KR20240060518A - Purification method and purification system for silicon-based precursors - Google Patents

Purification method and purification system for silicon-based precursors Download PDF

Info

Publication number
KR20240060518A
KR20240060518A KR1020237038072A KR20237038072A KR20240060518A KR 20240060518 A KR20240060518 A KR 20240060518A KR 1020237038072 A KR1020237038072 A KR 1020237038072A KR 20237038072 A KR20237038072 A KR 20237038072A KR 20240060518 A KR20240060518 A KR 20240060518A
Authority
KR
South Korea
Prior art keywords
silicon
based precursor
adsorbent
purification
purifying
Prior art date
Application number
KR1020237038072A
Other languages
Korean (ko)
Inventor
잉 류
카이 페이
이 자오
량리 쑨
샤오팅 리
Original Assignee
다롄 크레딧켐 일렉트로닉 머티리컬 컴퍼니., 리미티드.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 다롄 크레딧켐 일렉트로닉 머티리컬 컴퍼니., 리미티드. filed Critical 다롄 크레딧켐 일렉트로닉 머티리컬 컴퍼니., 리미티드.
Publication of KR20240060518A publication Critical patent/KR20240060518A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/04Solvent extraction of solutions which are liquid
    • B01D11/0492Applications, solvents used
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/20Purification, separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/02Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor with moving adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/16Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to the conditioning of the fluid carrier
    • B01D15/163Pressure or speed conditioning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/3276Copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3285Coating or impregnation layers comprising different type of functional groups or interactions, e.g. different ligands in various parts of the sorbent, mixed mode, dual zone, bimodal, multimodal, ionic or hydrophobic, cationic or anionic, hydrophilic or hydrophobic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/10Compounds having one or more C—Si linkages containing nitrogen having a Si-N linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/21Cyclic compounds having at least one ring containing silicon, but no carbon in the ring
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

본 발명은 전자 전구체 정화 분야에 관한 것으로, 특히 실리콘계 전구체의 정제 방법 및 정제 시스템에 관한 것이며, 상기 방법은, (S.1) 흡착제를 이온성 액체에 분산시켜, 흡착 슬러리를 얻는 단계; (S.2) 공업용 실리콘계 전구체를 흡착 슬러리에 용해시켜, 공업용 실리콘계 전구체가 흡착제와 접촉하도록 하여, 공업용 실리콘계 전구체 중의 금속 이온 불순물이 흡착제에 의해 흡착되도록 하는 단계; 및 (S.3) 흡착 완료 후, 조 실리콘계 전구체를 정류하여, 실리콘계 전구체 중의 경질 성분 및 중질 성분을 제거하고, 전자 등급 실리콘계 전구체를 얻는 단계를 포함한다. 본 발명은 정제 과정에서 실리콘계 전구체의 환경을 변경시켜, 실리콘계 전구체와 그 중에 혼합된 금속 이온 불순물을 효과적으로 분리함으로써, 금속 이온 불순물의 흡착에 유리하게 하고, 동시에 다양한 수단을 병용하여, 금속 이온 불순물에 대한 물리적 또는 화학적 흡착 효과를 향상시킨다.The present invention relates to the field of electronic precursor purification, and in particular to a purification method and purification system for a silicon-based precursor, the method comprising: (S.1) dispersing an adsorbent in an ionic liquid to obtain an adsorption slurry; (S.2) dissolving the industrial silicon-based precursor in the adsorption slurry, allowing the industrial silicon-based precursor to contact the adsorbent, so that the metal ion impurities in the industrial silicon-based precursor are adsorbed by the adsorbent; and (S.3) after completion of adsorption, rectifying the crude silicon-based precursor to remove light and heavy components in the silicon-based precursor and obtain an electronic grade silicon-based precursor. The present invention changes the environment of the silicon-based precursor during the purification process, effectively separating the silicon-based precursor and the metal ion impurities mixed therein, thereby making it advantageous for the adsorption of the metal ion impurities, and at the same time using various means in combination to remove the metal ion impurities. Improves the physical or chemical adsorption effect.

Description

실리콘계 전구체의 정제 방법 및 정제 시스템Method and purification system for silicon-based precursors

본 발명은 전자 전구체 정화 분야에 관한 것으로, 특히 실리콘계 전구체의 정제 방법 및 정제 시스템에 관한 것이다.The present invention relates to the field of electronic precursor purification, and particularly to a purification method and purification system for silicon-based precursors.

첨단 집적 회로 제조 기술은 신소재의 지속적인 발전을 촉진하고 있으며, 집적 회로 선폭의 축소와 트랜지스터 밀도의 증가에 따라, 초대규모 집적 회로 공정에서 첨단 전구체 재료의 응용은 점점 사람들의 관심의 초점이 되고 있다. 전구체 재료는 주로 에피택시, 포토리소그래피, 화학 기상 증착(CVD) 및 원자층 증착(ALD)과 같은 반도체 집적 회로 메모리 및 로직 칩 제조의 핵심 공정에 사용되며, 화학 반응 등의 방식을 통해 집적 회로 실리콘 웨이퍼 표면에 특정 전기적 성질을 갖는 박막이 형성되는데, 이는 박막의 품질에 매우 중요하다. 실리콘계 전구체는 그 중 중요한 분기점으로서, 최근 몇 년 동안 줄곧 첨단 집적 회로의 핵심 재료 분야 연구의 핫이슈 중 하나였으며, 그 주된 용도로는, SiGe 박막의 선택적 에피택셜 성장, CVD 및 ALD 성장이 상이한 용도의 질화규소, 산화규소, 저유전율 및 고유전율 박막 재료 등이 있다.Advanced integrated circuit manufacturing technology is promoting the continuous development of new materials. With the reduction of integrated circuit line width and the increase of transistor density, the application of advanced precursor materials in ultra-scale integrated circuit processing has increasingly become the focus of people's attention. Precursor materials are mainly used in the core processes of semiconductor integrated circuit memory and logic chip manufacturing, such as epitaxy, photolithography, chemical vapor deposition (CVD) and atomic layer deposition (ALD), and are converted to integrated circuit silicon through methods such as chemical reaction. A thin film with specific electrical properties is formed on the wafer surface, which is very important for the quality of the thin film. Silicon-based precursor is an important turning point among them, and has been one of the hot issues in research in the field of core materials for advanced integrated circuits in recent years. Its main use is selective epitaxial growth of SiGe thin films, CVD and ALD growth for different purposes. These include silicon nitride, silicon oxide, low dielectric constant and high dielectric constant thin film materials.

반도체 기술이 지속적으로 발전함에 따라, 실리콘계 전구체 재료는 집적 회로 공정 발전의 핵심이 되었으며, 재료의 순도 및 금속 불순물 함량 등의 기술적 지표가 칩의 품질과 성능에 직접적인 영향을 미치게 된다. 첨단 IC 제조 공정에서, 실리콘계 전구체 재료의 순도는 99.99% 이상에 도달해야 하며, 금속 불순물 질량 분율은 1x109 미만이어야 한다. 현재 반도체 산업 발전의 수요를 충족시키기 위해, 주로 반응 정류, 복합 정류 및 흡착 정류 등의 기술을 사용하여 재료의 분리, 정련 및 정제를 수행한다.As semiconductor technology continues to develop, silicon-based precursor materials have become the core of integrated circuit process development, and technical indicators such as material purity and metal impurity content have a direct impact on chip quality and performance. In advanced IC manufacturing processes, the purity of silicon-based precursor materials must reach 99.99% or higher, and the metal impurity mass fraction must be less than 1x109 . In order to meet the needs of the development of the current semiconductor industry, the separation, refining and purification of materials are mainly carried out using technologies such as reactive rectification, complex rectification and adsorption rectification.

출원번호가 202010256194.7인 특허는 옥타메틸시클로테트라실록산의 정제 공정이 개시되어 있는데, 이는, 고순도 아르곤 가스를 운반 가스로 사용하여, 약간 끓는 상태에서, 흡착 반응을 통해 옥타메틸시클로테트라실록산 중의 금속 불순물을 제거하는 단계; 정류 및 정제를 수행하여, 옥타메틸시클로테트라실록산을 흡착제로부터 분리하고, 유기 불순물, 물 및 산소를 제거하여, 옥타메틸시클로테트라실록산 중간체를 얻는 단계; 및 2차 정류를 통해 옥타메틸시클로테트라실록산 중간체를 추가로 정화하여, 순도가 99.999% 이상의 순수한 옥타메틸시클로테트라실록산을 얻는 단계를 포함하며, 이는 광섬유 프리폼 클래딩 증착 요구 사항을 충족시킨다.The patent with application number 202010256194.7 discloses a purification process for octamethylcyclotetrasiloxane, which uses high-purity argon gas as a carrier gas to remove metal impurities in octamethylcyclotetrasiloxane through an adsorption reaction in a slightly boiling state. removing; Performing rectification and purification to separate octamethylcyclotetrasiloxane from the adsorbent and remove organic impurities, water and oxygen to obtain octamethylcyclotetrasiloxane intermediate; and further purifying the octamethylcyclotetrasiloxane intermediate through secondary rectification to obtain pure octamethylcyclotetrasiloxane with a purity of 99.999% or more, which meets the requirements for optical fiber preform cladding deposition.

출원번호가 202010256194.7인 특허는 전자 등급 옥타메틸시클로테트라실록산의 정제 방법으로, 정류 방식에 의해 정제된다. 공정은 다음 단계를 포함한다. 1) 99% 함량의 옥타메틸시클로테트라실록산을 정류탑에 투입하고, 압력 0.02~0.03MPa에서, 탑정 온도는 90~96℃이며, 탑정에 소량의 잔류 헥사메틸시클로트리실록산(D3으로 약칭)을 제거한다. 2) D3이 탈리된 옥타메틸시클로테트라실록산을 탑저부에서 유출하여 탈중 정류탑 반응 케틀로 들어가고, 물질 중량비가 0.01~0.1%인 특수 고효율 금속 착체 리간드를 투입하여, 90~100℃로 가열하고, 1~10시간 동안 반응시킨 후, 감압 정류하여, 전자 등급 옥타메틸시클로테트라실록산을 얻는다.The patent with application number 202010256194.7 is a purification method for electronic grade octamethylcyclotetrasiloxane, which is purified by rectification. The process includes the following steps: 1) 99% octamethylcyclotetrasiloxane is added to the rectification tower, at a pressure of 0.02~0.03MPa, the top temperature is 90~96℃, and a small amount of residual hexamethylcyclotrisiloxane (abbreviated as D3) is added to the top of the tower. Remove. 2) The octamethylcyclotetrasiloxane from which D3 has been removed flows out from the bottom of the column and enters the dehydration rectification tower reaction kettle, and a special high-efficiency metal complex ligand with a material weight ratio of 0.01 to 0.1% is added and heated to 90 to 100 ° C. After reacting for 1 to 10 hours, the reaction mixture is rectified under reduced pressure to obtain electronic grade octamethylcyclotetrasiloxane.

선행기술의 실리콘계 전구체 재료는 많은 금속 불순물을 함유하고 있어, 반도체 산업 발전의 수요를 충족시키기 어려운 결함을 가지고 있으나, 본 발명은 상술한 결함을 극복하기 위한 실리콘계 전구체의 정제 방법을 제공한다.Silicon-based precursor materials of the prior art contain many metal impurities and have defects that make it difficult to meet the demands of semiconductor industry development. However, the present invention provides a method for purifying silicon-based precursors to overcome the above-mentioned defects.

상술한 발명의 목적을 달성하기 위해, 본 발명은 다음과 같은 기술적 해결수단을 통해 구현된다.In order to achieve the purpose of the above-described invention, the present invention is implemented through the following technical solutions.

제1 측면에서, 본 발명은 먼저 실리콘계 전구체의 정제 방법을 제공하며, 상기 정제 방법은,In a first aspect, the present invention first provides a method for purifying a silicon-based precursor, the purification method comprising:

(S.1) 흡착제를 이온성 액체에 분산시켜, 흡착 슬러리를 얻는 단계;(S.1) dispersing the adsorbent in an ionic liquid to obtain an adsorption slurry;

(S.2) 공업용 실리콘계 전구체를 흡착 슬러리에 용해시켜, 공업용 실리콘계 전구체가 흡착제와 접촉하도록 하여, 공업용 실리콘계 전구체 중의 금속 이온 불순물이 흡착제에 의해 흡착되도록 하는 단계; 및(S.2) dissolving the industrial silicon-based precursor in the adsorption slurry, allowing the industrial silicon-based precursor to contact the adsorbent, so that the metal ion impurities in the industrial silicon-based precursor are adsorbed by the adsorbent; and

(S.3) 흡착 완료 후, 실리콘계 전구체를 정류하여, 실리콘계 전구체 중의 경질 성분 및 중질 성분을 제거하고, 전자 등급 실리콘계 전구체를 얻는 단계를 포함한다.(S.3) After completion of adsorption, the silicon-based precursor is rectified to remove light components and heavy components in the silicon-based precursor and obtain an electronic grade silicon-based precursor.

선행기술의 실리콘계 전구체는 일반적으로 합성 과정에서 금속 또는 유기 금속 촉매에 응용되는데, 예를 들어 일반적으로 클로로실란을 합성하는 과정에서 3원계 구리 촉매(Cu, Cu2O, Cu2O) 및 CuCl에 의해 환원된 Cu 분말을 촉매로 사용한다. 또한 아연, 알루미늄, 셀레늄, 안티몬, 인, 망간 등도 구리 촉매에 의한 클로로실란 생산을 위한 조촉매로 사용될 수 있다는 것도 입증되었다. 아울러, 보다 상류의 원료인 실리콘 분말에도 일정한 철, 칼슘 및 납 등의 불순물이 존재하는 경우가 많다. 이러한 불순물은 종종 실리콘계 전구체를 합성하는 과정에서 함께 반응에 참여하여, 최종적으로 실리콘계 전구체 완제품에 유입된다. 이러한 금속 불순물은 일정한 휘발성을 갖고 있기 때문에, 일반적인 정류 수단으로는 이를 실리콘계 전구체로부터 분리하기 어럽다. 이러한 금속 불순물은 일반적인 유기 실리콘 합성 및 일반적인 재료 응용에 현저한 영향을 미치지 않지만, 화학 기상 증착(CVD) 및 원자층 증착(ALD)에 의해 형성된 실리콘 함유 박막의 경우, 이러한 불순물은 실리콘 함유 박막의 전기적 성질에 큰 충격을 준다.Silicon-based precursors in the prior art are generally applied to metal or organometallic catalysts in the synthesis process, for example, to ternary copper catalysts (Cu, Cu 2 O, Cu 2 O) and CuCl in the process of synthesizing chlorosilane. Cu powder reduced by is used as a catalyst. It has also been proven that zinc, aluminum, selenium, antimony, phosphorus, manganese, etc. can be used as cocatalysts for the production of chlorosilane by copper catalyst. In addition, silicon powder, which is a more upstream raw material, often contains impurities such as iron, calcium, and lead. These impurities often participate in reactions during the synthesis of silicon-based precursors and are ultimately introduced into finished silicon-based precursor products. Because these metal impurities have a certain volatility, it is difficult to separate them from the silicon-based precursor using general rectification means. Although these metal impurities do not have a significant impact on general organic silicon synthesis and general material applications, for silicon-containing thin films formed by chemical vapor deposition (CVD) and atomic layer deposition (ALD), these impurities affect the electrical properties of silicon-containing thin films. gives a great shock to

선행기술에서 실리콘계 전구체 중의 금속 이온 불순물을 제거하기 위해, 일반적으로 정제 과정에서 흡착 단계가 증가된다. 일반적으로 흡착 단계는 흡착제에 의해 물리적 또는 화학적 방법으로 실리콘계 전구체 중의 금속 이온 불순물을 흡착하는 것이지만, 흡착 과정에서 흡착을 구현하기 위해 불순물 금속 이온을 흡착제와 접촉시켜야 하기 때문에, 흡착 시간을 향상시켜 불순물 금속 이온에 대한 흡착 효과를 향상시켜야 하는 경우가 많지만, 여전히 일부 금속 이온 불순물은 실리콘계 전구체에 의해 코팅되어 흡착제와 접촉하기 어렵기 때문에, 금속 이온 불순물에 대한 일반적인 흡착제의 흡착 효과 향상에는 한계가 있다.In the prior art, in order to remove metal ion impurities in the silicon-based precursor, the adsorption step is generally increased in the purification process. Generally, the adsorption step is to adsorb the metal ion impurities in the silicon-based precursor by physical or chemical methods by an adsorbent. However, in the adsorption process, the impurity metal ions must be brought into contact with the adsorbent to achieve adsorption, thereby improving the adsorption time to remove the impurity metal. There are many cases where the adsorption effect for ions needs to be improved, but since some metal ion impurities are still coated with a silicon-based precursor and difficult to contact with the adsorbent, there is a limit to improving the adsorption effect of general adsorbents for metal ion impurities.

본 발명은 실리콘계 전구체 중의 금속 이온에 대한 흡착 효과를 향상시키기 위해, 출원인은 정제 과정에서 실리콘계 전구체가 위치하는 환경을 의도적으로 변경하였는데, 뜻밖에 실리콘계 전구체가 이온성 액체 및 흡착제로 구성된 흡착 슬러리에 용해되면, 실리콘계 전구체 중의 금속 이온에 대한 흡착 효과가 크게 향상됨을 발견하였다. 그 이유는 다음과 같다. (1) 이온성 액체는 전체가 이온으로 구성된 액체로, 유기물 및 무기물 모두에 대한 용해 성능이 양호하다. 출원인은, 유사한 상용성의 원리로 인해, 이온성 액체에서 금속 이온의 용해도가 실리콘계 전구체에서 금속 이온의 용해도보다 훨씬 높다는 것을 발견하였다. (2) 본 발명은 용액 조건에서 실리콘계 전구체를 정제하는 역할을 하기 때문에, 실리콘계 전구체와 흡착 슬러리 사이의 접촉 면적을 향상시킨다. 따라서 본 발명은 이 방법을 통해 실리콘계 전구체 중의 금속 이온에 대한 추출 역할을 혁신적으로 구현함으로써, 원래 실리콘계 전구체에 용해되어 있던 금속 불순물을 이온성 액체로 이동시키고, 나아가 실리콘계 전구체와 금속 불순물 이온 사이의 상호 역할을 해제함으로써, 흡착 슬러리 중의 흡착제에 의한 금속 이온 불순물의 물리적 또는 화학적 흡착 역할에 유리하여, 실리콘계 전구체 중의 금속 이온 불순물을 신속하게 흡착하여, 후속 실리콘계 전구체의 정류 과정에서 금속 이온 불순물이 정제된 실리콘계 전구체로 증발하여 유입되는 것을 방지한다.In the present invention, in order to improve the adsorption effect for metal ions in the silicon-based precursor, the applicant intentionally changed the environment in which the silicon-based precursor is located during the purification process, but when the silicon-based precursor was unexpectedly dissolved in an adsorption slurry composed of an ionic liquid and an adsorbent, , it was found that the adsorption effect for metal ions in the silicon-based precursor was greatly improved. The reason for this is as follows. (1) Ionic liquid is a liquid composed entirely of ions and has good dissolution performance for both organic and inorganic substances. The applicant has discovered that, due to the principle of similar compatibility, the solubility of metal ions in ionic liquids is much higher than that of metal ions in silicon-based precursors. (2) Since the present invention serves to purify the silicon-based precursor under solution conditions, it improves the contact area between the silicon-based precursor and the adsorption slurry. Therefore, the present invention innovatively implements the role of extraction of metal ions in the silicon-based precursor through this method, thereby moving the metal impurities originally dissolved in the silicon-based precursor into the ionic liquid, and furthermore, the interaction between the silicon-based precursor and the metal impurity ions. By releasing the role, it is advantageous to the physical or chemical adsorption role of metal ion impurities by the adsorbent in the adsorption slurry, quickly adsorbing metal ion impurities in the silicon-based precursor, and in the subsequent rectification process of the silicon-based precursor, the metal ion impurities are purified. Prevents evaporation and inflow as a precursor.

또한, 이온성 액체는 비휘발성 특징을 가지기 때문에, 실리콘계 전구체의 정류 과정에서 이온성 액체가 정류된 이온성 액체로 유입되지 않는다.Additionally, because the ionic liquid has non-volatile characteristics, the ionic liquid does not flow into the rectified ionic liquid during the rectification process of the silicon-based precursor.

바람직하게는, 상기 이온성 액체는 이미다졸계 이온성 액체, 4급 암모늄계 이온성 액체, 4급 포스포늄계 이온성 액체, 피롤리딘계 이온성 액체, 피페리딘계 이온성 액체 중 하나 또는 복수의 조합을 포함한다.Preferably, the ionic liquid is one or more of an imidazole-based ionic liquid, a quaternary ammonium-based ionic liquid, a quaternary phosphonium-based ionic liquid, a pyrrolidine-based ionic liquid, and a piperidine-based ionic liquid. Includes a combination of

바람직하게는, 상기 이온성 액체의 양이온은 N-헥실피리딘, N-부틸피리딘, N-옥틸피리딘, N-부틸-N-메틸피롤리딘, 1-부틸-3-메틸이미다졸, 1-프로필-3-메틸이미다졸, 1-에틸-3-메틸이미다졸, 1-헥실-3-메틸이미다졸, 1-옥틸-3-메틸이미다졸, 1-알릴-3-메틸이미다졸, 1-부틸-2,3-디메틸이미다졸, 1-부틸-3-메틸이미다졸, 트리부틸메틸포스핀, 트리부틸에틸포스핀, 테트라부틸포스핀, 트리부틸헥실포스핀, 트리부틸옥틸포스핀, 트리부틸데실포스핀, 트리부틸도데실포스핀, 트리부틸테트라데실포스핀, 트리페닐에틸포스핀, 트리페닐부틸포스핀, 트리페닐메틸포스핀, 트리페닐프로필포스핀, 트리페닐펜틸포스핀, 트리페닐아세톤포스핀, 트리페닐벤질포스핀, 트리페닐(3-브로모프로필)포스핀, 트리페닐브로모메틸포스핀, 트리페닐메톡시포스핀, 트리페닐에톡시카르보닐메틸포스핀, 트리페닐((3-브로모프로필)포스핀, 트리페닐비닐포스핀, 테트라페닐포스핀 중 어느 하나이다.Preferably, the cation of the ionic liquid is N-hexylpyridine, N-butylpyridine, N-octylpyridine, N-butyl-N-methylpyrrolidine, 1-butyl-3-methylimidazole, 1- Propyl-3-methylimidazole, 1-ethyl-3-methylimidazole, 1-hexyl-3-methylimidazole, 1-octyl-3-methylimidazole, 1-allyl-3-methyl Midazole, 1-butyl-2,3-dimethylimidazole, 1-butyl-3-methylimidazole, tributylmethylphosphine, tributylethylphosphine, tetrabutylphosphine, tributylhexylphosphine, Tributyloctylphosphine, tributyldecylphosphine, tributyldodecylphosphine, tributyltetradecylphosphine, triphenylethylphosphine, triphenylbutylphosphine, triphenylmethylphosphine, triphenylpropylphosphine, Triphenylpentylphosphine, triphenylacetonephosphine, triphenylbenzylphosphine, triphenyl(3-bromopropyl)phosphine, triphenylbromomethylphosphine, triphenylmethoxyphosphine, triphenyl ethoxycarboxylic It is any one of bornylmethylphosphine, triphenyl((3-bromopropyl)phosphine, triphenylvinylphosphine, and tetraphenylphosphine.

바람직하게는, 상기 이온성 액체의 음이온은 BF4-, PF6-, CF3SO3-, (CF3SO2)2N-, C3F7COO-, C4F9SO3, CF3COO-, (CF3SO2)3C-, (C2F5SO2)3C-, (C2F5SO2)2N-, SbF6- 중 어느 하나이다.Preferably, the anion of the ionic liquid is BF 4 -, PF 6 -, CF 3 SO 3 -, (CF 3 SO 2 ) 2 N-, C 3 F 7 COO-, C 4 F 9 SO 3 , CF 3 COO-, (CF 3 SO 2 ) 3 C-, (C 2 F 5 SO 2 ) 3 C-, (C 2 F 5 SO 2 ) 2 N-, SbF 6 -.

바람직하게는, 상기 이온성 액체는 1-부틸-3-메틸이미다졸 트리플루오로메탄술포네이트, 1-부틸-3-메틸이미다졸 디시안아미드염, 1-에틸-3-메틸이미다졸 트리플루오로아세테이트, 1-에틸-3-메틸이미다졸 클로로알루미네이트, 1-에틸-2,3-디메틸이미다졸 테트라플루오로보레이트, 1-헥실-3-메틸이미다졸 비스트리플루오로메탄술폰이미드염, 1-알릴-3-메틸이미다졸 비스트리플루오로메탄술폰이미드염, 1-에틸-3-메틸이미다졸 클로라이드염, 1-에틸-3-메틸이미다졸 비스트리플루오로메탄술폰이미드염, 1-술폰산부틸-2-메틸-3-헥사데실이미다졸 황산수소염, 1-에틸-3-메틸이미다졸 테트라플루오로보레이트, 1-에틸-3-메틸이미다졸 카보네이트, 1-에틸-3-메틸이미다졸L-락테이트, 1,3-디메틸이미다졸 헥사플루오로포스페이트, 1-에틸-3-메틸이미다졸 헥사플루오로포스페이트, 1-프로필-3-메틸이미다졸 헥사플루오로포스페이트, 1-부틸-3-메틸이미다졸 헥사플루오로포스페이트, 1-헥실-3-메틸이미다졸 헥사플루오로포스페이트, 1-옥틸-3-메틸이미다졸 헥사플루오로포스페이트, 1-데실-3-메틸이미다졸 헥사플루오로포스페이트, 1-테트라데실-3-메틸이미다졸 헥사플루오로포스페이트, 1-벤질-3-메틸이미다졸 헥사플루오로포스페이트, 1-알릴-3-메틸이미다졸 헥사플루오로포스페이트, 1-비닐-3-에틸이미다졸 헥사플루오로포스페이트, 1-비닐-3-부틸이미다졸 헥사플루오로포스페이트, 1-헥사데실-2,3-디메틸이미다졸 헥사플루오로포스페이트, 1-옥틸-2,3-디메틸이미다졸 헥사플루오로포스페이트, 1,3-디메틸이미다졸 테트라플루오로보레이트, 1-부틸-3-메틸이미다졸 테트라플루오로보레이트, 1-데실-3-메틸이미다졸 테트라플루오로보레이트, 1-벤질-3-메틸이미다졸 테트라플루오로보레이트, 1-에틸-2,3-디메틸이미다졸 테트라플루오로보레이트, 1-프로필-2,3-디메틸이미다졸 테트라플루오로보레이트, 1-옥틸-2,3-디메틸이미다졸 테트라플루오로보레이트, 1-옥틸-2,3-디메틸이미다졸 테트라플루오로보레이트를 포함한다.Preferably, the ionic liquid is 1-butyl-3-methylimidazole trifluoromethanesulfonate, 1-butyl-3-methylimidazole dicyanamide salt, 1-ethyl-3-methylimidase. Sol trifluoroacetate, 1-ethyl-3-methylimidazole chloroaluminate, 1-ethyl-2,3-dimethylimidazole tetrafluoroborate, 1-hexyl-3-methylimidazole bistrifluor Lomethanesulfonimide salt, 1-allyl-3-methylimidazole bistrifluoromethanesulfonimide salt, 1-ethyl-3-methylimidazole chloride salt, 1-ethyl-3-methylimidazole Bistrifluoromethanesulfonimide salt, 1-butyl-2-methyl-3-hexadecyl imidazole bisulfate, 1-ethyl-3-methylimidazole tetrafluoroborate, 1-ethyl-3- Methylimidazole carbonate, 1-ethyl-3-methylimidazole L-lactate, 1,3-dimethylimidazole hexafluorophosphate, 1-ethyl-3-methylimidazole hexafluorophosphate, 1 -Propyl-3-methylimidazole hexafluorophosphate, 1-butyl-3-methylimidazole hexafluorophosphate, 1-hexyl-3-methylimidazole hexafluorophosphate, 1-octyl-3- Methylimidazole hexafluorophosphate, 1-decyl-3-methylimidazole hexafluorophosphate, 1-tetradecyl-3-methylimidazole hexafluorophosphate, 1-benzyl-3-methylimidazole Hexafluorophosphate, 1-allyl-3-methylimidazole hexafluorophosphate, 1-vinyl-3-ethylimidazole hexafluorophosphate, 1-vinyl-3-butylimidazole hexafluorophosphate, 1-Hexadecyl-2,3-dimethylimidazole hexafluorophosphate, 1-octyl-2,3-dimethylimidazole hexafluorophosphate, 1,3-dimethylimidazole tetrafluoroborate, 1- Butyl-3-methylimidazole tetrafluoroborate, 1-decyl-3-methylimidazole tetrafluoroborate, 1-benzyl-3-methylimidazole tetrafluoroborate, 1-ethyl-2,3 -dimethylimidazole tetrafluoroborate, 1-propyl-2,3-dimethylimidazole tetrafluoroborate, 1-octyl-2,3-dimethylimidazole tetrafluoroborate, 1-octyl-2, Contains 3-dimethylimidazole tetrafluoroborate.

바람직하게는, 상기 실리콘계 전구체는 옥타메틸시클로테트라실록산, 트리메틸실란, 테트라메틸실란, 트리메틸실릴아민, 테트라에톡시실란, 디에톡시메틸실란 중 어느 하나를 포함한다.Preferably, the silicon-based precursor includes any one of octamethylcyclotetrasiloxane, trimethylsilane, tetramethylsilane, trimethylsilylamine, tetraethoxysilane, and diethoxymethylsilane.

바람직하게는, 상기 단계 (S.1)에서 흡착제는 활성탄, 다공성 알루미나, 실리카겔 분말, 제올라이트 또는 분자체 중 어느 하나를 포함한다.Preferably, the adsorbent in step (S.1) includes any one of activated carbon, porous alumina, silica gel powder, zeolite, or molecular sieve.

바람직하게는, 상기 단계 (S.1)에서 흡착제의 외표면은 또한 폴리머 코팅체로 코팅되고;Preferably, in step (S.1) the outer surface of the adsorbent is also coated with a polymer coating;

상기 폴리머 코팅체는 흡착제의 외표면에 코팅된 한 층의 질소 도핑 매트릭스층을 포함하며;The polymer coating body includes one layer of nitrogen-doped matrix layer coated on the outer surface of the adsorbent;

상기 질소 도핑 매트릭스층은 외부에서 폴리아크릴산 나트륨 세그먼트와 화학적으로 결합된다.The nitrogen-doped matrix layer is externally chemically bonded to the sodium polyacrylate segments.

본 발명의 바람직한 기술적 해결수단에서, 흡착제의 외표면은 또한 질소 도핑 매트릭스층 및 폴리아크릴산 나트륨 세그먼트로 구성된 한 층의 폴리머 코팅체로 코팅된다. 여기서 질소 도핑 매트릭스층에 질소 원소의 도핑을 사용하기 때문에, 금속 이온과 배위 착화될 수 있어, 금속 이온을 양호한 흡착 역할을 발휘할 수 있다. 폴리아크릴산 나트륨 세그먼트는 2가 및 2가 이상의 금속 이온과 반응하여, 가교 반응을 일으키고, 나아가 금속 이온을 코팅 및 고정시켜, 금속 이온이 흡착 슬러리로부터 탈출하는 것을 방지할 수 있다.In a preferred technical solution of the present invention, the outer surface of the adsorbent is also coated with a layer of polymer coating consisting of a nitrogen-doped matrix layer and sodium polyacrylate segments. Here, since doping of the nitrogen element is used in the nitrogen-doped matrix layer, it can be coordinated and complexed with metal ions, and can play a good role in adsorbing metal ions. Sodium polyacrylate segments react with divalent and more than divalent metal ions, causing a crosslinking reaction, and further coat and fix the metal ions, thereby preventing the metal ions from escaping from the adsorption slurry.

바람직하게는, 상기 흡착제의 제조 방법은,Preferably, the method for producing the adsorbent includes:

(1) 흡착제 표면에 질소 원자를 함유한 한 층의 수지를 코팅하고;(1) Coating a layer of resin containing nitrogen atoms on the surface of the adsorbent;

(2) 질소 원자 수지로 코팅된 흡착제를 아크릴산염소와 반응시켜, 질소 원자 수지로 코팅된 흡착제 표면에 아크릴산기를 그래프트시킴으로써, 흡착제에 질소 도핑 매트릭스층, 즉 중간체를 형성하며;(2) reacting the adsorbent coated with nitrogen atom resin with hydrogen acrylate to graft acrylic acid groups onto the surface of the adsorbent coated with nitrogen atom resin, thereby forming a nitrogen doped matrix layer, that is, an intermediate, on the adsorbent;

(3) 중간체를 아크릴산나트륨과 공중합시켜, 폴리머 코팅체로 코팅된 흡착제를 얻는다.(3) The intermediate is copolymerized with sodium acrylate to obtain an adsorbent coated with a polymer coating.

바람직하게는, 상기 단계 (3)에서 중간체와 아크릴산나트륨의 질량비는 1:(0.5~2)이다.Preferably, the mass ratio of the intermediate and sodium acrylate in step (3) is 1:(0.5-2).

본 발명의 출원인은 중간체와 아크릴산나트륨의 질량비가 최종 흡착 및 정제 효과에 중요한 영향을 미친다는 것을 발견하였으며, 아크릴산나트륨의 첨가량이 너무 많으면, 폴리아크릴산나트륨이 흡착제를 완전히 코팅하여, 최종 흡착제의 공극률을 저하시키고, 금속 이온에 대한 흡착 효과를 저하시킨다.The applicant of the present invention has discovered that the mass ratio of the intermediate and sodium acrylate has a significant effect on the final adsorption and purification effect. If the amount of sodium acrylate added is too large, the sodium polyacrylate will completely coat the adsorbent, reducing the porosity of the final adsorbent. decreases the adsorption effect on metal ions.

바람직하게는, 상기 단계 (2)에서 공업용 실리콘계 전구체와 흡착제의 접촉 온도는 0~20℃이다.Preferably, the contact temperature between the industrial silicon-based precursor and the adsorbent in step (2) is 0 to 20°C.

선행기술에서 흡착 및 정제 과정에서 실리콘계 전구체의 흡착 온도는 일반적으로 끓는 조건 하에서 이루어지지만, 온도가 높은 조건에서는 금속 이온의 불규칙한 확산 운동(즉 브라운 운동) 속도가 빨라져, 흡착제에 의한 금속 이온의 포집에 불리하게 되며, 본 발명은 낮은 온도 조건에서 실리콘계 전구체 중의 금속 이온 불순물을 흡착하도록 선택하여, 흡착 효과의 향상에 유리하게 된다. 동시에 흡착 과정에서 에너지 소비를 절약한다.In the prior art, the adsorption temperature of the silicon-based precursor during the adsorption and purification process is generally achieved under boiling conditions, but under high temperature conditions, the speed of irregular diffusion movement (i.e., Brownian motion) of metal ions increases, preventing the capture of metal ions by the adsorbent. This is disadvantageous, and the present invention selects to adsorb metal ion impurities in the silicon-based precursor under low temperature conditions, which is advantageous in improving the adsorption effect. At the same time, it saves energy consumption during the adsorption process.

제2 측면에서, 본 발명은 또한 실리콘계 전구체를 정화하기 위한 정화 시스템을 제공하며, 상기 정화 시스템은 적어도,In a second aspect, the present invention also provides a purification system for purifying a silicon-based precursor, the purification system comprising at least:

물질을 담는 정화 탱크, 정화 탱크 내부 물질의 교반 역할을 하는 교반 장치, 및 정화 탱크를 가열하는 가열 장치를 포함하는 정화 유닛;A purification unit including a purification tank containing a substance, a stirring device that serves to agitate the substance inside the purification tank, and a heating device that heats the purification tank;

챔버 내에서 증발하여 얻은 탄탈륨 실리콘계 전구체를 정류하기 위해 정화 탱크의 상단부에 설치되는 정류 유닛;a rectification unit installed at the upper end of the purification tank to rectify the tantalum silicon-based precursor obtained by evaporation within the chamber;

정류 유닛으로부터 유출된 실리콘계 전구체를 수집하기 위해 정류 유닛의 관로에 연통되는 수집기를 포함하는 수집 유닛; 및A collection unit including a collector connected to the conduit of the rectification unit to collect the silicon-based precursor leaked from the rectification unit; and

전체 정화 시스템의 내부 압력을 제어하기 위해 수집기 관로에 연통되는 압력 제어 유닛을 포함한다.It includes a pressure control unit communicating with the collector pipe to control the internal pressure of the entire purification system.

바람직하게는, 정화 탱크 내부에 불활성 가스를 유입하는 가스 탱크, 및 전달된 불활성 가스 흐름의 유속을 제어하는 압력 제어 밸브를 포함하는 가스 공급 유닛을 더 포함한다.Preferably, it further includes a gas supply unit including a gas tank for introducing inert gas into the purification tank, and a pressure control valve for controlling the flow rate of the delivered inert gas flow.

바람직하게는, 상기 수집기의 외부에는 하나의 콜드웰이 슬리브되어 있다. Preferably, one coldwell is sleeved outside the collector.

따라서, 본 발명은 다음과 같은 유익한 효과를 갖는다.Therefore, the present invention has the following beneficial effects.

(1) 본 발명은 정제 과정에서 실리콘계 전구체의 환경을 변경시켜, 실리콘계 전구체와 그 중에 혼합된 금속 이온 불순물을 효과적으로 분리함으로써, 금속 이온 불순물의 흡착에 유리하게 하고;(1) The present invention changes the environment of the silicon-based precursor during the purification process to effectively separate the silicon-based precursor and the metal ion impurities mixed therein, thereby making it advantageous for the adsorption of the metal ion impurities;

(2) 본 발명은 다양한 수단을 병용하여, 금속 이온 불순물에 대한 물리적 또는 화학적 흡착 효과를 향상시키며;(2) The present invention uses various means in combination to improve the physical or chemical adsorption effect for metal ion impurities;

(3) 동시에 본 발명은 또한 흡착 과정에서 에너지 소비를 절약한다.(3) At the same time, the present invention also saves energy consumption in the adsorption process.

도 1은 흡착제 A의 전자 현미경 사진이다.
도 2는 공업용 옥타메틸시클로테트라실록산의 기상 검출도이다.
도 3은 헥사메틸시클로트리실록산(D3)의 질량 스펙트럼이다.
도 4는 옥타메틸시클로테트라실록산(D4)의 질량 스펙트럼이다.
도 5는 데카메틸시클로펜타실록산(D5)의 질량 스펙트럼이다.
도 6은 정제를 거친 후 얻은 전자 등급 옥타메틸시클로테트라실록산의 기상 검출도이다.
도 7 은 본 발명의 실리콘계 전구체를 정화하기 위한 정화 시스템의 구조 모식도이다.
Figure 1 is an electron micrograph of adsorbent A.
Figure 2 is a gas phase detection diagram of industrial octamethylcyclotetrasiloxane.
Figure 3 is a mass spectrum of hexamethylcyclotrisiloxane (D3).
Figure 4 is a mass spectrum of octamethylcyclotetrasiloxane (D4).
Figure 5 is a mass spectrum of decamethylcyclopentasiloxane (D5).
Figure 6 is a gas phase detection diagram of electronic grade octamethylcyclotetrasiloxane obtained after purification.
Figure 7 is a structural schematic diagram of a purification system for purifying the silicon-based precursor of the present invention.

이하, 본 발명은 명세서의 도면 및 구체적인 실시예와 함께 추가로 설명한다. 당업자는 이러한 설명을 기반으로 본 발명을 구현할 수 있을 것이다. 또한, 이하의 설명에서 언급된 본 발명의 실시예는 일반적으로 본 발명의 일부 실시예일 뿐 모든 실시예가 아니다. 따라서, 본 발명의 실시예에 기반하여, 당업자가 진보성 창출에 힘 쓸 필요없이 얻은 다른 모든 실시예는 모두 본 발명의 보호 범위에 속해야 한다.Hereinafter, the present invention will be further described in conjunction with the drawings and specific examples of the specification. Those skilled in the art will be able to implement the present invention based on this description. Additionally, the embodiments of the present invention mentioned in the following description are generally only some embodiments and not all embodiments of the present invention. Therefore, based on the embodiments of the present invention, all other embodiments obtained by a person skilled in the art without the need for efforts to create inventive step shall all fall within the protection scope of the present invention.

[폴리머 코팅체로 코팅된 흡착제의 제조][Manufacture of adsorbent coated with polymer coating]

흡착제 A: Adsorbent A:

(1) 100g의 다공성 알루미나를 100ml의 탈이온수에 분산시킨 다음, 물에 37% 포름알데히드 수용액 50ml 및 0.1g의 헥사메틸렌테트라민을 첨가하고, 균일하게 혼합한 후 다시 30g의 멜라민을 첨가하고, 균일하게 교반한 후 80℃로 승온하여 30분 동안 반응시킨 후, 여과 및 건조하여 멜라민 포름알데히드 수지로 코팅된 다공성 알루미나를 얻었고;(1) 100 g of porous alumina was dispersed in 100 ml of deionized water, then 50 ml of 37% formaldehyde aqueous solution and 0.1 g of hexamethylenetetramine were added to the water, mixed uniformly, and then 30 g of melamine was added again, After stirring uniformly, the temperature was raised to 80°C and reacted for 30 minutes, then filtered and dried to obtain porous alumina coated with melamine formaldehyde resin;

(2) 100g의 멜라민 포름알데히드 수지로 코팅된 다공성 알루미나를 200ml의 디클로로메탄에 분산시킨 다음, 0℃ 조건에서 여기에 4.5g(50 mmol)의 아크릴로일 클로라이드를 적가하고, 1시간 동안 반응시킨 후, 여과하여 중간체(A)를 얻었으며;(2) 100 g of porous alumina coated with melamine formaldehyde resin was dispersed in 200 ml of dichloromethane, then 4.5 g (50 mmol) of acryloyl chloride was added dropwise thereto at 0°C, and reacted for 1 hour. After filtration, intermediate (A) was obtained;

(3) 교반기, 환류 응축관, 온도계, 적하 깔때기가 장착된 500mL의 4구 플라스크에, 일정량의 탈이온수 및 총계질량의 10%인 중간체(A)를 첨가하고, 다시 계질량의 4.5%를 차지하는 사슬 이동제인 아황산수소나트륨을 첨가하여, 교반 및 분산시킨 후, 가열하여 65℃로 승온한 다음, 계질량의 15%를 차지하는 단량체 아크릴산 및 계질량의 0.06%를 차지하는 개시제인 과황산암모늄을 적가하고, 적가 완료 후 3시간 동안 유지하며, 질량 분율이 30%인 수산화나트륨 수용액으로 pH 값이 7~7.5가 될 때까지 중화시킨 후, 여과, 세척 및 건조하여 흡착제 A를 얻었으며, 전자 현미경 사진을 도 1에 나타내었다.(3) In a 500 mL four-necked flask equipped with a stirrer, reflux condensing tube, thermometer, and dropping funnel, a certain amount of deionized water and 10% of the total mass of the intermediate (A) were added, and then 4.5% of the total mass of the intermediate was added. Sodium bisulfite, a chain transfer agent, was added, stirred and dispersed, heated and raised to 65°C, and then monomeric acrylic acid, accounting for 15% of the system mass, and ammonium persulfate, an initiator, accounting for 0.06% of the system mass, were added dropwise. , maintained for 3 hours after completion of dropwise addition, neutralized with an aqueous solution of sodium hydroxide with a mass fraction of 30% until the pH value reached 7 to 7.5, then filtered, washed and dried to obtain adsorbent A, and electron micrographs were obtained. It is shown in Figure 1.

흡착제 B:Adsorbent B:

(1) 100g의 실리카겔 분말을 200ml의 탈이온수에 분산시킨 다음, 용액에 5g의 도파민을 첨가하고, 상온에서 8시간 동안 교반한 후, 여과 및 건조하여 폴리도파민으로 코팅된 실리카겔 분말을 얻었고;(1) 100 g of silica gel powder was dispersed in 200 ml of deionized water, then 5 g of dopamine was added to the solution, stirred at room temperature for 8 hours, then filtered and dried to obtain silica gel powder coated with polydopamine;

(2) 100g의 폴리도파민으로 코팅된 실리카겔 분말을 200ml의 디클로로메탄에 분산시킨 다음, 0℃ 조건에서 여기에 4.5g(50 mmol)의 아크릴로일 클로라이드를 적가하고, 1시간 동안 반응시킨 후, 여과하여 중간체(B)를 얻었으며;(2) 100 g of polydopamine-coated silica gel powder was dispersed in 200 ml of dichloromethane, then 4.5 g (50 mmol) of acryloyl chloride was added dropwise to it at 0°C, and reacted for 1 hour. By filtration, intermediate (B) was obtained;

(3) 교반기, 환류 응축관, 온도계, 적하 깔때기가 장착된 500mL의 4구 플라스크에, 일정량의 탈이온수 및 총계질량의 10%인 중간체(B)를 첨가하고, 다시 계질량의 4.5%를 차지하는 사슬 이동제인 아황산수소나트륨을 첨가하여, 교반 및 분산시킨 후, 가열하여 65℃로 승온한 다음, 계질량의 15%를 차지하는 단량체 아크릴산 및 계질량의 0.06%를 차지하는 개시제인 과황산암모늄을 적가하고, 적가 완료 후 3시간 동안 유지하며, 질량 분율이 30%인 수산화나트륨 수용액으로 pH 값이 7~7.5가 될 때까지 중화시킨 후, 여과, 세척 및 건조하여 흡착제 B를 얻었다.(3) A certain amount of deionized water and 10% of the total mass of the intermediate (B) were added to a 500 mL four-necked flask equipped with a stirrer, reflux condensation tube, thermometer, and dropping funnel, and then 4.5% of the total mass was added. Sodium bisulfite, a chain transfer agent, was added, stirred and dispersed, heated and raised to 65°C, and then monomeric acrylic acid, accounting for 15% of the system mass, and ammonium persulfate, an initiator, accounting for 0.06% of the system mass, were added dropwise. , After the dropwise addition was completed, it was maintained for 3 hours, neutralized with an aqueous solution of sodium hydroxide with a mass fraction of 30% until the pH value reached 7 to 7.5, and then filtered, washed, and dried to obtain adsorbent B.

흡착제 C:Adsorbent C:

(1) 100g의 다공성 알루미나를 100ml의 탈이온수에 분산시킨 다음, 물에 20g의 폴리비닐알코올을 첨가하고, 균일하게 교반한 후 3시간 동안 방치한 후, 여과 및 건조하여 폴리비닐알코올로 코팅된 다공성 알루미나를 얻었고;(1) 100 g of porous alumina was dispersed in 100 ml of deionized water, then 20 g of polyvinyl alcohol was added to the water, stirred uniformly, left for 3 hours, filtered and dried, and then coated with polyvinyl alcohol. Porous alumina was obtained;

(2) 100g의 폴리비닐알코올로 코팅된 다공성 알루미나를 200ml의 디클로로메탄에 분산시킨 다음, 0℃ 조건에서 여기에 4.5g(50 mmol)의 아크릴로일 클로라이드를 적가하고, 1시간 동안 반응시킨 후, 여과하여 중간체(C)를 얻었으며; (2) 100 g of porous alumina coated with polyvinyl alcohol was dispersed in 200 ml of dichloromethane, then 4.5 g (50 mmol) of acryloyl chloride was added dropwise to it at 0°C, and reacted for 1 hour. , filtered to obtain intermediate (C);

(3) 교반기, 환류 응축관, 온도계, 적하 깔때기가 장착된 500mL의 4구 플라스크에, 일정량의 탈이온수 및 총계질량의 10%인 중간체(C)를 첨가하고, 다시 계질량의 4.5%를 차지하는 사슬 이동제인 아황산수소나트륨을 첨가하여, 교반 및 분산시킨 후, 가열하여 65℃로 승온한 다음, 계질량의 15%를 차지하는 단량체 아크릴산 및 계질량의 0.06%를 차지하는 개시제인 과황산암모늄을 적가하고, 적가 완료 후 3시간 동안 유지하며, 질량 분율이 30%인 수산화나트륨 수용액으로 pH 값이 7~7.5가 될 때까지 중화시킨 후, 여과, 세척 및 건조하여 흡착제 C를 얻었다.(3) A certain amount of deionized water and 10% of the total mass of the intermediate (C) were added to a 500 mL four-necked flask equipped with a stirrer, reflux condensation tube, thermometer, and dropping funnel, and then 4.5% of the total mass was added. Sodium bisulfite, a chain transfer agent, was added, stirred and dispersed, heated and raised to 65°C, and then monomeric acrylic acid, accounting for 15% of the system mass, and ammonium persulfate, an initiator, accounting for 0.06% of the system mass, were added dropwise. , After the dropwise addition was completed, it was maintained for 3 hours, neutralized with an aqueous solution of sodium hydroxide with a mass fraction of 30% until the pH value reached 7 to 7.5, and then filtered, washed, and dried to obtain adsorbent C.

흡착제 D:Adsorbent D:

(1) 100g의 다공성 알루미나를 100ml의 탈이온수에 분산시킨 다음, 물에 37% 포름알데히드 수용액 50ml 및 0.1g의 헥사메틸렌테트라민을 첨가하고, 균일하게 혼합한 후 다시 30g의 멜라민을 첨가하고, 균일하게 교반한 후 80℃로 승온하여 30분 동안 반응시킨 후, 여과 및 건조하여 멜라민 포름알데히드 수지로 코팅된 다공성 알루미나를 얻었고;(1) 100 g of porous alumina was dispersed in 100 ml of deionized water, then 50 ml of 37% formaldehyde aqueous solution and 0.1 g of hexamethylenetetramine were added to the water, mixed uniformly, and then 30 g of melamine was added again, After stirring uniformly, the temperature was raised to 80°C and reacted for 30 minutes, then filtered and dried to obtain porous alumina coated with melamine formaldehyde resin;

(2) 100g의 멜라민 포름알데히드 수지로 코팅된 다공성 알루미나를 200ml의 디클로로메탄에 분산시킨 다음, 0℃ 조건에서 여기에 4.5g(50 mmol)의 아크릴로일 클로라이드를 적가하고, 1시간 동안 반응시킨 후, 여과하여 중간체(A)를 얻었으며;(2) 100 g of porous alumina coated with melamine formaldehyde resin was dispersed in 200 ml of dichloromethane, then 4.5 g (50 mmol) of acryloyl chloride was added dropwise thereto at 0°C, and reacted for 1 hour. After filtration, intermediate (A) was obtained;

(3) 교반기, 환류 응축관, 온도계, 적하 깔때기가 장착된 500mL의 4구 플라스크에, 일정량의 탈이온수 및 총계질량의 10%인 중간체(A)를 첨가하고, 다시 계질량의 4.5%를 차지하는 사슬 이동제인 아황산수소나트륨을 첨가하여, 교반 및 분산시킨 후, 가열하여 65℃로 승온한 다음, 계질량의 25%를 차지하는 단량체 아크릴산 및 계질량의 0.06%를 차지하는 개시제인 과황산암모늄을 적가하고, 적가 완료 후 3시간 동안 유지하며, 질량 분율이 30%인 수산화나트륨 수용액으로 pH 값이 7~7.5가 될 때까지 중화시킨 후, 여과, 세척 및 건조하여 흡착제 D를 얻었다.(3) In a 500 mL four-necked flask equipped with a stirrer, reflux condensing tube, thermometer, and dropping funnel, a certain amount of deionized water and 10% of the total mass of the intermediate (A) were added, and then 4.5% of the total mass of the intermediate was added. Sodium bisulfite, a chain transfer agent, was added, stirred and dispersed, heated to 65°C, and then monomeric acrylic acid, which accounts for 25% of the system mass, and ammonium persulfate, an initiator, which accounts for 0.06% of the system mass, were added dropwise. , After the dropwise addition was completed, it was maintained for 3 hours, neutralized with an aqueous solution of sodium hydroxide with a mass fraction of 30% until the pH value reached 7 to 7.5, and then filtered, washed, and dried to obtain adsorbent D.

[정화 시스템][Purification system]

도 2에 도시된 바와 같이, 본 발명은 또한 실리콘계 전구체를 정화하기 위한 정화 시스템을 개시하며, 상기 시스템은 적어도 다음 단계를 포함한다.As shown in Figure 2, the present invention also discloses a purification system for purifying a silicon-based precursor, the system comprising at least the following steps.

정화 유닛(100)은 공업용 실리콘계 전구체, 흡착제 및 이온성 액체 등을 포함하는 물질을 담는 정화 탱크(110)를 포함하므로, 실리콘계 전구체는 정화 탱크(110) 내부에서 이온성 액체 매체에 분산된 흡착제와 접촉할 수 있어, 실리콘계 전구체 중의 금속 이온 불순물이 이온성 액체에 용해되어 흡착제에 의해 흡착 및 정화될 수 있다.Since the purification unit 100 includes a purification tank 110 containing materials including an industrial silicon-based precursor, an adsorbent, and an ionic liquid, the silicon-based precursor is divided into an adsorbent and an adsorbent dispersed in an ionic liquid medium inside the purification tank 110. By contact, the metal ion impurities in the silicon-based precursor can be dissolved in the ionic liquid and adsorbed and purified by the adsorbent.

본 발명은 특히 실리콘계 전구체가 흡착제와 접촉하는 접촉 효과를 향상시키기 위해, 정화 탱크(110)에 정화 탱크(110) 내부 물질의 교반 역할을 하는 교반 장치(120)를 설치하고, 상기 교반 장치(120)는 정화 탱크(110) 상단부에 설치된 구동 모터(121) 및 이에 연결되어 정화 탱크(110) 내부로 깊숙이 관통하는 전달 로드(122)를 포함하며, 전달 로드(122)에는 물질의 교반 역할을 하는 교반 패들(123)이 설치되고, 구동 모터(121)가 작동되면 구동 모터(121)는 전달 로드(122)를 구동하여 회전시켜, 교반 패들(123)이 물질의 전단 역할을 하여, 물질에 대한 교반 효과를 증가할 수 있다.In the present invention, in particular, in order to improve the contact effect of the silicon-based precursor contacting the adsorbent, a stirring device 120 that serves to stir the material inside the purification tank 110 is installed in the purification tank 110, and the stirring device 120 ) includes a drive motor 121 installed at the upper end of the purification tank 110 and a transmission rod 122 connected to this and penetrating deep into the purification tank 110, and the transmission rod 122 has a function of stirring the material. When the stirring paddle 123 is installed and the drive motor 121 is operated, the drive motor 121 drives the transmission rod 122 to rotate, so that the stirring paddle 123 serves as a shear for the material, The stirring effect can be increased.

본 발명은 정화 탱크(110) 내부 물질의 온도 조절 역할을 용이하게 하기 위해, 또한 정화 탱크(110) 주변에 가열 장치(130)를 설치하여, 정화 탱크(110) 내부 물질의 가열 역할을 용이하게 하도록 한다.In order to facilitate the role of temperature control of the material inside the purification tank 110, the present invention also installs a heating device 130 around the purification tank 110 to facilitate the role of heating the material inside the purification tank 110. Let's do it.

정화 탱크(110)의 상단부에는 이와 연통된 한 세트의 정류 유닛(200)이 설치되며, 상기 정류 유닛(200)은 내부에 정류 패킹(220)으로 충진된 하나의 정류 칼럼(210)을 포함한다.A set of rectification units 200 are installed at the upper end of the purification tank 110, and the rectification unit 200 includes one rectification column 210 filled with rectification packing 220 therein. .

수집 유닛(300)은 정류 유닛(200)의 관로에 연통되는 수집기(310)를 포함하며, 수집기(310)의 외부에는 하나의 콜드웰(320)이 슬리브되어 있고, 콜드웰(320) 내부에는 액체 질소 등의 냉각 매체가 주입될 수 있으며, 실리콘계 전구체가 정류 칼럼(210)으로부터 나오면, 유출된 실리콘계 전구체의 수집을 수용하기 위해 사용되며, 상기 수집 유닛(300)은 정류에 의해 얻은 저비점 물질을 수용하기 위한 하나의 저비점 수집기(330)를 더 포함한다.The collection unit 300 includes a collector 310 connected to the pipe of the rectification unit 200, and one cold well 320 is sleeved on the outside of the collector 310, and liquid nitrogen is inside the cold well 320. A cooling medium such as the like can be injected, and when the silicon-based precursor comes out of the rectification column 210, it is used to receive collection of the spilled silicon-based precursor, and the collection unit 300 is used to receive the low boiling point material obtained by rectification. It further includes one low boiling point collector 330 for.

압력 제어 유닛(400)은 전체 정화 시스템의 내부 압력을 제어하기 위해 수집기(310) 관로에 연통된다.The pressure control unit 400 is connected to the collector 310 pipe to control the internal pressure of the entire purification system.

가스 공급 유닛(500)은 정화 탱크(110) 내부에 불활성 가스를 유입하는 가스 탱크(510), 및 전달된 불활성 가스 흐름의 유속을 제어하는 압력 제어 밸브(520)를 포함한다.The gas supply unit 500 includes a gas tank 510 that introduces an inert gas into the purification tank 110, and a pressure control valve 520 that controls the flow rate of the delivered inert gas flow.

[옥타메틸시클로테트라실록산(D4)의 정화][Purification of octamethylcyclotetrasiloxane (D4)]

[실시예 1][Example 1]

옥타메틸시클로테트라실록산의 정제 방법은 다음 단계를 포함한다.The method for purifying octamethylcyclotetrasiloxane includes the following steps.

(S.1) 10kg의 실리카겔 분말 및 100kg의 이온성 액체(1-에틸-3-메틸이미다졸 테트라플루오로보레이트)를 정화 탱크(110)에 투입하고, 교반 장치(120)를 작동시켜 실리카겔 분말이 이온성 액체에 완전히 분산되도록 하여, 흡착 슬러리를 얻었다. 가스 공급 유닛(500)을 작동하고, 흡착 슬러리에 10L/h의 속도로 질소 가스를 유입하여, 정화 탱크 내부의 공기를 제거하며;(S.1) 10 kg of silica gel powder and 100 kg of ionic liquid (1-ethyl-3-methylimidazole tetrafluoroborate) are added to the purification tank 110, and the stirring device 120 is operated to purify the silica gel. The powder was allowed to completely disperse in the ionic liquid to obtain an adsorption slurry. Operating the gas supply unit 500, introducing nitrogen gas into the adsorption slurry at a rate of 10 L/h to remove air inside the purification tank;

(S.2) 정화 탱크(110) 내부 온도를 20℃로 제어한 다음, 50kg의 공업용 옥타메틸시클로테트라실록산(D4)을 정화 탱크(110)에 투입하고, 옥타메틸시클로테트라실록산이 흡착 슬러리에 용해되어 흡착제와 접촉하도록 교반하며, 3시간 동안 교반 및 흡착한 후, 공업용 옥타메틸시클로테트라실록산 중의 금속 이온 불순물이 흡착제에 의해 흡착되도록 하고;(S.2) After controlling the internal temperature of the purification tank 110 to 20°C, 50 kg of industrial octamethylcyclotetrasiloxane (D4) is added to the purification tank 110, and the octamethylcyclotetrasiloxane is added to the adsorption slurry. It is stirred to dissolve and contact with the adsorbent, and after stirring and adsorption for 3 hours, the metal ion impurities in the technical octamethylcyclotetrasiloxane are adsorbed by the adsorbent;

(S.3) 흡착 완료 후, 가스 공급 유닛(500)의 가스 공급을 중지한 다음, 압력 제어 유닛(400)을 통해 정화 탱크(110) 내부 압력을 0.05MPa로 제어하고, 프로그래밍된 승온 및 가열 후, 정류 유닛(200) 상단부에서 수용된 유분 온도가 98℃인 유분을 수집하며, 공업용 옥타메틸시클로테트라실록산 중의 경질 성분을 제거한 다음, 정화 탱크(110) 내부 압력을 0.02MPa로 제어한 후, 정류 유닛(200) 상단부에서 수용된 온도가 113℃인 유분을 수집하여, 전자 등급 옥타메틸시클로테트라실록산을 얻었으며, 고비점 물질은 정화 탱크(110)의 저부에서 유출된다.(S.3) After completion of adsorption, stop the gas supply from the gas supply unit 500, then control the internal pressure of the purification tank 110 to 0.05 MPa through the pressure control unit 400, and perform the programmed temperature increase and heating. Afterwards, the oil temperature of 98°C received at the upper part of the rectification unit 200 is collected, the light components in the industrial octamethylcyclotetrasiloxane are removed, the pressure inside the purification tank 110 is controlled to 0.02 MPa, and then rectified. The oil with a temperature of 113° C. received at the top of the unit 200 was collected to obtain electronic grade octamethylcyclotetrasiloxane, and the high-boiling material was discharged from the bottom of the purification tank 110.

정제 전후로 얻은 옥타메틸시클로테트라실록산의 순도 변화를 비교하기 위해, 공업용 옥타메틸시클로테트라실록산 및 정제 후 얻은 전자 등급 옥타메틸시클로테트라실록산에 대해 GC-MS 검출을 수행하였다.To compare the change in purity of octamethylcyclotetrasiloxane obtained before and after purification, GC-MS detection was performed on technical octamethylcyclotetrasiloxane and electronic grade octamethylcyclotetrasiloxane obtained after purification.

여기서, 도 3은 공업용 옥타메틸시클로테트라실록산의 기상 검출 스펙트럼으로, 그 중 6.209min에서의 피크는 헥사메틸시클로트리실록산(D3)이고, 그 질량 스펙트럼을 도 4에 나타내었으며, 7.550min에서의 피크는 옥타메틸시클로테트라실록산(D4)이고, 그 질량 스펙트럼을 도 5에 나타내었으며, 10.401min에서의 피크는 데카메틸시클로펜타실록산(D5)이고, 그 질량 스펙트럼을 도 6에 나타내었으며, 나머지 피크는 고비점 물질이다.Here, Figure 3 is a gas phase detection spectrum of industrial octamethylcyclotetrasiloxane, of which the peak at 6.209 min is hexamethylcyclotrisiloxane (D3), and its mass spectrum is shown in Figure 4, the peak at 7.550 min. is octamethylcyclotetrasiloxane (D4), the mass spectrum is shown in Figure 5, the peak at 10.401 min is decamethylcyclopentasiloxane (D5), the mass spectrum is shown in Figure 6, the remaining peaks are It is a high boiling point substance.

정제를 거친 후 얻은 전자 등급 옥타메틸시클로테트라실록산의 기상 검출 스펙트럼을 도 7에 나타내었으며, 정제를 거친 후 옥타메틸시클로테트라실록산(D4)만 포함되어 있음을 알 수 있다.The gas phase detection spectrum of electronic grade octamethylcyclotetrasiloxane obtained after purification is shown in Figure 7, and it can be seen that only octamethylcyclotetrasiloxane (D4) is contained after purification.

[실시예 2][Example 2]

옥타메틸시클로테트라실록산의 정제 방법은 다음 단계를 포함한다.The method for purifying octamethylcyclotetrasiloxane includes the following steps.

(S.1) 10kg의 흡착제 A 및 100kg의 이온성 액체(1-에틸-3-메틸이미다졸 테트라플루오로보레이트)를 정화 탱크(110)에 투입하고, 교반 장치(120)를 작동시켜 실리카겔 분말이 이온성 액체에 완전히 분산되도록 하여, 흡착 슬러리를 얻었다. 가스 공급 유닛(500)을 작동하고, 흡착 슬러리에 10L/h의 속도로 질소 가스를 유입하여, 정화 탱크 내부의 공기를 제거하며;(S.1) 10 kg of adsorbent A and 100 kg of ionic liquid (1-ethyl-3-methylimidazole tetrafluoroborate) are added to the purification tank 110, and the stirring device 120 is operated to produce silica gel. The powder was allowed to completely disperse in the ionic liquid to obtain an adsorption slurry. Operating the gas supply unit 500, introducing nitrogen gas into the adsorption slurry at a rate of 10 L/h to remove air inside the purification tank;

(S.2) 정화 탱크(110) 내부 온도를 20℃로 제어한 다음, 50kg의 공업용 옥타메틸시클로테트라실록산(D4)을 정화 탱크(110)에 투입하고, 옥타메틸시클로테트라실록산이 흡착 슬러리에 용해되어 흡착제와 접촉하도록 교반하며, 3시간 동안 교반 및 흡착한 후, 공업용 옥타메틸시클로테트라실록산 중의 금속 이온 불순물이 흡착제에 의해 흡착되도록 하고;(S.2) After controlling the internal temperature of the purification tank 110 to 20°C, 50 kg of industrial octamethylcyclotetrasiloxane (D4) is added to the purification tank 110, and the octamethylcyclotetrasiloxane is added to the adsorption slurry. It is stirred to dissolve and contact with the adsorbent, and after stirring and adsorption for 3 hours, the metal ion impurities in the technical octamethylcyclotetrasiloxane are adsorbed by the adsorbent;

(S.3) 흡착 완료 후, 가스 공급 유닛(500)의 가스 공급을 중지한 다음, 압력 제어 유닛(400)을 통해 정화 탱크(110) 내부 압력을 0.05MPa로 제어하고, 프로그래밍된 승온 및 가열 후, 정류 유닛(200) 상단부에서 수용된 유분 온도가 98℃인 유분을 수집하며, 공업용 옥타메틸시클로테트라실록산 중의 경질 성분(D3)을 제거한 다음, 정화 탱크(110) 내부 압력을 0.02MPa로 제어한 후, 정류 유닛(200) 상단부에서 수용된 온도가 113℃인 유분을 수집하여, 전자 등급 옥타메틸시클로테트라실록산을 얻었으며, 고비점 물질은 정화 탱크(110)의 저부에서 유출된다. (S.3) After completion of adsorption, stop the gas supply from the gas supply unit 500, then control the internal pressure of the purification tank 110 to 0.05 MPa through the pressure control unit 400, and perform the programmed temperature increase and heating. Afterwards, the oil with an oil temperature of 98°C received at the upper part of the rectification unit 200 is collected, the light component (D3) in the industrial octamethylcyclotetrasiloxane is removed, and the internal pressure of the purification tank 110 is controlled to 0.02 MPa. Then, the oil having a temperature of 113° C. received at the upper part of the rectification unit 200 was collected to obtain electronic grade octamethylcyclotetrasiloxane, and the high boiling point material was discharged from the bottom of the purification tank 110.

[실시예 3][Example 3]

옥타메틸시클로테트라실록산의 정제 방법은 다음 단계를 포함한다.The method for purifying octamethylcyclotetrasiloxane includes the following steps.

(S.1) 10kg의 흡착제 B 및 100kg의 이온성 액체(1-에틸-3-메틸이미다졸 테트라플루오로보레이트)를 정화 탱크(110)에 투입하고, 교반 장치(120)를 작동시켜 실리카겔 분말이 이온성 액체에 완전히 분산되도록 하여, 흡착 슬러리를 얻었다. 가스 공급 유닛(500)을 작동하고, 흡착 슬러리에 10L/h의 속도로 질소 가스를 유입하여, 정화 탱크 내부의 공기를 제거하며; (S.1) 10 kg of adsorbent B and 100 kg of ionic liquid (1-ethyl-3-methylimidazole tetrafluoroborate) are added to the purification tank 110, and the stirring device 120 is operated to produce silica gel. The powder was allowed to completely disperse in the ionic liquid to obtain an adsorption slurry. Operating the gas supply unit 500, introducing nitrogen gas into the adsorption slurry at a rate of 10 L/h to remove air inside the purification tank;

(S.2) 정화 탱크(110) 내부 온도를 20℃로 제어한 다음, 50kg의 공업용 옥타메틸시클로테트라실록산(D4)을 정화 탱크(110)에 투입하고, 옥타메틸시클로테트라실록산이 흡착 슬러리에 용해되어 흡착제와 접촉하도록 교반하며, 3시간 동안 교반 및 흡착한 후, 공업용 옥타메틸시클로테트라실록산 중의 금속 이온 불순물이 흡착제에 의해 흡착되도록 하고; (S.2) After controlling the internal temperature of the purification tank 110 to 20°C, 50 kg of industrial octamethylcyclotetrasiloxane (D4) is added to the purification tank 110, and the octamethylcyclotetrasiloxane is added to the adsorption slurry. It is stirred to dissolve and contact with the adsorbent, and after stirring and adsorption for 3 hours, the metal ion impurities in the technical octamethylcyclotetrasiloxane are adsorbed by the adsorbent;

(S.3) 흡착 완료 후, 가스 공급 유닛(500)의 가스 공급을 중지한 다음, 압력 제어 유닛(400)을 통해 정화 탱크(110) 내부 압력을 0.05MPa로 제어하고, 프로그래밍된 승온 및 가열 후, 정류 유닛(200) 상단부에서 수용된 유분 온도가 98℃인 유분을 수집하며, 공업용 옥타메틸시클로테트라실록산 중의 경질 성분(D3)을 제거한 다음, 정화 탱크(110) 내부 압력을 0.02MPa로 제어한 후, 정류 유닛(200) 상단부에서 수용된 온도가 113℃인 유분을 수집하여, 전자 등급 옥타메틸시클로테트라실록산을 얻었으며, 고비점 물질은 정화 탱크(110)의 저부에서 유출된다. (S.3) After completion of adsorption, stop the gas supply from the gas supply unit 500, then control the internal pressure of the purification tank 110 to 0.05 MPa through the pressure control unit 400, and perform the programmed temperature increase and heating. Afterwards, the oil with an oil temperature of 98°C received at the upper part of the rectification unit 200 is collected, the light component (D3) in the industrial octamethylcyclotetrasiloxane is removed, and the internal pressure of the purification tank 110 is controlled to 0.02 MPa. Then, the oil having a temperature of 113° C. received at the upper part of the rectification unit 200 was collected to obtain electronic grade octamethylcyclotetrasiloxane, and the high boiling point material was discharged from the bottom of the purification tank 110.

[실시예 4][Example 4]

옥타메틸시클로테트라실록산의 정제 방법은 다음 단계를 포함한다.The method for purifying octamethylcyclotetrasiloxane includes the following steps.

(S.1) 20kg의 흡착제 B 및 100kg의 이온성 액체(1-에틸-3-메틸이미다졸 테트라플루오로보레이트)를 정화 탱크(110)에 투입하고, 교반 장치(120)를 작동시켜 실리카겔 분말이 이온성 액체에 완전히 분산되도록 하여, 흡착 슬러리를 얻었다. 가스 공급 유닛(500)을 작동하고, 흡착 슬러리에 10L/h의 속도로 질소 가스를 유입하여, 정화 탱크 내부의 공기를 제거하며; (S.1) 20 kg of adsorbent B and 100 kg of ionic liquid (1-ethyl-3-methylimidazole tetrafluoroborate) are added to the purification tank 110, and the stirring device 120 is operated to dissolve the silica gel. The powder was allowed to completely disperse in the ionic liquid to obtain an adsorption slurry. Operating the gas supply unit 500, introducing nitrogen gas into the adsorption slurry at a rate of 10 L/h to remove air inside the purification tank;

(S.2) 정화 탱크(110) 내부 온도를 20℃로 제어한 다음, 50kg의 공업용 옥타메틸시클로테트라실록산(D4)을 정화 탱크(110)에 투입하고, 옥타메틸시클로테트라실록산이 흡착 슬러리에 용해되어 흡착제와 접촉하도록 교반하며, 3시간 동안 교반 및 흡착한 후, 공업용 옥타메틸시클로테트라실록산 중의 금속 이온 불순물이 흡착제에 의해 흡착되도록 하고; (S.2) After controlling the internal temperature of the purification tank 110 to 20°C, 50 kg of industrial octamethylcyclotetrasiloxane (D4) is added to the purification tank 110, and the octamethylcyclotetrasiloxane is added to the adsorption slurry. It is stirred to dissolve and contact with the adsorbent, and after stirring and adsorption for 3 hours, the metal ion impurities in the technical octamethylcyclotetrasiloxane are adsorbed by the adsorbent;

(S.3) 흡착 완료 후, 가스 공급 유닛(500)의 가스 공급을 중지한 다음, 압력 제어 유닛(400)을 통해 정화 탱크(110) 내부 압력을 0.05MPa로 제어하고, 프로그래밍된 승온 및 가열 후, 정류 유닛(200) 상단부에서 수용된 유분 온도가 98℃인 유분을 수집하며, 공업용 옥타메틸시클로테트라실록산 중의 경질 성분(D3)을 제거한 다음, 정화 탱크(110) 내부 압력을 0.02MPa로 제어한 후, 정류 유닛(200) 상단부에서 수용된 온도가 113℃인 유분을 수집하여, 전자 등급 옥타메틸시클로테트라실록산을 얻었으며, 고비점 물질은 정화 탱크(110)의 저부에서 유출된다. (S.3) After completion of adsorption, stop the gas supply from the gas supply unit 500, then control the internal pressure of the purification tank 110 to 0.05 MPa through the pressure control unit 400, and perform the programmed temperature increase and heating. Afterwards, the oil with an oil temperature of 98°C received at the upper part of the rectification unit 200 is collected, the light component (D3) in the industrial octamethylcyclotetrasiloxane is removed, and the internal pressure of the purification tank 110 is controlled to 0.02 MPa. Then, the oil having a temperature of 113° C. received at the upper part of the rectification unit 200 was collected to obtain electronic grade octamethylcyclotetrasiloxane, and the high boiling point material was discharged from the bottom of the purification tank 110.

[비교예 1][Comparative Example 1]

옥타메틸시클로테트라실록산의 정제 방법은 다음 단계를 포함한다.The method for purifying octamethylcyclotetrasiloxane includes the following steps.

(S.1) 10kg의 멜라민 포름알데히드 수지로 코팅된 다공성 알루미나 및 100kg의 이온성 액체(1-에틸-3-메틸이미다졸 테트라플루오로보레이트)를 정화 탱크(110)에 투입하고, 교반 장치(120)를 작동시켜 실리카겔 분말이 이온성 액체에 완전히 분산되도록 하여, 흡착 슬러리를 얻었다. 가스 공급 유닛(500)을 작동하고, 흡착 슬러리에 10L/h의 속도로 질소 가스를 유입하여, 정화 탱크 내부의 공기를 제거하며; (S.1) 10 kg of porous alumina coated with melamine formaldehyde resin and 100 kg of ionic liquid (1-ethyl-3-methylimidazole tetrafluoroborate) are added to the purification tank 110 and stirred. (120) was operated to ensure that the silica gel powder was completely dispersed in the ionic liquid, thereby obtaining an adsorption slurry. Operating the gas supply unit 500, introducing nitrogen gas into the adsorption slurry at a rate of 10 L/h to remove air inside the purification tank;

(S.2) 정화 탱크(110) 내부 온도를 20℃로 제어한 다음, 50kg의 공업용 옥타메틸시클로테트라실록산(D4)을 정화 탱크(110)에 투입하고, 옥타메틸시클로테트라실록산이 흡착 슬러리에 용해되어 흡착제와 접촉하도록 교반하며, 3시간 동안 교반 및 흡착한 후, 공업용 옥타메틸시클로테트라실록산 중의 금속 이온 불순물이 흡착제에 의해 흡착되도록 하고; (S.2) After controlling the internal temperature of the purification tank 110 to 20°C, 50 kg of industrial octamethylcyclotetrasiloxane (D4) is added to the purification tank 110, and the octamethylcyclotetrasiloxane is added to the adsorption slurry. It is stirred to dissolve and contact with the adsorbent, and after stirring and adsorption for 3 hours, the metal ion impurities in the technical octamethylcyclotetrasiloxane are adsorbed by the adsorbent;

(S.3) 흡착 완료 후, 가스 공급 유닛(500)의 가스 공급을 중지한 다음, 압력 제어 유닛(400)을 통해 정화 탱크(110) 내부 압력을 0.05MPa로 제어하고, 프로그래밍된 승온 및 가열 후, 정류 유닛(200) 상단부에서 수용된 유분 온도가 98℃인 유분을 수집하며, 공업용 옥타메틸시클로테트라실록산 중의 경질 성분(D3)을 제거한 다음, 정화 탱크(110) 내부 압력을 0.02MPa로 제어한 후, 정류 유닛(200) 상단부에서 수용된 온도가 113℃인 유분을 수집하여, 전자 등급 옥타메틸시클로테트라실록산을 얻었으며, 고비점 물질은 정화 탱크(110)의 저부에서 유출된다. (S.3) After completion of adsorption, stop the gas supply from the gas supply unit 500, then control the internal pressure of the purification tank 110 to 0.05 MPa through the pressure control unit 400, and perform the programmed temperature increase and heating. Afterwards, the oil with an oil temperature of 98°C received at the upper part of the rectification unit 200 is collected, the light component (D3) in the industrial octamethylcyclotetrasiloxane is removed, and the internal pressure of the purification tank 110 is controlled to 0.02 MPa. Then, the oil having a temperature of 113° C. received at the upper part of the rectification unit 200 was collected to obtain electronic grade octamethylcyclotetrasiloxane, and the high boiling point material was discharged from the bottom of the purification tank 110.

[비교예 2][Comparative Example 2]

옥타메틸시클로테트라실록산의 정제 방법은 다음 단계를 포함한다.The method for purifying octamethylcyclotetrasiloxane includes the following steps.

(S.1) 10kg의 흡착제 C 및 100kg의 이온성 액체(1-에틸-3-메틸이미다졸 테트라플루오로보레이트)를 정화 탱크(110)에 투입하고, 교반 장치(120)를 작동시켜 실리카겔 분말이 이온성 액체에 완전히 분산되도록 하여, 흡착 슬러리를 얻었다. 가스 공급 유닛(500)을 작동하고, 흡착 슬러리에 10L/h의 속도로 질소 가스를 유입하여, 정화 탱크 내부의 공기를 제거하며; (S.1) 10 kg of adsorbent C and 100 kg of ionic liquid (1-ethyl-3-methylimidazole tetrafluoroborate) are added to the purification tank 110, and the stirring device 120 is operated to produce silica gel. The powder was allowed to completely disperse in the ionic liquid to obtain an adsorption slurry. Operating the gas supply unit 500, introducing nitrogen gas into the adsorption slurry at a rate of 10 L/h to remove air inside the purification tank;

(S.2) 정화 탱크(110) 내부 온도를 20℃로 제어한 다음, 50kg의 공업용 옥타메틸시클로테트라실록산(D4)을 정화 탱크(110)에 투입하고, 옥타메틸시클로테트라실록산이 흡착 슬러리에 용해되어 흡착제와 접촉하도록 교반하며, 3시간 동안 교반 및 흡착한 후, 공업용 옥타메틸시클로테트라실록산 중의 금속 이온 불순물이 흡착제에 의해 흡착되도록 하고; (S.2) After controlling the internal temperature of the purification tank 110 to 20°C, 50 kg of industrial octamethylcyclotetrasiloxane (D4) is added to the purification tank 110, and the octamethylcyclotetrasiloxane is added to the adsorption slurry. It is stirred to dissolve and contact with the adsorbent, and after stirring and adsorption for 3 hours, the metal ion impurities in the technical octamethylcyclotetrasiloxane are adsorbed by the adsorbent;

(S.3) 흡착 완료 후, 가스 공급 유닛(500)의 가스 공급을 중지한 다음, 압력 제어 유닛(400)을 통해 정화 탱크(110) 내부 압력을 0.05MPa로 제어하고, 프로그래밍된 승온 및 가열 후, 정류 유닛(200) 상단부에서 수용된 유분 온도가 98℃인 유분을 수집하며, 공업용 옥타메틸시클로테트라실록산 중의 경질 성분(D3)을 제거한 다음, 정화 탱크(110) 내부 압력을 0.02MPa로 제어한 후, 정류 유닛(200) 상단부에서 수용된 온도가 113℃인 유분을 수집하여, 전자 등급 옥타메틸시클로테트라실록산을 얻었으며, 고비점 물질은 정화 탱크(110)의 저부에서 유출된다. (S.3) After completion of adsorption, stop the gas supply from the gas supply unit 500, then control the internal pressure of the purification tank 110 to 0.05 MPa through the pressure control unit 400, and perform the programmed temperature increase and heating. Afterwards, the oil with an oil temperature of 98°C received at the upper part of the rectification unit 200 is collected, the light component (D3) in the industrial octamethylcyclotetrasiloxane is removed, and the internal pressure of the purification tank 110 is controlled to 0.02 MPa. Then, the oil having a temperature of 113° C. received at the upper part of the rectification unit 200 was collected to obtain electronic grade octamethylcyclotetrasiloxane, and the high boiling point material was discharged from the bottom of the purification tank 110.

[비교예 3][Comparative Example 3]

옥타메틸시클로테트라실록산의 정제 방법은 다음 단계를 포함한다.The method for purifying octamethylcyclotetrasiloxane includes the following steps.

(S.1) 10kg의 흡착제 D 및 100kg의 이온성 액체(1-에틸-3-메틸이미다졸 테트라플루오로보레이트)를 정화 탱크(110)에 투입하고, 교반 장치(120)를 작동시켜 실리카겔 분말이 이온성 액체에 완전히 분산되도록 하여, 흡착 슬러리를 얻었다. 가스 공급 유닛(500)을 작동하고, 흡착 슬러리에 10L/h의 속도로 질소 가스를 유입하여, 정화 탱크 내부의 공기를 제거하며; (S.1) 10 kg of adsorbent D and 100 kg of ionic liquid (1-ethyl-3-methylimidazole tetrafluoroborate) are added to the purification tank 110, and the stirring device 120 is operated to produce silica gel. The powder was allowed to completely disperse in the ionic liquid to obtain an adsorption slurry. Operating the gas supply unit 500, introducing nitrogen gas into the adsorption slurry at a rate of 10 L/h to remove air inside the purification tank;

(S.2) 정화 탱크(110) 내부 온도를 20℃로 제어한 다음, 50kg의 공업용 옥타메틸시클로테트라실록산(D4)을 정화 탱크(110)에 투입하고, 옥타메틸시클로테트라실록산이 흡착 슬러리에 용해되어 흡착제와 접촉하도록 교반하며, 3시간 동안 교반 및 흡착한 후, 공업용 옥타메틸시클로테트라실록산 중의 금속 이온 불순물이 흡착제에 의해 흡착되도록 하고; (S.2) After controlling the internal temperature of the purification tank 110 to 20°C, 50 kg of industrial octamethylcyclotetrasiloxane (D4) is added to the purification tank 110, and the octamethylcyclotetrasiloxane is added to the adsorption slurry. It is stirred to dissolve and contact with the adsorbent, and after stirring and adsorption for 3 hours, the metal ion impurities in the technical octamethylcyclotetrasiloxane are adsorbed by the adsorbent;

(S.3) 흡착 완료 후, 가스 공급 유닛(500)의 가스 공급을 중지한 다음, 압력 제어 유닛(400)을 통해 정화 탱크(110) 내부 압력을 0.05MPa로 제어하고, 프로그래밍된 승온 및 가열 후, 정류 유닛(200) 상단부에서 수용된 유분 온도가 98℃인 유분을 수집하며, 공업용 옥타메틸시클로테트라실록산 중의 경질 성분(D3)을 제거한 다음, 정화 탱크(110) 내부 압력을 0.02MPa로 제어한 후, 정류 유닛(200) 상단부에서 수용된 온도가 113℃인 유분을 수집하여, 전자 등급 옥타메틸시클로테트라실록산을 얻었으며, 고비점 물질은 정화 탱크(110)의 저부에서 유출된다. (S.3) After completion of adsorption, stop the gas supply from the gas supply unit 500, then control the internal pressure of the purification tank 110 to 0.05 MPa through the pressure control unit 400, and perform the programmed temperature increase and heating. Afterwards, the oil with an oil temperature of 98°C received at the upper part of the rectification unit 200 is collected, the light component (D3) in the industrial octamethylcyclotetrasiloxane is removed, and the internal pressure of the purification tank 110 is controlled to 0.02 MPa. Then, the oil having a temperature of 113° C. received at the upper part of the rectification unit 200 was collected to obtain electronic grade octamethylcyclotetrasiloxane, and the high boiling point material was discharged from the bottom of the purification tank 110.

[테트라에톡시실란의 정화][Purification of tetraethoxysilane]

[실시예 5][Example 5]

테트라에톡시실란의 정제 방법은 다음 단계를 포함한다.The method for purifying tetraethoxysilane includes the following steps.

(S.1) 10kg의 흡착제 A 및 100kg의 이온성 액체(1, 3-디메틸이미다졸 테트라플루오로보레이트)를 정화 탱크(110)에 투입하고, 교반 장치(120)를 작동시켜 실리카겔 분말이 이온성 액체에 완전히 분산되도록 하여, 흡착 슬러리를 얻었다. 가스 공급 유닛(500)을 작동하고, 흡착 슬러리에 10L/h의 속도로 질소 가스를 유입하여, 정화 탱크 내부의 공기를 제거하며; (S.1) 10 kg of adsorbent A and 100 kg of ionic liquid (1, 3-dimethylimidazole tetrafluoroborate) are added to the purification tank 110, and the stirring device 120 is operated to dissolve the silica gel powder. By allowing it to be completely dispersed in the ionic liquid, an adsorption slurry was obtained. Operating the gas supply unit 500, introducing nitrogen gas into the adsorption slurry at a rate of 10 L/h to remove air inside the purification tank;

(S.2) 정화 탱크(110) 내부 온도를 10℃로 제어한 다음, 50kg의 공업용 테트라에톡시실란을 정화 탱크(110)에 투입하고, 테트라에톡시실란이 흡착 슬러리에 용해되어 흡착제와 접촉하도록 교반하며, 5시간 동안 교반 및 흡착한 후, 공업용 테트라에톡시실란 중의 금속 이온 불순물이 흡착제에 의해 흡착되도록 하고; (S.2) After controlling the internal temperature of the purification tank 110 to 10°C, 50 kg of industrial tetraethoxysilane is put into the purification tank 110, and the tetraethoxysilane is dissolved in the adsorption slurry and comes into contact with the adsorbent. After stirring and adsorption for 5 hours, the metal ion impurities in the technical tetraethoxysilane are adsorbed by the adsorbent;

(S.3) 흡착 완료 후, 가스 공급 유닛(500)의 가스 공급을 중지한 다음, 압력 제어 유닛(400)을 통해 정화 탱크(110) 내부 압력을 0.05MPa로 제어하고, 프로그래밍된 승온 및 가열 후, 정류 유닛(200) 상단부에서 수용된 유분 온도가 93~95℃인 유분을 수집하며, 공업용 옥타메틸시클로테트라실록산 중의 경질 성분을 제거한 다음, 정화 탱크(110) 내부 압력을 0.02MPa로 제어한 후, 정류 유닛(200) 상단부에서 수용된 온도가 108~110℃인 유분을 수집하여, 전자 등급 테트라에톡시실란을 얻었으며, 고비점 물질은 정화 탱크(110)의 저부에서 유출된다. (S.3) After completion of adsorption, stop the gas supply from the gas supply unit 500, then control the internal pressure of the purification tank 110 to 0.05 MPa through the pressure control unit 400, and perform the programmed temperature increase and heating. Then, the oil with an oil temperature of 93 to 95°C received at the upper part of the rectification unit 200 is collected, the light components in the industrial octamethylcyclotetrasiloxane are removed, and the internal pressure of the purification tank 110 is controlled to 0.02 MPa. , the oil with a temperature of 108-110°C was collected at the upper part of the rectification unit 200, and electronic grade tetraethoxysilane was obtained, and the high boiling point material was discharged from the bottom of the purification tank 110.

[테트라메틸실란의 정화][Purification of tetramethylsilane]

[실시예 6][Example 6]

테트라메틸실란의 정제 방법은 다음 단계를 포함한다.The method for purifying tetramethylsilane includes the following steps.

(S.1) 10kg의 흡착제 A 및 100kg의 이온성 액체(1, 3-디메틸이미다졸 테트라플루오로보레이트)를 정화 탱크(110)에 투입하고, 교반 장치(120)를 작동시켜 실리카겔 분말이 이온성 액체에 완전히 분산되도록 하여, 흡착 슬러리를 얻었다. 가스 공급 유닛(500)을 작동하고, 흡착 슬러리에 10L/h의 속도로 질소 가스를 유입하여, 정화 탱크 내부의 공기를 제거하며; (S.1) 10 kg of adsorbent A and 100 kg of ionic liquid (1, 3-dimethylimidazole tetrafluoroborate) are added to the purification tank 110, and the stirring device 120 is operated to dissolve the silica gel powder. By allowing it to be completely dispersed in the ionic liquid, an adsorption slurry was obtained. Operating the gas supply unit 500, introducing nitrogen gas into the adsorption slurry at a rate of 10 L/h to remove air inside the purification tank;

(S.2) 정화 탱크(110) 내부 온도를 0℃로 제어한 다음, 50kg의 공업용 테트라메틸실란을 정화 탱크(110)에 투입하고, 테트라메틸실란이 흡착 슬러리에 용해되어 흡착제와 접촉하도록 교반하며, 5시간 동안 교반 및 흡착한 후, 공업용 테트라메틸실란 중의 금속 이온 불순물이 흡착제에 의해 흡착되도록 하고; (S.2) After controlling the internal temperature of the purification tank 110 to 0°C, 50 kg of industrial tetramethylsilane is added to the purification tank 110, and stirred so that the tetramethylsilane is dissolved in the adsorption slurry and comes into contact with the adsorbent. After stirring and adsorption for 5 hours, the metal ion impurities in the industrial tetramethylsilane are adsorbed by the adsorbent;

(S.3) 흡착 완료 후, 가스 공급 유닛(500)의 가스 공급을 중지한 다음, 압력 제어 유닛(400)을 통해 정화 탱크(110) 내부 압력을 1기압으로 제어하고, 프로그래밍된 승온 및 가열 후, 정류 유닛(200) 상단부에서 수용된 26~28℃인 유분을 수집하여, 전자 등급 테트라메틸실란을 얻었으며, 고비점 물질은 정화 탱크(110)의 저부에서 유출된다. (S.3) After completion of adsorption, stop the gas supply from the gas supply unit 500, then control the internal pressure of the purification tank 110 to 1 atmosphere through the pressure control unit 400, and perform the programmed temperature increase and heating. Afterwards, the oil with a temperature of 26 to 28°C received at the upper part of the rectification unit 200 was collected to obtain electronic grade tetramethylsilane, and the high boiling point material was discharged from the bottom of the purification tank 110.

[트리메틸실란의 정화][Purification of trimethylsilane]

[실시예 7][Example 7]

트리메틸실란의 정제 방법은 다음 단계를 포함한다.The method for purifying trimethylsilane includes the following steps.

(S.1) 10kg의 흡착제 A 및 100kg의 이온성 액체(1, 3-디메틸이미다졸 테트라플루오로보레이트)를 정화 탱크(110)에 투입하고, 교반 장치(120)를 작동시켜 실리카겔 분말이 이온성 액체에 완전히 분산되도록 하여, 흡착 슬러리를 얻었다. 가스 공급 유닛(500)을 작동하고, 흡착 슬러리에 10L/h의 속도로 질소 가스를 유입하여, 정화 탱크 내부의 공기를 제거하며; (S.1) 10 kg of adsorbent A and 100 kg of ionic liquid (1, 3-dimethylimidazole tetrafluoroborate) are added to the purification tank 110, and the stirring device 120 is operated to dissolve the silica gel powder. By allowing it to be completely dispersed in the ionic liquid, an adsorption slurry was obtained. Operating the gas supply unit 500, introducing nitrogen gas into the adsorption slurry at a rate of 10 L/h to remove air inside the purification tank;

(S.2) 정화 탱크(110) 내부 온도를 -10℃로 저하한 다음, 50kg의 공업용 트리메틸실란을 정화 탱크(110)에 투입하고, 트리메틸실란이 흡착 슬러리에 용해되어 흡착제 A와 접촉하도록 교반하며, 5시간 동안 교반 및 흡착한 후, 공업용 트리메틸실란 중의 금속 이온 불순물이 흡착제 A에 의해 흡착되도록 하고; (S.2) After lowering the internal temperature of the purification tank 110 to -10°C, 50 kg of industrial trimethylsilane is added to the purification tank 110, and stirred so that the trimethylsilane is dissolved in the adsorption slurry and comes into contact with the adsorbent A. After stirring and adsorption for 5 hours, the metal ion impurities in the industrial trimethylsilane are adsorbed by the adsorbent A;

(S.3) 흡착 완료 후, 가스 공급 유닛(500)의 가스 공급을 중지한 다음, 압력 제어 유닛(400)을 통해 정화 탱크(110) 내부 압력을 1기압으로 제어하고, 프로그래밍된 승온 및 가열 후, 정류 유닛(200) 상단부에서 수용된 6~7℃인 유분을 수집하여, 전자 등급 트리메틸실란을 얻었으며, 고비점 물질은 정화 탱크(110)의 저부에서 유출된다. (S.3) After completion of adsorption, stop the gas supply from the gas supply unit 500, then control the internal pressure of the purification tank 110 to 1 atmosphere through the pressure control unit 400, and perform the programmed temperature increase and heating. Afterwards, the 6-7°C oil contained in the upper part of the rectification unit 200 was collected to obtain electronic grade trimethylsilane, and the high-boiling point material was discharged from the bottom of the purification tank 110.

[성능 시험 결과][Performance test results]

실시예 1~4 및 비교예 1~3에서 정제하여 얻은 옥타메틸시클로테트라실록산 및 실시예 5에서 얻은 테트라에톡시실란, 실시예 6에서 제조하여 얻은 테트라메틸실란 및 실시예 7에서 제조하여 얻은 트리메틸실란 중의 금속 이온 불순물 함량을 하기 표 1에 나타내었다. Octamethylcyclotetrasiloxane obtained by purification in Examples 1 to 4 and Comparative Examples 1 to 3, tetraethoxysilane obtained in Example 5, tetramethylsilane obtained in Example 6, and trimethyl obtained in Example 7 The metal ion impurity content in silane is shown in Table 1 below.

항목item 금속 이온 불순물 함량Metal ion impurity content 구리copper steel 알루미늄aluminum 망간manganese 니켈nickel 아연zinc 조 펜타옥타메틸시클로테트라실록산Crude pentaoctamethylcyclotetrasiloxane 6.3 ppm6.3ppm 3.2 ppm3.2ppm 2.7 ppm2.7ppm 1.6 ppm1.6 ppm 1.2 ppm1.2ppm 2.1 ppm2.1ppm 실시예 1Example 1 3.2 ppb3.2ppb 2.5 ppb2.5 ppb 1.2 ppb1.2ppb 1.8 ppb1.8ppb 1.5 ppb1.5 ppb 1.6 ppb1.6 ppb 실시예 2Example 2 0.9 ppb0.9 ppb 0.7 ppb0.7 ppb 0.8 ppb0.8 ppb 0.6 ppb0.6 ppb 0.5 ppb0.5 ppb 0.7 ppb0.7ppb 실시예 3Example 3 0.6 ppb0.6 ppb 0.5 ppb0.5 ppb 0.5 ppb0.5ppb 0.2 ppb0.2 ppb 검출할 수 없음undetectable 0.4 ppb0.4 ppb 실시예 4Example 4 0.5 ppb0.5ppb 0.3 ppb0.3ppb 0.5 ppb0.5 ppb 0.1 ppb0.1ppb 검출할 수 없음undetectable 0.2 ppb0.2ppb 비교예 1Comparative Example 1 3.0 ppb3.0 ppb 2.1 ppb2.1 ppb 1.1 ppb1.1 ppb 1.7 ppb1.7ppb 1.4 ppb1.4 ppb 1.5 ppb1.5ppb 비교예 2Comparative Example 2 2.3 ppb2.3 ppb 1.8 ppb1.8ppb 1.0 ppb1.0 ppb 1.3 ppb1.3ppb 1.2 ppb1.2ppb 1.2 ppb1.2ppb 비교예 3Comparative Example 3 12.8 ppb12.8 ppb 9.6 ppb9.6ppb 6.5 ppb6.5 ppb 7.2 ppb7.2ppb 6.8 ppb6.8ppb 5.7 ppb5.7 ppb 조 펜타테트라에톡시실란Crude Pentatetraethoxysilane 4.6 ppm4.6ppm 2.8 ppm2.8 ppm 3.1 ppm3.1 ppm 1.8 ppm1.8ppm 1.5 ppm1.5ppm 1.6 ppm1.6ppm 실시예 5Example 5 1.1 ppb1.1 ppb 0.8 ppb0.8ppb 1.0 ppb1.0 ppb 0.7 ppb0.7ppb 0.6 ppb0.6 ppb 0.6 ppb0.6 ppb 조 테트라메틸실란crude tetramethylsilane 5.2 ppm5.2ppm 4.5 ppm4.5ppm 3.8 ppm3.8ppm 2.3 ppm2.3ppm 1.8 ppm1.8ppm 2.6 ppm2.6 ppm 실시예 6Example 6 0.8 ppb0.8ppb 0.6 ppb0.6 ppb 0.7 ppb0.7ppb 0.3 ppb0.3 ppb 0.6 ppb0.6 ppb 0.5 ppb0.5 ppb 조 트리메틸실란Crude Trimethylsilane 3.8 ppm3.8ppm 3.5 ppm3.5ppm 2.9 ppm2.9 ppm 1.8 ppm1.8ppm 1.5 ppm1.5ppm 1.8 ppm1.8ppm 실시예 7Example 7 0.9 ppb0.9 ppb 0.7 ppb0.7 ppb 0.4 ppb0.4ppb 0.5 ppb0.5 ppb 0.7 ppb0.7ppb 0.6 ppb0.6 ppb

위 표의 데이터로부터, 본 발명의 제조 방법을 통해, 실리콘계 전구체에 대해 양호한 정화 효과를 발휘할 수 있고, 실리콘계 전구체 중의 금속 이온 불순물과 고비점 및 저비점 물질을 효과적으로 제거할 수 있음을 보아낼 수 있다.실시예 1과 실시예 1~4를 비교한 결과, 본 발명은 흡착제의 외부에 폴리머 코팅체로 코팅한 후, 실리콘계 전구체 내부의 금속 이온 불순물에 대한 흡착 효과를 효과적으로 향상시킬 수 있음을 발견하였다.From the data in the table above, it can be seen that the production method of the present invention can exert a good purifying effect on the silicon-based precursor and effectively remove metal ion impurities and high-boiling and low-boiling point substances in the silicon-based precursor. As a result of comparing Example 1 with Examples 1 to 4, it was found that the present invention can effectively improve the adsorption effect for metal ion impurities inside the silicon-based precursor by coating the outside of the adsorbent with a polymer coating.

실시예 2와 비교예 1~2를 비교한 결과, 흡착제의 외부에 질소 도핑 매트릭스층으로 코팅한 후 실리콘계 전구체 내부의 금속 이온 불순물에 대한 흡착 효과를 어느 정도 향상시킬 수 있지만, 질소 도핑 매트릭스층은 외부에서 폴리아크릴산 나트륨 세그먼트와 화학적으로 결합된 후 금속 이온 불순물에 대한 흡착 효과를 크게 향상시킬 수 있음을 발견하였다. 질소 도핑 매트릭스층과 폴리아크릴산 나트륨 세그먼트 사이에 시너지 효과가 형성될 수 있음을 나타낸다.As a result of comparing Example 2 and Comparative Examples 1 to 2, the adsorption effect for metal ion impurities inside the silicon-based precursor can be improved to some extent after coating the outside of the adsorbent with a nitrogen-doped matrix layer, but the nitrogen-doped matrix layer It was discovered that the adsorption effect for metal ion impurities can be greatly improved after being chemically bonded externally to sodium polyacrylate segments. It indicates that a synergistic effect can be formed between the nitrogen-doped matrix layer and the sodium polyacrylate segment.

실시예 2와 비교예 3을 비교한 결과, 비교예 3에서 흡착제 D는 합성 과정에서 아크릴산나트륨 첨가량이 너무 많기 때문에, 흡착제의 기공을 밀봉하는 역할을 하여, 공극률이 감소되고, 나아가 금속 이온 불순물에 대한 흡착 효과에 영향을 미치는 것으로 발견하였다.As a result of comparing Example 2 and Comparative Example 3, in Comparative Example 3, because the amount of sodium acrylate added to the adsorbent D during the synthesis process was too large, it played a role in sealing the pores of the adsorbent, reducing the porosity, and further increasing the concentration of metal ion impurities. It was found that it affects the adsorption effect.

100: 정화 유닛 110: 정화 탱크
120: 교반 장치 121: 구동 모터
122: 전달 로드 123: 교반 패들
130: 가열 장치 200: 정류 유닛
210: 정류 칼럼 220: 정류 패킹
300: 수집 유닛 310: 수집기
320: 콜드웰 330: 저비점 수집기
400: 압력 제어 유닛 500: 가스 공급 유닛
510: 가스 탱크 520: 압력 제어 밸브.
100: purification unit 110: purification tank
120: stirring device 121: driving motor
122: delivery rod 123: stirring paddle
130: Heating device 200: Rectification unit
210: Rectification column 220: Rectification packing
300: collection unit 310: collector
320: Caldwell 330: Low boiling point collector
400: pressure control unit 500: gas supply unit
510: Gas tank 520: Pressure control valve.

Claims (10)

실리콘계 전구체의 정제 방법으로서,
상기 정제 방법은,
(S.1) 흡착제를 이온성 액체에 분산시켜, 흡착 슬러리를 얻는 단계;
(S.2) 공업용 실리콘계 전구체를 흡착 슬러리에 용해시켜, 공업용 실리콘계 전구체가 흡착제와 접촉하도록 하여, 공업용 실리콘계 전구체 중의 금속 이온 불순물이 흡착제에 의해 흡착되도록 하는 단계; 및
(S.3) 흡착 완료 후, 조 실리콘계 전구체를 정류하여, 실리콘계 전구체 중의 경질 성분 및 중질 성분을 제거하고, 전자 등급 실리콘계 전구체를 얻는 단계;를 포함하는 것을 특징으로 하는 실리콘계 전구체의 정제 방법.
As a method for purifying a silicon-based precursor,
The purification method is,
(S.1) dispersing the adsorbent in an ionic liquid to obtain an adsorption slurry;
(S.2) dissolving the industrial silicon-based precursor in the adsorption slurry, allowing the industrial silicon-based precursor to contact the adsorbent, so that the metal ion impurities in the industrial silicon-based precursor are adsorbed by the adsorbent; and
(S.3) After completion of adsorption, rectifying the crude silicon-based precursor to remove light components and heavy components in the silicon-based precursor and obtain an electronic grade silicon-based precursor. A method for purifying a silicon-based precursor, comprising:
제1항에 있어서,
상기 실리콘계 전구체는 옥타메틸시클로테트라실록산, 트리메틸실란, 테트라메틸실란, 트리메틸실릴아민, 테트라에톡시실란, 디에톡시메틸실란 중 어느 하나를 포함하는 것을 특징으로 하는 실리콘계 전구체의 정제 방법.
According to paragraph 1,
A method for purifying a silicon-based precursor, wherein the silicon-based precursor includes any one of octamethylcyclotetrasiloxane, trimethylsilane, tetramethylsilane, trimethylsilylamine, tetraethoxysilane, and diethoxymethylsilane.
제1항에 있어서,
상기 단계 (S.1)에서 흡착제는 활성탄, 다공성 알루미나, 실리카겔 분말, 제올라이트 또는 분자체 중 어느 하나를 포함하는 것을 특징으로 하는 실리콘계 전구체의 정제 방법.
According to paragraph 1,
A method for purifying a silicon-based precursor, wherein the adsorbent in step (S.1) includes any one of activated carbon, porous alumina, silica gel powder, zeolite, or molecular sieve.
제1항 또는 제3항에 있어서,
상기 단계 (S.1)에서 흡착제의 외표면은 또한 폴리머 코팅체로 코팅되고;
상기 폴리머 코팅체는 흡착제의 외표면에 코팅된 한 층의 질소 도핑 매트릭스층을 포함하며;
상기 질소 도핑 매트릭스층은 외부에서 폴리아크릴산 나트륨 세그먼트와 화학적으로 결합되는 것을 특징으로 하는 실리콘계 전구체의 정제 방법.
According to claim 1 or 3,
In step (S.1), the outer surface of the adsorbent is also coated with a polymer coating;
The polymer coating body includes one layer of nitrogen-doped matrix layer coated on the outer surface of the adsorbent;
A method for purifying a silicon-based precursor, wherein the nitrogen-doped matrix layer is chemically bonded to the sodium polyacrylate segment from the outside.
제4항에 있어서,
상기 흡착제의 제조 방법은,
(1) 흡착제 표면에 질소 원자를 함유한 한 층의 수지를 코팅하고;
(2) 질소 원자 수지로 코팅된 흡착제를 아크릴로일 클로라이드와 반응시켜, 질소 원자 수지로 코팅된 흡착제 표면에 아크릴산기를 그래프트시킴으로써, 흡착제에 질소 도핑 매트릭스층, 즉 중간체를 형성하며;
(3) 중간체를 아크릴산나트륨과 공중합시켜, 폴리머 코팅체로 코팅된 흡착제를 얻는 것을 특징으로 하는 실리콘계 전구체의 정제 방법.
According to clause 4,
The method for producing the adsorbent is,
(1) Coating a layer of resin containing nitrogen atoms on the surface of the adsorbent;
(2) reacting the adsorbent coated with nitrogen atom resin with acryloyl chloride to graft acrylic acid groups onto the surface of the adsorbent coated with nitrogen atom resin, thereby forming a nitrogen doped matrix layer, that is, an intermediate, on the adsorbent;
(3) A method for purifying a silicon-based precursor, characterized in that the intermediate is copolymerized with sodium acrylate to obtain an adsorbent coated with a polymer coating.
제4항에 있어서,
상기 단계 (3)에서 중간체와 아크릴산나트륨의 질량비는 1:2 미만인 것을 특징으로 하는 실리콘계 전구체의 정제 방법.
According to clause 4,
A method for purifying a silicon-based precursor, characterized in that the mass ratio of the intermediate and sodium acrylate in step (3) is less than 1:2.
제1항에 있어서,
상기 단계 (2)에서 공업용 실리콘계 전구체와 흡착제의 접촉 온도는 0~20℃인 것을 특징으로 하는 실리콘계 전구체의 정제 방법.
According to paragraph 1,
A method for purifying a silicon-based precursor, characterized in that the contact temperature between the industrial silicon-based precursor and the adsorbent in step (2) is 0 to 20°C.
실리콘계 전구체를 정화하기 위한 정화 시스템으로서,
상기 정화 시스템은 적어도,
물질을 담는 정화 탱크(110), 정화 탱크(110) 내부 물질의 교반 역할을 하는 교반 장치(120), 및 정화 탱크(110)를 가열하는 가열 장치(130)를 포함하는 정화 유닛(100);
챔버(110) 내에서 증발하여 얻은 실리콘계 전구체를 정류하기 위해 정화 탱크(110)의 상단부에 설치되는 정류 유닛(200);
정류 유닛(200)으로부터 유출된 실리콘계 전구체를 수집하기 위해 정류 유닛(200)의 관로에 연통되는 수집기(310)를 포함하는 수집 유닛(300); 및
전체 정화 시스템의 내부 압력을 제어하기 위해 수집기(310) 관로에 연통되는 압력 제어 유닛(400)을 포함하는 것을 특징으로 하는 실리콘계 전구체를 정화하기 위한 정화 시스템.
A purification system for purifying a silicon-based precursor, comprising:
The purification system includes at least:
A purification unit 100 including a purification tank 110 containing a substance, a stirring device 120 that serves to stir the substance inside the purification tank 110, and a heating device 130 that heats the purification tank 110;
A rectification unit 200 installed at the upper end of the purification tank 110 to rectify the silicon-based precursor obtained by evaporation within the chamber 110;
A collection unit 300 including a collector 310 connected to the pipe of the rectification unit 200 to collect the silicon-based precursor leaked from the rectification unit 200; and
A purification system for purifying a silicon-based precursor, comprising a pressure control unit (400) connected to the collector (310) pipe to control the internal pressure of the entire purification system.
제8항에 있어서,
정화 탱크(110) 내부에 불활성 가스를 유입하는 가스 탱크(510), 및 전달된 불활성 가스 흐름의 유속을 제어하는 압력 제어 밸브(520)를 포함하는 가스 공급 유닛(500)을 더 포함하는 것을 특징으로 하는 실리콘계 전구체를 정화하기 위한 정화 시스템.
According to clause 8,
It further includes a gas supply unit 500 including a gas tank 510 for introducing inert gas into the purification tank 110, and a pressure control valve 520 for controlling the flow rate of the delivered inert gas flow. A purification system for purifying silicon-based precursors.
제8항에 있어서,
상기 수집기(310)의 외부에는 하나의 콜드웰(320)이 슬리브되어 있는 것을 특징으로 하는 실리콘계 전구체를 정화하기 위한 정화 시스템.
According to clause 8,
A purification system for purifying a silicon-based precursor, characterized in that one cold well (320) is sleeved outside the collector (310).
KR1020237038072A 2022-10-27 2022-12-11 Purification method and purification system for silicon-based precursors KR20240060518A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202211323659.1 2022-10-27
CN202211323659.1A CN115591272B (en) 2022-10-27 2022-10-27 Method and system for purifying silicon-based precursor
PCT/CN2022/138262 WO2024087340A1 (en) 2022-10-27 2022-12-11 Silicon-based precursor purification method and purification system

Publications (1)

Publication Number Publication Date
KR20240060518A true KR20240060518A (en) 2024-05-08

Family

ID=84850159

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020237038072A KR20240060518A (en) 2022-10-27 2022-12-11 Purification method and purification system for silicon-based precursors

Country Status (3)

Country Link
KR (1) KR20240060518A (en)
CN (1) CN115591272B (en)
WO (1) WO2024087340A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116770581B (en) * 2023-08-28 2023-10-20 烟台奥森制动材料有限公司 Method for preparing antioxidant carbon fiber solid felt by adopting metal ion purifying agent

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE869189C (en) * 1949-12-22 1953-03-02 Metallgesellschaft Ag Method and device for the continuous countercurrent extraction of liquids with liquids
JP2005120029A (en) * 2003-10-17 2005-05-12 Jsr Corp Method of purifying silane compound
US7638058B2 (en) * 2005-04-07 2009-12-29 Matheson Tri-Gas Fluid storage and purification method and system
US8277768B2 (en) * 2008-11-14 2012-10-02 Texas Instruments Incorporated System and method for production of high purity silicon solids and solids therefrom
CN102092720B (en) * 2009-02-13 2013-03-27 李明成 Continuous preparation device for high-purity silane gas
CN101736157B (en) * 2009-12-14 2011-08-17 北京有色金属研究总院 Process for absorbing and extracting valuable metal ions in leachate of laterite nickel ore by applying immobilized room temperature ionic liquid
CN102225981B (en) * 2011-04-27 2013-11-13 浙江卫星石化股份有限公司 Preparation method of porous sodium acrylate super absorbent resin
CN102513064A (en) * 2011-12-23 2012-06-27 广东工业大学 Preparation method and application of ionic liquid bonded silica adsorbent
CN103788124B (en) * 2014-01-16 2016-11-02 上海爱默金山药业有限公司 A kind of method of purification of electron level octamethylcy-clotetrasiloxane
CN103922434A (en) * 2014-04-10 2014-07-16 北京工业大学 Preparation method of adsorption-flocculating agent of natural porous base material
CN103933950B (en) * 2014-05-07 2015-10-21 济南大学 A kind of preparation method of luffa solid-loaded ionic-liquid adsorbent
CN105732694B (en) * 2016-03-04 2018-07-13 张玲 A kind of method that absorption purifies 1,1,1,3,5,5,5- heptamethyltrisiloxane
CN105712351B (en) * 2016-04-18 2017-12-19 张玲 A kind of method for adsorbing purification monosilane
CN111097190A (en) * 2018-10-25 2020-05-05 中国石油化工股份有限公司 Method for extracting and recovering organic solvent by ionic liquid
CN110745831B (en) * 2019-11-14 2021-09-10 李龙飞 Method and device for removing impurities from silicon tetrachloride
CN111298834A (en) * 2020-03-27 2020-06-19 孙桂霞 Preparation method of pharmaceutical intermediate for department of respiration
CN111574551A (en) * 2020-04-02 2020-08-25 有研国晶辉新材料有限公司 Purification process of octamethylcyclotetrasiloxane
CN112759608B (en) * 2020-12-31 2023-05-02 有研国晶辉新材料有限公司 Device and process for removing metal impurities in octamethyl cyclotetrasiloxane
CN112678829A (en) * 2021-01-26 2021-04-20 大连科利德光电子材料有限公司 High-purity disilane continuous production system and preparation process
CN215139813U (en) * 2021-03-29 2021-12-14 大连科利德光电子材料有限公司 Trisilicon based nitrogen alkane purification device
CN113603096A (en) * 2021-05-26 2021-11-05 中国科学院过程工程研究所 Method for adsorbing trace boron and phosphorus impurities in chlorosilane system
CN113368826B (en) * 2021-07-06 2023-11-07 江阴市锦绣江南环境发展有限公司 Adsorbent for heavy metal wastewater treatment and preparation method thereof
CN113797568B (en) * 2021-08-20 2022-12-23 洛阳中硅高科技有限公司 Synthesis device and synthesis method of electronic grade tri (dimethylamino) silane
CN114349966B (en) * 2022-03-03 2022-07-19 江门市胜鹏化工实业有限公司 Preparation method of high-purity methyl silicone oil
CN114783641A (en) * 2022-03-29 2022-07-22 华中科技大学 Application method of polyion liquid gel material in uranium rhenium adsorption separation
CN114849671B (en) * 2022-06-10 2022-11-08 大连科利德光电子材料有限公司 Impurity adsorbent, preparation method and method for purifying trimethylaluminum by using impurity adsorbent

Also Published As

Publication number Publication date
CN115591272A (en) 2023-01-13
WO2024087340A1 (en) 2024-05-02
CN115591272B (en) 2023-04-07

Similar Documents

Publication Publication Date Title
KR20240060518A (en) Purification method and purification system for silicon-based precursors
WO2015109854A1 (en) Remover for metal in organic liquid source low-k material and preparation method and use thereof
CN105143104A (en) Method for purifying silane compound or chlorosilane compound, method for producing polycrystalline silicon, and method for regenerating weakly basic ion-exchange resin
CN114272890B (en) Oxygen adsorbent, preparation method and method for reducing oxygen content in nitrous oxide feed gas
CN114870804B (en) Impurity gas adsorbent and preparation method and application thereof
CN111115637A (en) Method and device for removing carbon-containing impurities in production of high-purity chlorosilane
JPH1149509A (en) Production of polycrystalline silicon with little carbon content
CN111960384B (en) Method for removing free chlorine in hydrochloric acid
CN114849671B (en) Impurity adsorbent, preparation method and method for purifying trimethylaluminum by using impurity adsorbent
CN116747546A (en) Purification device and purification method for siloxane compound
CN115010929B (en) Preparation method of hydroxyl-terminated vinyl silane prepolymer
CN108084219B (en) Synthesis method of bis (diethylamino) silane
Li et al. Recovery of Indium (III) from a hydrochloric acid medium with two types of solvent impregnated resins containing sec-octylphenoxy acetic acid
CN115254050B (en) Method for removing residual monochlorosilane in trisilicon-based nitrogen
CN115584482B (en) Purification method of tantalum source precursor
CN115430283B (en) Method for purifying nitrous oxide
CN113578283B (en) Composite material for purifying waste stripping liquid and preparation method thereof
CN113716570B (en) Method for improving quality of trichlorosilane
CN113121583B (en) Preparation device and preparation method of electronic grade ethyl orthosilicate
CN115350690B (en) Purification method of electronic grade boron trichloride
CN116281950A (en) Separation and purification method of fluorocarbon gas
CN117567496A (en) Preparation method of high-purity trimethylsilane
CN118221717A (en) Method for purifying diisopropylaminosilane
CN114588877A (en) Modified activated carbon carrier, liquid-phase chlorosilane impurity-removing adsorbent and production process of adsorbent
CN116236899A (en) Method for removing reactive impurities in rare gas