KR20240061944A - KCNQ1 SNP markers for diabetes and use thereof) - Google Patents
KCNQ1 SNP markers for diabetes and use thereof) Download PDFInfo
- Publication number
- KR20240061944A KR20240061944A KR1020220143858A KR20220143858A KR20240061944A KR 20240061944 A KR20240061944 A KR 20240061944A KR 1020220143858 A KR1020220143858 A KR 1020220143858A KR 20220143858 A KR20220143858 A KR 20220143858A KR 20240061944 A KR20240061944 A KR 20240061944A
- Authority
- KR
- South Korea
- Prior art keywords
- diabetes
- kcnq1
- haplotype
- predicting
- composition
- Prior art date
Links
- 108010011185 KCNQ1 Potassium Channel Proteins 0.000 title claims abstract description 56
- 206010012601 diabetes mellitus Diseases 0.000 title claims abstract description 48
- 102000014021 KCNQ1 Potassium Channel Human genes 0.000 title abstract 2
- 239000000203 mixture Substances 0.000 claims abstract description 20
- 239000002773 nucleotide Substances 0.000 claims abstract description 13
- 125000003729 nucleotide group Chemical group 0.000 claims abstract description 13
- 239000000090 biomarker Substances 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims abstract description 6
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 5
- 102100037444 Potassium voltage-gated channel subfamily KQT member 1 Human genes 0.000 claims description 56
- 208000001072 type 2 diabetes mellitus Diseases 0.000 claims description 55
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 47
- 239000000523 sample Substances 0.000 claims description 14
- 238000002493 microarray Methods 0.000 claims description 9
- 102210022077 rs2237892 Human genes 0.000 claims description 6
- 238000003757 reverse transcription PCR Methods 0.000 claims description 3
- 102000054765 polymorphisms of proteins Human genes 0.000 claims description 2
- 238000003745 diagnosis Methods 0.000 abstract description 8
- 239000003550 marker Substances 0.000 abstract description 6
- 102000054766 genetic haplotypes Human genes 0.000 description 59
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 39
- 239000008280 blood Substances 0.000 description 21
- 210000004369 blood Anatomy 0.000 description 21
- 229940125396 insulin Drugs 0.000 description 20
- 102000004877 Insulin Human genes 0.000 description 19
- 108090001061 Insulin Proteins 0.000 description 19
- 239000008103 glucose Substances 0.000 description 17
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 16
- 238000009396 hybridization Methods 0.000 description 14
- 230000035622 drinking Effects 0.000 description 12
- 108700028369 Alleles Proteins 0.000 description 11
- 206010022489 Insulin Resistance Diseases 0.000 description 8
- 239000000969 carrier Substances 0.000 description 8
- 210000002237 B-cell of pancreatic islet Anatomy 0.000 description 7
- 230000007613 environmental effect Effects 0.000 description 7
- 230000003914 insulin secretion Effects 0.000 description 7
- 210000000227 basophil cell of anterior lobe of hypophysis Anatomy 0.000 description 6
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 6
- 230000000295 complement effect Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000036541 health Effects 0.000 description 6
- 230000003993 interaction Effects 0.000 description 6
- 150000007523 nucleic acids Chemical class 0.000 description 6
- 238000011161 development Methods 0.000 description 5
- 238000003205 genotyping method Methods 0.000 description 5
- 108020004707 nucleic acids Proteins 0.000 description 5
- 102000039446 nucleic acids Human genes 0.000 description 5
- 108090000623 proteins and genes Proteins 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 206010052341 Impaired insulin secretion Diseases 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- 230000002068 genetic effect Effects 0.000 description 4
- 230000035772 mutation Effects 0.000 description 4
- 101150061256 KCNQ1 gene Proteins 0.000 description 3
- 238000000692 Student's t-test Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000001684 chronic effect Effects 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 238000002372 labelling Methods 0.000 description 3
- 238000001543 one-way ANOVA Methods 0.000 description 3
- 230000037081 physical activity Effects 0.000 description 3
- 230000000391 smoking effect Effects 0.000 description 3
- 230000002195 synergetic effect Effects 0.000 description 3
- 150000003626 triacylglycerols Chemical class 0.000 description 3
- 108010082126 Alanine transaminase Proteins 0.000 description 2
- 108010003415 Aspartate Aminotransferases Proteins 0.000 description 2
- 102000004625 Aspartate Aminotransferases Human genes 0.000 description 2
- 108091006146 Channels Proteins 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 206010064571 Gene mutation Diseases 0.000 description 2
- 208000034826 Genetic Predisposition to Disease Diseases 0.000 description 2
- 108010023302 HDL Cholesterol Proteins 0.000 description 2
- 101001026226 Homo sapiens Potassium voltage-gated channel subfamily KQT member 1 Proteins 0.000 description 2
- 102000003734 Voltage-Gated Potassium Channels Human genes 0.000 description 2
- 108090000013 Voltage-Gated Potassium Channels Proteins 0.000 description 2
- 238000007844 allele-specific PCR Methods 0.000 description 2
- 230000005779 cell damage Effects 0.000 description 2
- 208000037887 cell injury Diseases 0.000 description 2
- 238000000546 chi-square test Methods 0.000 description 2
- 235000012000 cholesterol Nutrition 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000014101 glucose homeostasis Effects 0.000 description 2
- 230000013632 homeostatic process Effects 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 230000000290 insulinogenic effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000010202 multivariate logistic regression analysis Methods 0.000 description 2
- 238000007410 oral glucose tolerance test Methods 0.000 description 2
- 230000004053 pancreatic β cell dysfunction Effects 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 102100036475 Alanine aminotransferase 1 Human genes 0.000 description 1
- 102000016911 Deoxyribonucleases Human genes 0.000 description 1
- 108010053770 Deoxyribonucleases Proteins 0.000 description 1
- 108010010234 HDL Lipoproteins Proteins 0.000 description 1
- 102100034343 Integrase Human genes 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- 235000013334 alcoholic beverage Nutrition 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 229940127003 anti-diabetic drug Drugs 0.000 description 1
- 239000003472 antidiabetic agent Substances 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 230000035487 diastolic blood pressure Effects 0.000 description 1
- 208000016097 disease of metabolism Diseases 0.000 description 1
- 230000009177 electrical depolarization Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 102000054767 gene variant Human genes 0.000 description 1
- 210000004209 hair Anatomy 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 201000001421 hyperglycemia Diseases 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 238000007477 logistic regression Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 238000010197 meta-analysis Methods 0.000 description 1
- 208000030159 metabolic disease Diseases 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000013615 primer Substances 0.000 description 1
- 239000002987 primer (paints) Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 239000011535 reaction buffer Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000010656 regulation of insulin secretion Effects 0.000 description 1
- 230000002336 repolarization Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000007894 restriction fragment length polymorphism technique Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000003161 ribonuclease inhibitor Substances 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000035488 systolic blood pressure Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 230000003820 β-cell dysfunction Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6827—Hybridisation assays for detection of mutation or polymorphism
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/156—Polymorphic or mutational markers
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Analytical Chemistry (AREA)
- Genetics & Genomics (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
본 발명은 당뇨병 예측 또는 진단용 SNP (single nucleotide polymorphism) 마커에 관한 것으로, 보다 자세하게는 KCNQ1 SNP에 대한 당뇨병 예측 또는 진단용 바이오 마커 조성물, 상기 SNP를 증폭 또는 검출할 수 있는 제제를 포함하는 당뇨병 예측 또는 진단용 조성물, 상기 조성물을 포함하는 키트, 및 당뇨병 예측 또는 진단을 위한 정보 제공 방법에 관한 것이다. The present invention relates to a SNP (single nucleotide polymorphism) marker for diabetes prediction or diagnosis. More specifically, a biomarker composition for diabetes prediction or diagnosis for KCNQ1 SNP, a diabetes prediction or diagnosis comprising an agent capable of amplifying or detecting the SNP. It relates to a composition, a kit containing the composition, and a method of providing information for predicting or diagnosing diabetes.
Description
본 발명은 당뇨병 예측 또는 진단용 SNP (single nucleotide polymorphism) 마커에 관한 것으로, 보다 자세하게는 KCNQ1 SNP에 대한 당뇨병 예측 또는 진단용 바이오 마커 조성물, 상기 SNP를 증폭 또는 검출할 수 있는 제제를 포함하는 당뇨병 예측 또는 진단용 조성물, 상기 조성물을 포함하는 키트, 및 당뇨병 예측 또는 진단을 위한 정보 제공 방법에 관한 것이다. The present invention relates to a SNP (single nucleotide polymorphism) marker for diabetes prediction or diagnosis. More specifically, a biomarker composition for diabetes prediction or diagnosis for KCNQ1 SNP, a diabetes prediction or diagnosis comprising an agent capable of amplifying or detecting the SNP. It relates to a composition, a kit containing the composition, and a method of providing information for predicting or diagnosing diabetes.
제2형 당뇨병(type 2 diabetes mellitus, T2DM)은 췌장 β-세포 기능이 손상되고 인슐린이 생성될 수 없을 때 발생하는 전 세계적인 만성 대사 질환으로, 고혈당증을 유발한다(1, 2). T2DM은 유전적 요인과 환경적 요인의 조합에 의해 영향을 받는 다인성 질환이다. Type 2 diabetes mellitus (T2DM) is a global chronic metabolic disease that occurs when pancreatic β-cell function is impaired and insulin cannot be produced, causing hyperglycemia (1, 2). T2DM is a multifactorial disease affected by a combination of genetic and environmental factors.
이러한 환경적 요인 중 하나는 알코올 섭취로 인간 생활의 모든 측면에서 많은 문제를 유발한다. 특히, 만성 알코올 섭취는 T2DM의 위험을 증가시켜 인슐린 분비 장애 및 β 세포 사멸을 포함하여 포도당 항상성 및 췌장 β 세포 기능의 붕괴로 이어진다(3, 4). 제2형 당뇨병의 위험에 대한 알코올 소비의 영향이 많은 연구에서 보고되었지만, 유전적 변이와 당뇨병 발병으로 이어지는 환경 요인 간의 상호작용을 조사하는 추가 연구가 필요하다.One of these environmental factors is alcohol consumption, which causes many problems in all aspects of human life. In particular, chronic alcohol consumption increases the risk of T2DM, leading to disruption of glucose homeostasis and pancreatic β-cell function, including impaired insulin secretion and β-cell death (3, 4). Although the impact of alcohol consumption on the risk of type 2 diabetes has been reported in many studies, further research is needed to investigate the interaction between genetic variants and environmental factors leading to the development of diabetes.
T2DM에 대한 다양한 감수성 유전자는 GWAS(genome-wide association Studies)의 메타 분석에 의해 확인되었다. 이러한 유전자 중에서 새로운 당뇨병 감수성 유전자인 전압 개폐 칼륨 채널 서브패밀리 Q 구성원 1(voltage-gated potassium channel subfamily Q member 1, KCNQ1)의 변이체는 다양한 인종 그룹(5-7)의 많은 연구에서 당뇨병과 관련이 있다. KCNQ1 은 KvLQT1(또는 Kv7.1) 전압 개폐 칼륨 채널 및 칼륨 전압 개폐 채널 하위 패밀리 E 구성원(KCNE)으로 구성된 기공 형성 알파 하위 단위를 인코딩한다(8, 9). KvLQT1 채널은 췌장 β 세포의 전기적 탈분극 후 인슐린 분비 조절을 포함하여 세포 재분극 과정을 제어하는데 필수적이다. 수많은 KCNQ1 변이체는 인슐린 분비 장애로 인한 공복 혈당 수준 증가와 함께 T2DM 및 인슐린 반응의 유병률과 상관 관계가 있다(10). 다양한 KCNQ1 단일 염기 다형성(SNP)이 T2DM에 대한 감수성과 관련되어 있음에도 불구하고 KCNQ1 일배체형(haplotype) 및 T2DM 간의 연관성에 대한 데이터는 제한적이다. 또한 T2DM 위험 측면에서 유전적 감수성과 환경적 위험 요소 간의 상호 작용을 평가한 연구는 거의 없다. 여기에서 본 발명은 두 개의 독립적인 한국 코호트 연구인 HEXA(Health Examinees study)와 안성-안산 커뮤니티 기반 한국 코호트 연구에서 T2DM 발병 위험에 대한 알코올 소비와 KCNQ1 변이 사이의 다인자 상호작용을 평가했다.Various susceptibility genes for T2DM have been identified by meta-analysis of genome-wide association studies (GWAS). Among these genes, variants in voltage-gated potassium channel subfamily Q member 1 (KCNQ1), a novel diabetes susceptibility gene, have been associated with diabetes in many studies in various ethnic groups (5-7). . KCNQ1 encodes a pore-forming alpha subunit consisting of the KvLQT1 (or Kv7.1) voltage-gated potassium channel and the potassium voltage-gated channel subfamily E member (KCNE) (8, 9). KvLQT1 channels are essential for controlling cellular repolarization processes, including regulation of insulin secretion after electrical depolarization of pancreatic β cells. Numerous KCNQ1 variants are correlated with the prevalence of T2DM and insulin responsiveness, with increased fasting blood glucose levels due to impaired insulin secretion (10). Although various KCNQ1 single nucleotide polymorphisms (SNPs) have been associated with susceptibility to T2DM, data on the association between KCNQ1 haplotypes and T2DM are limited. Additionally, few studies have evaluated the interaction between genetic susceptibility and environmental risk factors in terms of T2DM risk. Here, we evaluated the multifactorial interaction between alcohol consumption and KCNQ1 variants on the risk of developing T2DM in two independent Korean cohort studies: the Health Examinees study (HEXA) and the Anseong-Ansan community-based Korean cohort study.
만성 음주는 제2형 당뇨병의 원인 중 하나로 잘 알려져 있고, 인슐린분비 손상에 따른 포도당 항상성 변화 및 인슐린 저항성 발생과 연관이 있다고 알려져 있다. 본 발명에서는 당뇨병과 높은 연관성을 가진 것으로 잘 알려져 있는 KCNQ1 변이에 따른 인슐린 분비능과 음주와의 연관성을 안성안산 지역사회 및 도시 코호트 자료를 활용하여 분석하였다. KCNQ1의 위험변이 3가지를 한데 묶어 haplotype을 구성하여 분석하였다. 하플로타입을 가지는 경우 공복혈당 증가 및 당뇨병 유병율이 대조군에 비해 높은 것을 확인하였으며. KCNQ1 하플로타입을 가지는 음주자의 경우 비음주자에 비해 인슐린 분비능 및 혈중 인슐린 레벨이 감소되었고, 이와 동반되어 혈중 당수치 증가가 관찰되었다. 본 분석결과를 통해 KCNQ1 유전자 변이와 음주가 동반된 경우 췌장베타세포 손상에 대한 위험도가 증가되는 것을 확인하였으며, 인슐린 분비능을 감소시켜 당뇨병 발병에 영향을 미칠 수 있음을 확인하였다.Chronic drinking is well known as one of the causes of type 2 diabetes, and is known to be associated with changes in glucose homeostasis and the development of insulin resistance due to impaired insulin secretion. In the present invention, the correlation between insulin secretion ability and drinking according to KCNQ1 mutation, which is well known to have a high correlation with diabetes, was analyzed using Anseong-Ansan community and urban cohort data. The three risk mutations of KCNQ1 were grouped together to form a haplotype and analyzed. It was confirmed that those with the haplotype had an increased fasting blood sugar level and a higher prevalence of diabetes compared to the control group. In drinkers with the KCNQ1 haplotype, insulin secretion capacity and blood insulin levels were decreased compared to non-drinkers, and an accompanying increase in blood sugar levels was observed. Through the results of this analysis, it was confirmed that the risk of pancreatic beta cell damage increases when KCNQ1 gene mutation and alcohol consumption are combined, and that it can affect the development of diabetes by reducing insulin secretion ability.
본 발명에서는 음주와 KCNQ1의 변이가 동반되는 경우 인슐린 분비능이 대조군에 비해 유의적으로 낮은 것을 확인하였다. 이 결과를 토대로 향후 음주 및 당뇨병관련 정책 수립 및 대국민 홍보를 위한 과학적 근거로 제공 하고자 한다. In the present invention, it was confirmed that when drinking and KCNQ1 mutation were accompanied, the insulin secretion capacity was significantly lower than that of the control group. Based on these results, we aim to provide a scientific basis for establishing future drinking and diabetes-related policies and promoting them to the public.
본 발명의 목적은 KCNQ1 SNP에 대한 당뇨병 예측 또는 진단용 바이오 마커 조성물, 상기 SNP를 증폭 또는 검출할 수 있는 제제를 포함하는 당뇨병 예측 또는 진단용 조성물, 상기 조성물을 포함하는 키트, 및 당뇨병 예측 또는 진단을 위한 정보 제공 방법을 제공하기 위한 것이다.An object of the present invention is a biomarker composition for predicting or diagnosing diabetes for KCNQ1 SNP, a composition for predicting or diagnosing diabetes containing an agent capable of amplifying or detecting the SNP, a kit containing the composition, and a composition for predicting or diagnosing diabetes. It is intended to provide a method of providing information.
본 발명은 KCNQ1 단일염기 다형성(single nucleotide polymorphism; SNP) rs3852528, rs2237892 및 rs11024175로 이루어진 군에서 선택된 2 이상을 포함하는 당뇨병 예측 또는 진단용 바이오 마커 조성물을 제공한다.The present invention provides a biomarker composition for predicting or diagnosing diabetes, including two or more KCNQ1 single nucleotide polymorphisms (SNPs) selected from the group consisting of rs3852528, rs2237892, and rs11024175.
본 발명의 일 구현예에 따르면, 본 발명은 KCNQ1 단일염기 다형성(single nucleotide polymorphism; SNP) rs3852528, rs2237892 및 rs11024175로 이루어진 군에서 선택된 2 이상을 증폭 또는 검출할 수 있는 제제를 포함하는 당뇨병 예측 또는 진단용 조성물을 제공한다. According to one embodiment of the present invention, the present invention provides a method for predicting or diagnosing diabetes, comprising an agent capable of amplifying or detecting two or more selected from the group consisting of KCNQ1 single nucleotide polymorphism (SNP) rs3852528, rs2237892, and rs11024175. A composition is provided.
바람직하게, 상기 단일염기 다형성은 rs3852528, rs2237892 및 rs11024175를 포함하는 것일 수 있다. Preferably, the single nucleotide polymorphism may include rs3852528, rs2237892, and rs11024175.
본 발명에서, 용어 "SNP(single nucleotide polymorphism, 단일염기다형성)"는 하나의 유전자 좌위(locus)에 두 가지 이상의 대립유전자(allele)가 존재하는 다형성 부위(polymorphic site) 중에서, 단일 염기만이 다른 것을 말한다.In the present invention, the term "SNP (single nucleotide polymorphism)" refers to polymorphic sites where two or more alleles exist at one genetic locus, differing only by a single base. says that
상기 제제는 단일염기 다형성을 증폭 또는 검출할 수 있는 프라이머쌍 또는 프로브인 것일 수 있다.The agent may be a primer pair or probe capable of amplifying or detecting a single nucleotide polymorphism.
본 발명에서 용어 "프라이머"는 짧은 자유 3' 말단 수산화기(free 3' hydroxyl group)를 가지는 염기 서열로 상보적인 템플레이트(template)와 염기쌍 (base pair)을 형성할 수 있고 템플레이트 가닥 복사를 위한 시작 지점으로 기능을 하는 짧은 서열을 의미한다. 프라이머의 적절한 길이는 사용 목적에 따라 달라질 수 있으나, 일반적으로 15 내지 30개의 염기로 구성된다. 프라이머 서열은 주형과 완전하게 상보적일 필요는 없으나, 주형과 혼성화할 정도로 충분히 상보적이어야 한다.In the present invention, the term "primer" refers to a base sequence having a short free 3' terminal hydroxyl group, which can form a base pair with a complementary template and serves as a starting point for copying the template strand. It refers to a short sequence that functions as a The appropriate length of the primer may vary depending on the purpose of use, but generally consists of 15 to 30 bases. The primer sequence need not be completely complementary to the template, but should be sufficiently complementary to hybridize to the template.
본 발명에서 용어 "프로브"는 혼성화 프로브로서, 핵산의 상보성 가닥에 서열 특이적으로 결합할 수 있는 올리고뉴클레오티드를 의미한다. 본 발명의 프로브는 대립형질 특이적(allele-specific) 프로브로서, 같은 종의 두 개체로부터 유래한 핵산 단편 중에 다형성 부위가 존재하여, 한 구성원으로부터 유래한 DNA 단편에는 혼성화하나, 다른 구성원으로 부터 유래한 단편에는 혼성화하지 않는다. 이 경우 혼성화 조건은 대립형질 간의 혼성화 강도에 있어서 유의한 차이를 보여 대립형질 중 하나에만 혼성화되도록 충분히 엄격해야 한다. 바람직하게는 프로브는 혼성화에서의 최대 효율을 위하여 단일 가닥, 더 바람직하게는 디옥시리보뉴클레오티드일 수 있으나, 이에 제한되지 않는다.In the present invention, the term “probe” refers to a hybridization probe, which is an oligonucleotide capable of sequence-specific binding to the complementary strand of a nucleic acid. The probe of the present invention is an allele-specific probe, in which a polymorphic site is present among nucleic acid fragments derived from two members of the same species, and hybridizes to the DNA fragment derived from one member, but hybridizes to the DNA fragment derived from the other member. There is no hybridization in one fragment. In this case, hybridization conditions must be sufficiently stringent to ensure that only one of the alleles hybridizes, showing a significant difference in hybridization intensity between alleles. Preferably, the probe may be single stranded for maximum efficiency in hybridization, more preferably a deoxyribonucleotide, but is not limited thereto.
상기 프로브는 상기 SNP를 포함하는 서열에 완전하게 (perfectly) 상보적인 서열이 이용될 수 있으나, 특이적혼성화를 방해하지 않는 범위 내에서 실질적으로 (substantially) 상보적인 서열이 이용될 수도 있다. 혼성화에 적합한 조건은 당업계에 통상적으로 알려진 내용을 참조하여 결정할 수 있다. 혼성화에 이용되는 엄격한 조건(stringent condition)은 대립형질 중 하나에만 혼성화하도록 충분히 엄격해야 하며, 온도, 이온 세기(완충액 농도) 및 유기 용매와 같은 화합물의 존재 등을 조절하여 결정될 수 있다. 이러한 엄격한 조건은 혼성화되는 서열에 의존하여 다르게 결정될 수 있다.The probe may be a sequence that is perfectly complementary to the sequence containing the SNP, but may also be a substantially complementary sequence to the extent that it does not interfere with specific hybridization. Suitable conditions for hybridization can be determined by referring to information commonly known in the art. The stringent conditions used for hybridization must be sufficiently stringent to ensure hybridization to only one of the alleles, and can be determined by controlling temperature, ionic strength (buffer concentration), and the presence of compounds such as organic solvents. These stringent conditions may vary depending on the sequence being hybridized.
상기 당뇨병은 음주 당뇨병인 것일 수 있고, 상기 당뇨병은 제2형 당뇨병 것일 수 있다.The diabetes may be alcohol-drinking diabetes, and the diabetes may be type 2 diabetes.
본 발명의 다른 구현예에 따르면, 상기 조성물; 및 사용설명서를 포함하는 당뇨병 예측 또는 진단용 키트를 제공하는 것이다.According to another embodiment of the present invention, the composition; and providing a kit for predicting or diagnosing diabetes, including a user manual.
상기 키트는 당뇨병 예측 또는 진단용 마커인 SNP 마커를 증폭을 통해 확인하거나, SNP 마커의 발현 수준을 mRNA의 발현 수준을 확인함으로써 당뇨병을 예측 또는 진단할 수 있다.The kit can predict or diagnose diabetes by confirming the SNP marker, which is a marker for diabetes prediction or diagnosis, through amplification, or by checking the expression level of the mRNA for the expression level of the SNP marker.
구체적으로, 상기 키트는 RT-PCR 키트 또는 마이크로어레이 칩 키트일 수 있다.Specifically, the kit may be an RT-PCR kit or a microarray chip kit.
상기 RT-PCR 키트는 상기 SNP 부위를 포함하는 핵산을 증폭할 수 있는 각각의 프라이머 쌍을 포함할 수 있으며, 그 외 테스트 튜브 또는 다른 적절한 컨테이너, 반응 완충액, 데옥시뉴클레오타이드(dNTPs), Taq-중합효소 및 역전사효소와 같은 효소, DNase, RNAse 억제제, DEPC-물(DEPC-water), 멸균수 등을 포함할 수 있다. 또한 정량 대조군으로 사용되는 유전자에 특이적인 프라이머 쌍을 포함할 수 있다.The RT-PCR kit may include each primer pair capable of amplifying a nucleic acid containing the SNP site, as well as a test tube or other suitable container, reaction buffer, deoxynucleotides (dNTPs), and Taq-polymerization. It may include enzymes such as enzymes and reverse transcriptase, DNase, RNAse inhibitors, DEPC-water, sterilized water, etc. It may also include a pair of primers specific to the gene used as a quantitative control.
상기 마이크로어레이 칩 키트는 상기 SNP 부위를 포함하는 핵산이 고정화되어 있는 기판을 갖는 마이크로어레이를 포함할 수 있다. 상기 마이크로어레이는 본 발명의 폴리뉴클레오티드, 프라이머 또는 프로브를 포함하는 것을 제외하고는 통상적인 마이크로어레이로 이루어질 수 있다. 마이크로어레이 상에서의 핵산의 혼성화 및 혼성화 결과의 검출은 당업계에 잘 알려져 있다. 상기 검출은 예를 들면, 핵산 시료를 형광 물질, 예를 들면, Cy3 및 Cy5와 같은 물질을 포함하는 검출 가능한 신호를 발생시킬 수 있는 표지 물질로 표지한 다음, 마이크로어레이 상에 혼성화하고 상기 표지 물질로부터 발생하는 신호를 검출함으로써 혼성화 결과를 검출할 수 있다.The microarray chip kit may include a microarray having a substrate on which nucleic acid containing the SNP site is immobilized. The microarray may be a conventional microarray except that it contains the polynucleotide, primer, or probe of the present invention. Hybridization of nucleic acids and detection of hybridization results on microarrays are well known in the art. The detection may be performed, for example, by labeling a nucleic acid sample with a labeling material capable of generating a detectable signal including a fluorescent substance, such as Cy3 and Cy5, and then hybridizing the labeling material on a microarray. The hybridization result can be detected by detecting the signal generated from.
본 발명의 다른 구현예에 따르면, 상기 조성물을 분리된 시료에 반응시키는 단계; 및 KCNQ1에 대한 단일염기다형성을 확인하는 단계;를 포함하는 당뇨병 예측 또는 진단을 위한 정보 제공 방법을 제공하는 것이다.According to another embodiment of the present invention, reacting the composition with a separated sample; and confirming a single nucleotide polymorphism for KCNQ1. To provide a method of providing information for predicting or diagnosing diabetes, including a step.
상기 분리된 시료는 머리카락, 뇨, 혈액, 각종 체액, 분리된 조직, 분리된 세포 또는 타액과 같은 시료 등으로부터 DNA를 수득할 수 있으나, 이에 한정되는 것은 아니다.The separated sample may be DNA obtained from samples such as hair, urine, blood, various body fluids, separated tissues, separated cells, or saliva, but is not limited thereto.
상기 확인은 서열 분석, 마이크로어레이에 의한 혼성화, 대립 유전자 특이적인 PCR(allele specific PCR), 다이나믹 대립 유전자 혼성화 기법(dynamic allele-specific hybridization, DASH), PCR 연장 분석, PCR-SSCP(PCR-single strand conformation polymorphism), PCR-RFLP(PCR-resctriction fragment length polymorphism) 및 TaqMan 기법으로 이루어진 군으로부터 선택된 하나 이상의 방법에 의해 수행되는 것일 수 있으나, 이에 한정되지 않는다.The confirmation is performed by sequence analysis, hybridization by microarray, allele-specific PCR (allele-specific PCR), dynamic allele-specific hybridization (DASH), PCR extension analysis, and PCR-SSCP (PCR-single strand). conformation polymorphism), PCR-RFLP (PCR-restriction fragment length polymorphism), and TaqMan technology. It may be performed by one or more methods selected from the group consisting of, but is not limited to, this.
본 발명의 SNP 마커는 KCNQ1 유전자 변이와 음주가 동반된 경우 췌장베타세포 손상에 대한 위험도가 증가되는 것을 확인하였으며, 인슐린 분비능을 감소시켜 당뇨병 발병에 영향을 미칠 수 있음을 확인하여 당뇨병의 위험도 예측 또는 객관적인 진단에 유용하게 사용될 수 있다.It was confirmed that the SNP marker of the present invention increases the risk of pancreatic beta cell damage when KCNQ1 gene mutation and alcohol consumption are combined, and it was confirmed that it can affect the development of diabetes by reducing insulin secretion ability, predicting the risk of diabetes or It can be useful for objective diagnosis.
또한, 본 발명에서는 음주와 KCNQ1의 변이가 동반되는 경우 인슐린 분비능이 대조군에 비해 유의적으로 낮은 것을 확인하여 향후 음주 및 당뇨병관련 정책 수립 및 대국민 홍보를 위한 과학적 근거를 제공하고자 한다.In addition, the present invention seeks to provide a scientific basis for establishing future drinking and diabetes-related policies and promoting them to the public by confirming that the insulin secretion ability is significantly lower than that in the control group when drinking and KCNQ1 mutations are accompanied.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 한다. 이들 실시예는 단지 본 발명을 예시하기 위한 것이므로, 본 발명의 범위가 이들 실시예에 제한되는 것으로 해석되지는 않는다. Hereinafter, the present invention will be described in more detail through examples. Since these examples are merely for illustrating the present invention, the scope of the present invention is not to be construed as limited to these examples.
KCNQ1 (Potassium voltage-gated channel subfamily Q member 1)은 제2형 진성 당뇨병(T2DM)에 대한 가장 강력한 감수성 유전자 중 하나이다. KCNQ1 유전자 변이체와 T2DM 간의 연관성 연구가 보고되었다. 다인성 질환 T2DM은 유전적 감수성과 환경적 요인 간의 상호작용에 의해 발생한다. 본 발명에서는 주요 대립유전자인 rs3852528, rs11024175, rs2237892(ht: ACC)로 구성된 KCNQ1 haplotype과 T2DM의 위험도와 관련된 음주와 같은 환경적 요인 간의 연관성을 두 가지 독립된 한국 인구에서 조사하였다. 건강 검진 연구 데이터, 즉 HEXA(n = 50,357명의 피험자)와 안성-안산 지역사회 기반 한인 코호트 연구(n = 7603)를 분석하였다. 두 코호트 모두에서 공복 혈당 수치는 moderate-to-heavy drinker와 homozygous ACC haplotype carrier에서 유의하게 증가했다. HEXA(OR 1.587; 95% CI 1.128-2.234) 및 Ansung-Ansan(OR 2.165; 95% CI 1.175-3.989) 코호트군에서 당뇨병 위험에서 KCNQ1 haplotype과 알코올 소비 사이의 유의한 연관성이 관찰되었다. KCNQ1 haplotype을 가지고 있지 않다. 안성-안산 코호트에서 알코올 섭취와 β-세포 기능을 갖는 KCNQ1 haplotype의 관련성이 관찰되었다. ACC haplotype을 가진 moderate-to-heavy drinker는 ACC haplotype을 가지고 있지 않은 light drinker와 abstainer에 비해 공복 인슐린 수치가 낮고 평균 60분 인슐린 생성 지수(IGI60)를 보였다. 이러한 발견은 KCNQ1 변이체가 T2DM 및 손상된 β-세포 기능의 발달에서 알코올 소비와 상승적인 역할을 한다는 것을 나타낸다.KCNQ1 (Potassium voltage-gated channel subfamily Q member 1) is one of the strongest susceptibility genes for type 2 diabetes mellitus (T2DM). An association study between KCNQ1 gene variants and T2DM has been reported. T2DM, a multifactorial disease, is caused by the interaction between genetic susceptibility and environmental factors. In the present invention, the association between the KCNQ1 haplotype, which consists of the major alleles rs3852528, rs11024175, and rs2237892 (ht: ACC), and environmental factors such as alcohol consumption associated with the risk of T2DM was investigated in two independent Korean populations. We analyzed data from health screening studies, namely HEXA (n = 50,357 subjects) and the Anseong-Ansan Community-Based Korean Cohort Study (n = 7603). In both cohorts, fasting blood glucose levels were significantly increased in moderate-to-heavy drinkers and homozygous ACC haplotype carriers. A significant association between KCNQ1 haplotype and alcohol consumption was observed in diabetes risk in the HEXA (OR 1.587; 95% CI 1.128-2.234) and Ansung-Ansan (OR 2.165; 95% CI 1.175-3.989) cohorts. Does not have KCNQ1 haplotype. In the Anseong-Ansan cohort, an association between alcohol consumption and KCNQ1 haplotype with β-cell function was observed. Moderate-to-heavy drinkers with the ACC haplotype showed lower fasting insulin levels and an average 60-minute insulin production index (IGI 60 ) compared to light drinkers and abstainers without the ACC haplotype. These findings indicate that KCNQ1 variants play a synergistic role with alcohol consumption in the development of T2DM and impaired β-cell function.
<실시예 1> Study population<Example 1> Study population
데이터는 한국 게놈 및 역학 연구(27)의 일환으로 국립보건원에서 수행한 2개의 코호트 연구에서 얻은 것이다. 모든 피험자로부터 서면동의를 받았으며, 본 발명은 국립바이오뱅크와 질병관리본부의 승인을 받았다. 이 연구 프로토콜은 국립보건원 심사위원회(2019-03-01-PE-A)의 승인을 받았다. 모든 연구 프로토콜은 승인된 지침에 따라 수행되었다.Data were obtained from two cohort studies conducted at the National Institutes of Health as part of the Korean Genome and Epidemiology Study (27). Written consent was obtained from all subjects, and the present invention was approved by the National Biobank and the Korea Centers for Disease Control and Prevention. This study protocol was approved by the National Institutes of Health Review Board (2019-03-01-PE-A). All study protocols were performed according to approved guidelines.
HEXA의 참가자는 2004년부터 2013년까지 한국의 8개 지역(수도권 또는 주요 도시)에 위치한 38개의 건강 검진 센터 및 병원에서 등록되었다. 본 발명은 HEXA(n = 53,754)의 기준 데이터를 사용했다. 알코올 소비(n = 2924) 또는 KCNQ1 haplotype(n = 473)에 대한 데이터가 누락된 대상은 제외되었다. 총 50,357명의 피험자가 본 발명에 포함되었다. 커뮤니티 기반 Ansung-Ansan 코호트 연구는 이전에 자세히 설명되었습니다(28). 본 발명은 농촌 안성 또는 도시 안산에 거주하는 8840명의 대상자의 데이터를 사용했다. 알코올 소비(n = 828) 또는 제2형 당뇨병(n = 409)에 대한 데이터가 누락된 개인은 제외되어 본 발명에 포함된 7603명의 대상을 남겼다.Participants in HEXA were enrolled from 38 health examination centers and hospitals located in eight regions (metropolitan area or major cities) in Korea from 2004 to 2013. The present invention used baseline data from HEXA (n = 53,754). Subjects with missing data on alcohol consumption (n = 2924) or KCNQ1 haplotype (n = 473) were excluded. A total of 50,357 subjects were included in the study. The community-based Ansung-Ansan cohort study has been described in detail previously (28). The present invention used data from 8840 subjects living in rural Anseong or urban Ansan. Individuals with missing data on alcohol consumption (n = 828) or type 2 diabetes (n = 409) were excluded, leaving 7603 subjects included in this study.
<실시예 2> Anthropometric and biochemical analyses<Example 2> Anthropometric and biochemical analyzes
연령, 당뇨병의 가족력, 신체 활동 및 흡연(pack-years)에 대한 정보는 인터뷰 기반 설문지를 사용하여 얻었다. 체질량지수(BMI)는 체중(kg)을 키(m)의 제곱으로 나누어 계산했다. 공복 혈당 수치와 지질 프로필(총 콜레스테롤, 중성지방 및 HDL-콜레스테롤)은 제조업체의 권장 사항에 따라 Hitachi 747 화학 분석기(Hitachi Ltd., Tokyo, Japan)를 사용하여 측정되었다. Ansan-Ansung cohort에서는 INS-IRMA kit(Biosource, Nivelles, Belgium)와 gamma counter(Packard Instrument Co., Meriden, CT, USA)를 이용하여 인슐린 수치를 측정한 반면 HEXA cohort에서는 인슐린 수치를 측정하지 않았다.Information on age, family history of diabetes, physical activity and smoking (pack-years) was obtained using an interview-based questionnaire. Body mass index (BMI) was calculated by dividing weight (kg) by the square of height (m). Fasting blood glucose levels and lipid profiles (total cholesterol, triglycerides, and HDL-cholesterol) were measured using a Hitachi 747 chemistry analyzer (Hitachi Ltd., Tokyo, Japan) according to the manufacturer's recommendations. In the Ansan-Ansung cohort, insulin levels were measured using the INS-IRMA kit (Biosource, Nivelles, Belgium) and a gamma counter (Packard Instrument Co., Meriden, CT, USA), whereas insulin levels were not measured in the HEXA cohort.
<실시예 3> Genotyping<Example 3> Genotyping
모든 유전자형 데이터는 국립바이오뱅크와 질병관리본부의 승인을 받아 제공되었습니다(no. 2019-022). Ansung-Ansan 코호트 연구에서 유전자형 분석은 Affymetrix 게놈 전체 인간 SNP 어레이 5.0을 사용하여 수행되었으며 유전자형 대치는 IMPUTE2를 사용하여 수행되었다. 동아시아 조상 샘플의 1000개 게놈 프로젝트를 참조 패널로 사용했다. HEXA 연구에서 유전자형 분석은 국립보건원 게놈과학원에서 설계한 Korean Chip을 사용하여 수행되었다. 예상되는 유전자형 및 품질 관리 정보는 이전(29, 30)에 자세히 설명되어 있다.All genotyping data were provided with approval from the National Biobank and the Korea Centers for Disease Control and Prevention (no. 2019-022). In the Ansung-Ansan cohort study, genotyping was performed using Affymetrix genome-wide human SNP Array 5.0 and genotype imputation was performed using IMPUTE2. The 1000 Genomes Project of East Asian Ancestry Samples was used as a reference panel. In the HEXA study, genotyping was performed using the Korean Chip designed by the National Institute of Genome Science of the National Institutes of Health. Expected genotyping and quality control information have been described in detail previously (29, 30).
<실시예 4> T2DM and pancreatic β-cell function<Example 4> T2DM and pancreatic β-cell function
T2DM은 공복 혈당 수치 > 126 mg/dL로 정의되었다. 또한, 현재 항당뇨병 약물과 인슐린을 복용하고 있는 것으로 보고된 피험자는 T2DM이 있는 것으로 간주되었다. 대상자는 T2DM 또는 마지막 검사가 발생할 때까지 추적되었다. Ansung-Ansan 코호트에서 췌장 β-세포 기능은 경구 포도당 내성 검사(75g)를 사용하여 추정되었다. 평균 60분 인슐린 생성 지수(IGI60)는 다음과 같이 계산되었다(13). T2DM was defined as a fasting blood glucose level >126 mg/dL. Additionally, subjects who reported currently taking antidiabetic drugs and insulin were considered to have T2DM. Subjects were followed until the occurrence of T2DM or last examination. In the Ansung-Ansan cohort, pancreatic β-cell function was estimated using an oral glucose tolerance test (75 g). The average 60-minute insulinogenic index (IGI 60 ) was calculated as follows (13).
(insulin level [μU/mL]) at 60 min-insulin level at 0 min) ÷ (glucose level [mmol/L] at 60 min-glucose level at 0 min)(insulin level [μU/mL]) at 60 min-insulin level at 0 min) ÷ (glucose level [mmol/L] at 60 min-glucose level at 0 min)
<실시예 5> Measurement of alcohol consumption<Example 5> Measurement of alcohol consumption
알코올 소비에 대한 정보는 인터뷰 기반 설문지를 사용하여 두 코호트에서 수집되었다. 피험자들은 한 달에 최소한 한 잔의 알코올 음료를 마신 적이 있는지 질문을 받았다; Yes 라면, 그들은 이전 또는 현재 음주 여부를 질문 받는다. 본 발명에서는 음주 기간이 불분명하여 이전 음주자를 제외했다. 여성은 과음 그룹(heavy drinking group)이 아니었기 때문에 기준선 알코올 소비 정보를 사용하여 피험자를 세 그룹[금주(abstainer), 가벼운 음주(light), 중등도 내지 과도 음주자(moderate-to-heavy drinkers)]으로 분류했다.Information on alcohol consumption was collected in both cohorts using an interview-based questionnaire. Subjects were asked whether they consumed at least one alcoholic beverage per month; If yes, they are asked about previous or current drinking. In the present invention, former drinkers were excluded because the drinking period was unclear. Because women were not in the heavy drinking group, baseline alcohol consumption information was used to divide subjects into three groups: abstainers, light drinkers, and moderate-to-heavy drinkers. Sorted.
<실시예 6> Statistical analysis<Example 6> Statistical analysis
통계 분석은 SAS 소프트웨어 패키지(ver. 9.4; SAS Institute, Cary, NC, USA)를 사용하여 수행되었다. 데이터는 95% 신뢰 구간(CI)의 평균 ± 표준 편차, 숫자(%) 또는 승산비(OR)로 표시된다. 로그 변환은 가우스 분포가 아닌 변수에 적용되었다. 음주 상태에 따른 임상적 특징을 비교하기 위해 Student's t-test와 일원 ANOVA 분석을 시행하였다. 카이제곱 검정은 범주형 변수(음주 상태 및 KCNQ1 haplotype)를 비교하는 데 사용되었다. HEXA에서 알코올 소비 및 연령, 성별, 흡연, BMI, 당뇨병 가족력, 신체 활동 및 소득을 조정한 후 안산-안성 코호트에 따른 T2DM과 KCNQ1 haplotype간의 연관성을 감지하기 위해 다변량 로지스틱 회귀 분석을 수행했다. 보고된 모든 p-값은 양측이며 p-값 < 0.05는 유의한 것으로 간주되었다.Statistical analyzes were performed using the SAS software package (ver. 9.4; SAS Institute, Cary, NC, USA). Data are expressed as mean ± standard deviation, number (%), or odds ratio (OR) with 95% confidence interval (CI). Logarithmic transformation was applied to variables that were not Gaussian distributed. Student's t-test and one-way ANOVA analysis were performed to compare clinical characteristics according to drinking status. The chi-square test was used to compare categorical variables (drinking status and KCNQ1 haplotype). Multivariate logistic regression analysis was performed to detect the association between T2DM and KCNQ1 haplotype according to the Ansan-Anseong cohort after adjusting for alcohol consumption and age, gender, smoking, BMI, family history of diabetes, physical activity, and income in HEXA. All reported p-values are two-tailed and p-values <0.05 were considered significant.
<시험예 1> General characteristics of the study population<Test Example 1> General characteristics of the study population
KCNQ1 변이체가 있는 피험자의 수 는 두 코호트 간에 유사하게 분포되었다(결과 생략). 3개의 SNP(ht:ACC/ACC)의 주요 대립유전자를 포함하는 KCNQ1 haplotype에 따른 대상자의 기준선 특성은 표 1과 같다. 혈압과 중성지방, 콜레스테롤(HDL 및 총), 간 효소인 알라닌 아미노트랜스퍼라제 및 아스파테이트 아미노트랜스퍼라제의 수준은 두 코호트에서 KCNQ1 haplotype에 따라 차이가 없었다. 평균 60분 인슐린 생성 지수(IGI 60) 값은 non-carrier에서 13.7 ± 29.6, ACC/- carrier에서 12.4 ± 26.7, ACC/ACC carrier에서 11.5 ± 19.3으로, homozygous ACC haplotype (ACC/ACC carrier)을 보유한 대상체는 안성-안산 코호트에서 β-세포 기능이 감소하는 경향을 나타냈다(p < 0.0651). 공복 혈당 수치와 T2DM의 유병률은 두 코호트에서 non-carrier보다 KCNQ1 homozygous ACC haplotype을 가진 대상에서 유의하게 더 높았다.The number of subjects with KCNQ1 variants was similarly distributed between the two cohorts (results omitted). Baseline characteristics of subjects according to KCNQ1 haplotype, including major alleles of three SNPs (ht:ACC/ACC), are shown in Table 1. Blood pressure, triglycerides, cholesterol (HDL and total), and levels of liver enzymes alanine aminotransferase and aspartate aminotransferase did not differ according to KCNQ1 haplotype in the two cohorts. The average 60-minute insulin production index (IGI 60) value was 13.7 ± 29.6 in non-carriers, 12.4 ± 26.7 in ACC/- carriers, and 11.5 ± 19.3 in ACC/ACC carriers, in those with homozygous ACC haplotype (ACC/ACC carrier). Subjects showed a tendency for decreased β-cell function in the Anseong-Ansan cohort (p < 0.0651). Fasting blood glucose levels and prevalence of T2DM were significantly higher in subjects with KCNQ1 homozygous ACC haplotype than non-carriers in both cohorts.
Table 1. General characteristics of the subjects ( KCNQ1 haplotype) in the HEXA and Ansung-Ansan cohorts All data except type 2 diabetes and alcohol consumption are presented as the mean ± standard deviation. Student's t-test was used for comparisons of continuous variables and the chi-square test for comparisons of categorical variables according to KCNQ1 haplotype. Table 1. General characteristics of the subjects ( KCNQ1 haplotype) in the HEXA and Ansung-Ansan cohorts All data except type 2 diabetes and alcohol consumption are presented as the mean ± standard deviation. Student's t -test was used for comparisons of continuous variables and the chi-square test for comparisons of categorical variables according to KCNQ1 haplotype.
알코올 소비 상태에 따른 피험자의 기준선 특성(HEXA 코호트에서 금주자 27,024명 및 음주자 23,333명 및 안성-안산 코호트에서 금주자 3826명 및 음주자 3777명)을 확인한 결과(결과 생략), 모든 음주자는 금주자에 비해 이완기 혈압, 공복 혈당, HDL-콜레스테롤, 트리글리세리드, 아스파르테이트 아미노트랜스퍼라제 및 알라닌 아미노트랜스퍼라제를 포함한 알코올 마커 수치가 더 높았다. 수축기 혈압과 총 콜레스테롤 수치는 HEXA 코호트에서만 음주에 따라 유의한 차이가 있었다(p < 0.001). IGI 60값과 공복 인슐린 수치는 안성-안산 코호트에서 음주자에서 더 낮았다. 제2형 당뇨병 유병률은 어느 쪽 코호트에서도 알코올 소비의 영향을 받지 않았다. T2DM의 유병률은 HEXA 코호트에서 금주자 9.9%, 음주자 10.1%, 안성-안산 코호트에서 금주자 11.8%, 음주자 12.5%였다.After confirming the baseline characteristics of subjects according to alcohol consumption status (27,024 abstainers and 23,333 drinkers in the HEXA cohort and 3826 abstainers and 3777 drinkers in the Anseong-Ansan cohort) (results omitted), all drinkers were categorized as abstainers. In comparison, levels of alcohol markers including diastolic blood pressure, fasting blood sugar, HDL-cholesterol, triglycerides, aspartate aminotransferase, and alanine aminotransferase were higher. Systolic blood pressure and total cholesterol levels differed significantly according to alcohol consumption only in the HEXA cohort (p < 0.001). IGI 60 values and fasting insulin levels were lower in drinkers in the Anseong-Ansan cohort. Type 2 diabetes prevalence was not affected by alcohol consumption in either cohort. The prevalence of T2DM was 9.9% in abstainers and 10.1% in drinkers in the HEXA cohort, and 11.8% in abstainers and 12.5% in drinkers in the Anseong-Ansan cohort.
<시험예 2> Effect of the association between the KCNQ1 haplotype and alcohol consumption on fasting blood glucose<Test Example 2> Effect of the association between the KCNQ1 haplotype and alcohol consumption on fasting blood glucose
공복 혈당 수준은 두 코호트 집단에서 알코올 소비에 관계없이 non-carrier와 비교하여 KCNQ1 haplotype을 지닌 대상에서 증가했다(표 1). 또한, 공복 혈당 수치는 알코올 섭취자에서 유의하게 더 높았다(결과 생략). 본 발명은 공복 혈당 수준에 대한 알코올 소비와 KCNQ1 haplotype 사이의 상승 효과를 평가했다(표 2). 두 코호트 모두에서 moderate-to-heavy drinker와 ACC haplotype을 지닌 피험자는 ACC haplotype을 가지고 있지 않은 abstainer보다 더 높은 공복 혈당 수치를 보였고 가벼운 알코올 섭취는 ACC haplotype에 관계없이 증가된 공복 혈당 수치를 보여주었다. ACC haplotype을 지닌 moderate-to-heavy drinker는 ACC haplotype을 지닌 abstainer와 비교하여 상당히 높은 공복 혈당 수치를 보였다.Fasting blood glucose levels were increased in subjects carrying the KCNQ1 haplotype compared with non-carriers, regardless of alcohol consumption in both cohorts (Table 1). Additionally, fasting blood sugar levels were significantly higher in alcohol drinkers (results omitted). We evaluated the synergistic effect between alcohol consumption and KCNQ1 haplotype on fasting blood glucose levels (Table 2). In both cohorts, moderate-to-heavy drinkers and subjects with the ACC haplotype had higher fasting blood glucose levels than abstainers without the ACC haplotype, and light alcohol consumption was associated with increased fasting blood glucose levels regardless of ACC haplotype. Moderate-to-heavy drinkers with the ACC haplotype showed significantly higher fasting blood sugar levels compared to abstainers with the ACC haplotype.
Table 2. Effect of the KCNQ1 haplotype on the fasting glucose level according to alcohol consumption in the HEXA and Ansung-Ansan cohorts Data are expressed as the mean ± standard deviation fasting glucose level. 1) One-way ANOVA was used to assess the relationships with the KCNQ1 haplotype. 2) Student's t-test was used to assess the relationship between alcohol consumption and the KCNQ1 haplotype. Table 2. Effect of the KCNQ1 haplotype on the fasting glucose level according to alcohol consumption in the HEXA and Ansung-Ansan cohorts Data are expressed as the mean ± standard deviation fasting glucose level. 1) One-way ANOVA was used to assess the relationships with the KCNQ1 haplotype. 2) Student's t -test was used to assess the relationship between alcohol consumption and the KCNQ1 haplotype.
<시험예 3> The effects of the KCNQ1 haplotype and alcohol consumption on T2DM risk<Test Example 3> The effects of the KCNQ1 haplotype and alcohol consumption on T2DM risk
다변량 로지스틱 회귀 분석을 수행하여 T2DM 위험에서 KCNQ1 haplotype과 알코올 소비 사이의 연관성을 평가했다(표 3). Multivariate logistic regression analysis was performed to evaluate the association between KCNQ1 haplotype and alcohol consumption on T2DM risk (Table 3).
Table 3. Association between type 2 diabetes and the KCNQ1 haplotype according to alcohol consumption in the HEXA and Ansung-Ansan cohorts The p-values were calculated by multivariate logistic regression models adjusted for age, sex, smoking, body mass index, family history of diabetes, physical activity, and income level. Table 3. Association between type 2 diabetes and the KCNQ1 haplotype according to alcohol consumption in the HEXA and Ansung-Ansan cohorts The p -values were calculated by multivariate logistic regression models adjusted for age, sex, smoking, body mass index, family history of diabetes, physical activity, and income level.
HEXA 코호트에서 ACC haplotype을 지닌 light drinker는 T2DM 발병 위험이 더 높았고(odds ratio [OR] 1.530; 95% confidential interval [CI] 1.008-2.323), T2DM 위험은 ACC haplotype(OR 1.587; 95% CI 1.128-2.234)을 보유한 moderate-to-heavy drinker에서 KCNQ1을 보유하지 않는 abstainer ACC haplotype에 비해 유의하게 증가했다. 여기에서 T2DM 위험은 ACC haplotype(OR 1.334, 95% CI 0.888-2.003)을 보유한 abstainer에서 non-carrier와 비교하여 더 높지 않았다. 또한, ACC haplotype heterozygous와 가벼운 음주는 HEXA 집단에서 T2DM에 위험한 영향을 미쳤다. 안성-안산에서 homozygous ACC haplotype을 가진 피험자들은 T2DM의 위험이 증가함을 보여주었다(abstainer에서 OR 2.588; 95% CI 1.498-4.469; OR 2.165; 95% CI 1.175-3.989 moderate-to-heavy drinker에서). 두 코호트에서 T2DM의 위험은 ACC haplotype을 가지고 있지 않은 abstainer에 비해 ACC haplotype에 대해 homozygous인 moderate-to-heavy drinker에서 증가했다. T2DM의 위험은 주요 KCNQ1 SNP 대립유전자 및 ACC haplotype을 보유한 피험자 간에 유사한 패턴을 보였다(결과생략). 환경적 요인보다 제2형 당뇨병의 위험에 더 큰 영향을 미치는 KCNQ1 유전적 요인에 따르면, 각 3개의 SNP 및 ACC haplotype의 주요 대립유전자를 가진 피험자는 주요 대립유전자 또는 haplotype이 없는 피험자에 비해 제2형 당뇨병 위험이 더 높았다. 이러한 결과는 HEXA에서 KCNQ1 haplotype과 알코올 소비에 의해 T2DM 위험이 유의하게 증가함을 나타내지만, 안성-안산 코호트에서는 ACC haplotype이 조금 더 영향력 있는 요인이었다.In the HEXA cohort, light drinkers with the ACC haplotype had a higher risk of developing T2DM (odds ratio [OR] 1.530; 95% confidential interval [CI] 1.008-2.323), and the risk of T2DM was significantly correlated with the ACC haplotype (OR 1.587; 95% CI 1.128-2.323). 2.234) was significantly increased compared to the abstainer ACC haplotype that does not have KCNQ1. Here, the risk of T2DM was not higher in abstainers carrying the ACC haplotype (OR 1.334, 95% CI 0.888-2.003) compared to non-carriers. Additionally, ACC haplotype heterozygous and light drinking had a risky effect on T2DM in the HEXA population. In Anseong-Ansan, subjects with the homozygous ACC haplotype showed an increased risk of T2DM (OR 2.588; 95% CI 1.498-4.469 in abstainers; OR 2.165; 95% CI 1.175-3.989 in moderate-to-heavy drinkers). . In both cohorts, the risk of T2DM was increased in moderate-to-heavy drinkers homozygous for the ACC haplotype compared to abstainers without the ACC haplotype. The risk of T2DM showed a similar pattern among subjects carrying the major KCNQ1 SNP allele and ACC haplotype (results omitted). According to KCNQ1 genetic factors, which have a greater impact on the risk of type 2 diabetes than environmental factors, subjects with each of the three SNPs and the major allele of the ACC haplotype had a higher risk of type 2 diabetes compared to subjects without the major allele or haplotype. The risk of type 2 diabetes was higher. These results indicate that the risk of T2DM is significantly increased by KCNQ1 haplotype and alcohol consumption in HEXA, but ACC haplotype was a slightly more influential factor in the Anseong-Ansan cohort.
<시험예 4> Effect of the association between the KCNQ1 haplotype and alcohol consumption on β-cell function<Test Example 4> Effect of the association between the KCNQ1 haplotype and alcohol consumption on β-cell function
표 4 에서 보는 바와 같이 안성-안산 코호트에서 ACC haplotype과 알코올 섭취군에서 공복 혈당 수치의 결과와 함께 공복 인슐린 수치가 일관되게 감소하였다. As shown in Table 4, fasting insulin levels consistently decreased along with fasting blood sugar levels in the ACC haplotype and alcohol consumption groups in the Anseong-Ansan cohort.
Table 4. Changes in β-cell function and the fasting insulin level according to the KCNQ1 haplotype and alcohol consumption in the Ansung-Ansan cohort. Data are expressed as the mean ± standard deviation. IGI60: insulinogenic index at 1 h after the oral glucose tolerance test. Differences in the association between the KCNQ1 haplotype and alcohol consumption were assessed by one-way ANOVA. Table 4. Changes in β-cell function and the fasting insulin level according to the KCNQ1 haplotype and alcohol consumption in the Ansung-Ansan cohort. Data are expressed as the mean ± standard deviation. IGI 60 : insulinogenic index at 1 h after the oral glucose tolerance test. Differences in the association between the KCNQ1 haplotype and alcohol consumption were assessed by one-way ANOVA.
증가된 공복 혈당 수치에 대한 영향을 이해하기 위해 KCNQ1 haplotype 및 알코올 소비에 따른 공복 혈당 수치, 공복 인슐린 수치, IGI60, 인슐린 저항성에 대한 항상성 모델 평가 및 인슐린 감수성과 관련된 T2DM 환자를 제외한 대상의 인슐린 지수를 결정했다. 음주는 abstainer에 비해 알코올 노출량에 따른 공복 인슐린 수치가 유의하게 낮았다. 또한, ACC haplotype을 지닌 피험자들은 공복 인슐린 수치가 감소하는 경향을 보였다. 본 발명은 공복 인슐린 수치의 감소에 대한 알코올 소비와 KCNQ1 haplotype 보유 사이의 연관성 효과를 발견했다. IGI60 값은 non-carrier보다 ACC haplotype을 가진 사람들에서 더 낮은 경향이 있었다. 또한 음주자는 음주량에 관계없이 금주에 비해 IGI60 값이 더 낮은 것으로 나타났다. ACC haplotype을 가지고 있는 moderate-to-heavy drinker 및 abstainer에 비해 light drinker에서 IGI60값이 증가했지만 유의하지는 않았다. 또한 많은 연구에서 인슐린 분비보다 인슐린 감수성의 중요성이 보고되었지만 본 발명에서는 인슐린 저항성 또는 인슐린 감수성 지수에 대한 항상성 모델 평가에서 유의한 차이가 없었다(결과생략). 이전 연구에서는 현재 연구에서 발견된 바와 같이 알코올 섭취가 인슐린 분비 장애에 기여한다고 일관되게 보고했다(결과생략). 본 발명의 결과는 KCNQ1 사이의 상호 작용이 ACC haplotype 및 알코올 섭취는 인슐린 저항성 및/또는 인슐린 감수성의 변화보다는 췌장 β-세포 기능 장애로 인한 T2DM의 위험을 증가시킨다.To understand the impact of increased fasting blood glucose levels, fasting blood sugar levels, fasting insulin levels, IGI 60 according to KCNQ1 haplotype and alcohol consumption, homeostasis model evaluation for insulin resistance and insulin index in subjects excluding T2DM patients related to insulin sensitivity. decided. Compared to abstainers, fasting insulin levels were significantly lower depending on the amount of alcohol exposure. Additionally, subjects with the ACC haplotype tended to have decreased fasting insulin levels. We found an association effect between alcohol consumption and KCNQ1 haplotype possession on the reduction of fasting insulin levels. IGI 60 values tended to be lower in people with the ACC haplotype than in non-carriers. Additionally, drinkers were found to have lower IGI 60 values compared to abstainers, regardless of the amount of alcohol consumed. The IGI 60 value increased in light drinkers compared to moderate-to-heavy drinkers and abstainers with the ACC haplotype, but it was not significant. In addition, many studies have reported the importance of insulin sensitivity over insulin secretion, but in the present study, there was no significant difference in the homeostasis model evaluation for insulin resistance or insulin sensitivity index (results omitted). Previous studies have consistently reported that alcohol consumption contributes to impaired insulin secretion, as found in the current study (results omitted). Our results suggest that the interaction between KCNQ1, ACC haplotype, and alcohol consumption increases the risk of T2DM due to pancreatic β-cell dysfunction rather than insulin resistance and/or changes in insulin sensitivity.
상기 결과를 요약하면, 본 발명은 KCNQ1 ACC haplotype의 특성과 KCNQ1 haplotype과 알코올 섭취 사이의 상승된 공복 혈당 수준 및 베타 세포 기능 장애와 함께 T2DM의 위험에 대한 상승 효과를 결정했다. 이것은 KCNQ1와 알코올 섭취 간의 연관성이 T2DM 발병 위험에 미치는 영향을 조사한 첫 번째 연구이다. To summarize the above results, we determined the nature of the KCNQ1 ACC haplotype and the synergistic effect between KCNQ1 haplotype and alcohol consumption on the risk of T2DM with elevated fasting blood glucose levels and beta-cell dysfunction. This is the first study to investigate the association between KCNQ1 and alcohol consumption on the risk of developing T2DM.
또한, 본 발명은 두 개의 독립적인 코호트에서 T2DM을 식별하기 위해 임상 지표(포도당 및 인슐린)를 사용하여 대규모 샘플 크기 및 복제된 결과의 사용과 같은 몇 가지 장점을 가지고 있다. 이러한 발견은 잠재적으로 KCNQ1 변이체와 알코올 소비 사이의 상호 작용이 췌장 β-세포 기능 장애를 통한 T2DM의 발병에 기여한다는 것을 시사한다.Additionally, the present invention has several advantages, such as the use of a large sample size and replicated results using clinical indicators (glucose and insulin) to identify T2DM in two independent cohorts. These findings potentially suggest that the interaction between KCNQ1 variants and alcohol consumption contributes to the pathogenesis of T2DM through pancreatic β-cell dysfunction.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220143858A KR20240061944A (en) | 2022-11-01 | 2022-11-01 | KCNQ1 SNP markers for diabetes and use thereof) |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220143858A KR20240061944A (en) | 2022-11-01 | 2022-11-01 | KCNQ1 SNP markers for diabetes and use thereof) |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20240061944A true KR20240061944A (en) | 2024-05-08 |
Family
ID=91074379
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020220143858A KR20240061944A (en) | 2022-11-01 | 2022-11-01 | KCNQ1 SNP markers for diabetes and use thereof) |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20240061944A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101722107B1 (en) | 2016-07-05 | 2017-04-19 | 대한민국 | Diabetes diagnosis and prediction methods using single nucleotide polymorphism based-Genetic Risk Score in Korean |
KR101788117B1 (en) | 2016-04-27 | 2017-10-19 | 주식회사 에스엔피 제네틱스 | Polymorphic Marker of Diabetes in Korean and Method of Predicting Diabetes Risk in Korean Using The Genotype Information |
KR101979633B1 (en) | 2018-01-05 | 2019-05-21 | 대한민국 | SNP markers for metabolic syndrome and use thereof |
-
2022
- 2022-11-01 KR KR1020220143858A patent/KR20240061944A/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101788117B1 (en) | 2016-04-27 | 2017-10-19 | 주식회사 에스엔피 제네틱스 | Polymorphic Marker of Diabetes in Korean and Method of Predicting Diabetes Risk in Korean Using The Genotype Information |
KR101722107B1 (en) | 2016-07-05 | 2017-04-19 | 대한민국 | Diabetes diagnosis and prediction methods using single nucleotide polymorphism based-Genetic Risk Score in Korean |
KR101979633B1 (en) | 2018-01-05 | 2019-05-21 | 대한민국 | SNP markers for metabolic syndrome and use thereof |
Non-Patent Citations (31)
Title |
---|
Ackermann, A. M. & Gannon, M. J. Mol. Endocrinol. 38, 193-206. |
Ao, D. et al. PLoS ONE 10, e0128901. |
Asahara, S. et al. Proc. Natl. Acad. Sci. U.S.A. 112, 8332-8337. |
Baliunas, D. O. et al. Diabetes Care 32, 2123-2132. |
Barro-Soria, R. et al. Proc. Natl. Acad. Sci. U.S.A. 114, E7367-E7376. |
Cho, Y. S. et al. Nat. Genet. 41, 527-534. |
Cnop, M. et al. Diabetes 54(Suppl 2), S97-S107. |
Dembele, K. et al. Cell Biol. Toxicol. 25, 141-152. |
Hiramoto, M. et al. Int. J. Mol. Med. 41, 717-728. |
Jang, H. B. et al. Sci. Rep. 9, 20029. |
Kanduri, C. Semin. Cell Dev. Biol. 22, 343-350. |
Kim, J. Y. et al. World J. Biol. Chem. 6, 1-15. |
Kim, Y. & Han, B. G. Int. J. Epidemiol. 46, e20. |
Lee, D. Y. et al. Sci. Rep. 7, 7322. |
Li, X. H. et al. Am. J. Clin. Nutr. 103, 818-829. |
Liu, L. et al. Islets 6, e962386. |
Matthews, D. R. et al. Diabetologia 28, 412-419. |
Moon, S. et al. Sci. Rep. 9, 1382. |
Ou, K. et al. J. Clin. Investig. 129, 209-214. |
Saif-Ali, R. et al. Int. J. Mol. Sci. 12, 5705-5718. |
Smith, J. A. et al. Biochemistry 46, 14141-14152. |
Tan, J. T. et al. Diabetes 58, 1445-1449. |
Tan, J. T. et al. J. Clin. Endocrinol. Metab. 95, 390-397. |
Tsuji-Wakisaka, K. et al. Biochim. Biophys. Acta 1452-1459, 2011. |
Ullrich, S. et al. Pflugers Arch. 451, 428-436. |
Unoki, H. et al. Nat. Genet. 40, 1098-1102. |
van Vliet-Ostaptchouk, J. V. et al. PLoS ONE 7, e32148. |
Vanoye, C. G. et al. J. Gen. Physiol. 134, 207-217. |
Wang, X. et al. J. Diabetes Res. 2020, 8278574. |
Yoo, M. G. et al. Int. J. Environ. Res. Public Health 13, 1133. |
Yu, X. X. & Liao, M. Q. J diabetes Res. 2020, 7145139. |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Moczulski et al. | Major susceptibility locus for nephropathy in type 1 diabetes on chromosome 3q: results of novel discordant sib-pair analysis. | |
KR102158717B1 (en) | SNP marker for diagnosis of intracranial aneurysm comprising SNP of CD163L1 gene | |
Shaffer et al. | Polymorphisms in the platelet-specific collagen receptor GP6 are associated with risk of nonfatal myocardial infarction in Caucasians | |
JP4140329B2 (en) | Hypertension risk diagnosis method | |
KR101979633B1 (en) | SNP markers for metabolic syndrome and use thereof | |
US20200087728A1 (en) | Genetic markers associated with endometriosis and use thereof | |
US20070048751A1 (en) | Method of diagnosing type II diabetes mellitus using multilocus marker, polynucleotide including marker associated with type II diabetes mellitus, and microarray and diagnostic kit including the polynucleotide | |
US7494783B2 (en) | Method for assessing trait anxiety by determining cholinergic status | |
KR102158721B1 (en) | SNP marker for diagnosis of intracranial aneurysm comprising SNP of RNF144A gene | |
Parchwani et al. | Genetic predisposition to diabetic nephropathy: evidence for a role of ACE (I/D) gene polymorphism in type 2 diabetic population from Kutch region | |
KR101100437B1 (en) | A polynucleotide associated with a colon cancer comprising single nucleotide polymorphism, microarray and diagnostic kit comprising the same and method for diagnosing a colon cancer using the polynucleotide | |
US20070148656A1 (en) | Method for detecting the risk of cancer, coronary heart disease, and stroke by analysing a catalase gene | |
TWI351436B (en) | Method for detecting a risk of the development of | |
KR20240061944A (en) | KCNQ1 SNP markers for diabetes and use thereof) | |
US10731219B1 (en) | Method for preventing progression to metabolic syndrome | |
Lazar et al. | Lower prevalence of the OCT2 Ser270 allele in patients with essential hypertension | |
KR102158713B1 (en) | SNP marker for diagnosis of intracranial aneurysm comprising SNP of GBA gene | |
KR102158715B1 (en) | SNP marker for diagnosis of intracranial aneurysm comprising SNP of OLFML2A gene | |
US8236497B2 (en) | Methods of diagnosing cardiovascular disease | |
US20090192135A1 (en) | Human Niemann Pick C1-Like 1 Gene (NPC1L1) Polymorphisms and Methods of Use Thereof | |
JP2006296270A (en) | Method for detecting diathesis of type 2 diabetes by prkaa2 gene polymorphism | |
Makni et al. | Association of glucose transporter 1 polymorphisms with type 2 diabetes in the Tunisian population | |
JP7046401B1 (en) | How to determine the genetic predisposition of sensitive skin | |
KR102158716B1 (en) | SNP marker for diagnosis of intracranial aneurysm comprising SNP of ARHGAP32 gene | |
KR102158725B1 (en) | SNP marker for diagnosis of intracranial aneurysm comprising SNP of MINK1 gene |