KR20240060396A - 초임계이산화탄소를 이용한 폴리디옥사논 다공성 폼의 제조방법 및 이에 의해 제조된 폴리디옥사논 다공성 폼 - Google Patents

초임계이산화탄소를 이용한 폴리디옥사논 다공성 폼의 제조방법 및 이에 의해 제조된 폴리디옥사논 다공성 폼 Download PDF

Info

Publication number
KR20240060396A
KR20240060396A KR1020220184430A KR20220184430A KR20240060396A KR 20240060396 A KR20240060396 A KR 20240060396A KR 1020220184430 A KR1020220184430 A KR 1020220184430A KR 20220184430 A KR20220184430 A KR 20220184430A KR 20240060396 A KR20240060396 A KR 20240060396A
Authority
KR
South Korea
Prior art keywords
polydioxanone
porous foam
pdo
carbon dioxide
supercritical carbon
Prior art date
Application number
KR1020220184430A
Other languages
English (en)
Inventor
송영석
김정민
Original Assignee
단국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 단국대학교 산학협력단 filed Critical 단국대학교 산학협력단
Publication of KR20240060396A publication Critical patent/KR20240060396A/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L17/00Materials for surgical sutures or for ligaturing blood vessels ; Materials for prostheses or catheters
    • A61L17/06At least partially resorbable materials
    • A61L17/10At least partially resorbable materials containing macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/40Polyesters derived from ester-forming derivatives of polycarboxylic acids or of polyhydroxy compounds, other than from esters thereof
    • C08G63/42Cyclic ethers; Cyclic carbonates; Cyclic sulfites; Cyclic orthoesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Surgery (AREA)
  • Vascular Medicine (AREA)
  • Transplantation (AREA)
  • Dermatology (AREA)
  • Materials For Medical Uses (AREA)

Abstract

본 발명은 초임계이산화탄소를 이용한 폴리디옥사논 다공성 폼의 제조방법 및 이에 의해 제조된 폴리디옥사논 다공성 폼에 관한 것으로, 이렇게 제조한 폴리디옥사논 다공성 폼은 100 MPa 이상의 압축 탄성률을 가지며 유연하여 압력저하용 지지체로써 우수한 기계적 물성을 가질 뿐 아니라, 세포 생존율과 생체적합성이 우수하여 다양한 의학적 용도 즉, 리프팅실, 안구이식체, 수술 봉합사 등으로 활용될 수 있다.

Description

초임계이산화탄소를 이용한 폴리디옥사논 다공성 폼의 제조방법 및 이에 의해 제조된 폴리디옥사논 다공성 폼{Manufacturing method of polydioxanone porous foam using supercritical carbon dioxide and polydioxanone porous foam manufactured by thereof}
본 발명은 초임계이산화탄소를 이용한 폴리디옥사논 다공성 폼의 제조방법 및 이에 의해 제조된 폴리디옥사논 다공성 폼에 관한 것으로, 이렇게 제조한 폴리디옥사논 다공성 폼은 공극율이 75% 이상이며 세포 생존율과 생체적합성이 우수하여 다양한 의학적 용도 즉, 리프팅실, 안구이식체, 수술 봉합사 등으로 활용될 수 있다.
[과제고유번호]2020123100
[과제번호]GRRC dankook 2016-B13
[부처명]경기도
[과제관리(전문)기관명]경기도
[연구사업명]GRRC
[연구과제명](대응)고차구조를 위한 유무기 복합소재 가공기술개발(GRRC-유무기 3응용,6차년도)
[기여율]1/1
[과제수행기관명]단국대학교
[연구기간]2021.07.01 ~ 2022.06.30
폴리디옥사논(Polydioxanone, PDO)은 여러 번 반복되는 에테르-에스테르 중합체로서, 단량체 p-다이 옥사논의 개환 중합 반응에 의해 수득되고 있다. 유리전이온도는 -10℃ 내지 0℃ 이며, 결정성은 약 55%인 것이 특징이다. 가수분해 반응에 의해 생분해 되며, 최종 부산물로 물(H2O)과 이산화탄소(CO2)를 내놓는다.
우수한 생체적합성을 가졌다고 알려진 폴리디옥사논은 주로, 수술용 봉합사, 성형수술용 리프팅 실 등으로 사용되고 있다. PLA, PCL, PLLA 등의 알려진 다른 생분해성 고분자에 비하여 폴리디옥사논은 제일 적은 면역 반응과, 우수한 세포 적합성, 빠른 생분해성 기간(3 개월 내지 6개월) 등으로 인해 각광을 받는 메디컬 고분자 재료이다.
그러나 낮은 유리전이온도와 점도를 갖는 고분자 물성적 특징과, 열 공정에 대한 높은 취약성, 빠른 분해 속도 등의 고분자 화학적 특성 때문에 공법의 시도에 까다로움이 많기 때문에 시중에 판매되는 폴리디옥사논 제품은 대부분 압출을 통해 제조한 실 형태의 봉합사로만 제조되고 있는 실정이다. 다시 말해, 다른 재료를 혼합하거나 공중합하지 않고 순수한 폴리디옥사논 고분자만을 사용해 다공성 지지체를 제조하는 것은 폴리디옥사논 고분자가 가지는 성질로부터 오는 여러 성형성의 문제 때문에 안정적으로 형태를 유지하는 구조물을 만드는 것에 어려움이 있다.
한편, 다공성 구조물이 생체에 삽입될 경우, 높은 공극율과 높은 표면적을 갖고 유연성이 늘어난 구조적 특징으로 인해 생체의 물질대사에 방해는 주지 않으면서, 해당 국소부위에 가해지는 하중과 스트레스를 분산, 외부 충격을 흡수시킬 뿐 아니라, 압력 저하의 효과를 기대할 수 있다. 다공성 구조물로서 스펀지 구조를 갖는 시판되는 생체 삽입용 폼의 경우 고분자가 아닌 콜라겐으로 제조한 단백질 기반 제품이 있으며 고분자 기반일 경우 고분자가 가진 더 높은 물성 덕에 생체 내에서 지지체로써 더 많은 압력과 충격을 견딜 수 있을 것으로 기대된다.
이러한 배경 하에서, 생체적합성이 제일 우수한 고분자인 폴리디옥사논을 이용하여 다공성 구조물로서 스폰지와 같은 생체 삽입용 다공성 폼을 제조하는 기술을 개발하고자 한다.
1. 대한민국 등록특허 제10-0942822호 (210.02.09. 등록)
이에 본 발명의 발명자들은 수분에 취약한 특징이 있지만 생체 적합성이 우수한 소재인 폴리디옥사논을 이용하여 다공성 폼을 제조하기 위해, 초임계이산화탄소를 이용한 고온/고압 조건 하에서 폴리디옥사논 다공성 폼 제조방법을 최초로 규명하게 되어 본 발명을 완성하기에 이르렀다.
따라서, 본 발명의 목적은 초임계이산화탄소를 이용한 폴리디옥사논 다공성 폼의 제조방법 및 이에 의해 제조된 폴리디옥사논 다공성 폼을 제공하는 데 있다.
상기 목적을 달성하기 위하여, 본 발명은 (ⅰ) 폴리디옥사논(polydioxanone; PDO)을 열압착하여 디스크 형태의 필름을 제조하는 단계(제1단계); 및 (ii) 상기 디스크 형태의 필름에 고온 및 고압 조건 하에서 초임계이산화탄소를 주입하는 단계(제2단계)를 포함하는, 폴리디옥사논을 이용한 다공성 폼의 제조방법을 제공한다.
또한, 본 발명은 상기 제조방법으로 제조된 폴리디옥사논 다공성 폼을 제공한다.
본 발명은 초임계이산화탄소를 이용한 폴리디옥사논 다공성 폼의 제조방법 및 이에 의해 제조된 폴리디옥사논 다공성 폼에 관한 것으로, 이렇게 제조한 폴리디옥사논 다공성 폼은 100 MPa 이상의 압축 탄성률을 가지며 유연하여 압력저하용 지지체로써 우수한 기계적 물성을 가질 뿐 아니라, 세포 생존율과 생체적합성이 우수하여 다양한 의학적 용도 즉, 리프팅실, 안구이식체, 수술 봉합사 등으로 활용될 수 있다.
도 1은 PDO 고분자의 열적 특성 결과를 나타낸 것이고,
도 2는 PDO 고분자의 온도별 점도 특성 결과를 나타낸 것이고,
도 3은 PDO 고분자의 온도별 연신 점도 특성 결과를 나타낸 것이고,
도 4는 초임계 유체법으로 제조된 PDO 폼 시편의 SEM 사진을 나타낸 것이고,
도 5는 초임계 유체법으로 제조된 PDO 폼의 공극률을 나타낸 것이고,
도 6은 초임계 유체법으로 제조된 PDO 폼의 기공밀도를 나타낸 것이고,
도 7은 초임계 유체법으로 제조된 PDO 폼의 평균 기공크기를 나타낸 것이다.
이하, 본 발명을 보다 상세하게 설명한다.
PDO는 다른 생분해성 고분자와 달리 온도 및 압력 조절이 까다로와 PDO를 이용한 다공성 폼 제조기술이 알려져 있지 않은 문제가 있었으나, 본 발명자들은 온도 및 압력 조절이 용이하지 않은 소재인 PDO를 이용한 다공성 폼 제조를 위해 초임계이산화탄소를 이용하고, 최적의 온도 및 압력 조건을 최초로 규명하여 PDO 다공성 폼을 제조함으로써 본 발명을 완성하였다.
본 발명은 (ⅰ) 폴리디옥사논(polydioxanone; PDO)을 열압착하여 디스크 형태의 필름을 제조하는 단계(제1단계); 및 (ii) 상기 디스크 형태의 필름에 고온 및 고압 조건 하에서 초임계이산화탄소를 주입하는 단계(제2단계)를 포함하는, 폴리디옥사논을 이용한 다공성 폼의 제조방법을 제공한다.
PDO 입자 크기가 작을수록 웹이 치밀하게 형성되어 기공구조의 무너짐을 막아주므로 구조물의 최종 공극률이 올라간다. 본 발명에 따른 PDO 분말은 평균입경 크기가 150 내지 250 ㎛인 폴리디옥사논(polydioxanone) 분말일 수 있고, 평균입경 크기가 150 ㎛ 내외인 것을 사용하는 것이 바람직하다.
또한, 상기 PDO는 중량평균분자량이 75,000 내지 175,000인 것이 바람직하다. 중량평균분자량이 75,000 미만인 경우 제조과정에서 열분해 및 가수분해되며 기계적 강도가 약해져 구조물의 안정성을 유지하는 데 한계가 있어 지지체의 강도가 약하고, 175,000 초과인 경우 오랜 시간 침지시켜도 강한 점성 탓에 염을 석출 하지 못하여 발포가 잘 이루어지지 않아 목표하는 충분한 공극율을 갖는데 한계가 있고 상호연결된 (interconnected) 다공성 구조를 갖기가 어려워지므로 상기 범위 내에서 사용하는 것이 바람직하다.
상기 제2단계는 오토클레이브(autoclave) 내에서 90~110℃에서 8~12 MPa의 고온 및 고압 조건 하에서 초임계이산화탄소를 주입할 수 있지만, 바람직하게는 100℃에서 8~12 MPa의 고온 및 고압 조건 하에서 초임계이산화탄소를 주입할 수 있다.
상기 제2단계 이후 온도 또는 압력을 낮추는 단계를 더 포함할 수 있다. 이때, 온도 또는 압력은 80℃ 혹은 6 MPa로 낮출 수 있지만, 이에 한정되는 것은 아니다.
또한, 본 발명은 상기 제조방법으로 제조된 폴리디옥사논 다공성 폼을 제공한다.
본 발명에 따른 PDO 다공성 폼은 100 MPa 이상의 압축 탄성률을 가지며 유연하여 압력저하용 지지체로써 우수한 기계적 물성을 갖는 바, 이러한 물성적 특징으로 인해 생체 내 삽입 지지체로서 널리 이용될 수 있기 때문에, 본 발명에 따른 PDO 다공성 폼은 리프팅실, 안구이식체, 수술 봉합사 등으로 유용하게 활용될 수 있다.
이하에서는 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
<실시예>
1. PDO 열적 특성 및 유변학적 특성 분석
1) 열적 특성 분석
시편의 열분석은 시차주사열량계(DSC, DSC4000, Perkin Elmer, USA)로 수행하였다. 시험 조건은 다음과 같다.
중량 3~5mg
승온 속도 10℃/min
온도 범위 30~180℃
2) 유변학적 특성 분석
단순 전단 시험 및 진동 전단 시험이 PDO의 유변학적 특성을 확인하기 위해 점도계 (MCR302 Anton- Paar , Austria)를 사용하여 수행하였다. 추가로, PDO의 발포 거동을 예측하기 위하여 진동 전단 시험과 연신 전단 시험을 수행하였다.
온도 110℃, 120℃, 130℃, 140℃
frequency 0.1~200 rad/s
elangation rate 0.1 sec-1
시편 2mm x 25mm, 1mm x 5mm
3) 분석 결과
도 1은 PDO 고분자의 열적 특성 결과를 나타낸 것으로, PDO의 용융온도는 110℃를 나타내었다. 도 2는 PDO 고분자의 온도별 점도 특성 결과를 나타낸 것으로, PDO 고분자는 낮은 requency에서 newtonian 거동을 보임을 확인하였다. 즉 전단 변형 또는 frequency가 증가함에 따라 점도가 점차 감소하는 전형적인 전단 담화 거동을 보였다(도 2a). 한편, 저장 탄성계수와 손실 탄성계수는 각각 frequency에 대해 증가하였다(도 2b, 도 2c). 또한, 도 3과 같이, G''는 G'보다 큰 값을 가지며, 높은 frequency에서 계수의 교차점 가짐을 통해 PDO는 낮은 용융 강도와 액체와 같은 거동을 가짐을 알 수 있었다. 또한, PDO의 유변 물성은 온도에 따라 민감하게 반응함을 확인하여, 낮은 온도에서 발포 가능성을 확인하였다.
2. PDO 폼의 제조와 특성 분석 결과
1) 초임계 유체를 이용한 PDO 폼의 제조
초임계 유체법으로 PDO 폼을 제조하기 위해, PDO 디스크를 autoclave를 이용하여, 고온 고압 조건에서 1 리터 이상의 초임계이산화탄소를 주입하였다. 실험조건은 다음과 같다.
온도 (℃) 80, 90, 100, 110
압력 (MPa) 8, 12
주입 시간 (min) 90
발포 시간 (sec) 50~100
본 발명에서 제조된 PDO 폼의 SEM 사진을 도 4에 나타내었다.
2) PDO 폼의 공극률 측정
상기 제조한 다공성 폼의 공극률을 평가하기 위해 PDO를 디스크 폼과 같은 치수(d = 25mm, h = 2mm)로 열 압착 성형한 뒤 디스크에 대해서 제조한 디스크 폼과 순수한 PDO로 이루어진 디스크의 무게차를 이용한 방법으로 공극율을 측정하였다. 그 결과, 도 5에 도시된 바와 같이, 온도와 압력을 증가시킴에 따라 전반적으로 공극률이 증가하였다.
공극률 =
(= 디스크의 무게, = 폼의 무게)
3) PDO 폼의 기공 밀도 분석
상기 제조한 PDO 폼의 기공밀도를 평가하기 위해, 이미지 프로세싱 (Image J, USA)을 이용하여 SEM 사진상 기공의 개수를 측정하는 방법으로, 기공의 밀도를 측정하였다. 그 결과, 도 6에 도시된 바와 같이, 90℃, 12 MPa에서 가장 큰 기공 밀도를 보였다.
기공밀도 =
4) PDO 폼의 평균 기공 크기 측정
상기 제조한 PDO 폼의 기공 크기를 평가하기 위해, 이미지 프로세싱을 이용하여 평균 기공 크기를 측정하였다. 그 결과, 도 7에 도시된 바와 같이, 110℃, 8 MPa에서 가장 큰 기공 크기를 보였다.
따라서, 본 발명에 따른 PDO 폼 제조방법은 고온/고압 조건 하에서 초임계이산화탄소를 주입하고, 온도 또는 압력을 낮추면 PDO 다공성 폼을 형성하는 기술로서, PDO는 다른 생분해성 고분자와 달리 온도/압력 조절이 까다로와 PDO를 이용한 다공성 폼 제조기술이 알려져 있지 않고, 특히 PDO는 Tg, Tm이 낮아 예상했던 온도/압력이 아닌 다른 조건에서 다공성 폼을 형성한다는 점에 최초로 규명한 기술로서 장점이 있으며, 이렇게 제조한 PDO 다공성 폼은 공극율이 75% 이상이며 생체적합성이 우수하여 다양한 의학적 용도 즉, 리프팅실, 안구이식체, 수술 봉합사 등으로 활용될 수 있다.
이상으로 본 발명의 특정한 부분을 상세히 기술한 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (6)

  1. (ⅰ) 폴리디옥사논(polydioxanone; PDO)을 열압착하여 디스크 형태의 필름을 제조하는 단계(제1단계); 및
    (ii) 상기 디스크 형태의 필름에 고온 및 고압 조건 하에서 초임계이산화탄소를 주입하는 단계(제2단계)를 포함하는, 폴리디옥사논을 이용한 다공성 폼의 제조방법.
  2. 제 1 항에 있어서,
    상기 폴리디옥사논(polydioxanone; PDO)은 평균입경이 150 내지 250 ㎛인 폴리디옥사논(polydioxanone) 분말인 것을 특징으로 하는, 폴리디옥사논을 이용한 다공성 폼의 제조방법.
  3. 제 1 항에 있어서,
    상기 폴리디옥사논(polydioxanone; PDO)은 중량평균분자량이 75,000 내지 175,000인 것을 특징으로 하는, 폴리디옥사논을 이용한 다공성 폼의 제조방법.
  4. 제 1 항에 있어서,
    상기 제2단계는 오토클레이브(autoclave) 내에서 90~110℃에서 8~12 MPa의 고온 및 고압 조건 하에서 초임계이산화탄소를 주입하는 것을 특징으로 하는, 폴리디옥사논을 이용한 다공성 폼의 제조방법.
  5. 제 1 항에 있어서,
    상기 제2단계 이후 온도 또는 압력을 낮추는 단계를 더 포함하는 것을 특징으로 하는, 폴리디옥사논을 이용한 다공성 폼의 제조방법.
  6. 제 1 항 내지 제 5 항 중에서 선택된 어느 한 항의 방법으로 제조된 폴리디옥사논 다공성 폼.

KR1020220184430A 2022-10-28 2022-12-26 초임계이산화탄소를 이용한 폴리디옥사논 다공성 폼의 제조방법 및 이에 의해 제조된 폴리디옥사논 다공성 폼 KR20240060396A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20220140945 2022-10-28
KR1020220140945 2022-10-28

Publications (1)

Publication Number Publication Date
KR20240060396A true KR20240060396A (ko) 2024-05-08

Family

ID=91073884

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220184430A KR20240060396A (ko) 2022-10-28 2022-12-26 초임계이산화탄소를 이용한 폴리디옥사논 다공성 폼의 제조방법 및 이에 의해 제조된 폴리디옥사논 다공성 폼

Country Status (1)

Country Link
KR (1) KR20240060396A (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100942822B1 (ko) 2008-12-31 2010-02-18 주식회사 삼양사 폴리파라디옥사논-카프로락톤 블록 공중합체를 포함하는 조직 재생용 지지체

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100942822B1 (ko) 2008-12-31 2010-02-18 주식회사 삼양사 폴리파라디옥사논-카프로락톤 블록 공중합체를 포함하는 조직 재생용 지지체

Similar Documents

Publication Publication Date Title
Cheung et al. A potential material for tissue engineering: Silkworm silk/PLA biocomposite
Moroni et al. Three‐dimensional fiber‐deposited PEOT/PBT copolymer scaffolds for tissue engineering: Influence of porosity, molecular network mesh size, and swelling in aqueous media on dynamic mechanical properties
EP1862186A1 (en) Adhesion-preventive film
Cui et al. Mechanically active scaffolds from radio‐opaque shape‐memory polymer‐based composites
Goswami et al. Processing and characterization of poly (lactic acid) based bioactive composites for biomedical scaffold application.
US10368993B2 (en) Shape-memory-actuated materials for accelerated healing of orthopedic injuries
Sartore et al. PLA/PCL-based foams as scaffolds for tissue engineering applications
US9211176B2 (en) Adhesive structure with stiff protrusions on adhesive surface
Teng et al. Preparation and characterization of porous PDLLA/HA composite foams by supercritical carbon dioxide technology
Pavlov et al. Fibers and 3D mesh scaffolds from biodegradable starch‐based blends: production and characterization
Hsu et al. Fabrication of a mechanically anisotropic poly (glycerol sebacate) membrane for tissue engineering
Zhang et al. Dynamic bonds enable high toughness and multifunctionality in gelatin/tannic acid-based hydrogels with tunable mechanical properties
Deplaine et al. Evolution of the properties of a poly (l‐lactic acid) scaffold with double porosity during in vitro degradation in a phosphate‐buffered saline solution
Luciano et al. Synthesis and characterization of poly (L-lactic acid) membranes: Studies in vivo and in vitro
US20150045909A1 (en) Highly porous polyvinyl hydrogels for cartilage resurfacing
US20060200250A1 (en) Biocompatible implant device
Hazwani et al. Deformation mechanism of porous composite sandwich beam for orthopaedical application under three-point bending
US20030176516A1 (en) Cellular perfluoroelastomeric compositions, sealing members, methods of making the same and cellular materials for medical applications
KR20240060396A (ko) 초임계이산화탄소를 이용한 폴리디옥사논 다공성 폼의 제조방법 및 이에 의해 제조된 폴리디옥사논 다공성 폼
Kim et al. Structure–property relationships of 3D-printable chain-extended block copolymers with tunable elasticity and biodegradability
JP2011530331A (ja) 生物分解性ポリマーのブレンドを含む医療デバイスおよび方法
Hoque Robust formulation for the design of tissue engineering scaffolds: A comprehensive study on structural anisotropy, viscoelasticity and degradation of 3D scaffolds fabricated with customized desktop robot based rapid prototyping (DRBRP) system
Ogunsona et al. Characterization and mechanical properties of foamed poly (ɛ-caprolactone) and Mater-Bi blends using CO2 as blowing agent
Zhang et al. Ultraporous poly (lactic acid) scaffolds with improved mechanical performance using high‐pressure molding and salt leaching
Cuénoud et al. Plasticization of polylactide foams for tissue engineering