KR20240062088A - Positive-electrode active material comprising Iron doped Lithium rich oxide for lithium secondary battery and manufacturing method thereof - Google Patents

Positive-electrode active material comprising Iron doped Lithium rich oxide for lithium secondary battery and manufacturing method thereof Download PDF

Info

Publication number
KR20240062088A
KR20240062088A KR1020230106312A KR20230106312A KR20240062088A KR 20240062088 A KR20240062088 A KR 20240062088A KR 1020230106312 A KR1020230106312 A KR 1020230106312A KR 20230106312 A KR20230106312 A KR 20230106312A KR 20240062088 A KR20240062088 A KR 20240062088A
Authority
KR
South Korea
Prior art keywords
active material
iron
lithium
positive electrode
electrode active
Prior art date
Application number
KR1020230106312A
Other languages
Korean (ko)
Inventor
박경원
김원찬
김지환
박유연
박덕혜
장재성
안소연
Original Assignee
숭실대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 숭실대학교산학협력단 filed Critical 숭실대학교산학협력단
Publication of KR20240062088A publication Critical patent/KR20240062088A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/125Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3
    • C01G45/1257Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3 containing lithium, e.g. Li2MnO3, Li2[MxMn1-xO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 리튬 이온 이차전지용 철이 도핑된 리튬 과잉 산화물 양극활물질 및 이의 제조방법에 대한 것으로, Li2MnO3에 비싼 전이금속인 Co와 Ni을 전혀 사용하지 않고 저렴한 철을 도핑하여 제조 원가를 절감하고, 구조안정성 향상과 율속특성 향상 효과를 기대할 수 있다.The present invention relates to an iron-doped lithium excess oxide cathode active material for lithium ion secondary batteries and a method for manufacturing the same. The present invention relates to a method for manufacturing Li 2 MnO 3 by doping it with inexpensive iron without using expensive transition metals Co and Ni at all, thereby reducing manufacturing costs. , improvements in structural stability and rate characteristics can be expected.

Description

리튬 이온 이차전지용 철이 도핑된 리튬 과잉 산화물 양극활물질 및 이의 제조방법{Positive-electrode active material comprising Iron doped Lithium rich oxide for lithium secondary battery and manufacturing method thereof}Iron-doped lithium rich oxide cathode active material for lithium ion secondary battery and manufacturing method thereof {Positive-electrode active material comprising Iron doped Lithium rich oxide for lithium secondary battery and manufacturing method thereof}

본 발명은 리튬 이온 이차전지용 양극활물질 및 이의 제조방법에 관한 것으로, 구체적으로 코발트 및 니켈을 제외한 철이 도핑 된 리튬 과잉 산화물 양극활물질과, 이의 제조방법에 관한 것이다.The present invention relates to a cathode active material for lithium ion secondary batteries and a method of manufacturing the same, and specifically to a lithium excess oxide cathode active material doped with iron excluding cobalt and nickel, and a method of manufacturing the same.

최근 탄소배출량 저감을 위해 친환경적 발전방식인 재생에너지 생산량이 증가하면서 발전량이 일정하지 않고 변동이 커져 안정적인 전기에너지 저장 및 공급을 위해 이차전지를 사용하는 에너지 저장장치(ESS)의 설치가 확대됨에 따라 이차전지의 수요가 급증하였다. 이차전지 중 층상구조를 가진 양극소재를 이용한 리튬이온배터리(LIB)가 가장 높은 에너지 밀도를 가지기 때문에 연구가 가장 활발히 진행되었고 상용화되었다.Recently, as the production of renewable energy, an eco-friendly power generation method, has increased to reduce carbon emissions, the power generation is not constant and fluctuates, and the installation of energy storage systems (ESS) that use secondary batteries for stable storage and supply of electric energy is expanding. The demand for batteries has increased rapidly. Among secondary batteries, lithium-ion batteries (LIB) using cathode materials with a layered structure have the highest energy density, so research has been conducted most actively and they have been commercialized.

현재 상용화된 LIB 양극 소재 중에 가장 많이 사용되고 있으면서 에너지 밀도가 높은 배터리는 니켈(Ni), 코발트(Co), 망간(Mn) 3원계 배터리인 NCM 배터리이다. 최근에는 이 NCM 배터리에서 에너지 밀도를 더욱 향상시키기 위한 방법으로 니켈(Ni), 코발트(Co), 망간(Mn) 중 높은 가역용량을 가지는 니켈(Ni)의 함량을 높이는 방식으로 진행되어 니켈(Li)의 함량이 60 내지 90 % 이상을 차지할 정도로 높아졌다. 이에 따른 수요가 폭발적으로 증가하여 최근 런던 금속 거래소(London Metal Exchange)의 니켈 재고량이 최근 2년 사이 1/3 수준으로 줄어들며 가격 또한 상승하였다. 또한 배터리의 안정성을 위해 사용하는 코발트는 매장량과 매장지역이 한정적이어서 배터리 원료 중 가격이 가장 비싸다는 단점이 있다.Among the currently commercialized LIB anode materials, the most widely used battery with high energy density is the NCM battery, which is a ternary battery of nickel (Ni), cobalt (Co), and manganese (Mn). Recently, as a way to further improve the energy density of this NCM battery, the content of nickel (Ni), which has a high reversible capacity among nickel (Ni), cobalt (Co), and manganese (Mn), has been increased, resulting in nickel (Li). ) content has increased to account for more than 60 to 90%. As a result, demand has increased explosively, and the nickel inventory on the London Metal Exchange has recently decreased by one-third over the past two years, causing prices to rise as well. In addition, cobalt, which is used for the stability of batteries, has limited reserves and areas, so it is the most expensive among battery raw materials.

따라서 현재 사용되는 배터리 원료 중에서 코발트와 니켈의 의존도를 줄일 수 있는 차세대 배터리 양극재중 하나인 과리튬 층상계 산화물(overlithiated layered oxide, OLO)물질인 Li2MnO3(LMO)에 관한 연구가 진행되고 있다. 이 물질은 배터리의 용량을 발현시킬 수 있는 Li이 기존의 층상구조보다 더 많이 삽입되어있어 이론용량이 458 mAh/g으로 매우 높지만 합성 직후 망간(Mn)이 +4가로 존재하기 때문에 전기화학적으로 비활성된 상태이어서 초기 사이클에서의 쿨롱효율이 낮고 전기화학적으로 활성화시키는 과정 중에 수반되는 구조붕괴 때문에 수명안정성도 낮다는 단점이 있어 이를 해결하는 방법으로 도핑, 표면코팅 등 여러 방법의 연구가 시행되고 있지만 높은 가역용량과 안정성을 얻기 위해서 니켈(Ni), 코발트(Co)를 다시 이용하는 실정이다.Therefore, research is being conducted on Li 2 MnO 3 (LMO), an overlithiated layered oxide (OLO) material, which is one of the next-generation battery anode materials that can reduce dependence on cobalt and nickel among currently used battery raw materials. . This material has a very high theoretical capacity of 458 mAh/g because more Li, which can develop battery capacity, is inserted than the existing layered structure, but it is electrochemically inactive because manganese (Mn) exists in a +4 valence immediately after synthesis. Since the Coulombic efficiency in the initial cycle is low and the lifetime stability is low due to structural collapse during the electrochemical activation process, research is being conducted on various methods such as doping and surface coating to solve this problem. In order to achieve reversible capacity and stability, nickel (Ni) and cobalt (Co) are being used again.

대한민국 등록특허 제10-2519556호Republic of Korea Patent No. 10-2519556

본 발명의 목적은 고비용의 코발트와 니켈 원재료를 제외하고, 저렴한 철을 리튬 과잉 산화물 양극활물질에 도핑하여 가격경쟁력을 갖추고, 전기화학적 성능이 우수하고, 기존의 Li2MnO3구조의 양극활물질의 단점인 낮은 사이클 안정성과 빠른 가역용량 감소를 상당부분 개선된 양극활물질, 이의 제조방법을 제공하고자 한다.The purpose of the present invention is to achieve price competitiveness by doping lithium excess oxide cathode active material with inexpensive iron, excluding high-cost cobalt and nickel raw materials, to have excellent electrochemical performance, and to overcome the disadvantages of the existing cathode active material with Li 2 MnO 3 structure. The aim is to provide a cathode active material with significantly improved low cycle stability and rapid reversible capacity reduction, and a method for manufacturing the same.

상기 목적을 달성하기 위하여, 리튬망간산화물(LMO)에 철이 도핑되며, 하기 화학식 1로 표시되는 양극활물질을 제공한다.In order to achieve the above object, lithium manganese oxide (LMO) is doped with iron, and a positive electrode active material represented by the following formula (1) is provided.

[화학식 1][Formula 1]

Li2Mn1-xFexO3 Li 2 Mn 1-x Fe x O 3

상기 화학식 1에서 0 < x < 1임.In Formula 1, 0 < x < 1.

또한, 본 발명은 상기 화학식 1에 따른 양극활물질을 포함하는 리튬 이온 이차전지용 양극을 제공한다.Additionally, the present invention provides a positive electrode for a lithium ion secondary battery containing a positive electrode active material according to Formula 1 above.

또한, 본 발명은 용매에 리튬(Li) 공급 화합물, 망간(Mn) 공급 화합물 및 철(Fe) 공급 화합물을 혼합한 뒤, 킬레이트제(chelating agent)와 염기성 용액을 첨가하는 단계(제1단계); 상기 제1단계에서 얻어진 반응용액을 건조하여 겔을 얻는 단계(제2단계); 상기 겔을 열처리 하여 전구체를 얻는 단계(제3단계); 및 상기 전구체를 열처리하는 단계(제4단계);를 포함하는, 상기 화학식 1에 따른 양극활물질의 제조방법을 제공한다.In addition, the present invention includes the step of mixing a lithium (Li) supply compound, a manganese (Mn) supply compound, and an iron (Fe) supply compound in a solvent, and then adding a chelating agent and a basic solution (first step). ; Obtaining a gel by drying the reaction solution obtained in the first step (second step); Obtaining a precursor by heat treating the gel (third step); and heat-treating the precursor (fourth step). It provides a method for producing a positive electrode active material according to Chemical Formula 1, including a step.

본 발명에 따른 양극활물질은 Li2MnO3에 비싼 전이금속인 코발트(Co)와 니켈(Ni)을 전혀 사용하지 않고 값이 싸고 친환경적 전이금속인 철을 도핑하여 비용절감 효과와 기존의 LiNiMnCoO2(NCM)배터리 만큼의 용량과 장기 사이클 안정성을 가진 우수한 성능을 가지고 있다는 장점이 있다.The cathode active material according to the present invention does not use any of the expensive transition metals cobalt (Co) and nickel (Ni) in Li 2 MnO 3 and dopes it with iron, a cheap and environmentally friendly transition metal, resulting in cost savings and the existing LiNiMnCoO 2 ( It has the advantage of having excellent performance with a capacity comparable to that of an NCM battery and long-term cycle stability.

도 1은 철이 도핑 된 리튬 과잉 산화물 양극활물질 제조에 대한 모식도이다.
도 2는 본 발명에 따른 제조예 1과 비교예 1의 X선 회절 분석(XRD)그래프이다.
도 3은 본 발명에 따른 실시예 및 비교예 2의 XRD 분석 그래프이다.
도 4는 본 발명에 실시예 및 비교예 2의 주사전자현미경(SEM) 이미지이다.
도 5는 본 발명에 따른 실시예 및 비교예 2의 촬영 및 X선 광전자 분광분석(XPS) 그래프이다.
도 6은 본 발명에 따른 실시예 및 비교예 2의 전기화학적 성능 평가 결과이다.
도 7는 본 발명에 따른 실시예 3 및 비교예 2의 정전류식 간헐적 적정 테크닉(GITT) 및 리튬이온 확산계수 그래프이다.
도 8은 본 발명에 따른 실시예 3 및 비교예 2의 전기화학 임피던스 분광법(EIS) 결과 그래프이다.
도 9는 본 발명에 따른 실시예 3 및 비교예 2의 100 사이클 전기 충방전 테스트 이후의 고해상도 투과전자현미경(HRTEM) 이미지이다.
도 10은 본 발명에 따른 실시예 3 및 비교예 2의 제한 시야 전자 회절 패턴(SAED)이미지이다.
Figure 1 is a schematic diagram of manufacturing an iron-doped lithium excess oxide cathode active material.
Figure 2 is an X-ray diffraction analysis (XRD) graph of Preparation Example 1 and Comparative Example 1 according to the present invention.
Figure 3 is an XRD analysis graph of Example and Comparative Example 2 according to the present invention.
Figure 4 is a scanning electron microscope (SEM) image of Example and Comparative Example 2 of the present invention.
Figure 5 is a graph of imaging and X-ray photoelectron spectroscopy (XPS) of Example and Comparative Example 2 according to the present invention.
Figure 6 shows the electrochemical performance evaluation results of Example and Comparative Example 2 according to the present invention.
Figure 7 is a graph of the galvanostatic intermittent titration technique (GITT) and lithium ion diffusion coefficient of Example 3 and Comparative Example 2 according to the present invention.
Figure 8 is a graph of electrochemical impedance spectroscopy (EIS) results of Example 3 and Comparative Example 2 according to the present invention.
Figure 9 is a high-resolution transmission electron microscope (HRTEM) image of Example 3 and Comparative Example 2 according to the present invention after a 100-cycle electrical charge and discharge test.
Figure 10 is a limited-field electron diffraction pattern (SAED) image of Example 3 and Comparative Example 2 according to the present invention.

이하에서는 본 발명은 구체적으로 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 리튬망간산화물(LMO)에 철이 도핑되며, 하기 화학식 1로 표시되는 양극활물질을 제공한다.The present invention provides a cathode active material in which lithium manganese oxide (LMO) is doped with iron and represented by the following formula (1).

[화학식 1][Formula 1]

Li2Mn1-xFexO3 Li 2 Mn 1-x Fe x O 3

상기 화학식 1에서 0 < x < 1임.In Formula 1, 0 < x < 1.

상기 화학식 1에서 x는 0.02 내지 0.08일 수 있다.In Formula 1, x may be 0.02 to 0.08.

상기 x의 범위를 벗어나면 Li+ 확산속도 향상에 도움이 되는 중간층(interlayer)간의 면간거리 확장 효과가 적어지고, 면의 길이가 증가하여 Li+ 확산거리 증가로 반응이 저해되는 문제가 야기될 수 있다.If x is outside the range, the effect of expanding the interplanar distance between the interlayers, which helps improve the Li + diffusion rate, is reduced, and the length of the plane increases, which may cause a problem in which the reaction is inhibited due to an increase in the Li + diffusion distance. there is.

또한, 본 발명은 상기 화학식 1에 따른 양극활물질을 포함하는 리튬 이온 이차전지용 양극을 제공한다.Additionally, the present invention provides a positive electrode for a lithium ion secondary battery containing a positive electrode active material according to Formula 1 above.

또한, 본 발명은 용매에 리튬(Li) 공급 화합물, 망간(Mn) 공급 화합물 및 철(Fe) 공급 화합물을 혼합한 뒤, 킬레이트제(chelating agent)와 염기성 용액을 첨가하는 단계(제1단계): 상기 제1단계에서 얻어진 반응용액을 건조하여 겔을 얻는 단계(제2단계): 상기 겔을 열처리 하여 전구체를 얻는 단계(제3단계): 및 상기 전구체를 열처리하는 단계(제4단계):를 포함하는, 상기 화학식 1에 따른 양극활물질의 제조방법을 제공한다.In addition, the present invention includes the step of mixing a lithium (Li) supply compound, a manganese (Mn) supply compound, and an iron (Fe) supply compound in a solvent, and then adding a chelating agent and a basic solution (first step). : Obtaining a gel by drying the reaction solution obtained in the first step (second step): Obtaining a precursor by heat-treating the gel (third step): and heat-treating the precursor (fourth step): It provides a method for producing a positive electrode active material according to Chemical Formula 1, including.

상기 제1단계의 리튬(Li) 공급 화합물은 수산화리튬(Lithium hydroxide), 탄산리튬(lithium carbonate), 질산리튬(lithium nitrate) 및 리튬 아세테이트(Lithium acetate)중에서 1종 이상을 선택할 수 있으나 이에 한정하는 것은 아니다. The lithium (Li) supply compound in the first step may be selected from one or more of lithium hydroxide, lithium carbonate, lithium nitrate, and lithium acetate, but is limited thereto. That is not the case.

상기 제1단계의 망간(Mn) 공급 화합물은 망간 나이트레이트(Manganese nitrate), 망간 아세테이트(Manganese acetate), 망간 클로라이드(Manganese chloride) 및 망간 설페이트(Manganese sulfate)중에서 1종 이상 선택할 수 있으나 이에 한정하는 것은 아니다.The manganese (Mn) supply compound in the first step may be selected from one or more of manganese nitrate, manganese acetate, manganese chloride, and manganese sulfate, but is limited thereto. That is not the case.

상기 제1단계의 철(Fe) 공급 화합물은 황산철(Iron sulfate), 염화철(Iron chloride) 및 질산철(Iron nitrate)중에서 1종 이상을 선택할 수 있으나 이에 한정하는 것은 아니다.The iron (Fe) supply compound in the first step may be selected from one or more of iron sulfate, iron chloride, and iron nitrate, but is not limited thereto.

상기 제1단계의 킬레이트제는 EDTA(ethylene-diamine-tetraacetic acid), DHEG(Dihydroxyethyl Glycine) 및 구연산(citric acid)중에서 1종 이상을 선택할 수 있으나 이에 한정하는 것은 아니다.The chelating agent in the first step may be one or more selected from EDTA (ethylene-diamine-tetraacetic acid), DHEG (Dihydroxyethyl Glycine), and citric acid, but is not limited thereto.

상기 제1단계의 용액을 60 내 100 ℃에서 30 내지 80 시간 교반하여 혼합할 수 있다. 60 ℃ 미만에서 교반할 경우, 겔화되지 않고 열처리 시 승온하는 과정에서 입자들이 가라앉기 때문에 균일한 상태에서 반응이 불가능 할 수 있다. 100 ℃ 초과해서 교반할 경우, 용액이 끓어오르면서 건조되어 조성이 불균일한 겔이 형성이 될 수 있다.The solution in the first step can be mixed by stirring at 60 to 100 °C for 30 to 80 hours. If stirred below 60°C, reaction may not be possible in a uniform state because gelation does not occur and the particles settle during the temperature increase during heat treatment. If stirring exceeds 100°C, the solution may boil and dry, forming a gel with a non-uniform composition.

상기 제3단계는 400 내지 500 ℃에서 3 내지 7 시간 동안 열처리를 진행 할 수 있다. 400 ℃ 미만에서 열처리 할 경우, 층상 구조가 제대로 형성되지 않을 수 있다. 500 ℃ 초과해서 열처리 할 경우, 리튬이온이 불완전하게 삽입될 수 있다.The third step may be heat treatment at 400 to 500°C for 3 to 7 hours. If heat treatment is performed below 400°C, the layered structure may not be properly formed. If heat treatment exceeds 500°C, lithium ions may be inserted incompletely.

상기 제4단계는 O2 분위기에서 850 내지 950 ℃에서 3 내지 7 시간 동안 열처리를 진행 할 수 있다. 850 ℃ 미만에서 열처리 할 경우, 수명안정성이 급격히 감소될 수 있다. 950 ℃ 초과해서 열처리 할 경우, 활성화가 힘들어 배터리의 용량이 감소할 수 있다.In the fourth step, heat treatment may be performed at 850 to 950° C. for 3 to 7 hours in an O 2 atmosphere. When heat treated below 850°C, life stability may be drastically reduced. If heat treatment exceeds 950℃, activation may be difficult and battery capacity may decrease.

이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.Hereinafter, the present invention will be described in detail through examples to aid understanding. However, the following examples only illustrate the content of the present invention and the scope of the present invention is not limited to the following examples. Examples of the present invention are provided to more completely explain the present invention to those skilled in the art.

<제조예 1> 양극활물질 전구체 제조<Preparation Example 1> Preparation of cathode active material precursor

20.5 mmol의 질산리튬(Lituium nitrate), 9.8 mmol의 망간 나이트레이트(Manganese nitrate) 및 0.2 mmol의 질산철(Iron nitrate)를 50 ml의 증류수에 넣어준 뒤 1시간동안 교반하였다. 상기 혼합된 용매에 킬레이트제(Chelating agent)인 EDTA(Ethylenediaminetetraacetic Acid)를 금속염과 같은 몰수만큼 넣어주고 다시 1시간동안 교반하였다. 이후 암모니아수(NH4OH solution)을 가해 pH를 8로 적정하고 80 ℃에서 48 내지 60 시간 동안 교반하며 건조를 하면 겔화(Gelation)되며 제로겔(Xerogel)형태의 습윤겔(wetgel)을 제조하였다. 이후 머플로(Muffle furnace)에서 400 ℃, 5 ℃/min으로 승온하여 5 시간동안 열처리하여 양극활물질 전구체를 제조하였다.20.5 mmol of lithium nitrate, 9.8 mmol of manganese nitrate, and 0.2 mmol of iron nitrate were added to 50 ml of distilled water and stirred for 1 hour. EDTA (Ethylenediaminetetraacetic Acid), a chelating agent, was added to the mixed solvent in the same molar quantity as the metal salt and stirred for another 1 hour. Afterwards, ammonia water (NH 4 OH solution) was added to adjust the pH to 8, stirred at 80°C for 48 to 60 hours, and dried to gelate and prepare a Xerogel-type wet gel. Afterwards, the temperature was raised to 400°C and 5°C/min in a muffle furnace, and heat treatment was performed for 5 hours to prepare a positive electrode active material precursor.

<비교예 1><Comparative Example 1>

상기 제조예 1에서 머플로에서 300 ℃로 열처리 한 것 이외에는 상기 제조예 1과 동일한 방법으로 양극활물질 전구체를 제조하였다.A positive electrode active material precursor was prepared in the same manner as in Preparation Example 1 except that it was heat treated at 300° C. in a muffle furnace.

<실시예 1> 양극활물질 제조<Example 1> Production of positive electrode active material

상기 양극활물질 전구체를 알루미나 보트 위에서 튜브로(Tube furnace)를 이용해 O2 분위기에서 200 sccm, 850 ℃, 5 ℃/min 조건으로 5 시간 동안 열처리하여 양극활물질을 제조하였다(Li2Mn0.98Fe0.02O3, LMFO-2).The cathode active material precursor was heat-treated on an alumina boat using a tube furnace in an O 2 atmosphere at 200 sccm, 850 ℃, 5 ℃/min for 5 hours to prepare the cathode active material (Li 2 Mn 0.98 Fe 0.02 O 3 , LMFO-2).

<실시예 2> 양극활물질 제조<Example 2> Production of positive electrode active material

상기 제조예 1에서 9.6 mmol의 망간 나이트레이트 및 0.4 mmol의 질산철을 넣은 것 이외에는 상기 제조예 1과 동일한 방법으로 양극 소재 전구체를 제작하고, 상기 실시예 1에 따라 양극활물질을 제조하였다(Li2Mn0.96Fe0.04O3, LMFO-4).A positive electrode material precursor was prepared in the same manner as in Preparation Example 1 except that 9.6 mmol of manganese nitrate and 0.4 mmol of iron nitrate were added, and a positive electrode active material was prepared according to Example 1 (Li 2 Mn 0.96 Fe 0.04 O 3 , LMFO-4).

<실시예 3> 양극활물질 제조<Example 3> Production of positive electrode active material

상기 제조예 1에서 9.4 mmol의 망간 나이트레이트 및 0.6 mmol의 질산철을 넣은 것 이외에는 상기 제조예 1과 동일한 방법으로 양극 소재 전구체를 제작하고, 상기 실시예 1에 따라 양극활물질을 제조하였다(Li2Mn0.94Fe0.06O3, LMFO-6).A positive electrode material precursor was prepared in the same manner as in Preparation Example 1 except that 9.4 mmol of manganese nitrate and 0.6 mmol of iron nitrate were added, and a positive electrode active material was prepared according to Example 1 (Li 2 Mn 0.94 Fe 0.06 O 3 , LMFO-6).

<실시예 4> 양극활물질 제조<Example 4> Production of positive electrode active material

상기 제조예 1에서 9.2 mmol의 망간 나이트레이트 및 0.8 mmol의 질산철을 넣은 것 이외에는 상기 제조예 1과 동일한 방법으로 양극 소재 전구체를 제작하고, 상기 실시예 1에 따라 양극활물질을 제조하였다(Li2Mn0.92Fe0.08O3, LMFO-8).A positive electrode material precursor was prepared in the same manner as in Preparation Example 1 except that 9.2 mmol of manganese nitrate and 0.8 mmol of iron nitrate were added, and a positive electrode active material was prepared according to Example 1 (Li 2 Mn 0.92 Fe 0.08 O 3 , LMFO-8).

<비교예 2><Comparative Example 2>

상기 제조예 1에서 10 mmol의 망간 나이트레이트를 넣고 질산철을 제외한 것 이외에는 상기 제조예 1과 동일한 방법으로 양극 소재 전구체를 제작하고, 상기 실시예 1에 따라 양극활물질을 제조하였다(Li2MnO3, LMFO-0).A positive electrode material precursor was prepared in the same manner as in Preparation Example 1 except that 10 mmol of manganese nitrate was added and iron nitrate was excluded, and a positive electrode active material was prepared according to Example 1 (Li 2 MnO 3 , LMFO-0).

<실험예 1> 양극활물질 전구체 구조적 특성 평가<Experimental Example 1> Evaluation of structural properties of cathode active material precursor

도 2에서는 전구체의 특성을 확인하기 위해 제조예 1과 비교예 1을 X선 회절(XRD) 분석을 진행하였다. 열처리 과정은 금속이온을 가지고 매트릭스(Matrix)를 형성한 EDTA 폴리머(polymer)를 제거하여 산화물만을 얻는 과정이다. EDTA 폴리머는 약 300 ℃ 부근에서 자연발화가 시작되기 때문에 이 과정의 최소 필요온도는 300 ℃라고 할 수 있다. 300 ℃에서 열처리를 진행한, 비교예 1은 층상구조의 과리튬 층상계 산화물(overlithiated layered oxide, OLO)만 형성되는 것이 아닌 스피넬구조의 LiMn2O4가 같이 형성되었다. 그러나, 제조예 1은 스피넬구조의 산화물은 형성되지 않았다. 양극활물질 전구체의 열처리를 400 ℃로 진행하면, 높은 수준의 층상구조의 결정화도를 가진 Li2MnO3를 얻을 수 있었다.In Figure 2, X-ray diffraction (XRD) analysis was performed on Preparation Example 1 and Comparative Example 1 to confirm the characteristics of the precursor. The heat treatment process is a process of removing the EDTA polymer that formed the matrix with metal ions to obtain only the oxide. Since EDTA polymer begins to spontaneously ignite around 300 ℃, the minimum required temperature for this process can be said to be 300 ℃. In Comparative Example 1, in which heat treatment was performed at 300°C, not only overlithiated layered oxide (OLO) with a layered structure was formed, but also LiMn 2 O 4 with a spinel structure. However, in Preparation Example 1, an oxide with a spinel structure was not formed. When heat treatment of the cathode active material precursor was performed at 400°C, Li 2 MnO 3 with a high level of crystallinity in a layered structure could be obtained.

<실험예 2> 양극활물질의 구조적 특성 평가<Experimental Example 2> Evaluation of structural characteristics of positive electrode active material

본 발명의 실시예의 구조를 분석하기 위해, X선 회절분석(XRD), 주사전자현미경(SEM) 촬영 및 X선 광전자 분광분석(XPS)를 수행하였으며, 그 결과는 도 3 내지 5에 나타냈다.To analyze the structure of the embodiment of the present invention, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) were performed, and the results are shown in Figures 3 to 5.

도 3(a)는 본 발명에 따른 실시예 및 비교예 2의 XRD 분석 그래프이다. 실시예 1 내지 4 및 비교예 2는 (001), (-133), (33-1)면의 피크(peak)을 통해 층상 구조의 형성을 확인하였다. (020), (110)면의 피크를 통해 Li1/3Mn2/3 초격자구조(Superstructure) 형성을 확인하여 전체적으로 단사정계(Monoclinic) C2/m 구조의 Li2MnO3가 형성됨을 확인하였다. 또한, 철을 첨가한 후에도 새로운 피크가 나타나지 않는 것을 통해 철이 분리되지 않고 골고루 도핑이 된 것을 확인하였다. 도 3(b)는 본 발명에 따른 실시예 및 비교예 2의 XRD 분석 그래프 중 (001)면의 피크(peak)를 확대한 그래프이다. 철의 도핑 농도가 증가할수록 판상면간 거리를 알 수 있는 (001)면이 왼쪽으로 이동하는 현상이 발생한 것으로 리튬이온이 이동하는 통로의 크기가 커진 것을 확인하였다.Figure 3(a) is an XRD analysis graph of Example and Comparative Example 2 according to the present invention. Examples 1 to 4 and Comparative Example 2 confirmed the formation of a layered structure through peaks on the (001), (-133), and (33-1) planes. The formation of a Li 1/3 Mn 2/3 superstructure was confirmed through the peaks of the (020) and (110) planes, confirming the formation of Li 2 MnO 3 with an overall monoclinic C2/m structure. . In addition, it was confirmed that iron was not separated and was evenly doped, as no new peaks appeared even after adding iron. Figure 3(b) is an enlarged graph of the peak of the (001) plane among the XRD analysis graphs of Example and Comparative Example 2 according to the present invention. As the doping concentration of iron increased, the (001) plane, which can determine the distance between the plate planes, moved to the left, confirming that the size of the passage through which lithium ions move increased.

도 4를 본 발명에 따른 실시예 및 비교예 2의 주사전자현미경(SEM) 이미지이다. 도 4(a)는 비교예 2, 도 4(b)는 실시예 1, 도 4(c)는 실시예 2, 도 4(d)는 실시예 3, 도 4(e)는 실시예 4의 SEM 이미지이다. 본 발명의 실시예에 따라 제조된 양극활물질은 주로 판상형으로 넓게 형성이 되었으며 전체적으로 고르게 분산되어 있는 것을 확인하였다. 이렇게 분산된 상태는 더 넓은 전극/전해질 계면을 형성하여 리튬이온의 빠른 삽입/탈리를 가능하게 한다. 또한 철이 도핑됨에도 개별 입자들의 형상이 변형되지 않는 것으로 기존 구조에 영향을 주지 않고 도핑이 된 것을 확인하였다.Figure 4 is a scanning electron microscope (SEM) image of Example and Comparative Example 2 according to the present invention. Figure 4(a) is Comparative Example 2, Figure 4(b) is Example 1, Figure 4(c) is Example 2, Figure 4(d) is Example 3, and Figure 4(e) is Example 4. This is an SEM image. It was confirmed that the positive electrode active material manufactured according to an example of the present invention was mainly formed in a large plate shape and was evenly dispersed throughout. This dispersed state forms a wider electrode/electrolyte interface, enabling rapid insertion/desorption of lithium ions. In addition, it was confirmed that the shape of individual particles was not deformed even when iron was doped, confirming that the doping was done without affecting the existing structure.

도 5는 본 발명에 따른 실시예 및 비교예 2의 XPS 그래프이다. 도 5(a)는 Mn 2p 스펙트럼이고, 도 5(c)는 O 1s 스펙트럼이다. 3+/4+로 존재하는 Mn 대신 2+/3+로 존재하는 철이 도핑되면서 전하중성을 맞추기 위해 Mn4+비율이 증가하고 산소 공공(Oxygen vacancy, Ovac)의 비율이 증가하는 것을 확인하였다. 이렇게 형성된 산소 공공은 양극활물질의 활성화에 도움을 주어 가역용량 향상에 기여한다. 도 5(b)는 Fe 2p 스펙트럼으로, 철 도핑 농도에 관계없이 일정한 Fe2+/3+ 비율을 형성한 것으로 도핑이 균일하게 된 것을 확인하였다. 철과 산소의 해리 에너지(bond dissociation energy)가 망간과 산소보다 크기 때문에 결합길이가 짧아져 전이금속층의 간격이 줄어들며, 리튬층의 간격이 늘어나 구조안정성 향상과 율속특성 향상 효과를 볼 수 있었다.Figure 5 is an XPS graph of Example and Comparative Example 2 according to the present invention. Figure 5(a) is the Mn 2p spectrum, and Figure 5(c) is the O 1s spectrum. It was confirmed that when iron, which exists as 2+/3+, is doped instead of Mn, which exists as 3+/4+, the ratio of Mn 4+ increases and the ratio of oxygen vacancies (O vac ) increases to match the charge load. . The oxygen vacancies formed in this way help activate the positive electrode active material and contribute to improving reversible capacity. Figure 5(b) is the Fe 2p spectrum, confirming that the doping was uniform as a constant Fe 2+/3+ ratio was formed regardless of the iron doping concentration. Since the bond dissociation energy of iron and oxygen is greater than that of manganese and oxygen, the bond length is shortened, reducing the gap between the transition metal layers, and increasing the gap between the lithium layers, which improves structural stability and rate characteristics.

<실험예 3> 양극활물질의 전기화학적 특성 평가<Experimental Example 3> Evaluation of electrochemical properties of positive electrode active material

1. 하프셀(Half-cell) 전극 조립1. Half-cell electrode assembly

본 발명에 따른 양극활물질의 전기화학적 특성을 확인하기 위해, 실시예 및 비교예 2에서 제조된 양극활물질을 각각 도전재(Ketjen black), 바인더 (Polyvinylidene fluoride, PVdF)를 7:2:1 비율로 용매인 N-Methyl-2-pyrrolidone (NMP)와 함께 슬러리를 제조하였다. 제조한 슬러리를 닥터 블레이드(Doctor blade)를 이용하여 집전체 위에 균일하게 캐스팅하였다. 이후 100 ℃에서 2 시간 건조한 뒤 두께를 측정하였고, 측정된 두께의 80 %로 프레싱을 진행하였다. 프레싱을 진행한 전극은 13 파이 크기의 원형 모양으로 펀칭하였다. 하프 셀 테스트를 위한 코인 셀 조립은 아르곤으로 채워진 글러브 박스 내에서 진행하였다. 액체 전해질로는 에틸렌 카보네이트(ethylene carbonate)와 디에틸 카보네이트(diethyl carbonate)에 용해된 1 M LiPF6을 사용하였고, 분리막으로 폴리프로필렌(polypropylene)을 사용하였고, 음극으로는 리튬 메탈(Li metal)을 이용하여 하프 셀 전극 조립을 진행하였다.In order to confirm the electrochemical properties of the positive electrode active material according to the present invention, the positive electrode active material prepared in Example and Comparative Example 2 was mixed with a conductive material (Ketjen black) and a binder (Polyvinylidene fluoride, PVdF) in a ratio of 7:2:1, respectively. A slurry was prepared with N-Methyl-2-pyrrolidone (NMP) as a solvent. The prepared slurry was uniformly cast on the current collector using a doctor blade. Afterwards, the thickness was measured after drying at 100°C for 2 hours, and pressing was performed at 80% of the measured thickness. The pressed electrode was punched into a circular shape measuring 13 pi. Coin cell assembly for half-cell testing was performed in an argon-filled glove box. 1 M LiPF 6 dissolved in ethylene carbonate and diethyl carbonate was used as the liquid electrolyte, polypropylene was used as a separator, and lithium metal was used as the cathode. Half-cell electrode assembly was performed using the method.

2. 전기화학적 성능 평가2. Electrochemical performance evaluation

도 6은 본 발명에 따른 실시예 및 비교예 2를 사용하여 조립한 하프셀 전극으로 전기화학적 성능을 평가한 결과이다. 도 6은 사이클 테스트(좌) 및 율속특성 테스트(우) 결과이다. 사이클 테스트는 20 ㎃/g의 전류밀도로 진행하였다. 율속특성 테스트는 20, 40, 80, 100, 200, 20 ㎃/g의 전류밀도로 진행하였다. 철 도핑을 통해 가역용량은 174(비교예 2), 184(실시예 1), 195(실시예 2), 222(실시예 3), 191(실시예 4) ㎃h/g으로, 실시예 3이 가장 우수한 결과를 보였다. 사이클 안정성과 율속특성은 실시예 3의 성능이 가장 우수하게 나와 철의 도핑 농도를 최적화하였다.Figure 6 shows the results of evaluating the electrochemical performance of the half-cell electrode assembled using Example and Comparative Example 2 according to the present invention. Figure 6 shows the results of the cycle test (left) and rate characteristic test (right). The cycle test was conducted at a current density of 20 mA/g. Rate characteristic tests were conducted at current densities of 20, 40, 80, 100, 200, and 20 mA/g. Through iron doping, the reversible capacity was 174 (Comparative Example 2), 184 (Example 1), 195 (Example 2), 222 (Example 3), and 191 (Example 4) mAh/g, Example 3 This showed the best results. In terms of cycle stability and rate characteristics, Example 3 showed the best performance, and the doping concentration of iron was optimized.

도 7은 정전류식 간헐적 적정 테크닉(GITT)(좌) 및 평균 리튬이온 확산계수(우) 그래프이다. 철의 도핑 효과를 확인하기 위해 실시예 3과 비교예 2를 정전류식 간헐적 적정 테크닉(GITT)을 실시하였다. 철이 도핑이 되면서 충방전 과정 중 발생하는 평균 방전전압 강하(iRdrop)가 현저히 감소한 것을 확인하였다. 실시예 3과 비교예 2를 정전류식 간헐적 적정 테크닉(GITT) 분석한 그래프를 기반으로 10 %의 잔존용량(state of charge) 마다 리튬 이온 확산계수를 계산한 뒤, 평균 리튬이온 확산계수를 도시하였다. 평균 리튬이온 확산계수는, 비교예 2는 6.9x10-11 cm2/s, 실시예 3는 2.5x10-10 cm2/s으로 확인하였다. 실시예 3의 리튬이온 확산계수가 비교예 2의 리튬이온 확산계수보다 3배 이상 향상된 것을 확인하였다.Figure 7 is a graph of galvanostatic intermittent titration technique (GITT) (left) and average lithium ion diffusion coefficient (right). In order to confirm the effect of iron doping, Example 3 and Comparative Example 2 were subjected to galvanostatic intermittent titration technique (GITT). It was confirmed that the average discharge voltage drop (iRdrop) occurring during the charging and discharging process was significantly reduced as iron was doped. Based on the graph of Example 3 and Comparative Example 2 analyzed by galvanostatic titration technique (GITT), the lithium ion diffusion coefficient was calculated for each 10% remaining capacity (state of charge), and the average lithium ion diffusion coefficient was shown. . The average lithium ion diffusion coefficient was confirmed to be 6.9x10 -11 cm 2 /s in Comparative Example 2 and 2.5x10 -10 cm 2 /s in Example 3. It was confirmed that the lithium ion diffusion coefficient of Example 3 was more than 3 times improved than the lithium ion diffusion coefficient of Comparative Example 2.

도 8(a)는 실시예 3과 비교예 2를 사용하여 코인 셀 조립 후 전기화학 임피던스 분광법(EIS)을 진행하였다. 반원의 지름크기에 해당하는 저항인 전하 전달 저항(Rct)은 실시예 3은 730 Ω, 비교예 2는 616 Ω의 결과를 확인하였다. 철의 도핑 효과로 Rct는 감소하였다. 도 8(b)와 (c)는 20 mA/g의 전류밀도로 100 사이클의 장기 충방전 테스트 이후 EIS분석을 다시 진행한 결과이다. 도 8(c)에서는, 도 8(b)의 1 내지 5k 구간을 확대하였다. 비교예 2의 Rct는 매우 크게 증가하여 같은 테스트 주파수 범위에서 전부 특정되지 않고 60 ㏀을 초과하였다. 실시예 3는 Rct가 3.7 ㏀ 정도로 비교예 2와 비교했을 때, 저항 증가가 억제된 것을 확인하였다. Rct가 감소한 것은 철이 도핑되면서 구조안정성이 크게 향상되었기 때문이다.Figure 8(a) shows electrochemical impedance spectroscopy (EIS) performed after coin cell assembly using Example 3 and Comparative Example 2. The charge transfer resistance (R ct ), which is the resistance corresponding to the diameter of the semicircle, was confirmed to be 730 Ω in Example 3 and 616 Ω in Comparative Example 2. R ct decreased due to the doping effect of iron. Figures 8(b) and (c) show the results of EIS analysis again after a long-term charge/discharge test of 100 cycles at a current density of 20 mA/g. In Figure 8(c), the section 1 to 5k in Figure 8(b) is enlarged. R ct of Comparative Example 2 increased so significantly that it was not fully specified in the same test frequency range and exceeded 60 ㏀. In Example 3, R ct was approximately 3.7 kΩ, confirming that the increase in resistance was suppressed when compared to Comparative Example 2. The reason why R ct decreased is because the structural stability was greatly improved by doping with iron.

<실험예 4> 사이클 테스트 후 구조 분석<Experimental Example 4> Structural analysis after cycle test

실시예 3과 비교예 2를 20 ㎃/g의 전류밀도로 100 사이클의 장기 충방전 테스트를 하였다. 상기 테스트 이후 셀을 분해하여 실시예 3과 비교예 2의 입자를 수득한 뒤, 고해상도 투과전자현미경(HRTEM)을 촬영하였다. 도 9(a)는 비교예 2의 HRTEM 이미지로, 상전이 깊이가 70 내지 170 ㎚ 정도로 구조변화가 매우 깊게 발생하였다. 도 9(b)는 실시예 3의 HRTEM 이미지로, 상전이 깊이가 약 26 ㎚ 정도로 비가역적인 상전이 발생이 매우 적게 된 것을 확인하였다. 이 결과로 철 도핑이 구조안정성 향상에 크게 기여한 것을 확인하였다. Example 3 and Comparative Example 2 were subjected to a long-term charge/discharge test of 100 cycles at a current density of 20 mA/g. After the above test, the cells were disassembled to obtain particles of Example 3 and Comparative Example 2, and then high-resolution transmission electron microscopy (HRTEM) was taken. Figure 9(a) is an HRTEM image of Comparative Example 2, in which a very deep structural change occurred with a phase transition depth of about 70 to 170 nm. Figure 9(b) is an HRTEM image of Example 3, and it was confirmed that the phase transition depth was about 26 nm, so the occurrence of irreversible phase transition was very small. These results confirmed that iron doping significantly contributed to improving structural stability.

도 10은 제한 시야 전자 회절 패턴(SAED) 이미지로, 도 9에서 관찰된 상전이 발생을 회절 패턴으로 확인하였다. 도 10(a)는, 100 사이클 장기 충방전 테스트 전의 결과로, 역격자점들이 선명한 것을 확인하였다. 도 10(b)는 상기 100 사이클 장기 충방전 테스트 후, 비교예 2의 SAED 결과이다. 도 10(c)는 상기 100 사이클 장기 충방전 테스트 후, 실시예 3의 SAED 결과이다. 도 10(b) 및 (c)에서, 실시예 3과 비교예 2는 입자 표면에서 상전이로 인한 스피넬 상 형성 및 초격자구조 붕괴로 인해 특정 역격자점이 사라진 것을 확인하였다. Figure 10 is a limited-field electron diffraction pattern (SAED) image, and the occurrence of the phase transition observed in Figure 9 was confirmed by the diffraction pattern. Figure 10(a) shows the results before a 100 cycle long-term charge/discharge test, confirming that the reciprocal lattice points are clear. Figure 10(b) shows the SAED results of Comparative Example 2 after the 100 cycle long-term charge/discharge test. Figure 10(c) shows the SAED results of Example 3 after the 100 cycle long-term charge/discharge test. In Figures 10(b) and (c), it was confirmed that in Example 3 and Comparative Example 2, specific reciprocal lattice points disappeared due to spinel phase formation and superlattice structure collapse due to phase transition on the particle surface.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 즉, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다. As the specific parts of the present invention have been described in detail above, it is clear to those skilled in the art that these specific techniques are merely preferred embodiments and do not limit the scope of the present invention. do. That is, the practical scope of the present invention is defined by the appended claims and their equivalents.

Claims (11)

리튬망간산화물(LMO)에 철이 도핑되며, 하기 화학식 1로 표시되는 양극활물질:
[화학식 1]
Li2Mn1-xFexO3
상기 화학식 1에서 0 < x < 1임.
Lithium manganese oxide (LMO) is doped with iron, and the positive electrode active material is represented by the following formula 1:
[Formula 1]
Li 2 Mn 1-x Fe x O 3
In Formula 1, 0 < x < 1.
청구항 1에 있어서, 상기 화학식에서 x는 0.02 내지 0.08인 양극활물질.The cathode active material of claim 1, wherein in the formula, x is 0.02 to 0.08. 청구항 1에 따른 양극활물질을 포함하는 리튬 이온 이차전지용 양극.A positive electrode for a lithium ion secondary battery containing the positive electrode active material according to claim 1. 용매에 Li 공급 화합물, Mn 공급 화합물 및 Fe 공급 화합물을 혼합한 뒤, 킬레이트제(chelating agent)와 염기성 용액을 첨가하는 단계(제1단계);
상기 제1단계에서 얻어진 반응용액을 건조하여 겔을 얻는 단계(제2단계);
상기 겔을 열처리 하여 전구체를 얻는 단계(제3단계); 및
상기 전구체를 열처리하는 단계(제4단계);를 포함하는, 청구항 1에 따른 양극활물질의 제조방법.
Mixing a Li supply compound, a Mn supply compound, and an Fe supply compound in a solvent, then adding a chelating agent and a basic solution (first step);
Obtaining a gel by drying the reaction solution obtained in the first step (second step);
Obtaining a precursor by heat treating the gel (third step); and
A method for producing a positive electrode active material according to claim 1, comprising: heat-treating the precursor (fourth step).
청구항 4에 있어서, 상기 제1단계의 Li 공급 화합물은 수산화리튬(Lithium hydroxide), 탄산리튬(lithium carbonate), 질산리튬(lithium nitrate) 및 리튬 아세테이트(Lithium acetate)으로 이루어진 군에서 선택되는 1종 이상을 포함하는 양극활물질의 제조방법.The method of claim 4, wherein the Li supply compound in the first step is at least one selected from the group consisting of lithium hydroxide, lithium carbonate, lithium nitrate, and lithium acetate. A method of producing a positive electrode active material comprising. 청구항 4에 있어서, 상기 제1단계의 Mn 공급 화합물은 망간 나이트레이트(Manganese nitrate), 망간 아세테이트(Manganese acetate), 망간 클로라이드(Manganese chloride) 및 망간 설페이트(Manganese sulfate)으로 이루어진 군에서 선택되는 1종 이상을 포함하는 양극활물질의 제조방법.The method of claim 4, wherein the Mn supply compound in the first step is one selected from the group consisting of manganese nitrate, manganese acetate, manganese chloride, and manganese sulfate. A method for producing a positive electrode active material including the above. 청구항 4에 있어서, 상기 제1단계의 Fe 공급 화합물은 황산철(Iron sulfate), 황화철(Iron sulfide) 염화철(Iron chloride) 및 질산철(Iron nitrate)으로 이루어진 군에서 선택되는 1종 이상을 포함하는 양극활물질의 제조방법.The method of claim 4, wherein the Fe supply compound in the first step includes at least one selected from the group consisting of iron sulfate, iron sulfide, iron chloride, and iron nitrate. Method for manufacturing cathode active material. 청구항 4에 있어서, 상기 제1단계의 킬레이트제는 EDTA(ethylene-diamine-tetraacetic acid), DHEG(dihydroxyethyl glycine) 및 구연산(citric acid)중에서 선택되는 하나 이상인 것을 특징으로 하는 양극활물질 제조방법.The method of claim 4, wherein the chelating agent in the first step is at least one selected from ethylene-diamine-tetraacetic acid (EDTA), dihydroxyethyl glycine (DHEG), and citric acid. 청구항 4에 있어서, 상기 제1단계의 용액을 60 내지 100 ℃에서 30 내지 80 시간 교반하여 혼합하는 것을 특징으로 하는 양극활물질 제조방법.The method of claim 4, wherein the solution of the first step is mixed by stirring at 60 to 100° C. for 30 to 80 hours. 청구항 4에 있어서, 상기 제3단계의 열처리는 400 내지 500 ℃에서 3 내지 7 시간 동안 열처리하는 것을 특징으로 하는 양극활물질 제조방법.The method of claim 4, wherein the third step of heat treatment is performed at 400 to 500° C. for 3 to 7 hours. 청구항 4에 있어서, 상기 제4단계의 열처리는 O2 분위기에서 850 내지 950 ℃에서 3 내지 7 시간 동안 열처리하는 것을 특징으로 하는 양극활물질 제조방법.The method of claim 4, wherein the heat treatment in the fourth step is performed at 850 to 950° C. for 3 to 7 hours in an O 2 atmosphere.
KR1020230106312A 2022-11-01 2023-08-14 Positive-electrode active material comprising Iron doped Lithium rich oxide for lithium secondary battery and manufacturing method thereof KR20240062088A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20220143878 2022-11-01
KR1020220143878 2022-11-01

Publications (1)

Publication Number Publication Date
KR20240062088A true KR20240062088A (en) 2024-05-08

Family

ID=91074274

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020230106312A KR20240062088A (en) 2022-11-01 2023-08-14 Positive-electrode active material comprising Iron doped Lithium rich oxide for lithium secondary battery and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR20240062088A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102519556B1 (en) 2019-10-18 2023-05-11 주식회사 에코프로비엠 Positive electrode active material for lithium secondary battery, method for preparing the same, and lithium secondary battery including the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102519556B1 (en) 2019-10-18 2023-05-11 주식회사 에코프로비엠 Positive electrode active material for lithium secondary battery, method for preparing the same, and lithium secondary battery including the same

Similar Documents

Publication Publication Date Title
CN110168785B (en) Nickel-based active material precursor, method for producing same, nickel-based active material, and lithium secondary battery
KR101794097B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and positive electrode for rechargeable lithium battery and rechargeable lithium battery including the same
KR101670327B1 (en) Composite cathode materials with controlled irreversible capacity loss for lithium ion batteries
US7189475B2 (en) Lithium secondary battery
KR101378580B1 (en) Cathod active material, lithium rechargeble battery including the same, and method of activiting the same
US9991511B2 (en) Composite cathode active material, lithium battery including the same, and method of preparing the same
KR20170075596A (en) Positive electrode active material for rechargeable lithium battery, method for menufacturing the same, and rechargeable lithium battery including the same
CN105940535A (en) Lithium-nickel based cathode active material, method for preparing same, and lithium secondary battery including same
KR20120089845A (en) Layer-layer lithium rich complex metal oxides with high specific capacity and excellent cycling
KR20130125124A (en) Fabrication method of nanocomposite for lithium secondary battery
Ding et al. Preparation and performance characterization of AlF3 as interface stabilizer coated Li1. 24Ni0. 12Co0. 12Mn0. 56O2 cathode for lithium-ion batteries
Li et al. Effects of Nb substitution on structure and electrochemical properties of LiNi 0.7 Mn 0.3 O 2 cathode materials
KR20160118081A (en) Positive electrode material and method for preparing the same
Sun et al. Improved performances of a LiNi 0.6 Co 0.15 Mn 0.25 O 2 cathode material with full concentration-gradient for lithium ion batteries
KR20220040889A (en) Cathode active material for lithium secondary battery and method of manufacturing the same
CN114335480A (en) Core-shell carbon-coated doped lithium iron phosphate, and preparation method and application thereof
US10818922B2 (en) Anode active material, a sodium ion secondary battery including an anode active material, and an electric device including the secondary battery
KR20100013673A (en) Positive active material for rechargeable lithium battery, method for preparing same, and rechargeable lithium battery using same
KR101897860B1 (en) Cathode additives for lithium secondary battery and secondary battery comprising the same
KR101439630B1 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery including the same
CN111527631A (en) Manganese phosphate coated lithium nickel oxide materials
KR20200036324A (en) Method for preparing cathode active material for potassium ion secondary battery, positive electrode prepared thereby and potassium ion secondary battery containing the same
US20230231125A1 (en) Method for activating electrochemical property of cathode active material for lithium secondary battery and cathode active material for lithium secondary battery
KR101926572B1 (en) Cathode active material for a lithium secondary battery, method of preparing for the same, and a lithium secondary battery comprising the same
CN114566647A (en) Calcium phosphate coated high-nickel ternary cathode material and preparation method and application thereof