 2 (Absolute)를 다음과 같이 3가지 준비하여 각 Sample에 대해 여과를 수행하였다.Three types of Filter 2 (Absolute) were prepared as follows and filtration was performed for each sample.

FilterFilter Sartobran PSartobran P Bottle Top Vacuum FilterBottle Top Vacuum Filter Millipore Express®SHCMillipore Express®SHC Pore size (μm)*Pore size (μm)* 0.65/0.450.65/0.45 0.220.22 0.5/0.20.5/0.2 Surface Area (cm2)Surface Area ( cm2 ) 17.317.3 3333 17.317.3 MembraneMembrane Cellulose AcetateCellulose Acetate Poly Ether SulfatePoly Ether Sulfate Poly Ether SulfatePoly Ether Sulfate

상기 pore size에 관한 기재 중 a/b와 같은 표시는 상기 필터가 a μm의 pore size를 갖는 필터 및 b μm의 pore size를 갖는 필터를 둘 다 포함하는 이중 필터 구성임을 의미한다. 상기 과정을 통하여 회수한 총 3가지 Sample의 후속 공정을 모두 수행하고 최종 Sample의 Output Titer를 측정하여 비교하였다. 결과는 도 3에 나타내었다.In the description of the pore size, a designation such as a/b means that the filter is a double filter configuration including both a filter with a pore size of a μm and a filter with a pore size of b μm. All subsequent processes for a total of three samples recovered through the above process were performed, and the output titer of the final sample was measured and compared. The results are shown in Figure 3.

도 3에 나타낸 바와 같이, 각 Filter 종류에 따른 Vg Yield는 8.5, 10.8, 11.8로 나타났다. 상기 결과로부터, cellulose acetate 소재의 filter보다 poly ether sulfate 소재의 filter가 더 높은 Vg Yield를 가짐을 알 수 있었고, 이에 filtration 2에 사용되는 filter로는 가장 높은 Vg Yield를 가지는 Millipore Express SHC® Filter를 선정하였다.As shown in Figure 3, the Vg Yield for each filter type was 8.5, 10.8, and 11.8. From the above results, it was found that the filter made of poly ether sulfate had a higher Vg Yield than the filter made of cellulose acetate. Therefore, the Millipore Express SHC ® Filter with the highest Vg Yield was selected as the filter used in filtration 2. .

상기 결과를 바탕으로 결정된 공정 조건을 유지한 상태에서 Sample volume을 4배 증가시켜 600 mL sample Scale에서의 공정 재현성을 확인하였다. Based on the above results, while maintaining the determined process conditions, the sample volume was increased four times to confirm process reproducibility on a 600 mL sample scale.

Filtration 2의 경우, Millipore Express® SHC Filter를 사용하였으며, Filter Area를 17 cm2에서 34 cm2로 Scale up하여 수행하였고, CEX의 경우, Column Volume을 5 mL에서 20 mL로 Scale up하여 수행하였으며, AC (affinity chromatography)의 경우, Column Volume을 1 mL에서 2 mL 또는 5 mL로 Scale up하여 수행하였다. 상기 과정을 4회 반복 수행하여 총 4개 Sample을 회수하였고, 후속 공정을 모두 수행하고 최종 Sample의 Output Titer를 측정하여 비교하였다. For Filtration 2, Millipore Express® SHC Filter was used and the filter area was scaled up from 17 cm 2 to 34 cm 2. For CEX, the column volume was scaled up from 5 mL to 20 mL. In the case of AC (affinity chromatography), the column volume was scaled up from 1 mL to 2 mL or 5 mL. The above process was repeated 4 times to recover a total of 4 samples, all subsequent processes were performed, and the output titer of the final sample was measured and compared.

실험 결과, 각 각의 Vg Yield는 12.3, 18.8, 11.9, 14.8로 측정되었으며, 평균은 12.5, 표준 편차는 3.2, CV는 약 22%로 확인되었다. 해당 결과를 통하여 600 mL Scale에서의 공정 재현성이 있는 것으로 판단하였다.As a result of the experiment, each Vg Yield was measured as 12.3, 18.8, 11.9, and 14.8, with an average of 12.5, standard deviation of 3.2, and CV of about 22%. Based on the results, it was determined that the process was reproducible on a 600 mL scale.

실시예 5: 접선유동여과(Tangential Flow Filtration) 필터의 선택Example 5: Selection of Tangential Flow Filtration Filter

본 발명자들은 또한, 상기 AAV의 초기 정제 공정을 개선하기 위하여, 접선유동 여과법에 사용되는 필터를 변경하면서 AAV 벡터의 수율을 측정하였다.The present inventors also measured the yield of the AAV vector while changing the filter used in the tangential flow filtration method in order to improve the initial purification process of the AAV.

상기 실시예 2 내지 실시예 4의 결과를 바탕으로 Filtration 2까지 공정을 수행하였다. TFF (Tangential Flow Filtration) System에 Hollow fiber filter(1, 2회: mPES 30 kDa hollow fiber 235 cm2 / 3, 4 회: mPES 100 kDa hollow fiber 235 cm2)를 연결하였다. 0.2M NaOH와 DW(distilled water)를 사용하여 TFF System과 Hollow fiber를 CIP(clearing in place) 하였다. Transfer Pump를 이용하여 Sample을 Sample Tank에 주입하였다. TFF를 수행하여 준비한 Buffer (20 mM Tris + 100 mM NaCl, pH 7.5)로 Buffer를 교체하였다. Buffer 교체가 완료된 Sample은 회수하여 Nucleic acid Digestion (25 U, 50 U, 또는 100 U/30 min 또는 60 min)을 수행하였다. 상기 과정을 통하여 회수한 총 4가지 Sample의 후속 공정을 모두 수행하고 최종 Sample의 Output Titer를 측정하여 비교하였다.Based on the results of Examples 2 to 4, the process up to Filtration 2 was performed. A hollow fiber filter (1, 2 times: mPES 30 kDa hollow fiber 235 cm 2 / 3, 4 times: mPES 100 kDa hollow fiber 235 cm 2 ) was connected to the TFF (Tangential Flow Filtration) System. The TFF System and hollow fiber were cleared in place (CIP) using 0.2M NaOH and distilled water (DW). The sample was injected into the sample tank using a transfer pump. The buffer was replaced with the buffer prepared by performing TFF (20mM Tris + 100mM NaCl, pH 7.5). Samples for which buffer replacement was completed were recovered and Nucleic acid Digestion (25 U, 50 U, or 100 U/30 min or 60 min) was performed. All subsequent processes for a total of four samples recovered through the above process were performed, and the output titer of the final sample was measured and compared.

Process StageProcess Stage RunsRuns 30 kDa
25 U, 30 min
30 kDa
25U, 30min
30 kDa
50 U, 30 min
30 kDa
50U, 30min
100 kDa
100 U, 30 min
100 kDa
100 U, 30 min
100 kDa
100 U, 60 min
100 kDa
100 U, 60 min
Culture brothCulture broth 100100 100100 100100 100100 Input titer (3 F/Ts)Input titer (3 F/Ts) 1.11E+131.11E+13 9.07E+129.07E+12 6.28E+126.28E+12 6.23E+126.23E+12 Cell disruption (MF)Cell disruption (MF) SupernatantSupernatant 109109 109109 9898 107107 Filtration IFiltration I 7575 102102 8181 9292 Filtration IIFiltration II 120120 142142 8989 8888 TFFT.F.F. 136136 174174 9999 8282 Nucleic acid digestionNucleic acid digestion 120120 153153 8383 8585 CEXCEX 8383 135135 8787 6666 Affinity & NeutralizatonAffinity & Neutralization 5353 6666 3030 3030 Buffer adjustmentBuffer adjustment AEX IIAEX II 2222 1818 1010 1010 100 kDa filtration100 kDa filtration 2121 2222 1010 88 Frozen DSFrozen DS 20.620.6 21.721.7 10.110.1 8.18.1 Output titerOutput titer 2.14E+122.14E+12 1.92E+121.92E+12 6.34E+116.34E+11 5.07E+115.07E+11

결과는 도 4에 나타내었다. The results are shown in Figure 4.

도 4에 나타낸 바에 따르면, TFF Step Yield는 Run 1,2의 경우가 Run 3,4보다 두 배 이상 크게 확인되었다. 그러나, TFF 전후의 Run 1, 2, 3, 4 모두 Vg Yeild가 95~110% 정도가 되었으며, 실제로는 멤브레인 컷오프가 30 kDa인 섬유 필터(hollow fiber filter)와 100 kDa인 섬유 필터(hollow fiber filter)의 공정효율 차이가 크지 않았다. 그럼에도, 100 kDa의 필터에서 약 2시간 가량 공정 시간이 단축되는 효과가 발생하였기 때문에 100 kDa의 섬유 필터(hollow fiber filter)를 선정하였다.As shown in Figure 4, the TFF Step Yield for Runs 1 and 2 was confirmed to be more than twice as large as that for Runs 3 and 4. However, in Runs 1, 2, 3, and 4 before and after TFF, the Vg Yeild was about 95-110%, and in fact, a hollow fiber filter with a membrane cutoff of 30 kDa and a hollow fiber filter with a 100 kDa membrane cutoff were used. ), the difference in process efficiency was not significant. Nevertheless, a 100 kDa hollow fiber filter was selected because the 100 kDa filter shortened the process time by about 2 hours.

실시예 6: 친화성 크로마토그래피 개선Example 6: Affinity Chromatography Improvement

본 발명자들은 상기 AAV의 초기 정제 공정을 개선하기 위하여, 친화성 크로마토그래피 법을 개선하고자 하였다. The present inventors sought to improve the affinity chromatography method in order to improve the initial purification process of AAV.

실시예 6-1. Buffer의 pH 및 sodium acetate 농도의 결정Example 6-1. Determination of pH and sodium acetate concentration of buffer

첫번째 실험에서는 버퍼 pH와 Sodium Acetate 농도에 따른 Vg Yield를 확인하였다. 구체적으로, pH 2.5 또는 3.5, sodium acetate의 농도를 0.05 M 또는 0.1 M인 버퍼를 사용하여 친화성 크로마토그래피(Hitrap Capto AVB 5 mL Column)를 수행하였다. In the first experiment, Vg Yield was confirmed according to buffer pH and sodium acetate concentration. Specifically, affinity chromatography (Hitrap Capto AVB 5 mL Column) was performed using a buffer with pH 2.5 or 3.5 and a sodium acetate concentration of 0.05 M or 0.1 M.

Buffer pH별 비교Comparison by buffer pH Process StageProcess Stage RunsRuns 1One 22 33 44 Culture brothCulture broth 100100 100100 100100 100100 Input titer (3 F/Ts)Input titer (3 F/Ts) 1.24E+121.24E+12 1.24E+121.24E+12 1.24E+121.24E+12 1.24E+121.24E+12 Cell disruption (MF)Cell disruption (MF) SupernatantSupernatant 135135 135135 135135 135135 Filtration IFiltration I 143143 143143 143143 143143 Filtration IIFiltration II 130130 130130 130130 130130 TFFT.F.F. 111111 111111 111111 111111 Nucleic acid digestionNucleic acid digestion CEXCEX 5353 5353 5353 5353 Affinity & NeutralizatonAffinity & Neutralization 3434 1One 3838 1One Buffer adjustmentBuffer adjustment AEX IIAEX II 100 kDa filtration100 kDa filtration Frozen DSFrozen DS Output titerOutput titer

결과는 도 5에 나타내었다. The results are shown in Figure 5.

도 5에 나타낸 바와 같이, Sodium Acetate의 농도와는 무관하게 pH 3.5에 비하여 pH 2.5에서 매우 높은 Vg Yield가 나타남을 확인하였다. 또한, 동일한 pH 2.5 환경을 갖는 조건에서는 0.05 M Sodium Acetate 에서보다 0.1 M Sodium Acetate 버퍼 환경에서 Vg Yield가 약 10%정도 더 높은 것을 확인하였다.As shown in Figure 5, it was confirmed that a very high Vg Yield was observed at pH 2.5 compared to pH 3.5, regardless of the concentration of sodium acetate. In addition, under conditions with the same pH 2.5 environment, it was confirmed that the Vg Yield was approximately 10% higher in the 0.1 M Sodium Acetate buffer environment than in the 0.05 M Sodium Acetate buffer environment.

상기 결과로부터, 친화성 크로마토그래피에 사용되는 버퍼로 0.1 M Sodium Acetate, pH 2.5인 버퍼를 선택하였다.From the above results, 0.1 M Sodium Acetate, pH 2.5, was selected as the buffer used for affinity chromatography.

실시예 6-2. Buffer의 염(salt) 농도의 결정Example 6-2. Determination of salt concentration of buffer

두 번째 실험에서는 첫번째 실험 결과를 바탕으로 0.1 M Sodium Acetate, pH 2.5 버퍼에서 염농도를 다르게 하였을 때의 Vg Yield를 확인하였다. In the second experiment, based on the results of the first experiment, Vg Yield was confirmed when different salt concentrations were used in 0.1 M Sodium Acetate, pH 2.5 buffer.

구체적으로, 0.1 M NaCl, 0.25 M NaCl, 또는 0.5 M NaCl의 염 농도에서 Vg Yield를 측정하였다. Specifically, Vg Yield was measured at salt concentrations of 0.1 M NaCl, 0.25 M NaCl, or 0.5 M NaCl.

Salt 농도 별 비교Comparison by salt concentration Process StageProcess Stage RunsRuns 1One 22 33 Culture brothCulture broth 100100 100100 100100 Input titer (3 F/Ts)Input titer (3 F/Ts) 1.71E+121.71E+12 1.71E+121.71E+12 1.71E+121.71E+12 Cell disruption (MF)Cell disruption (MF) SupernatantSupernatant 8080 8080 8080 Filtration IFiltration I 8686 8686 8686 Filtration IIFiltration II 8686 8686 8686 TFFT.F.F. 7474 7474 7474 Nucleic acid digestionNucleic acid digestion CEXCEX 5151 5151 5151 Affinity & NeutralizationAffinity & Neutralization 3838 3333 3737 Buffer adjustmentBuffer adjustment AEX IIAEX II 100 kDa filtration100 kDa filtration Frozen DSFrozen DS Output titerOutput titer

결과는 도 6에 나타내었다.The results are shown in Figure 6.

도 6에 나타낸 바와 같이, 각 염의 농도에 따라서 Vg Yield가 38, 33, 37로 나타남을 확인하였다.As shown in Figure 6, it was confirmed that Vg Yield was 38, 33, and 37 depending on the concentration of each salt.

상기 결과로부터, AC를 수행하기 위한 최적화 Buffer 조성을 0.1 M Sodium Acetate, 0.1 M NaCl, pH 2.5 로 선정하였다.From the above results, the optimal buffer composition for performing AC was selected as 0.1 M Sodium Acetate, 0.1 M NaCl, pH 2.5.

실시예 7: 음이온 교환 크로마토그래피 개선Example 7: Improvement of anion exchange chromatography

본 발명자들은 상기 AAV의 초기 정제 공정을 개선하기 위하여, 음이온 교환 크로마토그래피에서 적절한 조건의 Elution Buffer 조건을 찾아 공정 수율을 개선하고자 하였다. 상기 실시예 6의 친화성 크로마토그래피 개선 결과를 바탕으로 친화성 크로마토그래피까지 공통적으로 공정을 수행하였다. In order to improve the initial purification process of AAV, the present inventors sought to improve the process yield by finding appropriate Elution Buffer conditions in anion exchange chromatography. Based on the affinity chromatography improvement results of Example 6, a common process including affinity chromatography was performed.

다음의 2가지 Buffer를 제조하였다.The following two buffers were manufactured.

NormalNormal 20 mM BTP, pH 9.020mM BTP, pH 9.0 ElutionElution 2020 mM BTP + 1 M NaCl, pH 9.0mM BTP + 1 M NaCl, pH 9.0

먼저 CIMmultus QA monolith column 1 mL을 AKTA Avant와 연결하였다. 상기 표 10의 Normal Buffer를 사용하여 Column Equilibrium을 수행하였다. Sample Pump를 이용하여 친화성 크로마토그래피를 거친 Sample을 AEX Column에 Binding하였다. Gradient Elution (Conc B: 10~20%, 60 CV) 방식으로 Elution을 진행하였다. 구체적으로 상기 두 가지 버퍼(20 mM BTP, pH9.0 / 20 mM BTP, 1 M NaCl, pH9.0)를 각각 Pump A와 Pump B를 이용하여 흘려주어, 버퍼 내 NaCl의 농도를 조절하였다. Elution된 Sample을 수집하고, Elution이 종료되면 Column CIP를 수행하였다. Column 내부의 Storage Buffer를 채운 후, 기기와 분리하여 보관한다. 마지막으로 수집된 Sample 내의 Empty/Full Ratio를 확인하였다. 상기 empty/full ratio는 ELISA(Progen AAV 1 Titration kit) 분석법을 사용하였다. 구체적으로 FPLC 상에서 Peak에 따라 Fraction을 수집한 후, 해당 Fraction에 대한 상기 ELISA 결과를 바탕으로 AAV1 Capsid 비율을 Empty/Full Ratio로 나타내었다.First, 1 mL of CIMmultus QA monolith column was connected to AKTA Avant. Column Equilibrium was performed using the Normal Buffer in Table 10 above. The sample that had undergone affinity chromatography was bound to the AEX Column using the Sample Pump. Elution was performed using the Gradient Elution (Conc B: 10~20%, 60 CV) method. Specifically, the above two buffers (20mM BTP, pH9.0 / 20mM BTP, 1M NaCl, pH9.0) were flowed using Pump A and Pump B, respectively, to adjust the concentration of NaCl in the buffer. The eluted sample was collected, and column CIP was performed when elution was completed. After filling the storage buffer inside the column, store it separately from the device. Lastly, the Empty/Full Ratio in the collected sample was checked. The empty/full ratio was determined using the ELISA (Progen AAV 1 Titration kit) analysis method. Specifically, after collecting fractions according to peak on FPLC, the AAV1 Capsid ratio was expressed as Empty/Full Ratio based on the ELISA results for the corresponding fraction.

실험 조건과 결과는 표 11 내지 12, 도 7 내지 도 8에 나타내었다.The experimental conditions and results are shown in Tables 11 and 12 and Figures 7 and 8.

Process StageProcess Stage RunsRuns 1One 22 33 Culture brothCulture broth 100100 100100 100100 Input titer (3 F/Ts)Input titer (3 F/Ts) 5.98E+125.98E+12 1.90E+131.90E+13 9.49E+129.49E+12 Cell disruption (MF)Cell disruption (MF) SupernatantSupernatant 8181 111111 191191 Filtration IFiltration I 6666 129129 183183 Filtration IIFiltration II 6363 135135 114114 TFFT.F.F. 3636 126126 9898 Nucleic acid digestionNucleic acid digestion 3737 CEXCEX 4343 8585 107107 Affinity & NeutralizationAffinity & Neutralization 1313 2727 3535 Buffer adjustmentBuffer adjustment AEX IIAEX II 77 2020 1515 100 kDa filtration100 kDa filtration 66 2020 1111 Frozen DSFrozen DS 5.55.5 20.320.3 11.011.0 Output titerOutput titer 3.43E+113.43E+11 3.88E+123.88E+12 1.03E+121.03E+12

실험 결과, Step 별 CV가 5 CV일 때는, Peak 분리가 제대로 이루어지지 않았지만 Step 별 CV를 1.5 CV로 낮춰서 수행을 하자 Peak 분리가 이루어지는 것을 확인할 수 있었다. Peak가 나누어지는 부분을 중심으로 뒤쪽 영역에서의 Empty/Full Ratio가 82%로 매우 높은 Ratio로 회수되는 것을 확인하였다. 특히, NaCl의 농도가 170 mM부터 시작하여 2 mM NaCl당 1.5 CV로 NaCl의 농도를 증가시켜 그 농도가 190 mM될 때까지의 용출액에서 empty/full ratio가 높게 확인되었다.As a result of the experiment, when the CV for each step was 5 CV, peak separation was not performed properly, but when the CV for each step was lowered to 1.5 CV, it was confirmed that peak separation was achieved. It was confirmed that the Empty/Full Ratio in the area behind the peak dividing area was recovered at a very high ratio of 82%. In particular, the empty/full ratio was confirmed to be high in the eluate starting from a NaCl concentration of 170mM and increasing the NaCl concentration to 1.5 CV per 2mM NaCl until the concentration reached 190mM.

실시예 8: AAV 정제 공정 셋업Example 8: AAV purification process setup

Process procedureProcess procedure

Process ConditionProcess Condition Process StepProcess Step Input (mL)Input (mL) Output (mL)Output (mL) ScaleScale Cell PelletCell Pellet 600600 600600 Cell DisruptionCell Disruption 600600 600600 SupernatantSupernatant 600600 600600 Filtration I (Full recovery: 20 mM + Tris 100 mM NaCl, pH 7.5)Filtration I (Full recovery: 20mM + Tris 100mM NaCl, pH 7.5) 600600 650650 Sartorius PP3 (PP)
5 μm 180 cm2
Sartorius PP3 (PP)
5 μm 180 cm 2
Filtration IIFiltration II 650650 650650 Merck SHC (PES)
0.5-0.2 μm 17 cm2
Merck SHC (PES)
0.5-0.2 μm 17 cm 2
TFF
with 20 mM Tris + 100 mM NaCl, pH 7.5
T.F.F.
with 20mM Tris + 100mM NaCl, pH 7.5
650650 200200 Repligen
100 kDa 225 cm2
Repligen
100 kDa 225 cm 2
Nucleic acid digestionNucleic acid digestion 200200 200200 50 U 1 hr 37℃50 U 1 hr 37℃ Volume restorationVolume restoration 200200 600600 With 20 mM Tris + 100 mM NaCl, pH 7.5With 20mM Tris + 100mM NaCl, pH 7.5 CEXCEX 600600 600600 Cytiva Capto S 20 mLCytiva Capto S 20mL Affinity (100 mM Sodium Aceate + 100 mM NaCl,pH 2.5)
& Neutralization (60 mM BTP, pH 9.0)
Affinity (100mM Sodium Aceate + 100mM NaCl,pH 2.5)
& Neutralization (60mM BTP, pH 9.0)
650650 2020 Cytiva Capto AVB 5 mLCytiva Capto AVB 5 mL
Buffer adjustmentBuffer adjustment 2020 250250 With 20 mM BTP + 50 mM NaCl, pH 9.0With 20mM BTP + 50mM NaCl, pH 9.0 AEXAEX 250250 2727 BIA CIM QA 1 mLBIA CIM QA 1 mL 100 kDa filtration100 kDa filtration 2727 0.80.8 Sartorius Vivaspin 100 kDaSartorius Vivaspin 100 kDa Frozen DSFrozen DS 0.80.8 0.80.8

실시예 8-1. Cell PelletExample 8-1. Cell Pellet

-80℃에 보관된 SF9 유래 곤충세포에서 배양액을 꺼내 37℃ Water bath에 넣어 배양액을 녹인 후, Magnet을 이용해 100 ~ 150 rpm 정도로 기포가 생기지 않을 정도로 약하게 약 10~20분간 Stirring을 하였다. 이후 시료분석을 위해 0.5 mL를 샘플링 하였다.The culture medium was taken out from the SF9-derived insect cells stored at -80°C, placed in a 37°C water bath to dissolve the culture medium, and then stirred using a magnet at 100 to 150 rpm gently enough to prevent the formation of air bubbles for about 10 to 20 minutes. Afterwards, 0.5 mL was sampled for sample analysis.

실시예 8-2. Microfluidizer 사용 세포 파쇄Example 8-2. Cell Disruption Using Microfluidizer

Microfluidizer를 사용하여 2500 psi로 세포를 파쇄하였다. 세포 파쇄액은 50 mL Conical tube 12개에 분주한 뒤 10000 rpm (약 13000 g) 1시간 10분, 4℃ 조건에서 원심분리하였다. 원심분리가 끝난 Sample의 상층액을 수거하여 분석용 시료 0.6 mL을 따로 채취해 -80℃에 보관하였다.Cells were disrupted at 2500 psi using a microfluidizer. The cell lysate was dispensed into 12 50 mL conical tubes and centrifuged at 10,000 rpm (approximately 13,000 g) for 1 hour and 10 minutes at 4°C. The supernatant of the sample after centrifugation was collected, and 0.6 mL of sample for analysis was collected separately and stored at -80°C.

실시예 8-3. FiltrationExample 8-3. Filtration

Sartorius PP3 Depth filter에 DW를 20 mL/min으로 약 5분간 Wetting 한 후 물을 모두 제거해주었다. 시료를 넣어서 20 mL/min으로 Filtration 하였다. Filter에 시료가 거의 다 들어갔을 때쯤 Tris buffer (20 mM tris + 100 mM NaCl, pH 7.5)를 50 mL넣어서 시료를 완전히 회수하였다. 분석용 시료 0.6 mL을 따로 채취해 -80℃에 보관하였다. After wetting DW on a Sartorius PP3 Depth filter at 20 mL/min for about 5 minutes, all water was removed. The sample was added and filtrated at 20 mL/min. When the sample was almost completely in the filter, 50 mL of Tris buffer (20mM tris + 100mM NaCl, pH 7.5) was added to completely recover the sample. 0.6 mL of sample for analysis was collected separately and stored at -80°C.

Merck Optiscale SHC filter도 20 mL/min 속도로 DW Wetting을 5분 진행하였다. 시료를 넣어서 20 mL/min으로 Filtration 하였다. 분석용 시료 0.6 mL을 따로 채취해 -80℃에 보관하였고, 나머지 시료는 Filtration 후 2 ~ 8℃에서 Overnight 보관하였다. DW Wetting was also performed on the Merck Optiscale SHC filter at a speed of 20 mL/min for 5 minutes. The sample was added and filtrated at 20 mL/min. 0.6 mL of sample for analysis was collected separately and stored at -80℃, and the remaining sample was stored overnight at 2 to 8℃ after filtration.

실시예 8-4. TFF (mPES 100 kDa Hollow Fiber 235 cmExample 8-4. TFF (mPES 100 kDa Hollow Fiber 235 cm 22 ))

TFF 사용을 위한 Tube를 물로 씻어준 다음, Hollow Fiber에 Tube와 압력 센서를 연결해주었다. Retentate tube 및 Permeate tube는 폐액통으로 수집한다. 준비한 Buffer (20 mM Tris + 100 mM NaCl, pH 7.5) 약 4.5 L와 Tube를 TFF 구성에 각각 연결해주었다. 시료를 흘려주어 TFF를 수행하고, 회수된 시료는 냉장 보관하고 분석용 시료 0.6 mL은 Sampling 하여 -80도에 보관하였다. After washing the tube for TFF use with water, the tube and pressure sensor were connected to the hollow fiber. Retentate tubes and permeate tubes are collected into the waste liquid container. Approximately 4.5 L of the prepared buffer (20mM Tris + 100mM NaCl, pH 7.5) and the tube were connected to the TFF configuration. TFF was performed by flowing the sample, the recovered sample was refrigerated, and 0.6 mL of sample for analysis was sampled and stored at -80 degrees.

실시예 8-5. Benzonase 처리Example 8-5. Benzonase treatment

TFF 가 끝난 용액에 1/5000 Volume의 Benzonase를 처리하고 (e.g. 시료 200 mL인 경우, 40 μl의 Benzonase 처리), 37℃ Water bath에서 1시간동안 반응시켰다. 이후 600 mL까지 20 mM Tris + 100 mM NaCl, pH 7.5 Buffer로 희석 후 냉장 보관하였다. The solution after TFF was treated with 1/5000 volume of Benzonase (e.g. for 200 mL of sample, 40 μl of Benzonase was treated) and reacted in a 37°C water bath for 1 hour. Afterwards, it was diluted to 600 mL with 20mM Tris + 100mM NaCl, pH 7.5 Buffer and stored in the refrigerator.

실시예 8-6. 정제 준비Example 8-6. Tablet preparation

<CEX Buffer 제조><CEX Buffer Manufacturing>

20 mM Tris + 100 mM NaCl, pH 7.5 (Trisma HCl 50.8 g/L, Trisma base 9.44 g/L, NaCl 116.88 g/L 제조(x20 용액) 후 희석해서 사용, Base buffer)20mM Tris + 100mM NaCl, pH 7.5 (Trisma HCl 50.8 g/L, Trisma base 9.44 g/L, NaCl 116.88 g/L prepared (x20 solution) then diluted and used, Base buffer)

2 M NaCl (Column Wash)2 M NaCl (Column Wash)

1 M NaOH (Column Wash)1 M NaOH (Column Wash)

0.2 M Sodium Acetate, 20% EtOH (Column storage)0.2 M Sodium Acetate, 20% EtOH (Column storage)

<친화성 크로마토그래피 Buffer 제조><Manufacture of Affinity Chromatography Buffer>

20 mM Tris + 100 mM NaCl, pH 7.5 (Base buffer) 20mM Tris + 100mM NaCl, pH 7.5 (Base buffer)

0.1 M sodium acetate + 0.1 M NaCl, pH 2.5 (Elution buffer)0.1 M sodium acetate + 0.1 M NaCl, pH 2.5 (Elution buffer)

20% EtOH (Column storage)20% EtOH (Column storage)

0.1 M Citric acid (Column wash)0.1 M Citric acid (Column wash)

10 mM NaOH (Column wash)10mM NaOH (Column wash)

PBS pH 7.5 (Tablet, Column wash)PBS pH 7.5 (Tablet, Column wash)

20% EtOH (Column storage)20% EtOH (Column storage)

60 mM BTP, pH 9.0 (Elution Sample 중화용)60mM BTP, pH 9.0 (for neutralization of Elution Sample)

20 mM BTP + 50 mM NaCl, pH 9.0 (Sample 희석용)20mM BTP + 50mM NaCl, pH 9.0 (for sample dilution)

<AEX Buffer 제조><Manufacturing of AEX Buffer>

20 mM BTP pH 9.0 (Base buffer)20mM BTP pH 9.0 (Base buffer)

20 mM BTP + 1 M NaCl, pH 9.0 (Elution buffer)20mM BTP + 1M NaCl, pH 9.0 (Elution buffer)

1 M NaOH, 2 M NaCl (Column wash)1 M NaOH, 2 M NaCl (Column wash)

0.5 M Ammonium acetate (Column wash)0.5 M Ammonium acetate (Column wash)

20% EtOH (Column storage)20% EtOH (Column storage)

<FPLC 기기 CIP><FPLC device CIP>

AEX에 사용되는 Line(A1, A3, B1, B2, B3, S1, out1)을 DW에 담그었다.Lines (A1, A3, B1, B2, B3, S1, out1) used in AEX were immersed in DW.

모든 Line을 System CIP를 이용해서 DW로 Purging을 진행하였다. Purging을 수행하기 위해서 Flow Rate : 50 mL/min, Volume per Position : 35 mL/min으로 기입한 후, 'System CIP' 탭에서 수행하였다.All lines were purged with DW using System CIP. To perform purging, enter Flow Rate: 50 mL/min, Volume per Position: 35 mL/min and perform it in the 'System CIP' tab.

실시예 8-7. FPLC (CEX, Hitrap capto S 5 mL 4ea)Example 8-7. FPLC (CEX, Hitrap capto S 5 mL 4ea)

Buffer와 Line을 아래 표 13와 같이 연결하였다.Buffer and Line are connected as shown in Table 13 below.

LineLine BufferBuffer A1A1 20 mM Tris + 100 mM NaCl, pH 7.520mM Tris + 100mM NaCl, pH 7.5 A2A2 20% EtOH20% EtOH A3A3 DWD.W. B1B1 2 M NaCl2M NaCl B2B2 1 M NaOH1M NaOH B3B3 0.2 M Sodium Acetate + 20% EtOH0.2 M Sodium Acetate + 20% EtOH S1S1 TFF 이후 시료Sample after TFF Out1Out1 Storage BottleStorage Bottle

Line에 20% EtOH를 0.5 mL/min으로 흘려주면서 기포가 들어가지 않도록 Hitrap capto S 5 mL Column을 4개 이어서 AKTA에 연결하였다. (Column Position 4)While flowing 20% EtOH through the line at 0.5 mL/min, four Hitrap capto S 5 mL columns were connected to AKTA to prevent air bubbles from entering. (Column Position 4)

CEX를 수행하기 위하여 방법을 다음과 같이 설정하였다.To perform CEX, the method was set as follows.

Column VolumeColumn Volume 20 mL20mL Pressure Limit Delta ColumnPressure Limit Delta Column 0.4 MPa0.4 MPa Flow RateFlow Rate 20 mL/min20mL/min WavelengthWavelength UV280 & UV260UV280 & UV260

A1 Buffer(20 mM Tris + 100 mM NaCl, pH 7.5)를 Flow Rate 20 mL/min으로 5 CV만큼 흘려서 Equilibration을 수행하였다.Equilibration was performed by flowing 5 CV of A1 Buffer (20mM Tris + 100mM NaCl, pH 7.5) at a flow rate of 20 mL/min.

S1(TFF 이후 시료)을 Flow Rate 20 mL/min으로 Column에 모두 흘려서 Sample Application을 수행하였다. 이 때, Column에 Binding하지 못하고 통과하는 Sample은 Out1으로 모두 수집하였다. (해당 Sample이 AAV를 함유하고 있는 Target Sample이다.) Sample application was performed by flowing all of S1 (sample after TFF) into the column at a flow rate of 20 mL/min. At this time, all samples that passed without binding to the column were collected as Out1. (The sample is a target sample containing AAV.)

다시 A1 Buffer (20 mM Tris + 100 mM NaCl, pH 7.5)를 Flow Rate 20 mL/min으로 2.5 CV만큼 흘려서 Reequilibration을 수행하였다.Reequilibration was performed again by flowing 2.5 CV of A1 Buffer (20mM Tris + 100mM NaCl, pH 7.5) at a flow rate of 20 mL/min.

B1 Buffer(2 M NaCl)를 Flow Rate 20 mL/min으로 3 CV만큼 흘려서 Column에 Binding한 물질들을 Elution하였다.Materials bound to the column were eluted by flowing 3 CV of B1 Buffer (2 M NaCl) at a flow rate of 20 mL/min.

B2 Buffer(1 M NaOH)를 Flow Rate 20 mL/min으로 5 CV만큼 흘려서 Column Wash를 진행하였다.Column wash was performed by flowing 5 CV of B2 Buffer (1 M NaOH) at a flow rate of 20 mL/min.

A3 Buffer(DW)를 Flow Rate 20 mL/min으로 5 CV만큼 흘려서 Column 내에 존재하는 NaOH를 제거하였다.NaOH present in the column was removed by flowing 5 CV of A3 Buffer (DW) at a flow rate of 20 mL/min.

A1 Buffer(20 mM Tris + 100 mM NaCl, pH 7.5)를 Flow Rate 20 mL/min으로 6 CV만큼 흘려서 Equilibration을 수행하였다.Equilibration was performed by flowing 6 CV of A1 Buffer (20mM Tris + 100mM NaCl, pH 7.5) at a flow rate of 20 mL/min.

B3 Buffer(0.2 M Sodium Acetate + 20% EtOH)를 Flow Rate 15 mL/min으로 5 CV만큼 흘려 Column을 Storage용액으로 채운 후, Column을 기기와 분리하여 적절한 환경에서 Column을 보관하였다.After filling the column with the storage solution by flowing 5 CV of B3 Buffer (0.2 M Sodium Acetate + 20% EtOH) at a flow rate of 15 mL/min, the column was separated from the device and stored in an appropriate environment.

CEX에 사용한 모든 Line을 DW에 담그었다.All lines used in CEX were immersed in DW.

상술한 CIP 방법으로 모든 Line을 DW로 세척하였다.All lines were washed with DW using the CIP method described above.

CEX에 사용한 모든 Line을 20% EtOH Buffer에 담그었다.All lines used in CEX were immersed in 20% EtOH Buffer.

3.11.12에 나온 CIP 방법으로 모든 Line을 20% EtOH로 채워서 보관한다.Fill all lines with 20% EtOH and store them using the CIP method described in 3.11.12.

실시예 8-8. FPLC (AC, Cytiva Capto AVB 5 mL 1ea)Example 8-8. FPLC (AC, Cytiva Capto AVB 5 mL 1ea)

AC에 사용하는 모든 Line을 DW에 담그었다. CIP 방법으로 모든 Line을 DW로 세척하였다. 또한 Buffer와 Line을 아래 표 16와 같이 연결하였다.All lines used in AC were dipped in DW. All lines were washed with DW using the CIP method. Additionally, the buffer and line are connected as shown in Table 16 below.

LineLine BufferBuffer A1A1 20 mM Tris + 100 mM NaCl, pH 7.520mM Tris + 100mM NaCl, pH 7.5 A2A2 20% EtOH20% EtOH A3A3 PBSPBS B1B1 0.1 M Sodium Acetate + 0.1 M NaCl, pH 2.50.1 M Sodium Acetate + 0.1 M NaCl, pH 2.5 B2B2 0.1 M Citric acid0.1 M Citric acid B3B3 10 mM NaOH10mM NaOH S1S1 CEX 이후 시료 (냉장보관)Samples after CEX (refrigerated storage) Out1Out1 Storage BottleStorage Bottle

냉장보관한 Hitrap Capto AVB 5 mL column을 20% EtOH를 0.5 mL/min으로 흘려주면서 기포가 들어가지 않도록 AKTA에 연결해주었다.A refrigerated Hitrap Capto AVB 5 mL column was connected to AKTA to prevent air bubbles from entering while flowing 20% EtOH at 0.5 mL/min.

다음으로 Sample Fraction Collect를 위한 Tube를 준비하였다. 15 mL Tube에 5 mL의 60 mM BTP, pH 9.0 buffer를 첨가하고 번호 순서대로 6개의 Tube를 AKTA에 장착하였다. AC를 수행하기 위하여 Method Setting을 다음과 같이 설정하였다.Next, a tube for sample fraction collection was prepared. 5 mL of 60 mM BTP, pH 9.0 buffer was added to a 15 mL tube, and 6 tubes were mounted in AKTA in numerical order. To perform AC, the Method Setting was set as follows.

Column VolumeColumn Volume 5 mL5mL Pressure Limit Delta ColumnPressure Limit Delta Column 0.4 MPa0.4 MPa Flow RateFlow Rate 5 mL/min5mL/min WavelengthWavelength UV280 & UV260UV280 & UV260

A1 Buffer(20 mM Tris + 100 mM NaCl, pH 7.5)를 Flow Rate 5 mL/min으로 10 CV만큼 흘려서 Equilibration을 수행하였다.Equilibration was performed by flowing 10 CV of A1 Buffer (20mM Tris + 100mM NaCl, pH 7.5) at a flow rate of 5 mL/min.

S1 (CEX 이후 시료 (냉장보관))을 Flow Rate 5 mL/min으로 Column에 모두 흘려서 Sample Application을 수행하였다. 이 때, Column에 Binding하지 못하고 통과하는 Sample은 Out1으로 모두 수집하였다.Sample application was performed by flowing S1 (sample after CEX (refrigerated storage)) into the column at a flow rate of 5 mL/min. At this time, all samples that passed without binding to the column were collected as Out1.

다시 A1 Buffer(20 mM Tris + 100 mM NaCl, pH 7.5)를 Flow Rate 20 mL/min으로 20 CV만큼 흘려서 Reequilibration을 수행하였다.Reequilibration was performed again by flowing 20 CV of A1 Buffer (20mM Tris + 100mM NaCl, pH 7.5) at a flow rate of 20 mL/min.

B1 Buffer(0.1 M Sodium Acetate + 0.1 M NaCl, pH 2.5)를 Flow Rate 5 mL/min으로 5 CV만큼 흘려서 Column에 Binding한 물질들을 Elution하였다. 이 때, Peak 부분에 있는 Fraction만을 2~3개 선별적으로 모아 합친 후 합친 Sample에서 0.6 mL을 Sampling하여 -80℃에서 보관하였다. Materials bound to the column were eluted by flowing 5 CV of B1 Buffer (0.1 M Sodium Acetate + 0.1 M NaCl, pH 2.5) at a flow rate of 5 mL/min. At this time, 2 to 3 fractions from the peak were selectively collected and combined, and then 0.6 mL was sampled from the combined sample and stored at -80°C.

B2 Buffer(0.1 M Citric acid)를 Flow Rate 5 mL/min으로 8 CV만큼 흘려서 Column Wash를 진행하였다.Column wash was performed by flowing 8 CV of B2 Buffer (0.1 M Citric acid) at a flow rate of 5 mL/min.

A3 Buffer(PBS)를 Flow Rate 5 mL/min으로 6 CV만큼 흘려서 Column Wash를 진행하였다.Column wash was performed by flowing 6 CV of A3 Buffer (PBS) at a flow rate of 5 mL/min.

B3 Buffer(10 mM NaOH)를 Flow Rate 5 mL/min으로 10 CV만큼 흘려서 Column Wash를 진행하였다.Column wash was performed by flowing 10 CV of B3 Buffer (10mM NaOH) at a flow rate of 5 mL/min.

A3 Buffer(PBS)를 Flow Rate 5 mL/min으로 10 CV만큼 흘려서 Column Wash를 진행하였다.Column wash was performed by flowing 10 CV of A3 Buffer (PBS) at a flow rate of 5 mL/min.

A2 Buffer(20% EtOH)를 Flow Rate 4 mL/min으로 15 CV만큼 흘려 Column을 Storage용액으로 채운 후, Column을 기기와 분리하여 적절한 환경에서 Column을 보관하였다.After filling the column with the storage solution by flowing 15 CV of A2 Buffer (20% EtOH) at a flow rate of 4 mL/min, the column was separated from the device and stored in an appropriate environment.

AC에 사용한 모든 Line을 DW에 담갔다.All lines used in AC were soaked in DW.

상술한 CIP 방법으로 모든 Line을 DW로 세척하였다.All lines were washed with DW using the CIP method described above.

AC에 사용한 모든 Line을 20% EtOH Buffer에 담근다. CIP 방법으로 모든 Line을 20% EtOH로 채워서 보관하였다.Soak all lines used in AC in 20% EtOH Buffer. All lines were filled with 20% EtOH and stored using the CIP method.

실시예 8-9. FPLC (AEX, CIMmultus QA 1 mL monolithic column (2 um), 1 ea)Example 8-9. FPLC (AEX, CIMmultus QA 1 mL monolithic column (2 um), 1 ea)

AC 진행 후 회수한 시료를 0.6 mL만큼 Sampling하여 -80℃에서 보관하였다.The sample recovered after AC was sampled to the extent of 0.6 mL and stored at -80°C.

회수한 시료를 20 mM BTP + 50 mM NaCl pH 9.0 용액으로 12 ~ 13배 희석하였다. (e.g. 20 mL Affinity 용액 -> 250 mL 로 희석)The recovered sample was diluted 12 to 13 times with a 20mM BTP + 50mM NaCl pH 9.0 solution. (e.g. 20 mL Affinity solution -> diluted to 250 mL)

AEX에 사용하는 모든 Line을 DW에 담갔다.All lines used in AEX were dipped into DW.

CIP 방법으로 모든 Line을 DW로 세척한다.All lines are cleaned with DW using the CIP method.

Buffer와 Line을 아래 표와 같이 연결한다.Connect Buffer and Line as shown in the table below.

LineLine BufferBuffer A1A1 20 mM BTP, pH9.020mM BTP, pH9.0 A2A2 20% EtOH20% EtOH A3A3 DWD.W. B1B1 20 mM BTP + 1 M NaCl, pH 9.020 mM BTP + 1 M NaCl, pH 9.0 B2B2 1 M NaOH + 2 M NaCl1 M NaOH + 2 M NaCl B3B3 0.5 M Ammonium Acetate0.5 M Ammonium Acetate S1S1 AC 이후 희석 시료(냉장보관)Diluted samples after AC (refrigerated) Out1Out1 Storage BottleStorage Bottle

CIMmultus QA 1 mL Monolith Column을 0.5 mL/min의 20% EtOH를 흘리며 AKTA에 연결하였다.CIMmultus QA 1 mL Monolith Column was connected to AKTA with 20% EtOH flowing at 0.5 mL/min.

AEX를 수행하기 위하여 Method Setting을 다음과 같이 설정하였다.To perform AEX, the Method Setting was set as follows.

Column VolumeColumn Volume 1 mL1mL Pressure Limit Delta ColumnPressure Limit Delta Column 2 MPa2 MPa Flow RateFlow Rate 3 mL/min3mL/min WavelengthWavelength UV280 & UV260UV280 & UV260

A1 Buffer(20 mM BTP, pH9.0), B1 Buffer(20 mM BTP + 1 M NaCl, pH 9.0)를 Conc B 6%로 설정하고 Flow Rate 3 mL/min으로 15 CV만큼 흘려서 Equilibration을 수행하였다.S1 (AC 이후 시료 (냉장보관))을 Flow Rate 3 mL/min으로 Column에 모두 흘려서 Sample Application을 수행하였다.Equilibration was performed by setting A1 Buffer (20 mM BTP, pH 9.0) and B1 Buffer (20 mM BTP + 1 M NaCl, pH 9.0) to Conc B 6% and flowing 15 CV at a flow rate of 3 mL/min. Sample application was performed by flowing S1 (sample after AC (refrigerated storage)) into the column at a flow rate of 3 mL/min.

A1 Buffer(20 mM BTP, pH9.0), B1 Buffer(20 mM BTP + 1 M NaCl, pH 9.0)를 Conc B 6%로 설정하고 Flow Rate 3 mL/min으로 10 CV만큼 흘려서 Reequilibration을 수행하였다.Reequilibration was performed by setting A1 Buffer (20 mM BTP, pH 9.0) and B1 Buffer (20 mM BTP + 1 M NaCl, pH 9.0) to Conc B 6% and flowing 10 CV at a flow rate of 3 mL/min.

A1 Buffer(20 mM BTP, pH9.0), B1 Buffer(20 mM BTP + 1 M NaCl, pH 9.0)를 초기 Conc B 17%로 설정하고 1.5 CV 마다 Conc B가 0.2%씩 Step으로 상승하여 최종적으로 24%까지 Conc B가 상승하도록 설정하였다.Set A1 Buffer (20mM BTP, pH9.0) and B1Buffer (20mM BTP + 1M NaCl, pH9.0) to the initial Conc B of 17%, and Conc B rises by 0.2% in steps every 1.5 CV, finally Conc B was set to increase to 24%.

이 때, Column을 거쳐서 나오는 Sample은 1.5 CV씩 15mL Tube에 수집하였다. 이후 peak를 보고 peak가 상승하는 부분부터 Collect 된 Fraction만을 모은 뒤 0.5 mL Sampling 하였다. Peak가 상승하는 포인트 이전은 AAV Empty Fraction으로 Collect하여 -80℃에서 보관하고, 상승하는 포인트 1개는 별도 보관. 이 후, Peak 상승부분부터 모두 Collecting하여 수집하였다(AAV Full). AAV Full Fraction 은 Pipette으로 모두 합친 후 0.6 mL을 Sampling하여 Deep Freezer에 보관하였다. 나머지 용액은 농축하기 이전까지 냉장 보관하였다.At this time, samples coming out through the column were collected in 15mL tubes of 1.5 CV each. Afterwards, we looked at the peak, collected only the fractions collected from the part where the peak rises, and did 0.5 mL sampling. Before the point where the peak rises, collect it as AAV Empty Fraction and store it at -80℃, and store one rising point separately. Afterwards, everything was collected starting from the rising part of the peak (AAV Full). AAV full fractions were combined using a pipette, then 0.6 mL was sampled and stored in a deep freezer. The remaining solution was refrigerated until concentrated.

A3 Buffer(DW)를 Flow Rate 3 mL/min으로 10 CV만큼 흘려서 Column Wash를 진행하였다.Column wash was performed by flowing 10 CV of A3 Buffer (DW) at a flow rate of 3 mL/min.

B2 Buffer(1 M NaOH + 2 M NaCl)를 Flow Rate 2 mL/min으로 10 CV만큼 흘려서 Column Wash를 진행하였다.Column wash was performed by flowing 10 CV of B2 Buffer (1 M NaOH + 2 M NaCl) at a flow rate of 2 mL/min.

A3 Buffer(DW)를 Flow Rate 3 mL/min으로 20 CV만큼 흘려서 Column Wash를 진행하였다.Column wash was performed by flowing 20 CV of A3 Buffer (DW) at a flow rate of 3 mL/min.

B3 Buffer(0.5 M Ammonium Acetate)를 Flow Rate 3 mL/min으로 10 CV만큼 흘려서 Column Wash를 진행하였다.Column wash was performed by flowing 10 CV of B3 Buffer (0.5 M Ammonium Acetate) at a flow rate of 3 mL/min.

A3 Buffer(DW)를 Flow Rate 3 mL/min으로 15 CV만큼 흘려서 Column Wash를 진행하였다.Column wash was performed by flowing 15 CV of A3 Buffer (DW) at a flow rate of 3 mL/min.

A2 Buffer(20% EtOH)를 Flow Rate 2 mL/min으로 15 CV만큼 흘려 Column을 Storage용액으로 채운 후, Column을 기기와 분리하여 적절한 환경에서 Column을 보관하였다.After filling the column with the storage solution by flowing 15 CV of A2 Buffer (20% EtOH) at a flow rate of 2 mL/min, the column was separated from the device and stored in an appropriate environment.

AEX에 사용한 모든 Line을 DW에 담갔다.All lines used in AEX were dipped in DW.

CIP 방법으로 모든 Line을 DW로 세척하였다.All lines were washed with DW using the CIP method.

AEX에 사용한 모든 Line을 20% EtOH Buffer에 담갔다.All lines used in AEX were soaked in 20% EtOH Buffer.

CIP 방법으로 모든 Line을 20% EtOH로 채워서 보관하였다.All lines were filled with 20% EtOH and stored using the CIP method.

실시예 8-10. 농축Examples 8-10. concentration

Sartorius Viva Spin에 AEX까지 거친 Sample을 넣고 2000 g에서 약 2~3분 돌렸다. 남은 시료에 pH 8.0 PBS를 15 mL까지 채운 뒤 2500 g에서 약 2~3분 돌려주었다. 상기 과정을 1회 더 반복하였다. 최종 Volume이 0.8 ~ 1 mL 이 되도록 농축 후 분석용 시료와 보관용 시료를 분주해서 보관하였다. 보관용 시료의 경우 0.2~0.3 mL 로 분주하고 분석용 시료는 0.1 mL로 분주 하였다.A rough sample up to AEX was put into the Sartorius Viva Spin and spun at 2000 g for about 2 to 3 minutes. The remaining sample was filled with pH 8.0 PBS up to 15 mL and then rotated at 2500 g for about 2 to 3 minutes. The above process was repeated one more time. After concentrating so that the final volume was 0.8 to 1 mL, samples for analysis and samples for storage were divided and stored. For storage samples, 0.2~0.3 mL was dispensed, and for analysis samples, 0.1 mL was dispensed.

Process StageProcess Stage Input (mL)Input (mL) Output
(mL)
Output
(mL)
ScaleScale RunsRuns
1One 22 33 44 Culture brothCulture broth 600600 600600 100100 100100 100100 100100 Input titer (3 F/Ts)Input titer (3 F/Ts) 2.19E+132.19E+13 3.04E+133.04E+13 4.61E+124.61E+12 6.93E+126.93E+12 Cell disruption (MF)Cell disruption (MF) 600600 600600 SupernatantSupernatant 600600 600600 117117 8888 125125 110110 Filtration I (full recovery: 20 mM Tris 100 mM NaCl pH7.5)Filtration I (full recovery: 20mM Tris 100mM NaCl pH7.5) 600600 650650 Sartorius PP3(PP) 5㎛
180 cm2
Sartorius PP3(PP) 5㎛
180cm2
8787 7777 134134 105105
Filtration IIFiltration II 650650 650650 Merck SHC (PES) 0.5-0.2 ㎛ 17 cm2Merck SHC (PES) 0.5-0.2 ㎛ 17 cm2 101101 8888 127127 9797 TFF with 20 mM Tris 100 mM NaCl pH7.5TFF with 20mM Tris 100mM NaCl pH7.5 650650 200200 Repligen
100 kDa
225 cm2
Repligen
100 kDa
225 cm2
128128 7676 9898 7474
Nucleic acid digestionNucleic acid digestion 200200 200200 50 U 1hr 37℃50U 1hr 37℃ 128128 7676 9898 7474 Volume restorationVolume restoration 200200 600600 With 20 mM Tris 100 mM NaCl pH7.5With 20mM Tris 100mM NaCl pH7.5 CEXCEX 600600 600600 Cytiva Capto S 20 mlCytiva Capto S 20ml 8383 5454 7777 4949 Affinity (100 mM Sodium Acetate, 100 mM NaCl, pH2.5) & Neutralization (60 mM BTP, pH9.0)Affinity (100mM Sodium Acetate, 100mM NaCl, pH2.5) & Neutralization (60mM BTP, pH9.0) 650650 2020 Cytiva Capto AVB 5 mlCytiva Capto AVB 5 ml 3939 2727 1010 1717 Buffer adjustmentBuffer adjustment 2020 250250 With 20 mM BTP 50 mM NaCl pH9.0With 20mM BTP 50mM NaCl pH9.0 AEXAEX 250250 2727 BIA CIM QA 1 mlBIA CIM QA 1ml 1616 1313 77 1010 100 kDa filtration100 kDa filtration 2727 0.80.8 Sartorius Vivaspin 100 kDaSartorius Vivaspin 100 kDa 2323 2020 88 88 Frozen DSFrozen DS 0.80.8 0.80.8 23.023.0 20.020.0 8.18.1 7.57.5 Output titerOutput titer 5.03E+125.03E+12 6.00E+126.00E+12 3.83E+113.83E+11 5.18E+115.18E+11

100 kDa의 cut-off를 가진 여과 과정을 수행하고, 농축을 수행하였다. 결과는 표 20 및 도 9에 나타내었다. A filtration process with a cut-off of 100 kDa was performed and concentration was performed. The results are shown in Table 20 and Figure 9.

상기 표 20 및 도 9에 나타낸 바와 같이, 상기 100 kDa의 cut-off를 가진 여과를 거친 경우 수율에 거의 변화가 없고 농축과정에서 AAV의 수율이 유지되었음을 알 수 있었다. As shown in Table 20 and Figure 9, there was little change in yield when filtration was performed with a cut-off of 100 kDa, and it was found that the yield of AAV was maintained during the concentration process.

본 발명자들은 상술한 실시예에서 수행했던 여러가지 조건에서의 정제 결과로 얻어진 AAV 벡터를 VP1, VP2, 및 VP3 단백질에 대하여 silver staining하였고, 그 결과를 도 10에 나타내었다. 또한, Analytical Ultra-centrifuge를 수행하고 그 결과를 도 11에 나타내었다.The present inventors silver stained the AAV vector obtained as a result of purification under various conditions performed in the above-described examples for VP1, VP2, and VP3 proteins, and the results are shown in Figure 10. Additionally, Analytical Ultra-centrifuge was performed and the results are shown in Figure 11.

도 10에 나타낸 바와 같이, AAV 벡터의 VP1, VP2, 및 VP3 단백질이 뚜렷하게 확인되어 본 발명의 각 조건에 따른 정제 실험에서 AAV 벡터가 성공적으로 정제 되었음이 확인되었다. As shown in Figure 10, the VP1, VP2, and VP3 proteins of the AAV vector were clearly identified, confirming that the AAV vector was successfully purified in the purification experiment according to each condition of the present invention.

또한, 도 11에 나타낸 바와 같이, 본 발명의 정제 방법으로 정제된 AAV 벡터를 Analytical Ultracentrifuge를 이용하여 품질분석한 결과, 2.5 E11 vg/ml 농도에서 측정했을 때, Full AAV 66% / Empty 8.7%의 분포로 좋은 품질로 AAV가 정제되었음을 확인하였다.In addition, as shown in Figure 11, as a result of quality analysis of the AAV vector purified by the purification method of the present invention using an Analytical Ultracentrifuge, when measured at a concentration of 2.5 E11 vg/ml, Full AAV 66% / Empty 8.7% It was confirmed that AAV was purified to good quality through distribution.

Claims (17)

다음 단계를 포함하는 Adenovirus-associated virus (AAV)의 정제 방법:
(a) AAV를 생산하는 세포를 파쇄하는 단계;
(b) 상기 파쇄된 세포를 포함하는 상층액을 여과하는 단계;
(c) 상기 단계에서 여과된 여과액을 양이온 교환 크로마토그래피를 수행하여 컬럼 용출액을 생산하는 단계;
(d) 상기 컬럼 용출액을 친화성 크로마토그래피를 수행하여 컬럼 용출액을 생산하는 단계;
(e) 상기 컬럼 용출액을 음이온 교환 크로마토그래피를 수행하여 컬럼 용출액을 생산하는 단계; 및
(f) 상기 컬럼 용출액을 여과하여 정제된 AAV를 생산하는 단계.
Method for purification of Adenovirus-associated virus (AAV) comprising the following steps:
(a) disrupting the cells producing AAV;
(b) filtering the supernatant containing the disrupted cells;
(c) performing cation exchange chromatography on the filtrate filtered in the above step to produce a column effluent;
(d) performing affinity chromatography on the column eluate to produce a column eluate;
(e) producing a column effluent by subjecting the column effluent to anion exchange chromatography; and
(f) filtering the column eluate to produce purified AAV.
제1항에 있어서, 상기 단계 (a)의 세포는 AAV를 생산하는 세포 및 그의 세포배양 상층액을 포함하는 세포배양물로부터 유래한 것인, AAV의 정제 방법.
The method of claim 1, wherein the cells in step (a) are derived from a cell culture containing AAV-producing cells and their cell culture supernatant.
제1항에 있어서, 상기 AAV를 생산하는 세포는 인간 세포 또는 곤충 세포인, AAV의 정제 방법.
The method of claim 1, wherein the AAV-producing cells are human cells or insect cells.
제1항에 있어서, 상기 세포 파쇄방법은 마이크로플루다이저(microfludizer)에 의해 수행되는 것인, AAV의 정제 방법.
The method of claim 1, wherein the cell disruption method is performed using a microfludizer.
제1항에 있어서, 상기 단계 (b)의 여과는 멤브레인 필터에 의해 이루어진 것인, AAV의 정제 방법.
The method of claim 1, wherein the filtration in step (b) is performed using a membrane filter.
제1항에 있어서, 상기 단계 (b)의 여과는 1회 이상 수행되는 것인, AAV의 정제 방법.
The method of claim 1, wherein the filtration in step (b) is performed one or more times.
제1항에 있어서, 상기 단계 (b)의 여과는 심층여과 장치에 의해 수행되는 것인, AAV의 정제 방법.
The method of claim 1, wherein the filtration in step (b) is performed by a depth filtration device.
제1항에 있어서, 상기 단계 (b)의 여과는 절대여과 등급의 여과 장치에 의해 수행되는 것인, AAV의 정제 방법.
The method of claim 1, wherein the filtration in step (b) is performed by a filtration device of absolute filtration grade.
제5항에 있어서, 상기 멤브레인 필터는 셀룰로오스 아세테이트, 또는 폴리에테르설폰 소재의 멤브레인 필터인, AAV의 정제 방법.
The method of claim 5, wherein the membrane filter is a membrane filter made of cellulose acetate or polyethersulfone.
제1항에 있어서, 상기 단계 (b)에 의한 여과액은 접선 유동 여과(Tangential Flow Filtration, TFF)에 의하여 여과되는 것인, AAV의 정제 방법.
The method of claim 1, wherein the filtrate from step (b) is filtered by tangential flow filtration (TFF).
제10항에 있어서, 상기 접선 유동 여과는 Tris, NaCl, 또는 이들의 조합을 포함하는 용출 버퍼에 의해 수행되는 것인, AAV의 정제방법
The method of claim 10, wherein the tangential flow filtration is performed using an elution buffer containing Tris, NaCl, or a combination thereof.
제1항에 있어서, 상기 단계 (b)에 의한 여과액은 뉴클레아제(nuclease)로 처리되는 것인, AAV의 정제 방법.
The method of claim 1, wherein the filtrate from step (b) is treated with nuclease.
제12항에 있어서, 상기 뉴클레아제는 벤조에이즈(benzoase)인, AAV의 정제 방법.
The method of claim 12, wherein the nuclease is benzoase.
제1항에 있어서, 상기 단계 (c)의 양이온 교환 크로마토그래피는 Tris, NaCl, 또는 이들의 조합을 포함하는 용출 버퍼에 의해 용출되는 것인, AAV의 정제방법.
The method of claim 1, wherein the cation exchange chromatography in step (c) is eluted with an elution buffer containing Tris, NaCl, or a combination thereof.
제1항에 있어서, 상기 단계 (d)의 친화성 크로마토그래피는 Sodium Acetate, NaCl, 또는 이들의 조합을 포함하는 용출 버퍼에 의해 용출되는 것인, AAV의 정제 방법.
The method of claim 1, wherein the affinity chromatography in step (d) is eluted with an elution buffer containing Sodium Acetate, NaCl, or a combination thereof.
제1항에 있어서, 상기 단계 (e)의 음이온 교환 크로마토그래피는 Bis-Tris-Propane (BTP), NaCl, 또는 이들의 조합을 포함하는 용출 버퍼에 의해 용출되는 것인, AAV의 정제 방법.
The method of claim 1, wherein the anion exchange chromatography in step (e) is eluted with an elution buffer containing Bis-Tris-Propane (BTP), NaCl, or a combination thereof.
제1항에 있어서, 상기 단계 (e)의 음이온 교환 크로마토그래피는 NaCl을 170 mM부터 190 mM의 농도로 농도를 1-5 mM씩 상승시키면서 단계당 1-3 컬럼 부피(column volume, CV)의 용출 버퍼를 주입하여 용출시키는 것인, AAV의 정제 방법.
The method of claim 1, wherein the anion exchange chromatography in step (e) is carried out at a concentration of 1-3 column volumes (CV) per step while increasing the concentration of NaCl from 170 to 190mM in increments of 1-5mM. A method for purifying AAV, which involves eluting by injecting an elution buffer.
KR1020220145631A 2022-11-03 2022-11-03 Method for Purifying AAV KR20240063694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220145631A KR20240063694A (en) 2022-11-03 2022-11-03 Method for Purifying AAV

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220145631A KR20240063694A (en) 2022-11-03 2022-11-03 Method for Purifying AAV

Publications (1)

Publication Number Publication Date
KR20240063694A true KR20240063694A (en) 2024-05-10

Family

ID=91072397

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220145631A KR20240063694A (en) 2022-11-03 2022-11-03 Method for Purifying AAV

Country Status (1)

Country Link
KR (1) KR20240063694A (en)

Similar Documents

Publication Publication Date Title
JP7385603B2 (en) Anion exchange chromatography for recombinant AAV production
JP6868572B2 (en) Purification of recombinant adeno-associated virus particles including affinity purification steps
KR102669561B1 (en) AAV vector column purification method
WO2017100674A1 (en) Scalable purification method for aav1
WO2016128407A1 (en) Recombinant adeno-associated virus particle purification with multiple-step anion exchange chromatography
WO2019212921A1 (en) Scalable clarification process for recombinant aav production
JP2023515469A (en) Purification matrices containing AAV binding polypeptides and methods of use thereof
JP2007117003A (en) Method for rapidly removing and purifying hollow virus particle
JP2024527602A (en) Method for isolating adeno-associated virus capsids, compositions obtained thereby and uses thereof
KR20240063694A (en) Method for Purifying AAV
US11193112B2 (en) Scalable process for oncolytic rat parvovirus H-1 production and purification based on isoelectric point-based elimination of empty particles
WO2022191168A1 (en) Method for producing recombinant aav9 virion
WO2023174974A1 (en) Methods and compositions for purifying adeno associated virus particles
CN118006688A (en) Purification method of recombinant adeno-associated virus vector
CN116867902A (en) Methods and compositions for inhibiting precipitation of excess nucleic acid
JP2024500797A (en) Methods and compositions for inhibiting excessive nucleic acid precipitation
TW202430646A (en) Method of purifying full recombinant aav particles
RU2019113381A (en) METHODS FOR CLEANING ADENO-ASSOCIATED VIRUSES