KR20240059638A - 데이터 지연시간을 최소화시킨 인공신경망 연산 시스템 - Google Patents

데이터 지연시간을 최소화시킨 인공신경망 연산 시스템 Download PDF

Info

Publication number
KR20240059638A
KR20240059638A KR1020247013493A KR20247013493A KR20240059638A KR 20240059638 A KR20240059638 A KR 20240059638A KR 1020247013493 A KR1020247013493 A KR 1020247013493A KR 20247013493 A KR20247013493 A KR 20247013493A KR 20240059638 A KR20240059638 A KR 20240059638A
Authority
KR
South Korea
Prior art keywords
neural network
artificial neural
memory
data
access request
Prior art date
Application number
KR1020247013493A
Other languages
English (en)
Inventor
김녹원
Original Assignee
주식회사 딥엑스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 딥엑스 filed Critical 주식회사 딥엑스
Publication of KR20240059638A publication Critical patent/KR20240059638A/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/14Handling requests for interconnection or transfer
    • G06F13/16Handling requests for interconnection or transfer for access to memory bus
    • G06F13/1668Details of memory controller
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • G06N3/063Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/0223User address space allocation, e.g. contiguous or non contiguous base addressing
    • G06F12/023Free address space management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/08Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
    • G06F12/0802Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
    • G06F12/0804Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches with main memory updating
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/08Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
    • G06F12/0802Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
    • G06F12/0806Multiuser, multiprocessor or multiprocessing cache systems
    • G06F12/0811Multiuser, multiprocessor or multiprocessing cache systems with multilevel cache hierarchies
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/14Handling requests for interconnection or transfer
    • G06F13/16Handling requests for interconnection or transfer for access to memory bus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/14Handling requests for interconnection or transfer
    • G06F13/16Handling requests for interconnection or transfer for access to memory bus
    • G06F13/1668Details of memory controller
    • G06F13/1678Details of memory controller using bus width
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/14Handling requests for interconnection or transfer
    • G06F13/16Handling requests for interconnection or transfer for access to memory bus
    • G06F13/18Handling requests for interconnection or transfer for access to memory bus based on priority control
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1015Read-write modes for single port memories, i.e. having either a random port or a serial port
    • G11C7/1018Serial bit line access mode, e.g. using bit line address shift registers, bit line address counters, bit line burst counters

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Neurology (AREA)
  • Memory System (AREA)
  • Memory System Of A Hierarchy Structure (AREA)
  • Image Analysis (AREA)

Abstract

본 개시에 따른 인공 신경망 연산 시스템은인공신경망 연산에 사용되는 데이터에 대하여 데이터 접근 요청을 생성하도록 구성된 적어도 하나의 프로세서, 인공신경망 연산에 사용되는 데이터가 저장된 적어도 하나의 메모리, 데이터 접근 요청에 대응되는 사전 데이터 접근 요청을 생성하여, 상기 적어도 하나의 프로세서가 상기 데이터 접근 요청을 생성하자 마자 상기 적어도 하나의 메모리에 저장된 인공신경망 연산에 사용되는 데이터를 지연없이 상기 적어도 하나의 프로세서에 제공하는 적어도 하나의 메모리 제어부를 포함할 수 있다.

Description

데이터 지연시간을 최소화시킨 인공신경망 연산 시스템{Artificial neural network operation system minimizing data latency}
본 개시는 인공신경망 데이터 지역성에 기초한 인공 신경망 메모리 시스템에 관한 것으로, 보다 상세하게는, 데이터 접근 요청 단위로 처리되는 인공신경망모델의 인공신경망 데이터 지역성(Locality)을 기초로 메모리가 프로세서가 필요한 데이터를 효과적으로 공급함으로써 인공신경망 연산 속도를 향상시킬 수 있는 인공 신경망 메모리 시스템에 관한 것이다.
인공지능 추론 능력이 발전됨에 따라, 인공지능 스피커, 스마트 폰, 스마트 냉장고, VR 장치, AR 장치, 인공지능 CCTV, 인공지능 로봇 청소기, 태블릿, 노트북 컴퓨터, 자율 주행 자동차, 2족 보행 로봇, 4족 보행 로봇, 산업용 로봇 등, 다양한 전자 장치들에 인공지능을 활용한 음향 인식, 음성 인식, 영상 인식, 객체 감지, 운전자 졸음 감지, 위험 순간 감지, 및 제스처 감지 등의 다양한 추론 서비스가 탑재되고 있다.
최근 딥러닝 기술이 발달함에 따라 빅 데이터 기반의 학습을 통한 인공 신경망 추론 서비스의 성능이 발전하고 있다. 이러한 인공 신경망의 학습 및 추론 서비스는 인공 신경망에 방대한 양의 학습 데이터를 반복 학습 시키고, 학습된 인공신경망모델을 통해서 다양하고 복잡한 데이터들을 추론한다. 따라서, 인공 신경망 기술을 활용하여 다양한 서비스가 상술한 전자 장치들에게 제공되고 있다.
하지만, 인공 신경망을 활용하는 추론 서비스에게 요구되는 기능 및 정확도가 점점 증가하고 있다. 이에 따라, 인공신경망모델의 크기, 연산량, 및 학습 데이터의 크기가 기하급수적으로 증가되고 있다. 이러한 인공신경망모델의 추론 연산을 감당할 수 있는 프로세서와 메모리의 요구 성능이 점차 높아지고 있으며, 빅 데이터를 용이하게 처리할 수 있는 클라우드 컴퓨팅(cloud computing) 기반의 서버에서 인공 신경망 추론 서비스가 활발하게 제공되고 있다.
한편으론, 인공신경망모델 기술을 활용하는 엣지 컴퓨팅(edge computing)이 활발하게 연구되고 있다. 엣지 컴퓨팅은 컴퓨팅이 일어나는 가장자리, 주변부란 의미이다. 엣지 컴퓨팅은 데이터를 직접 생산하는 단말기나 단말기와 근접한 위치에 있는 다양한 전자 장치들을 의미한다. 엣지 컴퓨팅은 엣지 디바이스(edge device)로 지칭될 수 있다. 엣지 디바이스는 자율 주행 드론, 자율 주행 로봇이나, 자율 주행 자동차처럼 방대한 양의 데이터를 1/100초 이내로 처리해야하는 것처럼, 즉각적이고 안정적으로 필요한 임무를 수행할 때 활용될 수도 있다. 따라서, 엣지 디바이스가 적용될 수 있는 분야가 급격하게 증가하고 있다.
본 개시의 발명자는, 종래의 인공신경망모델의 연산은 높은 소비 전력, 발열, 상대적으로 낮은 메모리 대역폭에 의한 프로세서 연산의 병목 현상, 메모리의 지연시간(latency) 등의 문제들을 가진다는 사실을 인식하였다. 따라서 인공신경망모델의 연산 처리 성능을 향상시키는데 다양한 어려움들이 존재한다는 사실을 인식하였고, 이러한 문제들을 개선할 수 있는 인공신경망 메모리 시스템의 개발이 필요하다고 인식하였다.
이에, 본 개시의 발명자는 서버 시스템 및/또는 엣지 컴퓨팅에 적용될 수 있는 인공신경망 메모리 시스템에 대하여 연구하였다. 더 나아가서, 본 개시의 발명자는 인공신경망모델 처리에 최적화된 인공신경망 메모리 시스템의 프로세서인, 신경망 프로세싱 유닛(neural processing unit; NPU)에 대해서도 연구하였다.
첫째, 본 개시의 발명자는 인공신경망모델의 연산 시 메모리를 효과적으로 제어하는 것이 인공신경망 연산 처리 속도 향상의 핵심이라고 인식하였다. 본 개시의 발명자는 인공신경망모델을 학습 시키거나 또는 추론 할 때 메모리 제어를 적절히 하지 못할 경우, 필요한 데이터를 사전에 준비하지 못하여 메모리 실효 대역폭 감소 및/또는 메모리의 데이터 공지 지연이 빈번히 발생할 수 있다는 사실을 인식하였다. 또한 본 개시의 발명자는 이러한 경우 프로세서가 처리할 데이터를 공급받지 못하는 기아(starvation) 또는 대기(idle) 상태가 되어 실제 연산을 할 수 없게 되어 연산 성능이 저하된다는 사실을 인식하였다.
둘째, 본 개시의 발명자는 종래의 알고리즘 레벨에서의 인공신경망모델의 연산 처리 방식의 한계를 인식하였다. 예를 들면, 종래의 프리패치(prefetch) 알고리즘은 인공신경망모델을 개념적인 레이어 단위로 해석하여 각 레이어 단위로 메모리로부터 데이터를 프로세서가 읽어오는 기술이다. 그러나 프리패치 알고리즘은 프로세서-메모리 레벨, 즉, 하드웨어 레벨에 존재하는 인공신경망모델의 워드 단위 또는 메모리 접근 요청 단위로 인공신경망 데이터 지역성을 인식할 수 없다. 본 개시의 발명자는 프리패치 기법 만으로는 프로세서-메모리 레벨에서 데이터 송수신 동작을 최적화 할 수 없다는 사실을 인식하였다.
셋째, 본 개시의 발명자는 인공신경망모델이 가지는 고유한 특성인 “인공신경망 데이터 지역성”에 대하여 인식하였다. 본 개시의 발명자는 프로세서-메모리 레벨에서 워드 단위 또는 메모리 접근 요청 단위로 인공신경망 데이터 지역성이 존재하며 이를 활용하여 실효 메모리 대역폭을 극대화하고, 프로세서에 대한 데이터 공급 지연을 최소화하여 프로세서의 인공신경망 학습/추론 연산 처리 성능을 향상할 수 있다는 사실을 인식하였다.
구체적으로, 본 개시의 발명자가 인식한 인공신경망모델의 “인공신경망 데이터 지역성”이란 프로세서가 특정 인공신경망모델을 처리할 때 해당 인공신경망모델의 구조 및 연산 알고리즘을 따라 수행되는 프로세서가 해당 인공신경망을 연산 처리하는데 필요한 데이터의 워드(word) 단위의 순서 정보를 의미할 수 있다. 더 나아가서, 본 개시의 발명자는 이러한 인공신경망모델의 연산 처리 순서는 프로세서에게 주어지는 인공신경망모델에 대한 반복적인 학습 및/또는 추론의 연산에 대해서 인공신경망 데이터 지역성이 유지되는 특성이 있다는 사실을 인식하였다. 따라서 본 개시의 발명자는 인공신경망 데이터 지역성이 유지될 경우, 프로세서가 처리하는 인공신경망 연산에 필요한 데이터의 처리 순서가 워드 단위로 유지된다는 사실을 인식하였으며, 이러한 정보를 제공받거나 또는 분석하여 인공신경망 연산에 활용할 수 있다는 사실을 인식하였다. 부연 설명하면, 프로세서의 워드 단위는 프로세서가 처리할 수 있는 기본 단위인 엘리먼트 단위를 의미할 수 있다. 예를 들면, 신경망 프로세싱 유닛이 N비트의 입력 데이터와 M비트의 커널 가중치를 곱셈을 처리할 경우 프로세서의 입력 데이터 워드 단위는 N비트이고 가중치 데이터의 워드 단위는 M비트일 수 있다. 또한, 본 개시의 발명자는 프로세서의 워드 단위가 인공신경망모델의 레이어, 특징맵, 커널, 활성화 함수 등에 따라 각각 다르게 설정될 수 있다는 사실도 인식하였다. 따라서 본 개시의 발명자는 각각의 워드 단위의 연산을 위해서는 정교한 메모리 제어 기술이 필요하다는 사실도 인식하였다.
본 개시의 발명자는 컴파일러에 의해서 인공신경망모델이 특정 프로세서에서 실행되도록 컴파일 될 때 인공신경망 데이터 지역성이 구성된다는 사실에 주목하였다. 그리고 컴파일러, 인공신경망모델에 적용된 알고리즘들, 및 프로세서의 동작 특성에 따라서 인공신경망 데이터 지역성이 구성될 수 있다는 사실을 인식하였다. 부연 설명하면, 본 개시의 발명자는 동일한 인공신경망모델의 경우에도 프로세서가 해당 인공신경망모델을 연산하는 방식, 예를 들면, 특징맵 타일링, 프로세싱 엘리먼트의 스테이셔너리(Stationary) 기법 등, 프로세서의 프로세싱 엘리먼트 개수, 프로세서내 특징맵 및 가중치 등의 캐쉬 메모리 용량, 프로세서내의 메모리 계층 구조, 해당 인공신경망모델을 연산 처리하기 위한 프로세서의 연산 동작의 순서를 결정해 주는 컴파일러의 알고리즘 특성 등에 따라서 처리하고자 하는 인공신경망모델의 인공신경망 데이터 지역성이 다르게 구성될 수 있다는 사실을 인식하였다. 왜냐하면, 상술한 각 요인들에 의해서 동일한 인공신경망모델을 연산 처리하더라도 프로세서가 클럭 단위로 매 순간 필요한 데이터의 순서를 상이하게 결정할 수 있기 때문이다. 즉, 본 개시의 발명자는 개념적으로 보면 인공신경망모델의 연산에 필요한 데이터의 순서는 인공신경망의 레이어, 단위 합성곱 및/또는 행렬곱의 연산 순서라는 것을 인식하였다. 더 나아가서, 본 개시의 발명자는, 물리적인 연산 처리에 필요한 데이터의 순서는 워드 단위로 프로세서-메모리 레벨, 즉 하드웨어 레벨에서 해당 인공신경망모델의 인공신경망 데이터 지역성이 구성된다는 사실을 인식하였다. 또한 본 개시의 발명자는, 인공신경망 데이터 지역성은 프로세서와 해당 프로세서에 사용된 컴파일러에 의존적인 특성을 가진다는 사실을 인식하였다.
넷째, 본 개시의 발명자는 인공신경망 데이터 지역성 정보를 제공받아 활용하도록 구성된 인공신경망 메모리 시스템을 제공할 경우, 프로세서-메모리 레벨에서 인공신경망모델의 처리 성능을 극대화 할 수 있다는 사실을 인식하였다.
본 개시의 발명자는 인공신경망 메모리 시스템이 인공신경망모델의 인공신경망 데이터 지역성을 워드 단위까지 정교하게 파악할 수 있는 경우, 프로세서가 인공신경망모델을 처리하는 최소 단위인 워드 단위의 연산 처리 순서 정보까지도 알 수 있다는 사실을 인식하였다. 즉, 인공신경망 데이터 지역성을 활용할 수 있는 인공신경망 메모리 시스템을 제공할 경우, 인공신경망 메모리 시스템은 워드 단위로 정교하게 특정 데이터를 특정 타이밍에 메모리에서 읽어서 프로세서에게 제공할지 여부 또는 특정 데이터를 프로세서가 연산하여 특정 타이밍에 메모리에 저장할지 여부를 사전에 예측할 수 있다는 사실을 인식하였다. 이에 본 개시의 발명자는 인공신경망 메모리 시스템을 제공하여 워드 단위로 프로세서가 요청할 데이터를 사전에 준비할 수 있다는 사실을 인식하였다.
부연 설명하면, 본 개시의 발명자는 인공신경망 메모리 시스템이 인공신경망 데이터 지역성을 알면, 프로세서가 특징맵 타일링과 같은 기법을 사용하여 특정 입력 데이터와 특정 커널의 합성곱을 연산 할 때 커널이 특정 방향으로 이동하면서 처리 되는 합성곱의 연산 처리 순서도 워드 단위로 알 수 있다는 사실을 인식하였다.
즉, 인공신경망 메모리 시스템이 인공신경망 데이터 지역성을 활용하여 프로세서가 어떠한 데이터를 필요로 하는가를 사전에 예측함으로써, 프로세서가 요청할 메모리 읽기/쓰기 동작을 사전에 예측하고, 프로세서가 처리할 데이터를 사전에 준비하여 메모리 실효 대역폭 증가 및/또는 메모리의 데이터 공급 지연을 최소화 하거나 제거할 수 있다는 사실을 인식하였다. 또한 인공신경망 메모리 시스템이 프로세서가 처리할 데이터를 필요한 타이밍에 공급할 수 있다면 프로세서의 기아 또는 대기 상태를 최소화 할 수 있게 된다는 사실을 인식하였다. 따라서, 본 개시의 발명자는 인공신경망 메모리 시스템에 의해서 연산 처리 성능 향상과 전력 소모를 저감 효과가 제공될 수 있다는 사실을 인식하였다.
다섯째, 본 개시의 발명자는, 인공신경망 메모리 제어부가 인공신경망 데이터 지역성 정보를 제공받지 않더라도, 인공신경망 메모리 제어부를 인공신경망모델을 처리하고 있는 프로세서와 메모리의 사이의 통신 채널에 배치한 다음, 프로세서가 특정 인공신경망모델의 연산을 처리할 때 메모리에게 요청하는 데이터 접근 요청을 분석하여, 프로세서가 처리중인 인공신경망모델의 인공신경망 데이터 지역성을 프로세서-메모리간 데이터 접근 요청 단위로 유추할 수 있다는 사실을 인식하였다. 즉, 각각의 인공신경망모델에는 고유한 인공신경망 데이터 지역성이 존재하기 때문에, 프로세서-메모리 레벨에서 프로세서는 인공신경망 데이터 지역성에 따라서 특정한 순서로 데이터 접근 요청을 생성한다는 사실을 인식하였다. 또한 프로세서가 해당 인공신경망모델을 학습/추론 연산을 반복적으로 연산 처리하면서 인공신경망 데이터 지역성은 유지된다는 사실에 기초해 프로세서-메모리간 데이터 요청을 위한 메모리에 저장된 데이터의 액세스 순서도 유지됨을 인식하였다.
이에, 본 개시의 발명자는, 인공신경망 메모리 제어부를 인공신경망모델을 연산 처리하고 있는 프로세서와 메모리의 통신 채널에 배치하였다. 또한, 첫번째 또는 몇차례의 학습 및 추론 연산을 위한 프로세서-메모리간 데이터 접근 요청을 관찰함으로써 인공신경망 메모리 제어부가 데이터 접근 요청 단위로 인공신경망 데이터 지역성을 유추할 수 있다는 사실을 인식하였다. 따라서 본 개시의 발명자는, 인공신경망 데이터 지역성 정보가 제공되지 않더라도, 인공신경망 메모리 제어부에 의해서 인공신경망 데이터 지역성을 유추할 수 있다는 사실을 인식하였다.
이에, 본 개시의 발명자는, 데이터 접근 요청 단위로 재구성된 인공신경망 데이터 지역성에 기초하여 프로세서가 요청할 메모리 읽기/쓰기 동작을 사전에 예측하고, 프로세서가 처리할 데이터를 사전에 준비하여 메모리 실효 대역폭 증가 및/또는 메모리 데이터 공급 지연을 최소화 또는 실질적으로 제거할 수 있다는 사실을 인식하였다. 또한, 본 개시의 발명자는 인공신경망 메모리 시스템이 프로세서가 처리할 데이터를 필요한 타이밍에 공급할 수 있다면 프로세서의 기아 또는 대기 상태 발생률을 최소화 할 수 있게 된다는 사실을 인식하였다.
이에 본 개시가 해결하고자 하는 과제는 프로세서-메모리 레벨에서 동작하는 인공신경망모델의 인공신경망 데이터 지역성을 활용하여, 프로세서의 인공신경망 연산을 최적화할 수 있는 인공신경망 메모리 시스템을 제공하는 것이다.
이에 본 개시가 해결하고자 하는 과제는 프로세서가 생성하는 데이터 접근 요청을 감지하여 프로세서가 처리중인 인공신경망모델의 데이터 지역성 패턴을 생성하여, 프로세서가 요청할 데이터 접근 요청을 사전에 준비하여 메모리의 지연시간 문제를 개선할 수 있는 인공신경망 메모리 제어부를 포함하는 인공신경망 메모리 시스템을 제공하는 것이다. 단 본 개시는 이에 제한되지 않으며, 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 개시의 일 실시예에 따른 인공신경망 메모리 시스템이 제공된다. 상기 시스템은 인공신경망 연산에 대응되는 데이터 접근 요청을 생성하도록 구성된, 적어도 하나의 프로세서, 및 데이터 접근 요청을 순차적으로 기록하여 인공신경망 연산의 인공신경망 데이터 지역성 패턴을 생성하도록 구성되고, 인공신경망 데이터 지역성 패턴에 기초하여 적어도 하나의 프로세서가 생성한 데이터 접근 요청의 다음 데이터 접근 요청을 예측한 사전 데이터 접근 요청을 생성하도록 구성된, 적어도 하나의 인공신경망 메모리 제어부를 포함하도록 구성될 수 있다.
본 개시의 실시예들에 따른 인공신경망 메모리 시스템은 인공신경망모델을 처리하도록 구성된 적어도 하나의 프로세서 및 인공신경망모델의 인공신경망 데이터 지역성 정보를 저장하도록 구성되고 인공신경망 데이터 지역성 정보에 기초하여 적어도 하나의 프로세서가 요청할 데이터를 예측하여 사전 데이터 접근 요청을 생성하도록 구성된 적어도 하나의 인공신경망 메모리 제어부를 포함하도록 구성될 수 있다.
인공신경망 메모리 시스템은 적어도 하나의 메모리 및 인공신경망 메모리 제어부, 적어도 하나의 프로세서, 및 적어도 하나의 메모리의 통신을 제어하도록 구성된 시스템 버스를 더 포함하도록 구성될 수 있다.
본 개시의 실시예들에 따르면, 인공신경망 메모리 시스템은 프로세서, 메모리 및 캐쉬 메모리를 포함하고, 인공신경망 데이터 지역성 정보에 기초하여 프로세서가 요청할 데이터를 포함하는 사전 데이터 접근 요청을 생성하도록 구성되고, 그리고 메모리로부터 사전 데이터 접근 요청에 대응되는 데이터를 상기 프로세서가 요청하기 전에 상기 캐쉬 메모리에 저장하도록 구성될 수 있다.
본 개시의 실시예들에 따르면, 인공신경망 메모리 시스템은 인공신경망 데이터 지역성 정보를 제공 받아 동작하도록 구성된 제1 모드 또는 프로세서가 생성하는 데이터 접근 요청들을 관찰하여 인공신경망 데이터 지역성 정보를 예측하여 동작하도록 구성된 제2 모드 중 하나의 모드로 동작하도록 구성될 수 있다.
여기서 인공신경망 데이터 지역성은 프로세서-메모리 레벨에서 재구성된 인공신경망 데이터 지역성일 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 인공신경망 데이터 지역성 패턴에 기초하여 사전 데이터 접근 요청을 순차적으로 더 생성하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 다음 데이터 접근 요청 생성 전에 사전 데이터 접근 요청을 생성하도록 구성될 수 있다.
적어도 하나의 프로세서는 적어도 하나의 인공신경망 메모리 제어부에 데이터 접근 요청을 전송하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 데이터 접근 요청에 대응하여 사전 데이터 접근 요청을 출력하도록 구성될 수 있다.
데이터 접근 요청은 메모리 주소를 더 포함하도록 구성될 수 있다.
데이터 접근 요청은 메모리의 시작 주소 및/또는 끝 주소를 더 포함하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 적어도 하나의 프로세서가 생성한 데이터 접근 요청 및 인공신경망 메모리 제어부가 생성한 사전 데이터 접근 요청 중 하나에 기초하여 메모리 접근 요청을 생성하도록 구성될 수 있다.
데이터 접근 요청은 메모리의 시작 주소와 연속되는 데이터 연속 읽기 (또는 Burst 읽기) 트리거를 더 포함하도록 구성될 수 있다.
데이터 접근 요청은 메모리의 시작 주소와 연속되는 데이터의 개수 정보를 더 포함하도록 구성될 수 있다.
데이터 접근 요청 및 사전 데이터 접근은 매칭되는 동일한 메모리 주소의 데이터 접근 요청 토큰을 더 포함하도록 구성될 수 있다.
데이터 접근 요청은 메모리 읽기 또는 쓰기 명령 여부를 식별할 수 있는 식별 정보를 더 포함하도록 구성될 수 있다.
데이터 접근 요청은 덮어쓰기 명령 여부를 식별할 수 있는 식별 정보를 더 포함하도록 구성될 수 있다.
데이터 접근 요청은 추론 데이터, 가중치 데이터 및 특징맵 데이터 여부를 식별할 수 있는 식별 정보를 더 포함하도록 구성 될 수 있다.
데이터 접근 요청은 학습 데이터 및 평가 데이터 여부를 식별할 수 있는 식별 정보를 더 포함하도록 구성될 수 있다.
데이터 접근 요청은 인공신경망 연산이 학습을 위한 연산인지 또는 추론을 위한 연산인지 여부를 식별할 수 있는 식별 정보를 더 포함하도록 구성될 수 있다.
적어도 하나의 프로세서가 다음 데이터 접근 요청을 생성할 경우, 적어도 하나의 인공신경망 메모리 제어부는, 사전 데이터 접근 요청과 다음 데이터 접근 요청이 서로 동일한 요청인지를 결정하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 사전 데이터 접근 요청과 다음 데이터 접근 요청이 동일할 경우, 상기 인공신경망 데이터 지역성 패턴을 유지하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 사전 데이터 접근 요청과 다음 데이터 접근 요청이 상이할 경우 인공신경망 데이터 지역성 패턴을 갱신하도록 구성될 수 있다.
인공신경망 데이터 지역성 패턴은 데이터 접근 요청들의 메모리의 주소들을 순차적으로 기록한 데이터를 더 포함하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 데이터 접근 요청에 포함된 메모리 주소의 반복 패턴을 감지하여 인공신경망 데이터 지역성 패턴을 생성하도록 구성될 수 있다.
인공신경망 데이터 지역성 패턴은 반복되는 루프 특성을 가지는 메모리 주소들로 구성될 수 있다.
인공신경망 데이터 지역성 패턴은 인공신경망모델의 연산의 시작과 끝을 식별할 수 있는 식별 정보를 더 포함하도록 구성될 수 있다.
적어도 하나의 프로세서는 데이터 접근 요청에 대응되는 데이터를 인공신경망 메모리 제어부로부터 제공받도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 인공신경망 데이터 지역성 패턴을 기계학습을 하도록 구성된 인공신경망모델을 더 포함하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 인공신경망 데이터 지역성 패턴의 갱신 된 패턴과 이전의 패턴을 저장하여, 인공신경망모델의 변화 여부를 결정하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 데이터 접근 요청들이 하나의 인공신경망모델의 요청들인지 또는 복수의 인공신경망모델들의 요청들이 혼합된 것인지 여부를 결정하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 인공신경망모델의 개수가 복수일 경우, 인공신경망모델의 개수에 대응되는 인공신경망 데이터 지역성 패턴들을 더 생성하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 인공신경망 데이터 지역성 패턴들에 기초하여, 대응되는 사전 데이터 접근 요청들을 각각 생성하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 데이터 접근 요청에 대응되는 메모리 접근 요청을 더 생성하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 사전 데이터 접근 요청에 대응되는 메모리 접근 요청을 더 생성하도록 구성될 수 있다.
데이터 접근 요청, 사전 데이터 접근 요청 및 메모리 접근 요청 각각은 대응되는 메모리 주소 값 및 동작 모드를 각각 포함하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는, 데이터 접근 요청 및 사전 데이터 접근 요청에 포함된 정보 중 적어도 일부를 포함하도록 구성된 메모리 접근 요청을 더 생성하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부와 통신하도록 구성된 적어도 하나의 메모리를 더 포함하고, 적어도 하나의 메모리는 적어도 하나의 인공신경망 메모리 제어부에서 출력되는 메모리 접근 요청에 대응하여 동작하도록 구성될 수 있다.
적어도 하나의 메모리는 추론 데이터, 가중치 데이터 및 특징맵 데이터 중 적어도 하나를 저장하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는, 메모리 접근 요청에 응답하여 적어도 하나의 메모리가 전송한 데이터를 저장하도록 구성된 캐쉬 메모리를 더 포함하도록 구성될 수 있다.
적어도 하나의 프로세서가 다음 데이터 접근 요청을 출력할 경우, 적어도 하나의 인공신경망 메모리 제어부는 사전 데이터 접근 요청과 다음 데이터 접근 요청이 서로 동일한 요청인지를 결정하고, 동일할 경우 적어도 하나의 인공신경망 메모리 제어부는 적어도 하나의 프로세서에 캐쉬 메모리에 저장된 데이터를 제공하도록 구성되고, 동일하지 않은 경우, 적어도 하나의 인공신경망 메모리 제어부는 다음 데이터 접근 요청에 기초하여 신규 메모리 접근 요청을 생성하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 캐쉬 메모리의 잔여 용량에 기초 하여 메모리 접근 요청을 적어도 하나 이상 순차적으로 생성하여 캐쉬 메모리의 상기 잔여 용량이 최소화되도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는, 메모리 접근 요청에 응답하는 적어도 하나의 메모리의 실효 대역폭을 측정하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 메모리 접근 요청에 응답하는 적어도 하나의 메모리의 필요 대역폭을 정보를 제공받도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 인공신경망 데이터 지역성 패턴의 특정 시간 동안의 반복 횟수를 계산하여 상기 인공신경망 연산의 1초당 추론 횟수(IPS)를 측정하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 인공신경망 데이터 지역성 패턴의 1회 반복에 소요되는 시간 및 데이터 크기를 계산하여 인공신경망 연산이 요구하는 실효 대역폭을 계산하도록 구성될 수 있다.
적어도 하나의 메모리는, 메모리의 셀의 전압을 갱신할 수 있는 리프레쉬 기능을 포함하는 디램(DRAM)을 더 포함하고, 적어도 하나의 인공신경망 메모리 제어부는 사전 데이터 접근 요청에 대응되는 메모리 접근 요청에 대응되는 적어도 하나의 메모리의 메모리 주소 영역의 리프레쉬를 선택적으로 제어하도록 구성될 수 있다.
적어도 하나의 메모리는 메모리의 글로벌 비트라인을 특정 전압으로 충전시킬 수 있는 프리차지 기능을 더 포함하고, 적어도 하나의 인공신경망 메모리 제어부는 사전 데이터 접근 요청에 대응되는 메모리 접근 요청에 대응되는 적어도 하나의 메모리의 메모리 주소 영역에 프리차지를 선택적으로 제공하도록 구성될 수 있다.
적어도 하나의 메모리는 복수의 메모리를 더 포함하고 적어도 하나의 인공신경망 메모리 제어부는 복수의 메모리의 실효 대역폭을 각각 측정하도록 구성될 수 있다.
적어도 하나의 메모리는 복수의 메모리를 더 포함하고 적어도 하나의 인공신경망 메모리 제어부는 복수의 메모리의 레이턴시를 각각 측정하도록 구성될 수 있다.
적어도 하나의 메모리는 복수의 메모리를 더 포함하고, 적어도 하나의 인공신경망 메모리 제어부는 복수의 메모리 각각의 실효 대역폭 및 지연시간에 기초하여 복수의 메모리에 저장되는 데이터를 분할하여 저장하도록 구성될 수 있다.
데이터는 L 비트의 비트 그룹으로 구성되고, 복수의 메모리는 제1 메모리 및 제2 메모리를 더 포함하고, 제1 메모리는 제1 실효 대역폭 또는 제1 지연시간에 기초하여 L 비트의 비트 그룹 중 M 비트의 데이터를 분할하여 저장하도록 구성되고, 제2 메모리는 제2 실효 대역폭 또는 제2 지연시간에 기초하여 L 비트의 비트 그룹 중 N 비트의 데이터를 분할하여 저장하도록 구성되고, M 비트와 N 비트의 합은 L 비트와 같거나 또는 작도록 구성될 수 있다
복수의 메모리는 제3 메모리를 더 포함하고, 제3 메모리는 제3 실효 대역폭 또는 제3 지연시간에 기초하여 L 비트의 비트 그룹 중 O 비트의 데이터를 저장하도록 구성되고, M 비트, N 비트 및 O 비트의 합은 L 비트와 같도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는, 복수의 메모리에 분할되어 저장된 데이터를 병합하여 저장하도록 구성된 캐쉬 메모리를 더 포함하도록 구성될 수 있다.
데이터는 P개의 데이터 묶음으로 구성되고, 복수의 메모리는 제1 메모리 및 제2 메모리를 더 포함하고, 제1 메모리는 제1 실효 대역폭 또는 제1 지연시간에 기초하여 P개의 데이터 묶음 중 R개의 데이터 묶음을 저장하도록 구성되고, 제2 메모리는 제2 실효 대역폭 또는 제2 지연시간에 기초하여 상기 P개의 데이터 묶음 중 S개의 데이터 묶음을 저장하도록 구성되고, R개와 상기 S개의 합은 상기 P개와 같거나 또는 작도록 구성될 수 있다.
복수의 메모리는 제3 메모리를 더 포함하고, 제3 메모리는 제3 실효 대역폭 또는 제3 지연시간에 기초하여 P개의 데이터 묶음 중 T개의 데이터 묶음을 저장하도록 구성되고, R개, 상기 S개 및 상기 T개의 합은 상기 P개와 같도록 구성될 수 있다.
적어도 하나의 메모리는 복수의 메모리를 더 포함하고, 적어도 하나의 인공신경망 메모리 제어부는, 캐쉬 메모리를 더 포함하고, 적어도 하나의 인공신경망 메모리 제어부는 복수의 메모리에 분배되어 저장된 데이터를 병합하여 캐쉬 메모리에 저장하도록 구성될 수 있다.
적어도 하나의 메모리는 복수의 메모리를 더 포함하고, 적어도 하나의 인공신경망 메모리 제어부는 복수의 메모리에 분할되어 저장된 데이터의 분할 정보를 저장하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 사전 데이터 접근 요청 및 적어도 하나의 메모리의 레이턴시 값에 기초하여 캐쉬 메모리에 레이턴시 만큼 데이터의 일부를 저장하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 사전 데이터 접근 요청 및 적어도 하나의 메모리의 데이터 대역폭 요구량에 기초하여 캐쉬 메모리에 상기 데이터의 일부를 저장하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 적어도 하나의 프로세서에서 다음 데이터 접근 요청 생성 시, 캐쉬 메모리에 저장된 데이터를 먼저 제공하면서, 데이터의 나머지를 적어도 하나의 메모리로부터 읽기-버스트 모드로 제어하여, 적어도 하나의 메모리의 레이턴시를 저감하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 사전 데이터 접근 요청 및 적어도 하나의 메모리의 레이턴시 값에 기초하여 적어도 하나의 프로세서에서 다음 데이터 접근 요청 생성 시, 레이턴시 값만큼 사전에 적어도 하나의 메모리의 읽기-버스트 모드로 시작하여, 적어도 하나의 메모리의 레이턴시를 저감하도록 구성될 수 있다.
인공신경망 메모리 제어부, 상기 적어도 하나의 프로세서, 및 상기 적어도 하나의 메모리의 통신을 제어하도록 구성된 시스템 버스를 더 포함하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 시스템 버스의 마스터 권한을 가지도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 인공신경망모델을 더 포함하고, 인공신경망모델은 사전 데이터 접근 요청이 생성될 경우, 시스템 버스의 제어 권한을 사전 데이터 접근 요청들의 생성되지 않을 때보다 상대적으로 더 높게 증가시키도록 기계 학습될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 적어도 하나의 메모리가 상기 메모리 접근 요청을 완료할 때까지, 시스템 버스의 실효 대역폭을 확보하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 인공신경망 데이터 지역성 패턴에 기초하여 특정 메모리 접근 요청을 처리하기 위해서 시스템 버스에게 요구되는 특정 대역폭을 계산하고, 적어도 하나의 인공신경망 메모리 제어부는 특정 대역폭에 기초하여 시스템 버스의 실효 대역폭을 제어하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 시스템 버스 내부에 배치되고, 시스템 버스는 시스템 버스 내에서 생성된 인공신경망 데이터 지역성 패턴에 기초하여 시스템 버스의 대역폭을 동적으로 가변 하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 메모리 접근 요청의 처리 시간동안 인공신경망 연산을 우선 처리하도록 동작하고, 이외의 시간 동안 인공신경망 연산 이외의 연산을 처리하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부와 적어도 하나의 프로세서는 직접 통신하도록 구성될 수 있다.
인공신경망 메모리 제어부는 인공신경망 연산 전용 접근 순서인 제1 접근 순서 및 인공신경망 연산 이외의 접근 순서인 제2 접근 순서를 더 포함하고, 인공신경망 메모리 제어부는 우선순위 설정에 따라서 각각의 접근 순서를 선택하여 데이터를 제공하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 계층화 된 복수의 캐쉬 메모리를 더 포함하고 적어도 하나의 인공신경망 메모리 제어부는 계층화 된 복수의 캐쉬 메모리의 계층간 데이터 접근 요청을 기계학습을 하도록 구성된 인공신경망모델을 더 포함하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 계층화 된 복수의 캐쉬 메모리 각각의 계층의 실효 대역폭, 소비 전력, 및 레이턴시 정보 중 적어도 하나를 더 제공 받도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 시스템은, 인공신경망 연산에 대응되는 데이터 접근 요청을 생성하도록 구성된 적어도 하나의 프로세서 및 컴파일러로부터 생성된 인공신경망 연산의 인공신경망 데이터 지역성 패턴을 저장하도록 구성되고, 인공신경망 데이터 지역성 패턴에 기초하여 적어도 하나의 프로세서가 생성한 데이터 접근 요청의 다음 데이터 접근 요청을 예측한 사전 데이터 접근 요청을 생성하도록 구성된 적어도 하나의 인공신경망 메모리 제어부 및 적어도 하나의 인공신경망 메모리 제어부와 통신하도록 구성된 적어도 하나의 메모리를 포함하고, 적어도 하나의 메모리는 적어도 하나의 인공신경망 메모리 제어부에서 출력되는 메모리 접근 요청에 대응하여 동작하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 시스템은 적어도 하나의 메모리 및 인공신경망 메모리 제어부, 적어도 하나의 프로세서, 및 적어도 하나의 메모리의 통신을 제어하도록 구성된 시스템 버스를 더 포함하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 시스템 버스 내에 배치되고, 적어도 하나의 인공신경망 메모리 제어부는 적어도 하나의 메모리가 메모리 접근 요청에 대한 응답을 완료할 때까지, 상기 시스템 버스의 제어 권한을 상기 메모리 접근 요청이 없을 때보다 상대적으로 더 높게 증가시키도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부의 적어도 일부는 DRAM에 포함되도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부의 적어도 일부는 적어도 하나의 프로세서에 포함되도록 구성될 수 있다.
DRAM을 더 포함하거나 또는 적어도 하나의 메모리는 DRAM이고, 적어도 하나의 인공신경망 메모리 제어부는 메모리 접근 요청의 접근 순서(access que)를 재조정하도록 구성될 수 있다.
인공신경망 메모리 제어부는 적어도 하나의 접근 순서를 생성하도록 구성될 수 있다.
적어도 하나의 메모리에 인공신경망 메모리 제어부가 포함되고, 인공신경망 메모리 제어부는 인공신경망 연산 전용 접근 순서를 별도로 생성하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 메모리 접근 요청의 접근 순서를 재조정하도록 구성될 수 있다.
적어도 하나의 메모리는 읽기-버스트 기능을 더 포함하고, 적어도 하나의 인공신경망 메모리 제어부는 적어도 하나의 메모리의 저장 영역을 읽기 버스트 기능을 고려하여 설정하도록 구성될 수 있다.
적어도 하나의 메모리는 읽기-버스트 기능을 더 포함하고, 적어도 하나의 인공신경망 메모리 제어부는 적어도 하나의 메모리의 저장 영역을 읽기-버스트 기능을 고려하여 쓰기 동작을 처리하도록 구성될 수 있다.
적어도 하나의 프로세서는 복수의 프로세서를 포함하고, 적어도 하나의 인공신경망 메모리 제어부는 복수의 프로세서 중 인공신경망 연산을 처리하는 프로세서의 데이터 접근 요청의 우선 순위를 인공신경망 연산 이외의 연산을 처리하는 프로세서보다 더 높게 설정하도록 구성될 수 있다.
본 개시에 따른 인공 신경망 연산 시스템은인공신경망 연산에 사용되는 데이터에 대하여 데이터 접근 요청을 생성하도록 구성된 적어도 하나의 프로세서, 인공신경망 연산에 사용되는 데이터가 저장된 적어도 하나의 메모리, 데이터 접근 요청에 대응되는 사전 데이터 접근 요청을 생성하여, 상기 적어도 하나의 프로세서가 상기 데이터 접근 요청을 생성하자 마자 상기 적어도 하나의 메모리에 저장된 인공신경망 연산에 사용되는 데이터를 지연없이 상기 적어도 하나의 프로세서에 제공하는 적어도 하나의 메모리 제어부를 포함할 수 있다.
적어도 하나의 메모리에서 상기 데이터 접근 요청에 대한 지연 시간이 발생하고, 적어도 하나의 메모리 제어부는, 지연 시간을 상기 적어도 하나의 메모리로부터 제공받거나 측정할 수 있다.
적어도 하나의 메모리 제어부는, 적어도 하나의 메모리의 데이터 전송 속도에 관련되는 실효 대역폭 정보를 상기 적어도 하나의 메모리로부터 제공받거나 또는 직접 측정할 수 있다.
상기 적어도 하나의 메모리는, 메모리의 셀의 전압을 갱신할 수 있는 리프레쉬 기능을 포함하는 디램(DRAM)이고, 상기 적어도 하나의 메모리 제어부는 상기 적어도 하나의 메모리의 종류 및 개수 정보를 파악할 수 있다.
상기 적어도 하나의 메모리 제어부는 상기 적어도 하나의 메모리의 실효 대역폭 및 지연 시간을 고려하여, 상기 적어도 하나의 메모리에 데이터를 분할하여 저장할 수 있다.
상기 적어도 하나의 메모리 제어부는, 상기 인공신경망 연산에 사용되는 데이터가 반복 사용되는 것을 감지하여 인공 신경망 데이터 지역성 패턴을 생성하고, 상기 인공 신경망 데이터 지역성 패턴을 사용하여 상기 사전 데이터 접근 요청을 생성할 수 있다.
상기 적어도 하나의 메모리 제어부는, 인공신경망 연산에 사용되는 데이터가 반복 사용되는 것을 감지하여 인공 신경망 데이터 지역성 패턴을 생성하고, 인공 신경망 데이터 지역성 패턴을 사용하여 상기 사전 데이터 접근 요청을 생성하고, 사전 데이터 접근 요청과 상기 데이터 접근 요청이 상이하다고 판단될 경우, 상기 인공 신경망 데이터 지역성 패턴을 갱신할 수 있다.
상기 적어도 하나의 메모리 제어부는, 인공신경망 연산에 사용되는 데이터가 반복 사용되는 것을 감지하여 인공 신경망 데이터 지역성 패턴을 생성하고, 인공 신경망 데이터 지역성 패턴을 사용하여 상기 적어도 하나의 프로세서가 처리 중인 연산이 상기 인공신경망 연산인지 여부를 결정할 수 있다.
상기 적어도 하나의 메모리 제어부는, 상기 데이터 접근 요청이 반복 사용되는 것을 감지하여, 상기 적어도 하나의 프로세서가 처리 중인 연산이 상기 인공신경망 연산인지 여부를 결정할 수 있다.
상기 데이터 접근 요청은 식별 정보를 통해 구별되며, 식별 정보는 상기 데이터 접근 요청에 대응되는 데이터가 저장된 상기 적어도 하나의 메모리의 주소 값일 수 있다.
상기 데이터 접근 요청은 대응되는 데이터가 저장된 적어도 하나의 메모리 주소의 시작 값 과 끝 값 사이의 정보를 포함할 수 있다.
상기 데이터 접근 요청은 대응되는 데이터가 저장된 적어도 하나의 메모리 주소의 시작 값 과 연속 읽기 트리거 값의 정보를 포함할 수 있다.
상기 적어도 하나의 메모리 제어부는, 데이터 접근 요청의 반복 패턴에 해당하는 인공신경망 데이터 정보를 저장하는 특수 기능 레지스터를 포함할 수 있다.
상기 적어도 하나의 메모리 제어부는, 사전 데이터 접근 요청에 대응되는 데이터를 저장하는 캐쉬 메모리를 포함할 수 있다.
상기 적어도 하나의 메모리 제어부는, 적어도 하나의 메모리에 분배되어 저장된 데이터를 병합하여 저장하는 캐쉬 메모리를 포함할 수 있다.
상기 적어도 하나의 메모리 제어부는, 상기 데이터 접근 요청을 로그 파일, 테이블, 리스트등의 형태로 저장할 수 있다.
상기 인공신경망 연산에 사용되는 인공신경망 모델은 인공신경망 연산 시스템의 구동 특성에 따라 컴파일러에 의해 컴파일 될 수 있다.
상기 적어도 하나의 메모리는 읽기-버스트 기능을 수행하고, 상기 적어도 하나의 메모리 어부는, 상기 적어도 하나의 메모리의 저장 영역을 상기 읽기-버스트 기능을 고려하여 설정하도록 구성될 수 있다.
상기 적어도 하나의 메모리 제어부는, 상기 데이터 접근 요청 생성 시, 캐쉬 메모리에 저장된 데이터를 먼저 제공하면서, 데이터의 나머지를 적어도 하나의 메모리로부터 읽기-버스트 모드로 제어하여 제공할 수 있다.
상기 적어도 하나의 메모리 제어부는, 데이터 접근 요청 동안 상기 인공신경망 연산을 우선 처리하도록 동작할 수 있다.
본 개시의 실시예들에 따르면, 인공신경망을 처리하는 시스템에서 인공신경망 데이터 지역성에 의해서 프로세서에 대한 메모리의 데이터 공급 지연을 실질적으로 제거하거나 저감할 수 있는 효과가 있다.
본 개시의 실시예들에 따르면, 인공신경망 메모리 제어부는 프로세서-메모리 레벨에서 처리되는 인공신경망모델의 데이터를 프로세서가 요청하기 전에 사전에 준비할 수 있는 효과가 있다.
본 개시의 실시예들에 따르면, 프로세서가 처리하는 인공신경망모델의 학습 및 추론 연산 처리 시간이 단축되어 해당 프로세서의 연산 처리 성능이 향상되며, 시스템 레벨의 연산 처리에 대한 전력 효율성이 향상될 수 있는 효과가 있다.
본 개시에 따른 효과는 이상에서 예시된 내용에 의해 제한되지 않으며, 더욱 다양한 효과들이 본 명세서 내에 포함되어 있다.
도 1a는 본 개시의 일 실시예에 따른 인공신경망 데이터 지역성에 기초한 인공 신경망 메모리 시스템의 프로세서 및 인공신경망 메모리 제어부를 설명하는 개략적인 블록도이다.
도 1b는 본 개시의 다양한 실시예들에 적용될 수 있는 인공신경망 데이터 지역성 패턴의 재구성의 설명을 위한 예시적인 신경망 프로세싱 유닛의 예시를 나타내는 개략도이다.
도 2는 본 개시의 일 실시예에 따른 인공신경망 데이터 지역성 패턴을 설명하는 개략도이다.
도 3은 본 개시의 다양한 실시예들에 적용될 수 있는 인공신경망 데이터 지역성 패턴의 설명을 위한 예시적인 인공신경망모델을 나타내는 개략도이다.
도 4는 본 개시의 일 실시예에 따른 인공신경망 메모리 제어부가 도 3a의 인공신경망모델을 분석하여 생성한 인공신경망 데이터 지역성 패턴을 설명하는 개략도이다.
도 5는 도 4의 인공신경망 데이터 지역성 패턴에 대응되는 토큰과 식별 정보를 설명하는 개략도이다.
도 6은 본 개시의 일 실시예에 따른 인공신경망 메모리 제어부가 인공신경망 데이터 지역성 패턴에 기초하여 생성한 사전 데이터 접근 요청과 다음 데이터 접근 요청을 설명하는 개략도이다.
도 7은 본 개시의 일 실시예에 따른 인공신경망 메모리 제어부의 동작을 개략적으로 설명하는 순서도이다.
도 8은 본 개시의 다른 실시예에 따른 인공신경망 메모리 시스템을 설명하는 개략적인 블록도이다.
도 9는 본 개시의 비교예에 따른 메모리 시스템의 동작을 설명하는 개략도이다.
도 10은 본 개시의 다른 실시예에 따른 메모리 시스템의 설명하는 개략도이다.
도 11은 본 개시의 또 다른 실시예에 따른 인공신경망 메모리 시스템을 설명하는 개략적인 블록도이다.
도 12는 데이터 접근 요청의 예시적인 식별 정보를 설명하는 개략도이다.
도 13은 인공신경망 메모리 시스템의 단위 동작 당 에너지 소모를 설명하는 개략도이다.
도 14는 본 개시의 다양한 실시예들에 따른 인공신경망 메모리 시스템을 설명하는 개략도이다.
본 개시의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 다양한 실시예들을 참조하면 명확해질 것이다. 그러나 본 개시는 이하에서 설명되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 개시의 실시예들은 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
본 개시에 대한 상세한 설명은, 본 개시가 실시될 수 있는 특정 실시예를 예시로서 설명의 편의를 위해 도면을 참조하여 설명할 수 있다. 본 개시의 다양한 실시예들의 구성요소들이 서로 상이하더라도 특정 실시예에 기재되어 있는 제조 방법, 동작 방법, 알고리즘, 형상, 공정, 구조 및 특성은 다른 실시예와 결합하거나 또는 포함될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 본 개시의 정신 및 범위를 벗어나지 않으면서 변경될 수 있다. 본 개시의 여러 실시예들의 각각 특징들이 부분적으로 또는 전체적으로 서로 결합 또는 조합 가능하며, 당업자가 충분히 이해할 수 있듯이 기술적으로 다양한 연동 및 작동이 가능하며, 각 실시예들이 서로에 대하여 독립적으로 실시 가능할 수도 있고 연관 관계로 함께 실시할 수도 있다.
본 개시의 실시예들을 설명하기 위한 도면에 개시된 형상, 크기, 비율, 각도, 개수 등은 예시적인 것이므로 본 개시는 도면을 참조하되 이에 한정되지 않는다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭할 수 있다. 또한, 본 개시를 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 개시의 요지를 불필요하게 흐릴 수 있다고 결정되는 경우 그 상세한 설명은 생략할 수 있다. 본 명세서 상에서 언급된 '포함한다', '갖는다', '이루어진다' 등이 사용되는 경우 '~만'이 사용되지 않는 이상 다른 구성요소가 추가될 수 있다. 구성요소를 단수로 표현한 경우에 특별히 명시적인 기재 사항이 없는 한 복수를 포함하는 경우를 포함한다. 구성요소를 해석함에 있어서, 별도의 명시적 기재가 없더라도 오차 범위를 포함하는 것으로 해석한다. 위치 관계에 대한 설명일 경우, 예를 들면, '~상에', '~상부에', '~하부에', '~옆에', ‘~인접하여’ 등으로 두 구성요소의 위치 관계가 설명되는 경우, '바로' 또는 '직접'이 사용되지 않는 이상 두 구성요소 사이에 하나의 다른 구성요소가 위치할 수도 있다. 소자 또는 층이 다른 소자 또는 층 "위 (on)"로 지칭되는 것은 다른 소자 바로 위에 또는 중간에 다른 층 또는 다른 소자를 개재한 경우를 모두 포함한다
도 1a는 본 개시의 일 실시예에 따른 인공신경망 데이터 지역성에 기초한 인공 신경망 메모리 시스템의 프로세서 및 인공신경망 메모리 제어부를 설명하는 개략적인 블록도이다.
도 1a를 참조하면, 인공신경망 메모리 시스템(100)은 적어도 하나의 프로세서(110) 및 적어도 하나의 인공신경망 메모리 제어부(120)를 포함하도록 구성될 수 있다. 즉, 본 개시의 실시예들에 따른 프로세서(110)는 적어도 하나 이상이며, 복수 개의 프로세서가 활용될 수 있다. 즉, 본 개시의 실시예들에 따른 인공신경망 메모리 제어부(120)는 적어도 하나이며, 복수개의 인공신경망 메모리 제어부가 활용될 수 있다.
이하 설명의 편의를 위해 적어도 하나의 프로세서(110)가 하나의 프로세서일 경우, 프로세서(110)로 지칭할 수 있다.
이하 설명의 편의를 위해 적어도 하나의 인공신경망 메모리 제어부(120)가 하나의 인공신경망 메모리 제어부(120)일 경우, 인공신경망 메모리 제어부(120)로 지칭할 수 있다.
프로세서(110)는 인공신경망모델을 처리하도록 구성된다. 예를 들어, 프로세서(110)는 특정 추론 기능을 수행하도록 학습된 인공신경망모델의 추론을 처리하여 입력 데이터에 따른 인공신경망모델의 추론 결과를 제공할 수 있다. 예를 들어, 프로세서(110)는 특정 추론 기능을 수행하기 위한 인공신경망모델의 학습을 처리하여 학습된 인공신경망모델을 제공할 수 있다. 특정 추론 기능은, 객체 인식, 음성 인식, 영상 처리 등 인공신경망이 추론할 수 있는 다양한 추론 기능들을 포함할 수 있다.
프로세서(110)는 중앙 처리 장치(CPU), 그래픽 처리 장치(GPU), 어플리케이션 프로세서(AP), 디지털 신호 처리 장치(DSP), 산술 논리 연산 장치(ALU) 및 인공 신경망 프로세서(NPU) 중 적어도 하나를 포함하도록 구성될 수 있다. 단, 본 개시의 프로세서(110)는 상술한 프로세서들에 제한되지 않는다.
프로세서(110)는 인공신경망 메모리 제어부(120)와 통신하도록 구성될 수 있다. 프로세서(110)는 데이터 접근 요청을 생성하도록 구성될 수 있다. 데이터 접근 요청은 인공신경망 메모리 제어부(120)로 전송될 수 있다. 여기서 데이터 접근 요청은 프로세서(110)가 인공신경망모델의 추론 또는 학습을 처리할 때 필요한 데이터에 접근하는 요청을 의미할 수 있다.
프로세서(110)는 인공신경망 메모리 제어부(120)에 데이터 접근 요청을 전송하여 인공신경망 메모리 제어부(120)로부터 인공신경망모델의 추론 또는 학습에 필요한 데이터를 제공 받거나, 또는 프로세서(110)가 처리한 인공신경망의 추론 또는 학습 결과를 인공신경망 메모리 제어부(120)에게 제공할 수 있다.
프로세서(110)는 특정 인공신경망모델을 처리한 추론 결과 또는 학습 결과를 제공할 수 있다. 이때 프로세서(110)는 추론 또는 학습을 하기 위한 인공신경망의 연산들을 특정 순서대로 처리하도록 구성될 수 있다.
프로세서(110)가 특정 순서대로 인공신경망 연산을 처리해야 하는 이유는, 각각의 인공신경망모델이 각각의 고유한 인공신경망 구조를 가지도록 구성되었기 때문이다. 즉, 각각의 인공신경망모델은 고유한 인공신경망 구조에 따른 고유한 인공신경망 데이터 지역성을 가지도록 구성된다. 더 나아가서 고유한 인공신경망 데이터 지역성에 따라서 프로세서(110)가 처리하는 인공신경망모델의 연산 순서가 결정되게 된다.
부연 설명하면, 인공신경망 데이터 지역성은 컴파일러에 의해서 인공신경망모델이 특정 프로세서에서 실행되도록 컴파일 될 때 구성될 수 있다. 인공신경망 데이터 지역성은 컴파일러, 인공신경망모델에 적용된 알고리즘들, 및 프로세서의 동작 특성에 따라서 구성될 수 있다.
프로세서(110)가 처리할 인공신경망모델은 프로세서(110)와 인공신경망모델의 알고리즘 특성을 고려할 수 있는 컴파일러에 의해서 컴파일될 수 있다. 즉, 인공신경망모델의 구조 및 알고리즘 정보를 알고, 프로세서(110)의 구동 특성을 알면, 컴파일러는 인공신경망 메모리 제어부(120)에게 워드 단위 순서로 인공신경망 데이터 지역성 정보를 제공하도록 구성될 수 있다.
예를 들면, 종래의 알고리즘 레벨의 특정 인공신경망모델의 특정 레이어의 가중치 값은 레이어 단위로 연산 될 수 있다. 하지만, 본 개시의 실시예들에 따른 프로세서-메모리 레벨의 특정 인공신경망모델의 특정 레이어의 가중치 값은 프로세서(110)가 처리하도록 스케줄된 워드 단위로 연산 될 수 있다.
예를 들면, 프로세서(110)의 캐쉬 메모리의 크기가 처리할 인공신경망모델의 특정 레이어의 가중치 값들의 데이터 크기 보다 작을 경우, 프로세서(110)는 한 번에 특정 레이어의 가중치 값들을 처리하지 않도록 컴파일될 수 있다.
즉, 프로세서(110)가 특정 레이어의 가중치 값들과 노드 값을 연산할 때, 가중치 값이 너무 크기 때문에, 결과 값들을 저장할 캐쉬 메모리 공간이 부족할 수 있다. 이러한 경우, 프로세서(110)가 생성하는 데이터 접근 요청이 복수의 데이터 접근 요청들로 증가될 수 있다. 따라서 프로세서(110)는 증가된 데이터 접근 요청들을 특정 순서로 처리하도록 구성될 수 있다. 이러한 경우, 알고리즘 레벨의 연산 순서와 프로세서-메모리 레벨의 인공신경망 데이터 지역성에 따른 연산 순서는 서로 상이해질 수 있다.
즉, 알고리즘 레벨에서의 인공신경망 연산 순서는 해당 인공신경망모델을 처리할 프로세서 및 메모리의 하드웨어 특성을 고려하여 프로세서-메모리 레벨의 인공신경망 데이터 지역성에 의해 재구성 될 수 있다.
프로세서-메모리 레벨에서 존재하는 인공신경망모델의 인공신경망 데이터 지역성이란 프로세서(110)가 메모리에 요청하는 데이터 접근 요청 순서에 기반하여 프로세서-메모리 레벨에서 프로세서(110)가 처리하는 인공신경망모델의 연산 순서를 예측하게 하는 정보로 정의될 수 있다.
부연 설명하면 동일한 인공신경망모델의 경우에도 프로세서(110)의 연산 기능, 예를 들면, 특징맵 타일링(tiling) 기법, 프로세싱 엘리먼트의 스테이셔너리(Stationary) 기법 등, 프로세서(110)의 프로세싱 엘리먼트 개수, 프로세서(110)내 특징맵 및 가중치 등의 캐쉬 메모리 용량, 프로세서(110) 내의 메모리 계층 구조, 인공신경망모델을 연산 처리하기 위한 프로세서(110)의 연산 동작의 순서를 결정해 주는 컴파일러의 알고리즘 특성 등에 따라서 인공신경망모델의 인공신경망 데이터 지역성이 다르게 구성될 수 있다.
예를 들면, 특징맵 타일링은 합성곱을 분할하는 인공신경망 기법으로, 합성곱 영역이 분할됨에 따라 특징맵이 분할되어 연산된다. 따라서, 타일링 합성곱에 의해서 같은 인공신경망모델이라 할지라도, 인공신경망모델의 인공신경망 데이터 지역성은 서로 상이할 수 있다.
예를 들면, 스테이셔너리 기법은 신경망 프로세싱 유닛에서 프로세싱 엘리먼트들(PE)의 구동 방법을 제어하는 기법이다. 스테이셔너리 기법에 따르면 처리되는 데이터 종류, 예를 들면, 입력 특징맵, 가중치, 및 출력 특징맵 중 하나가 프로세싱 엘리먼트에 고정되어 재사용될 수 있다. 따라서, 프로세서(110)가 메모리에게 요청하는 데이터의 종류 및 순서가 달라질 수 있다.
즉, 동일한 인공신경망모델의 경우라도 다양한 알고리즘 및/또는 기법 등 따라 인공신경망 데이터 지역성은 재구성될 수 있다. 따라서, 인공신경망 데이터 지역성은 프로세서, 컴파일러, 메모리 등 다양한 조건들에 의해서 전체적으로 또는 부분적으로 재구성 될 수 있다.
도 1b는 본 개시의 다양한 실시예들에 적용될 수 있는 인공신경망 데이터 지역성 패턴의 재구성에 관한 설명을 위한 예시적인 신경망 프로세싱 유닛의 예시를 나타내는 개략도이다.
도 1b를 참조하면, 프로세서(110)가 신경망 프로세싱 유닛(NPU)일 경우 적용될 수 있는 예시적인 스테이셔너리 기법들이 도시되어 있다.
프로세싱 엘리먼트들(PE)은 어레이 형태로 구성될 수 있으며, 각각의 프로세싱 엘리먼트는 곱셈기(x)와 덧셈기(+)를 포함하도록 구성될 수 있다. 프로세싱 엘리먼트들(PE)은 버퍼 메모리 또는 캐쉬 메모리, 예를 들면, 글로벌 버퍼(global buffer)와 연결될 수 있다. 프로세싱 엘리먼트들(PE)은 입력 특징맵 화소(Ifmap pixel; I), 필터 가중치(Filter weight; W), 및 부분합(Psum; P) 중 하나의 데이터를 프로세싱 엘리먼트들(PE)의 레지스터에 고정시킬 수 있다. 그리고 나머지 데이터들을 프로세싱 엘리먼트들(PE)의 입력 데이터로 제공될 수 있다. 부분합(P)의 누산이 완료되면 출력 특징맵 화소가 될 수 있다.
도 1b의 (a)는 가중치 스테이셔너리(Weight-Stationary; WS) 기법을 도시한다. 가중치 스테이셔너리(WS) 기법에 따르면, 프로세싱 엘리먼트들(PE) 각각의 레지스터파일에 필터 가중치들(W0 to W7)이 고정되고, 병렬로 프로세싱 엘리먼트들(PE)에 입력되는 입력 특징맵 화소(I)를 0번째 입력 특징맵 화소(I0)에서 8번째 입력 특징맵 화소(I8)로 이동 시키면서 연산을 실행할 수 있다. 부분합들(P0 to P8)은 직렬로 연결된 프로세싱 엘리먼트들(PE)에 누적될 수 있다. 부분합들(P0 to P8)은 순차적으로 다음 프로세싱 엘리먼트로 이동할 수 있다. 고정된 필터 가중치들(W0 to W7)을 사용하는 모든 MAC(multiply and accumulation) 연산은 직렬 처리를 위해 동일한 프로세싱 엘리먼트들(PE)에 맵핑(mapping) 되어야 한다.
상술한 구성에 따르면, 레지스터파일에서 필터 가중치(W)의 합성곱 연산 시 필터 가중치(W) 재사용을 최대화하여 필터 가중치(W)의 액세스 에너지 소비를 최소화 할 수 있는 효과가 있다.
주목해야할 점은, 컴파일 단계에서 인공신경망모델에 가중치 스테이셔너리(WS) 기법을 적용함에 따라, 인공신경망모델의 인공신경망 데이터 지역성은 프로세서-메모리 레벨에서 가중치 스테이셔너리(WS) 기법에 최적화되기 위해서 재구성된다. 예를 들면, 가중치 스테이셔너리(WS) 기법에서는 연산의 효율성을 위해서 프로세싱 엘리먼트들(PE)에 필터 가중치들(W0 to W7)을 우선적으로 저장하도록 구성될 수 있다. 따라서 인공신경망 데이터 지역성은 필터 가중치(W), 입력 특징맵 화소(I), 및 부분합(P) 순서대로 재구성될 수 있으며, 이에 프로세서(110)가 생성하는 데이터 접근 요청 순서도 재구성된 인공신경망 데이터 지역성에 따라서 결정될 수 있다.
도 1b의 (b)는 출력 스테이셔너리(Output-Stationary; OS) 기법을 도시한다. 출력 스테이셔너리(OS) 기법에 따르면, 프로세싱 엘리먼트들(PE)의 각각의 레지스터파일에 부분합들(P0 to P7)이 고정되어 누산되고, 병렬로 프로세싱 엘리먼트들(PE)에 입력되는 필터 가중치(W)를 0번째 입력 필터 가중치(W0)에서 7번째 필터 가중치(W7)로 이동 시키면서 연산을 실행할 수 있다. 입력 특징맵 화소들(I0 to I7)은 직렬로 연결된 프로세싱 엘리먼트들(PE)로 이동될 수 있다. 각각의 부분합들(P0 to P7)은 각각의 프로세싱 엘리먼트들(PE)에 고정되어 MAC(multiply and accumulation) 연산을 처리하도록 매핑(mapping) 되어야 한다.
상술한 구성에 따르면, 프로세싱 엘리먼트들(PE)에서 필터 가중치(W)의 합성곱 연산 시 부분합(P)을 프로세싱 엘리먼트들(PE)의 레지스터파일에 고정시켜서 부분합(P)의 재사용을 최대화하고 부분합(P)의 이동에 따른 에너지 소비를 최소화할 수 있는 효과가 있다. 고정된 부분합(P)의 누산이 완료되면 출력 특징맵이 될 수 있다.
주목해야할 점은, 프로세서(110)가 출력 스테이셔너리(OS) 기법을 적용함에 따라, 인공신경망모델의 인공신경망 데이터 지역성은 프로세서-메모리 레벨에서 출력 스테이셔너리(OS) 기법에 최적화되기 위해서 재구성된다. 예를 들면, 출력 스테이셔너리(OS) 기법에서는 연산의 효율성을 위해서 프로세싱 엘리먼트들(PE)에 부분합들(P0 to P7)을 우선적으로 저장하도록 구성될 수 있다. 따라서 인공신경망 데이터 지역성은 부분합(P), 필터 가중치(W), 및 입력 특징맵 화소(I) 순서대로 재구성될 수 있으며, 이에 프로세서(110)가 생성하는 데이터 접근 요청 순서도 재구성된 인공신경망 데이터 지역성에 따라서 결정될 수 있다.인공신경망모델 컴파일러는 프로세서(110)와 메모리의 하드웨어 특성정보를 전달받아 인공신경망모델이 프로세서-메모리 레벨에서 동작할 수 있는 코드로 변환할 수 있다. 이때, 인공신경망모델은 프로세서에 의해서 실행되는 코드로 변환되기 때문에, 로우-레벨의 코드로 변환될 수 있다.
즉, 상술한 각 요인들에 의하면 동일한 인공신경망모델을 연산 처리하더라도 프로세서(110)가 클럭 단위로 매 순간 필요한 데이터의 순서를 변경할 수 있다. 따라서 인공신경망모델의 인공신경망 데이터 지역성이 하드웨어 레벨에서 다르게 구성될 수 있다.
다만, 인공신경망 데이터 지역성의 구성이 완료될 경우, 프로세서(110)의 연산 순서 및 해당 연산에 필요한 데이터 처리 순서가 해당 인공신경망모델의 학습 연산 또는 추론 연산마다 정확하게 반복될 수 있다.
이하 상술한 본 개시의 일 실시예에 따른 인공신경망 메모리 시스템(100)은 인공신경망 데이터 지역성이 제공하는 정확한 연산 순서에 기초하여 프로세서(110)가 요청할 다음 데이터를 사전에 예측하여 메모리 지연 문제 및 메모리 대역폭 문제를 개선하여 인공신경망 연산 처리 성능을 향상 시키고, 전력소모 등을 저감하도록 구성될 수 있다.
본 개시의 일 실시예에 따른 인공신경망 메모리 제어부(120)는 프로세서(110)가 처리할 인공신경망모델의 인공신경망 데이터 지역성 정보를 제공 받도록 구성되거나 또는 프로세서(110)가 처리중인 인공신경망모델의 인공신경망 데이터 지역성을 분석하도록 구성된 것을 특징으로 한다.
인공신경망 메모리 제어부(120)는 프로세서(110)에서 생성된 데이터 접근 요청을 수신하도록 구성될 수 있다.
인공신경망 메모리 제어부(120)는 프로세서(110)로부터 수신한 데이터 접근 요청을 모니터링 하거나 또는 기록하도록 구성될 수 있다. 인공신경망 메모리 제어부(120)는 인공신경망모델을 처리하고 있는 프로세서(110)가 출력하는 데이터 접근 요청들을 관찰하여 이후에 요청될 데이터 액세스 순서를 정확하게 예측할 수 있는 효과가 있다. 하나의 데이터 접근 요청은 적어도 하나의 워드 단위의 데이터를 포함하도록 구성될 수 있다.
인공신경망 메모리 제어부(120)는 프로세서(110)에서 수신된 데이터 접근 요청을 순차적으로 기록하거나 또는 모니터링하도록 구성될 수 있다.
인공신경망 메모리 제어부(120)가 기록하는 데이터 접근 요청들은 로그 파일(log file), 테이블(table), 리스트(list) 등 다양한 형태로 저장될 수 있다. 단, 본 개시의 일 실시예에 따른 인공신경망 메모리 제어부(120)는 데이터 접근 요청의 기록된 형태나 양식 등에 제한되지 않는다.
인공신경망 메모리 제어부(120)가 모니터링하는 데이터 접근 요청들은 인공신경망 메모리 제어부(120) 내의 임의의 메모리에 저장될 수 있다. 단, 본 개시의 일 실시예에 따른 인공신경망 메모리 제어부(120)는 데이터 접근 요청의 모니터링 방식에 제한되지 않는다.
인공신경망 메모리 제어부(120)는 데이터 접근 요청의 기록 또는 모니터링을 위한 임의의 메모리를 더 포함하도록 구성될 수 있다. 단, 본 개시의 일 실시예에 따른 인공신경망 메모리 제어부(120)는 이에 제한되지 않으며, 외부 메모리와 통신하도록 구성될 수 있다.
인공신경망 메모리 제어부(120)는 프로세서(110)로부터 수신한 데이터 접근 요청을 모니터링 하거나 또는 기록하여 데이터 접근 요청들을 분석하도록 구성될 수 있다.
즉, 인공신경망 메모리 제어부(120)는 수신한 데이터 접근 요청들을 분석하여 프로세서(110)가 처리중인 인공신경망모델의 인공신경망 데이터 지역성을 분석하도록 구성될 수 있다.
즉, 인공신경망 메모리 제어부(120)는 프로세서-메모리 레벨에서 동작하도록 컴파일 된 인공신경망모델의 인공신경망 데이터 지역성을 분석하도록 구성될 수 있다.
즉, 인공신경망 메모리 제어부(120)는 프로세서-메모리 레벨의 인공신경망의 데이터 지역성에 기초하여, 인공신경망의 연산 처리 순서를 프로세서가 생성하는 메모리 접근 요청 단위로 분석하여 인공신경망모델의 인공신경망 데이터 지역성을 분석하도록 구성될 수 있다.
상술한 구성에 따르면, 인공신경망 메모리 제어부(120)는 프로세서-메모리 레벨에서 재구성된 인공신경망 데이터 지역성을 분석할 수 있는 효과가 있다.
몇몇 실시예에서는, 컴파일러는 인공신경망모델의 인공신경망 데이터 지역성을 워드(WORD) 단위까지 분석하도록 구성될 수 있다.
몇몇 실시예에서는, 적어도 하나의 인공신경망 메모리 제어부는 컴파일러가 분석한 인공신경망 데이터 지역성을 워드 단위로 제공받도록 구성될 수 있다. 여기서 워드 단위는 프로세서(110)의 워드 단위에 따라 8bit, 16bit, 32bit, 64bit 등으로 달라질 수 있다. 여기서 워드 단위는 컴파일 된 인공신경망모델의 커널, 특징맵 등의 양자화 알고리즘에 따라 2bit, 3bit, 5bit 등 각각 다른 워드 단위로 설정될 수 있다.
인공신경망 메모리 제어부(120)는 특수 기능 레지스터(special function register)를 포함하도록 구성될 수 있다. 특수 기능 레지스터는 인공신경망 데이터 지역성 정보를 저장하도록 구성될 수 있다.
인공신경망 메모리 제어부(120)는 인공신경망 데이터 지역성 정보의 저장 여부에 따라 서로 다른 모드로 동작하도록 구성될 수 있다.
만약, 인공신경망 메모리 제어부(120)가 인공신경망 데이터 지역성 정보를 저장한 경우, 인공신경망 메모리 제어부(120)는 프로세서(110)가 처리할 인공신경망모델의 데이터 처리 순서를 워드 단위 순서로 미리 예측할 수 있기 때문에, 별도의 데이터 접근 요청을 기록하지 않도록 구성될 수도 있다. 단, 이에 제한되지 않으며, 인공신경망 메모리 제어부(120)는 저장된 인공신경망 데이터 지역성 정보와 프로세서가 생성하는 데이터 접근 요청을 비교하면서, 저장된 인공신경망 데이터 지역성에 오류가 존재하는지 검증하도록 구성될 수 있다.
만약, 인공신경망 메모리 제어부(120)가 인공신경망 데이터 지역성 정보를 제공받지 않은 경우, 인공신경망 메모리 제어부(120)는 프로세서(110)가 생성하는 데이터 접근 요청을 관찰하여 프로세서(110)가 처리하는 인공신경망모델의 인공신경망 데이터 지역성을 예측하는 모드로 동작하도록 구성될 수 있다.
몇몇 실시예에서는, 인공신경망 메모리 시스템은 프로세서, 메모리 및 캐쉬 메모리를 포함하고, 인공신경망 데이터 지역성 정보에 기초하여 프로세서가 요청할 데이터를 포함하는 사전 데이터 접근 요청을 생성하도록 구성될 수 있다. 인공신경망 메모리 시스템은 메모리로부터 사전 데이터 접근 요청에 대응되는 데이터를 프로세서가 요청하기 전에 캐쉬 메모리에 저장하도록 구성될 수 있다. 이때, 인공신경망 메모리 시스템은 인공신경망 데이터 지역성 정보를 제공 받아 동작하도록 구성된 제1 모드 또는 프로세서가 생성하는 데이터 접근 요청들을 관찰하여 인공신경망 데이터 지역성 정보를 예측하여 동작하도록 구성된 제2 모드 중 하나의 모드로 동작하도록 구성될 수 있다. 상술한 구성에 따르면, 인공신경망 메모리 시스템은 인공신경망 데이터 지역성 정보를 제공 받을 경우, 워드 단위로 프로세서가 요청할 데이터를 사전에 예측하여 준비할 수 있는 효과가 있으며, 인공신경망 데이터 지역성 정보가 제공되지 않더라도, 프로세서가 생성하는 데이터 접근 요청들을 일정기간 모니터링함으로써 프로세서가 처리중인 인공신경망 데이터 지역성을 데이터 접근 요청 단위로 예측할 수 있는 효과가 있다. 더 나아가서, 인공신경망 데이터 지역성 정보가 제공되더라도, 인공신경망 메모리 시스템은 자체적으로 데이터 접근 요청을 모니터링 함으로써 인공신경망 데이터 지역성을 재구성하여 제공된 인공신경망 데이터 지역성을 검증하는 용도로 활용할 수도 있다. 따라서 인공신경망모델의 변경, 또는 오류 등의 발생을 감지할 수 있는 효과가 제공될 수 있다.
몇몇 실시예에서는, 적어도 하나의 인공신경망 메모리 제어부와 적어도 하나의 프로세서가 직접 통신하도록 구성될 수 있다. 상술한 구성에 따르면, 인공신경망 메모리 제어부는 프로세서로부터 직접 데이터 접근 요청을 수신할 수 있기 때문에, 프로세서와 인공신경망 메모리 제어부 사이의 시스템버스에 의해서 발생될 수 있는 지연시간을 제거할 수 있는 효과가 있다. 부연 설명하면, 프로세서와 인공신경망 메모리 제어부의 직접 통신을 위해서, 전용 버스를 더 포함하도록 구성될 수 있거나 또는 전용 통신 채널을 더 포함하도록 구성될 수 있다. 단, 이에 제한되지 않는다.
몇몇 실시예에서는, 인공신경망 데이터 지역성 정보는 프로세서(110) 및/또는 인공신경망 메모리 제어부(120)에 선택적으로 저장되도록 구성될 수 있다. 인공신경망 데이터 지역성 정보는 프로세서(110) 및/또는 인공신경망 메모리 제어부(120)에 포함된 특수 목적 레지스터(special function register)에 저장되도록 구성될 수 있다. 단, 이에 제한되지 않으며, 인공신경망 데이터 지역성 정보는 인공신경망 메모리 시스템과 통신할 수 있는 임의의 메모리, 레지스터 등에 저장될 수 있다.
도 2는 본 개시의 일 실시예에 따른 인공신경망 데이터 지역성 패턴을 설명하는 개략도이다. 이하 도 2를 참조하여 인공신경망모델의 인공신경망 데이터 지역성 및 인공신경망 데이터 지역성 패턴에 대해서 설명한다.
인공신경망 메모리 제어부(120)는 프로세서(110)로부터 수신된 데이터 접근 요청을 순서대로 기록 또는 모니터링 하도록 구성된다.
인공신경망 메모리 제어부(120)는 프로세서(110)가 처리중인 인공신경망모델의 데이터 지역성을 포함하는 인공신경망 데이터 지역성 패턴을 생성하도록 구성된다. 즉, 인공신경망 메모리 제어부(120)는 프로세서(110)가 생성하는 인공신경망모델과 관련된 데이터 접근 요청들을 분석하여 반복되는 특정 패턴을 생성하도록 구성될 수 있다. 즉, 데이터 접근 요청을 관찰할 경우, 인공신경망 데이터 지역성 정보는 인공신경망 데이터 지역성 패턴으로 저장될 수 있다.
도 2를 참조하면, 예시적으로 18개의 데이터 접근 요청들이 인공신경망 메모리 제어부(120)에 순차적으로 기록되어 있다. 각각의 데이터 접근 요청들은 식별 정보를 포함하도록 구성된다.
데이터 접근 요청에 포함된 식별 정보는 다양한 정보를 포함하도록 구성될 수 있다.
예를 들면, 식별 정보는 적어도 메모리 주소 값 및 동작 모드(mode) 값을 포함하도록 구성된다.
예를 들면, 메모리 주소 값은 요청된 데이터에 대응되는 메모리 주소 값들을 포함하도록 구성될 수 있다. 단, 본 개시는 이에 제한되지 않는다.
예를 들면, 메모리 주소 값은 요청된 데이터에 대응되는 메모리 주소의 시작 값과 끝 값을 포함하도록 구성될 수 있다. 상술한 구성에 따르면, 메모리 주소의 시작 값과 끝 값 사이에 데이터가 순차적으로 저장된 것으로 간주한다. 따라서 메모리 주소 값들을 저장하는 용량을 저감할 수 있는 효과가 있다.
예를 들면, 메모리 주소 값은 요청된 데이터에 대응되는 메모리 주소의 시작 값과 데이터 연속 읽기 트리거(trigger) 값을 포함하도록 구성될 수 있다. 상술한 구성에 따르면, 메모리 주소의 시작 값부터 연속 읽기 트리거 값이 바뀔 때까지 연속으로 데이터를 읽을 수 있다. 상술한 구성에 따르면, 데이터를 연속으로 읽을 수 있기 때문에 메모리 실효 대역폭을 증가시킬 수 있는 효과가 있다.
예를 들면, 메모리 주소 값은 요청된 데이터에 대응되는 메모리 주소의 시작 값과 데이터의 개수 정보를 포함하도록 구성될 수 있다. 데이터의 개수의 단위는 메모리의 용량의 단위에 기초하여 결정될 수 있다. 단위는 예를 들면, 8비트인 1바이트(byte), 4바이트인 1단어(word), 또는 1024바이트인 1블록(block) 중 하나일 수 있다. 단, 본 개시는 이에 제한되지 않는다. 상술한 구성에 따르면, 메모리 주소의 시작 값부터 설정된 단위 크기의 데이터 개수만큼 연속으로 데이터를 읽을 수 있다. 상술한 구성에 따르면, 데이터를 연속으로 읽을 수 있기 때문에 메모리 실효 대역폭을 증가시킬 수 있는 효과가 있다.
예를 들면, 메모리가 비휘발성 메모리인 경우, 메모리 주소 값은 물리-논리 주소 매핑 테이블 또는 플래시 변환 계층(flash translation layer) 정보를 더 포함할 수 있다. 단, 본 개시는 이에 제한되지 않는다.
예를 들면, 동작 모드는 읽기(read) 모드 및 쓰기(write) 모드를 포함하도록 구성될 수 있다.
예를 들면, 동작 모드는 덮어쓰기(overwrite)를 더 포함하도록 구성될 수 있다. 단, 본 개시는 이에 제한되지 않는다.
인공신경망 메모리 제어부(120)는 데이터 접근 요청들 각각의 식별 정보의 동일 여부를 결정하도록 구성될 수 있다.
예를 들면, 인공신경망 메모리 제어부(120)는 데이터 접근 요청들 각각의 메모리 주소 및 동작 모드의 동일 여부를 결정하도록 구성될 수 있다. 다르게 설명하면, 인공신경망 메모리 제어부(120)는 동일한 메모리 주소 값 및 동일한 동작 모드를 가지는 데이터 접근 요청 값을 감지하도록 구성될 수 있다.
예를 들면, 제1 데이터 접근 요청의 메모리 주소 값 및 동작 모드와 제10 데이터 접근 요청의 메모리 주소 값 및 동작 모드가 서로 동일할 때, 인공신경망 메모리 제어부(120)는 해당 메모리 주소 값 및 동작 모드에 대응되는 인공신경망 데이터 지역성 패턴을 생성하도록 구성된다.
인공신경망 데이터 지역성 패턴은, 데이터 접근 요청들의 메모리의 주소들을 순차적으로 기록한 데이터를 포함하도록 구성될 수 있다.
즉, 인공신경망 메모리 제어부(120)는 동일한 메모리 주소 값 및 동작 모드를 가지는 데이터 접근 요청들의 반복 주기를 감지하여 반복되는 메모리 주소 값 및 동작 모드를 가지는 데이터 접근 요청들로 구성된 인공신경망 데이터 지역성 패턴을 생성하도록 구성될 수 있다.
즉, 인공신경망 메모리 제어부(120)는 데이터 접근 요청에 포함된 메모리 주소의 반복 패턴을 감지하여 인공신경망 데이터 지역성 패턴을 생성하도록 구성될 수 있다.
도 2를 참조하여 설명하면, 인공신경망 메모리 제어부(120)가 제1 번째 데이터 접근 요청과 제10 번째 데이터 접근 요청의 메모리 주소 값 및 동작 모드가 동일한 것을 확인할 경우, 인공신경망 메모리 제어부(120)는 동일한 데이터 접근 요청들 중 시작되는 데이터 접근 요청부터 반복되는 데이터 접근 요청의 이전 데이터 접근 요청 까지를 하나의 인공신경망 데이터 지역성 패턴으로 생성하도록 구성될 수 있다. 이러한 경우, 인공신경망 메모리 제어부(120)는 제1 데이터 접근 요청 내지 제9 데이터 접근 요청을 포함하는 인공신경망 데이터 지역성 패턴을 생성하도록 구성될 수 있다.
즉, 도 2의 예시에 설명된 인공신경망 데이터 지역성 패턴은 제1 데이터 접근 요청, 제2 데이터 접근 요청, 제3 데이터 접근 요청, 제4 데이터 접근 요청, 제5 데이터 접근 요청, 제6 데이터 접근 요청, 제7 데이터 접근 요청, 제8 데이터 접근 요청 및 제9 데이터 접근 요청 순서로 구성된 메모리 주소 값들 동작 모드 값들을 포함하도록 구성될 수 있다.
인공신경망 메모리 제어부(120)가 생성한 인공신경망 데이터 지역성 패턴은 로그 파일(log file), 테이블(table), 리스트(list) 등 다양한 형태로 저장될 수 있으며, 본 개시의 일 실시예에 따른 인공신경망 메모리 제어부(120)는 인공신경망 데이터 지역성 패턴의 기록된 형태나 양식 등에 제한되지 않는다.
인공신경망 메모리 제어부(120)가 생성한 인공신경망 데이터 지역성 패턴은 인공신경망 메모리 제어부(120)의 임의의 메모리에 저장될 수 있으며, 본 개시의 일 실시예에 따른 인공신경망 메모리 제어부(120)는 인공신경망 데이터 지역성 패턴을 저장하는 메모리의 구조 또는 방식 등에 제한되지 않는다.
인공신경망 메모리 제어부(120)는 인공신경망 데이터 지역성 패턴 저장을 위한 임의의 메모리를 더 포함하도록 구성될 수 있다. 단, 본 개시의 일 실시예에 따른 인공신경망 메모리 제어부(120)는 이에 제한되지 않으며, 외부 메모리와 통신하도록 구성될 수 있다.
즉, 본 개시의 일 실시예에 따른 인공신경망 메모리 시스템(100)은 인공신경망 연산에 대응되는 데이터 접근 요청을 생성하도록 구성된 적어도 하나의 프로세서(110) 및 데이터 접근 요청을 순차적으로 기록하여 인공신경망 데이터 지역성 패턴을 생성하도록 구성된 인공신경망 메모리 제어부(120)를 포함하도록 구성될 수 있다.
인공신경망 메모리 제어부(120)가 인공신경망 데이터 지역성 패턴을 생성한 경우, 인공신경망 메모리 제어부(120)는 프로세서(110)로부터 수신되는 각각의 데이터 접근 요청의 메모리 주소 값 및 동작 모드 값이 기 생성된 인공신경망 데이터 지역성 패턴에 포함된 메모리 주소 값들 및 동작 모드 값들 중 어느 하나와 일치하는지 결정하도록 구성될 수 있다.
도 2를 참조하여 설명하면, 인공신경망 메모리 제어부(120)가 제10 데이터 접근 요청을 프로세서(110)로부터 수신할 때, 인공신경망 메모리 제어부(120)는 수신된 데이터 접근 요청이 인공신경망 데이터 지역성 패턴에 포함된 메모리 주소 값과 동일한 메모리 주소 값을 가지고 있는지를 결정하도록 구성될 수 있다.
도 2의 예시를 참조하여 설명하면, 인공신경망 메모리 제어부(120)가 제10 데이터 접근 요청을 수신 받는 경우, 인공신경망 메모리 제어부(120)는 제10 데이터 접근 요청의 메모리 주소 값인 시작 값 [0] 및 끝 값 [0x1000000]과 제1 데이터 접근 요청의 메모리 주소 값인 시작 값 [0] 및 끝 값 [0x1000000]이 서로 동일하다는 것을 감지하고, 제10 데이터 접근 요청의 동작 모드의 읽기 모드 값과 제1 데이터 접근 요청의 동작 모드의 읽기 모드 값이 서로 동일하다는 것을 감지하여, 제10 데이터 접근 요청이 제1 데이터 접근 요청과 서로 동일하고, 제10 데이터 접근 요청은 인공신경망 연산이라고 결정하도록 구성될 수 있다.
인공신경망 메모리 제어부(120)가 제11 데이터 접근 요청을 수신 받는 경우, 제11 데이터 접근 요청의 메모리 주소 값인 시작 값 [0x1100000] 끝 값 [0x1110000]과 제2 데이터 접근 요청의 메모리 주소 값인 시작 값 [0x1100000] 끝 값 [0x1110000]이 동일하다는 것을 감지하고, 제11 데이터 접근 요청의 동작 모드의 쓰기 모드 값과 제2 데이터 접근 요청의 동작 모드의 쓰기 모드 값이 서로 동일하다는 것을 감지하여, 제11 데이터 접근 요청이 제2 데이터 접근 요청과 서로 동일하고, 제11 데이터 접근 요청은 인공신경망 연산이라고 결정하도록 구성될 수 있다.
도 2를 다시 참조하면, 인공신경망 메모리 제어부(120)는 제1 데이터 접근 요청부터 제9 데이터 접근 요청까지는 인공신경망 데이터 지역성 패턴을 생성하지 않은 경우를 예시하고 있다. 이러한 경우는, 인공신경망 메모리 제어부(120)이 초기화 되거나, 프로세서(110)가 인공신경망 연산을 수행하지 않은 경우일 수 있다. 따라서 인공신경망 메모리 제어부(120)는 제9 데이터 접근 요청까지 패턴이 일치되는 경우를 감지하지 않는다. 인공신경망 메모리 제어부(120)는 제10 데이터 접근 요청 시 제1 데이터 접근 요청과 동일성을 결정하고 인공신경망 데이터 지역성 패턴을 생성하고, 패턴의 일치 여부를 기록할 수 있다. 제10 데이터 접근 요청내지 제18 데이터 접근 요청은 제1 데이터 접근 요청내지 제9 데이터 접근 요청과 동일하기 때문에, 인공신경망 메모리 제어부(120)는 제10 데이터 접근 요청내지 제18 데이터 접근의 패턴은 인공신경망 데이터 지역성 패턴과 일치한다고 결정할 수 있다.
즉, 본 개시의 일 실시예에 따른 인공신경망 메모리 제어부(120)는 인공신경망 데이터 지역성 패턴을 활용하여 프로세서(110)가 처리중인 연산이 인공신경망 연산인지 여부를 결정하도록 구성될 수 있다. 상술한 구성에 따르면, 인공신경망 메모리 제어부(120)는 프로세서(110)가 생성하는 메모리 주소 값 및 동작 모드 값을 포함하는 데이터 접근 요청만 수신하더라도 프로세서(110)가 인공신경망 연산을 처리중인 것을 결정할 수 있는 효과를 제공할 수 있다. 따라서 인공신경망 메모리 제어부(120)는 별도의 추가적인 식별 정보가 없더라도 인공신경망 데이터 지역성 패턴에 기초하여 프로세서(110)가 현재 인공신경망 연산을 수행하는지 여부를 결정할 수 있는 효과를 제공할 수 있다.
도 2를 참조하여 부연 설명하면, 각각의 데이터 접근 요청은 토큰으로 저장되도록 구성될 수 있다. 예를 들면, 예를 들면, 인공신경망 각각의 데이터 접근 요청은 데이터 접근 요청을 토큰화(tokenization)하여 저장할 수 있다. 예를 들면, 인공신경망 각각의 데이터 접근 요청은 식별 정보를 기초로 토큰화 할 수 있다. 예를 들면, 인공신경망 각각의 데이터 접근 요청은 메모리 주소 값을 기초로 토큰화 할 수 있다. 단, 본 개시의 실시예들은 이에 제한되지 않으며, 토큰은 코드(code) 또는 아이디(ID) 등으로 지칭될 수 있다.
예를 들면, 제1 데이터 접근 요청은 토큰(token) [1]로 저장될 수 있다. 제4 데이터 접근 요청은 토큰 [4]로 저장될 수 있다. 제7 데이터 접근 요청은 토큰 [7]로 저장될 수 있다. 예를 들면, 인공신경망 데이터 지역성 패턴은 토큰 [1-2-3-4-5-6-7-8-9]로 저장될 수 있다. 예를 들면, 제 10 데이터 접근 요청은 토큰 [1]과 동일한 메모리 주소 값 및 동일한 동작 모드 값을 가지기 때문에 토큰 [1]로 저장될 수 있다. 제13 데이터 접근 요청은 토큰 [4]와 동일한 메모리 주소 값 및 동작 모드 값을 가지기 때문에 토큰 [4]로 저장될 수 있다. 따라서 인공신경망 메모리 제어부(120)는 인공신경망 데이터 지역성 패턴의 토큰과 동일한 토큰을 감지하면, 해당 데이터 접근 요청이 인공신경망 연산인 것을 결정하도록 구성될 수 있다.
상술한 구성에 따르면 인공신경망 메모리 제어부(120)는 토큰화 된 인공신경망 데이터 지역성 패턴을 활용하여 데이터 접근 요청을 쉽고 빠르게 인식하고 구분할 수 있는 효과가 있으며, 더 나아가서, 데이터 접근 요청에 추가적인 식별 정보 및/또는 데이터가 더 추가될 경우에도 동일한 토큰을 사용하여, 데이터 접근 요청의 추가 정보가 증가하는 경우에도 토큰을 활용하여 데이터 접근 요청을 쉽고 빠르게 인식하고 구분할 수 있는 효과를 제공할 수 있다.
몇몇 실시예에서는, 인공신경망 메모리 제어부에 저장된 인공신경망 데이터 지역성 패턴이 삭제되거나 또는 초기화 될 수 있다. 예를 들어, 인공신경망 데이터 지역성 패턴이 기 설정된 시간을 초과할 동안 활용되지 않을 경우, 예를 들면, 인공신경망 데이터 지역성 패턴과 매칭되는 데이터 접근 요청이 특정 시간 동안 생성되지 않는 경우, 인공신경망 메모리 제어부는 해당 인공신경망 데이터 지역성 패턴의 활용 빈도가 낮다고 결정하여, 해당 인공신경망 데이터 지역성 패턴을 삭제하거나 또는 초기화 할 수 있다.
상술한 구성에 따르면, 인공신경망 데이터 지역성 패턴을 저장하는 메모리의 저장공간의 활용도를 향상시킬 수 있는 효과가 있다.
몇몇 실시예에서는, 인공신경망 메모리 제어부는 인공신경망 데이터 지역성 패턴의 갱신된 패턴과 이전의 패턴을 저장하여, 인공신경망모델의 변화 여부를 결정하도록 구성될 수 있다. 즉, 인공신경망 메모리 제어부는 인공신경망모델의 개수가 복수일 경우, 인공신경망모델의 개수에 대응되는 인공신경망 데이터 지역성 패턴들을 더 생성하도록 구성될 수 있다.
예를 들면, 제1 인공신경망 데이터 지역성 패턴은 토큰 [1-2-3-4-5-6-7-8-9]이고 제2 인공신경망 데이터 지역성 패턴은 토큰 [11-12-13-14-15-16]일 경우, 프로세서가 토큰 [1]에 대응되는 데이터 접근 요청을 생성하면, 인공신경망 메모리 제어부는 제1 인공신경망 데이터 지역성 패턴을 선택하도록 구성될 수 있다. 또는 프로세서가 토큰 [11]에 대응되는 데이터 접근 요청을 생성하면, 인공신경망 메모리 제어부는 제2 인공신경망 데이터 지역성 패턴을 선택하도록 구성될 수 있다.
상술한 구성에 의하면, 인공신경망 메모리 제어부는 복수의 인공신경망 데이터 지역성 패턴을 저장할 수 있으며, 프로세서가 처리하는 인공신경망모델이 다른 인공신경망모델로 바뀔 때, 기 저장된 인공신경망 데이터 지역성 패턴을 빠르게 적용할 수 있는 효과가 있다.
몇몇 실시예에서는, 인공신경망 메모리 제어부는 데이터 접근 요청들이 하나의 인공신경망모델의 요청들인지 또는 복수의 인공신경망모델들의 요청들이 혼합된 것인지 여부를 결정하도록 구성될 수 있다. 또한, 인공신경망 메모리 제어부는 복수의 인공신경망모델들 각각의 인공신경망 데이터 지역성에 대응되는 데이터 접근 요청을 각각 예측하도록 구성될 수 있다.
예를 들면, 프로세서는 복수개의 인공신경망모델을 동시에 처리할 수 있으며, 이러한 경우에 프로세서가 생성하는 데이터 접근 요청은 복수개의 인공신경망모델에 대응되는 데이터 접근 요청이 혼합될 수 있다.
예를 들면, 제1 인공신경망 데이터 지역성 패턴은 토큰 [1-2-3-4-5-6-7-8-9]이고 제2 인공신경망 데이터 지역성 패턴은 토큰 [11-12-13-14-15-16]일 경우, 프로세서(110)는 [1-11-2-3-12-13-14-4-5-6-15-16-7-8-9]의 순서로 데이터 접근 요청에 대응되는 토큰을 생성할 수 있다.
인공신경망 메모리 제어부는 각각의 인공신경망 데이터 지역성 패턴을 알기 때문에, 토큰[1]이 생성된 다음 토큰[11]이 생성되더라도, 인공신경망 메모리 제어부는 토큰[2]가 다음에 생성될 것을 예측할 수 있다. 따라서 인공신경망 메모리 제어부는 토큰[2]에 대응되는 사전 데이터 접근을 생성할 수 있다. 또한 토큰[11]이 생성된 다음 토큰[2]가 생성되더라도, 인공신경망 메모리 제어부는 토큰 [12]가 다음에 생성될 것을 예측할 수 있다. 따라서 인공신경망 메모리 제어부는 토큰[12]에 대응되는 사전 데이터 접근을 생성할 수 있다.
상술한 구성에 따르면, 인공신경망 메모리 제어부(120)는 복수의 인공신경망모델을 처리하는 프로세서(110)가 생성할 데이터 접근 요청을 인공신경망모델 별로 각각 예측하여 프로세서(110)가 요청할 데이터를 사전에 예측하여 대비할 수 있는 효과가 있다.
몇몇 실시예에서는, 인공신경망 메모리 제어부는 복수개의 인공신경망 데이터 지역성 패턴을 저장하도록 구성될 수 있다.
예를 들어, 프로세서가 2개의 인공신경망모델을 처리할 경우, 인공신경망 메모리 제어부는 각각의 인공신경망모델의 인공신경망 데이터 지역성 패턴을 저장하도록 구성될 수 있다.
상술한 구성에 따르면, 각각의 인공신경망모델의 연산이 처리될 때, 각각의 모델에 대응되는 다음 데이터 접근 요청이 예측될 수 있기 때문에, 본 발명의 실시예는 인공신경망 연산의 처리 속도를 향상시킬 수 있는 효과가 있다.
몇몇 실시예에서는, 인공신경망 메모리 제어부는, 인공신경망 데이터 지역성 패턴을 기계학습을 하도록 구성된 인공신경망모델을 더 포함하도록 구성될 수 있다.
상술한 구성에 따르면, 인공신경망 메모리 제어부의 인공신경망모델은 프로세서가 생성하는 데이터 접근 요청을 실시간으로 강화 학습하도록 구성될 수 있다. 또한 인공신경망 메모리 제어부의 인공신경망모델은 종래에 잘 알려진 인공신경망모델들의 인공신경망 데이터 지역성 패턴들을 학습 자료로 활용하여 학습된 모델일 수 있다. 따라서 인공신경망 메모리 제어부는 다양한 인공신경망모델들을 인공신경망 데이터 지역성 패턴을 추출해 낼 수 있는 효과가 있다. 특히 서버와 같이 다수의 사용자의 요청에 의해서 다양한 인공신경망모델들을 처리할 때 이러한 방식이 효과적일 수 있다.
도 2를 참조하여 부연 설명하면, 인공신경망 메모리 제어부(120)는 프로세서(110)가 처리하는 인공신경망모델을 동적으로 또는 실시간으로 모니터링하고, 인공신경망모델의 변경 여부를 결정하도록 구성될 수 있다.
예를 들면, 인공신경망 메모리 제어부(120)는 인공신경망 데이터 지역성 패턴의 패턴 일치 빈도를 통계적으로 활용하여 인공신경망 데이터 지역성 패턴의 신뢰도를 결정하도록 구성될 수 있다. 데이터 지역성 패턴의 패턴 일치 빈도가 증가할수록 인공신경망 데이터 지역성 패턴의 신뢰도가 증가하도록 구성되고, 데이터 지역성 패턴의 패턴 일치 빈도가 저감될수록 인공신경망 데이터 지역성 패턴의 신뢰도가 감소하도록 구성될 수 있다.
상술한 구성에 따르면, 프로세서(110)가 특정 인공신경망모델을 반복 처리할 때 인공신경망 메모리 제어부(120)는 특정 인공신경망모델의 인공신경망 데이터 지역성 예측 신뢰도가 향상될 수 있는 효과가 있다.
도 3은 본 개시의 다양한 실시예들에 적용될 수 있는 인공신경망 데이터 지역성 패턴의 설명을 위한 예시적인 인공신경망모델을 나타내는 개략도이다.
도 3에 도시된 프로세서(110)가 처리중인 예시적인 인공신경망모델(1300)은 특정 추론 기능을 하도록 학습된 임의의 인공신경망모델일 수 있다. 단지 설명의 편의를 위해서 각각의 모든 노드(node)가 모두 연결된(fully-connected) 인공신경망모델을 도시하였지만, 본 개시는 이에 제한되지 않는다.
도 3에 도시되지 않았지만, 본 개시에 적용될 수 있는 인공신경망모델은 심층 신경망(DNN, Deep Neural Network)의 한 종류인 컨벌루션 신경망(CNN, Convolutional Neural Network)일 수 있다. 예시적인 인공신경망모델은 VGG, VGG16, DenseNet 및, encoder-decoder structure를 갖는 FCN (Fully Convolutional Network), SegNet, DeconvNet, DeepLAB V3+, U-net와 같은 DNN (deep neural network), SqueezeNet, Alexnet, ResNet18, MobileNet-v2, GoogLeNet, Resnet-v2, Resnet50, Resnet101, Inception-v3 등의 모델이거나 또는 적어도 두 개의 서로 다른 모델들에 기초한 앙상블 모델일 수도 있다 수 있다. 단, 본 개시의 인공신경망모델은 이에 제한되지 않는다.
상술한 예시적인 인공신경망모델들은 인공신경망 데이터 지역성을 가지도록 구성될 수 있다.
다시 도 3을 참조하여 프로세서(110)가 처리하는 인공신경망모델의 인공신경망 데이터 지역성에 대해서 자세히 설명한다.
예시적인 인공신경망모델(1300)은 입력 레이어(1310), 제1 연결망(1320), 제1 은닉 레이어(1330), 제2 연결망(1340), 제2 은닉 레이어(1350), 제3 연결망(1360), 및 출력 레이어(1370)을 포함한다.
인공신경망의 연결망은 대응되는 가중치 값을 가진다. 연결망의 가중치 값은 입력 노드 값과 곱해지고, 곱해진 값들의 누산된 값이 대응되는 출력 레이어의 노드에 저장된다.
부연 설명하면, 인공신경망모델(1300)의 연결망은 선으로 도시되어 있으며 가중치는 ⓧ로 도시되어 있다.
부연 설명하면, 누산된 값에 비선형성을 부여하기 위한 여러 가지 활성화 함수를 추가적으로 제공하도록 구성될 수 있다. 활성화 함수는 예를 들면, 시그모이드 함수, 하이퍼볼릭 탄젠트 함수, 또는 ReLU함수등일 수 있다. 단, 본 개시는 이에 제한되지 않는다.
예시적인 인공신경망모델(1300)의 입력 레이어(1310)는 x1 및 x2 입력 노드를 포함한다.
예시적인 인공신경망모델(1300)의 제1 연결망(1320)은 입력 레이어(1310)의 각각의 노드와 제1 은닉 레이어(1330)의 노드들을 연결하는 6개의 가중치 값을 가지는 연결망들을 포함한다.
예시적인 인공신경망모델(1300)의 제1 은닉 레이어(1330)는 a1, a2, 및 a3 노드를 포함한다. 제1 연결망(1320)의 가중치 값들은 대응되는 입력 레이어(1310)의 노드 값과 곱해지고, 곱해진 값들의 누산된 값이 제1 은닉 레이어(1330)에 저장된다.
예시적인 인공신경망모델(1300)의 제2 연결망(1340)은 제1 은닉 레이어(1330)의 노드들과 제2 은닉 레이어(1350)의 노드들을 연결하는 9개의 가중치 값을 가지는 연결망들을 포함한다.
예시적인 인공신경망모델(1300)의 제2 은닉 레이어(1350)는 b1, b2, 및 b3 노드를 포함한다. 제2 연결망(1340)의 가중치 값은 대응되는 제1 은닉 레이어(1330)의 노드 값과 곱해지고, 곱해진 값들의 누산된 값이 제2 은닉 레이어(1350)에 저장된다.
예시적인 인공신경망모델(1300)의 제3 연결망(1360)은 제2 은닉 레이어(1350)의 각각의 노드와 출력 레이어(1370)의 각각의 노드를 연결하는 6개의 가중치 값을 가지는 연결망들을 포함한다.
예시적인 인공신경망모델(1300)의 출력 레이어(1370)는 y1, 및 y2 노드를 포함한다. 제3 연결망(1360)의 가중치 값은 대응되는 제2 은닉 레이어(1350)의 입력 노드 값과 곱해지고, 곱해진 값들의 누산된 값이 출력 레이어(1370)에 저장된다.
상술한 인공신경망모델(1300)의 구조에 의하면, 각 레이어 별 연산은 순차적으로 수행되어야 한다는 사실을 인식할 수 있다. 즉, 인공신경망모델의 구조가 확정될 경우, 레이어 별 연산순서가 정해져야 하며, 순서를 다르게 연산할 경우, 추론 결과가 부정확해질 수 있는 문제가 발생할 수 있다. 이러한 인공신경망모델의 구조에 따른 연산의 순서 또는 데이터 흐름의 순서를 인공신경망 데이터 지역성으로 정의할 수 있다.
부연 설명하면, 단지 설명의 편의를 위해서 도 2에서 레이어 단위로 설명하였으나, 본 개시의 실시예들은 레이어 단위에 제한되지 않는다. 본 개시의 실시예들에 따른 프로세서(110)는 인공신경망 데이터 지역성에 기초하여 데이터를 처리하기 때문에, 레이어 단위가 아닌 워드 단위 또는 데이터 접근 요청 단위로 동작될 수 있다. 여기서 데이터 접근 요청의 데이터의 크기는 대응되는 레이어의 데이터 크기 이하일 수 있다.
다시 도 3을 참조하여 예를 들면, 제1 연결망(1320)의 가중치 값들과 입력 레이어(1310)의 노드 값의 곱셈 연산을 위해서 프로세서(110)는 레이어 단위로 데이터 접근 요청을 생성할 수 있다.
하지만 프로세서(110)의 특징맵 분할 합성곱, 프로세싱 엘리먼트의 스테이셔너리 기법, 프로세서의 프로세싱 엘리먼트 개수, 프로세서(110)의 캐쉬 메모리 용량, 프로세서(110)의 메모리 계층 구조, 및/또는 프로세서(110)의 컴파일러 알고리즘에 따라서 제1 연결망(1320)의 가중치 값들과 입력 레이어(1310)의 노드 값들의 레이어 연산은 하나의 데이터 접근 요청으로 처리되지 않고, 복수로 분할된 순차적 데이터 접근 요청들로 처리될 수 있다.
프로세서(110)가 요청할 데이터 접근 요청이 복수로 분할될 경우, 분할된 데이터 접근 요청들을 요청하는 순서가 인공신경망 데이터 지역성에 의해서 결정될 수 있다. 이때, 인공신경망 메모리 제어부(120)는 인공신경망 데이터 지역성을 제공 받아서, 프로세서(110)가 요청할 다음 데이터 접근 요청에 대응되는 데이터를 제공할 준비를 하도록 구성되는 것도 가능하다. 또는, 인공신경망 메모리 제어부(120)는 인공신경망 데이터 지역성을 예측하여, 프로세서(110)가 요청할 다음 데이터 접근 요청에 대응되는 데이터를 제공할 준비를 하도록 구성되는 것도 가능하다.
도 3에 도시된 인공신경망모델(1300)의 인공신경망 연산 시 프로세서(110)가 생성하는 데이터 접근 요청들과 인공신경망 데이터 지역성에 대해여 설명한다.
프로세서(110)는 인공신경망모델(1300)의 입력 레이어(1310)는 입력 노드 값들을 읽기 위한 제1 데이터 접근 요청을 생성한다. 제1 데이터 접근 요청은 제1 메모리 주소 값 및 읽기 모드 값을 포함한다. 제1 데이터 접근 요청은 토큰[1]로 저장될 수 있다.
다음으로, 프로세서(110)는 인공신경망모델(1300)의 제1 연결망(1320)의 가중치 값들을 읽기 위한 제2 데이터 접근 요청을 생성한다. 제2 데이터 접근 요청은 제2 메모리 주소 값 및 읽기 모드 값을 포함한다. 제2 데이터 접근 요청은 토큰[2]로 저장될 수 있다.
다음으로, 프로세서(110)는 인공신경망모델(1300)의 제1 연결망(1320)의 가중치 값들과 입력 레이어(1310)의 노드 값들을 곱하고 누산한 제1 은닉 레이어(1330)의 노드 값들을 저장하기 위한 제3 데이터 접근 요청을 생성한다. 제3 데이터 접근 요청은 제3 메모리 주소 값 및 쓰기 모드 값을 포함한다. 제3 데이터 접근 요청은 토큰[3]으로 저장될 수 있다.
다음으로, 프로세서(110)는 인공신경망모델(1300)의 제1 은닉 레이어(1330)에 저장된 노드 값들을 읽기 위한 제4 데이터 접근 요청을 생성한다. 제4 데이터 접근 요청은 제3 메모리 주소 값 및 읽기 모드 값을 포함한다. 제4 데이터 접근 요청은 토큰[4]로 저장될 수 있다.
다음으로, 프로세서(110)는 인공신경망모델(1300)의 제2 연결망(1340)의 가중치 값들을 읽기 위한 제5 데이터 접근 요청을 생성한다. 제5 데이터 접근 요청은 제5 메모리 주소 값 및 쓰기 모드 값을 포함한다. 제5 데이터 접근 요청은 토큰[5]로 저장될 수 있다.
다음으로, 프로세서(110)는 인공신경망모델(1300)의 제2 연결망(1340)의 가중치 값들과 제1 은닉 레이어(1330)의 노드 값들을 곱하고 누산한 제2 은닉 레이어(1350)의 노드 값들을 저장하기 위한 제6 데이터 접근 요청을 생성한다. 제6 데이터 접근 요청은 제6 메모리 주소 값 및 쓰기 모드 값을 포함한다. 제6 데이터 접근 요청은 토큰[6]으로 저장될 수 있다.
다음으로, 프로세서(110)는 인공신경망모델(1300)의 제2 은닉 레이어(1350)에 저장된 노드 값들을 읽기 위한 제7 데이터 접근 요청을 생성한다. 제7 데이터 접근 요청은 제6 메모리 주소 값 및 읽기 모드 값을 포함한다. 제7 데이터 접근 요청은 토큰[7]로 저장될 수 있다.
다음으로, 프로세서(110)는 인공신경망모델(1300)의 제3 연결망(1360)의 가중치 값들을 읽기 위한 제8 데이터 접근 요청을 생성한다. 제8 데이터 접근 요청은 제8 메모리 주소 값 및 읽기 모드 값을 포함한다. 제8 데이터 접근 요청은 토큰[8]로 저장될 수 있다.
다음으로, 프로세서(110)는 인공신경망모델(1300)의 제3 연결망(1360)의 가중치 값들과 제2 은닉 레이어(1350)의 노드 값들을 곱하고 누산한 출력 레이어(1370)의 노드 값들을 저장하기 위한 제9 데이터 접근 요청을 생성한다. 제9 데이터 접근 요청은 제9 메모리 주소 값 및 쓰기 모드 값을 포함한다. 제9 데이터 접근 요청은 토큰[9]로 저장될 수 있다. 노드 값들은 특징맵(feature map), 활성화 맵(activation map) 등 일 수 있다. 단, 이에 제한되지 않는다. 가중치 값들은 커널 윈도우일 수 있다. 단, 이에 제한되지 않는다.
즉, 프로세서(110)는 예시적인 인공신경망모델(1300)의 추론을 위해서 제1 내지 제9 데이터 접근 요청을 생성해야 한다. 만약 프로세서(110)가 생성하는 데이터 접근 요청의 순서가 뒤섞일 경우, 인공신경망모델(1300)의 인공신경망 데이터 지역성이 손상되어 인공신경망모델(1300)의 추론 결과에 오류가 발생되거나 정확도가 저해될 수 있다. 예를 들면, 프로세서(110)가 제2 레이어를 먼저 연산하고 제1 레이어를 연산할 경우 등. 따라서 프로세서(110)는 인공신경망 데이터 지역성에 기초하여 데이터 접근 요청을 순차적으로 생성하도록 구성될 수 있다. 따라서 인공신경망 메모리 제어부(120)는 프로세서(110)가 인공신경망 연산 시 인공신경망 데이터 지역성에 기초하여 데이터 접근 요청을 순차적으로 생성한다고 가정할 수 있다.
다만, 상술하였듯이, 각각의 데이터 접근 요청은 프로세서의 하드웨어 특성에 따라서 프로세서-메모리 레벨에서 재해석 될 수 있다. 상술한 예는, 프로세서의 캐쉬 메모리의 가용 용량이 충분하고, 노드 값의 데이터 크기와 가중치 값의 데이터 크기가 캐쉬 메모리의 가용 용량보다 작은 경우를 예시로 설명하였다. 따라서, 각각의 레이어는 한번의 데이터 접근 요청 단위로 처리되는 것으로 설명될 수 있다. 만약, 인공신경망모델의 가중치 값, 특징맵, 커널, 활성화 맵 등의 데이터 크기가 프로세서의 캐쉬 메모리의 가용 용량보다 클 경우, 대응되는 데이터 접근 요청은 복수개로 분할될 수 있으며, 이러한 경우, 인공신경망모델의 인공신경망 데이터 지역성이 재구성될 수 있다.
본 개시의 일 실시예에 따른 인공신경망 메모리 제어부(120)는 인공신경망 데이터 지역성 패턴을 생성할 수 있기 때문에, 능동적으로 프로세서가 처리하는 인공신경망모델의 인공신경망 데이터 지역성에 대응되어 동작될 수 있는 효과가 있다.
즉, 인공신경망 메모리 제어부(120)는 프로세서(110)가 처리중인 인공신경망모델의 실제 인공신경망 데이터 지역성을 모르더라도, 기록된 데이터 접근 요청을 분석하여 인공신경망 데이터 지역성을 실질적으로 분석할 수 있는 효과가 있다.
즉, 인공신경망 메모리 제어부(120)는 프로세서(110)가 처리중인 인공신경망모델의 구조 정보를 제공하지 않더라도, 기록된 데이터 접근 요청을 분석하여 인공신경망 데이터 지역성을 실질적으로 분석할 수 있는 효과가 있다.
몇몇 실시예에서는, 인공신경망 메모리 제어부는 프로세서-메모리 레벨에서 기 생성된 인공신경망 데이터 지역성 패턴을 제공받도록 구성될 수 있다.
도 4는 본 개시의 일 실시예에 따른 인공신경망 메모리 제어부가 도 3의 인공신경망모델을 분석하여 생성한 인공신경망 데이터 지역성 패턴을 설명하는 개략도이다. 도 5는 도 4의 인공신경망 데이터 지역성 패턴에 대응되는 토큰과 식별 정보를 설명하는 개략도이다.
도 4에 도시된 인공신경망 데이터 지역성 패턴(1400)은 단지 설명의 편의를 위해 토큰으로 도시되어 있다. 도 1a 내지 도 4를 참조하여 설명하면, 인공신경망모델(1300)의 인공신경망 데이터 지역성 패턴(1400)은 토큰 [1-2-3-4-5-6-7-8-9]으로 저장되어 있다. 도 5에 도시된 인공신경망 데이터 지역성 패턴(1400)에 대응되는 토큰과 대응되는 식별 정보가 도시되어 있다.
각각의 데이터 접근 요청은 식별 정보를 포함하도록 구성될 수 있다. 각각의 데이터 접근 요청은 토큰으로 표현될 수 있다. 단, 이는 단지 설명의 편의를 위한 것이며, 본 개시는 토큰에 제한되지 않는다.
인공신경망 데이터 지역성 패턴(1400)에 따르면, 인공신경망 메모리 제어부(120)는 현재의 토큰 이후에 발생될 토큰의 순서를 순차적으로 예측할 수 있는 효과가 있다.
예를 들면, 인공신경망 데이터 지역성 패턴(1400)은 마지막 토큰에서 시작 토큰으로 순서가 연결되는 루프 형태의 패턴을 가지도록 구성될 수 있다. 단, 본 개시는 이에 제한되지 않는다.
예를 들면, 인공신경망 데이터 지역성 패턴(1400)은 반복되는 루프 특성을 가지는 메모리 주소들로 구성될 수 있다. 단, 본 개시는 이에 제한되지 않는다.
예를 들면, 인공신경망 데이터 지역성 패턴(1400)은 인공신경망모델의 연산의 시작과 끝을 식별할 수 있는 식별 정보를 더 포함하도록 구성될 수 있다. 단, 본 개시는 이에 제한되지 않는다.
예를 들면, 인공신경망 데이터 지역성 패턴(1400)의 시작과 끝은 패턴의 시작 토큰과 마지막 토큰으로 구분하도록 구성될 수 있다. 단, 본 개시는 이에 제한되지 않는다.
상술한 구성에 따르면, 프로세서(110)가 특정 인공신경망모델을 반복하여 추론 할 때, 인공신경망 데이터 지역성 패턴(1400)은 루프 형태의 패턴이기 때문에 특정 인공신경망모델의 현재 추론이 끝나더라도, 다음 추론의 시작을 예측할 수 있는 효과가 있다.
예를 들면, 초당 30 IPS(inference per second) 속도로 자율 주행 자동차에 장착된 전방 카메라의 영상의 물체를 인식하는 인공신경망모델의 경우, 연속적으로 동일한 추론이 특정 주기로 계속 반복된다. 따라서 상술한 루프 형태의 인공신경망 데이터 지역성 패턴을 활용하면, 반복되는 데이터 접근 요청을 예측할 수 있는 효과가 있다.
식별 정보에 대해서 예를 들어 부연 설명하면, 인공신경망 데이터 지역성 패턴(1400)의 토큰 [3]과 토큰 [4]는 동일한 메모리 주소 값을 가지나 동작 모드가 다른 것을 확인할 수 있다. 따라서 인공신경망 메모리 제어부(120)는 메모리 주소 값이 동일하더라도, 동작 모드가 다르기 때문에 제3 데이터 접근 요청과 제4 데이터 접근 요청을 서로 다른 토큰으로 분류하도록 구성될 수 있다. 단, 본 개시의 실시예들의 식별 정보는 동작 모드에 제한되지 않으며, 메모리 주소 값만으로 인공신경망 데이터 지역성 패턴을 예측하도록 구성될 수 있다.
인공신경망 메모리 제어부(120)는 인공신경망 데이터 지역성 패턴(1400)에 기초하여 대응되는 사전 데이터 접근 요청을 생성하도록 구성될 수 있다.
인공신경망 메모리 제어부(120)는 인공신경망 데이터 지역성 패턴(1400)에 기초하여 사전 데이터 접근 요청을 순차적으로 더 생성하도록 구성될 수 있다.
상술한 구성에 따르면, 프로세서(110)가 인공신경망 데이터 지역성 패턴(1400)에 포함된 특정 데이터 접근 요청을 생성하면 인공신경망 메모리 제어부(120)는 특정 데이터 접근 요청 이후의 데이터 접근 요청들을 적어도 하나 이상 순차적으로 예측할 수 있는 효과가 있다. 예를 들면, 토큰 [1]을 프로세서(110)가 생성하면, 인공신경망 메모리 제어부(120)는 토큰 [2]에 대응되는 데이터 접근 요청이 다음에 생성될 것을 예측할 수 있는 효과가 있다. 예를 들면, 토큰 [3]을 프로세서(110)가 생성하면, 인공신경망 메모리 제어부(120)는 토큰 [4]에 대응되는 데이터 접근 요청이 다음에 생성될 것을 예측할 수 있는 효과가 있다. 예를 들면, 토큰 [1]을 프로세서(110)가 생성하면, 인공신경망 메모리 제어부(120)는 토큰 [2-3-4-5-6-7-8-9] 순서로 대응되는 데이터 접근 요청들이 생성될 것을 예측할 수 있는 효과가 있다.
부연 설명하면, 프로세서(110)가 복수의 인공신경망모델들을 처리할 경우, 인공신경망 데이터 지역성 패턴(1400)의 토큰들 사이에 예측하지 못한 데이터 지역성 패턴이 끼어들 수 있다. 예를 들면, 토큰 [2] 이후에 새로운 토큰[41]이 난입할 수 있다. 하지만 이러한 경우에도, 인공신경망 메모리 제어부(120)는 토큰 [2] 이후에는 프로세서(110)가 토큰[3]을 생성할 것을 예측하고 준비할 수 있는 효과가 있다.
예를 들면, 프로세서(110)가 토큰[9]를 생성하면, 인공신경망 메모리 제어부(120)는 프로세서(110)가 토큰[1]을 생성할 것을 예측할 수 있다.
도 6은 본 개시의 일 실시예에 따른 인공신경망 메모리 제어부가 인공신경망 데이터 지역성 패턴에 기초하여 생성한 사전 데이터 접근 요청과 다음 데이터 접근 요청을 설명하는 개략도이다.
본 개시의 일 실시예에 따른 인공신경망 메모리 제어부(120)는 인공신경망 데이터 지역성 패턴을 활용하여 프로세서(110)가 다음에 요청할 다음 데이터 접근 요청을 예측하여 사전 데이터 접근 요청을 생성하도록 구성될 수 있다.
도 6을 참조하면, 데이터 접근 요청 토큰은 인공신경망 메모리 제어부(120)가 프로세서(110)로부터 수신한 데이터 접근 요청에 대응되는 토큰을 의미한다. 사전 데이터 접근 요청 토큰은 프로세서(110)가 다음에 요청할 데이터 접근 요청을 인공신경망 메모리 제어부(120)가 인공신경망 데이터 지역성 패턴에 기초하여 사전에 예측한 데이터 접근 요청에 대응되는 토큰이다. 다음 데이터 접근 요청 토큰은 사전 데이터 접근 요청 토큰 생성 후 프로세서(110)가 실제 생성한 데이터 접근 요청 토큰이다. 단, 본 개시의 토큰은 단지 설명의 편의를 위한 예시일 뿐이며, 본 개시는 토큰에 제한되지 않는다.
데이터 접근 요청 및 사전 데이터 접근은 데이터 접근 요청 토큰에 대응될 수 있다. 이러한 경우, 특정 데이터 접근 요청 토큰에 매칭되는 데이터 접근 요청 및 사전 데이터 접근 요청은 서로 동일한 메모리 주소를 가지도록 구성될 수 있다. 즉, 데이터 접근 요청 및 사전 데이터 접근은 서로 동일한 메모리 주소를 포함하도록 구성될 수 있다.
예를 들면, 데이터 접근 요청 토큰이 [3]이고 사전 데이터 접근 요청 토큰이 [3]일 경우, 각각의 토큰의 메모리 주소 값은 서로 동일할 수 있다. 즉, 데이터 접근 요청 및 사전 데이터 접근은 서로 동일한 동작 모드 값을 포함하도록 구성될 수 있다. 예를 들면, 데이터 접근 요청 토큰이 [3]이고 사전 데이터 접근 요청 토큰이 [3]일 경우, 각각의 토큰의 동작 모드 값은 서로 동일할 수 있다.
도 6을 참조하면, 프로세서(110)가 토큰 [1]에 대응되는 데이터 접근 요청을 생성하면, 인공신경망 메모리 제어부(120)는 토큰 [2]에 대응되는 사전 데이터 접근 요청을 생성한다. 프로세서(110)는 사전 데이터 접근 요청 생성 후 토큰 [2]에 대응되는 다음 데이터 접근 요청을 생성하였다. 그리고 인공신경망 메모리 제어부(120)는 사전 데이터 접근 요청이 다음 데이터 접근 요청을 정확히 예측했는지를 결정하도록 구성된다. 인공신경망 메모리 제어부(120)는 사전 데이터 접근 요청과 다음 데이터 접근 요청에 대응되는 토큰이 동일하기 때문에 패턴이 일치한다고 결정할 수 있다.
다음으로 예를 들면, 프로세서(110)가 토큰 [2]에 대응되는 데이터 접근 요청을 생성하면, 인공신경망 메모리 제어부(120)는 토큰 [3]에 대응되는 사전 데이터 접근 요청을 생성한다. 프로세서(110)는 사전 데이터 접근 요청 생성 후 토큰 [3]에 대응되는 다음 데이터 접근 요청을 생성하였다. 그리고 인공신경망 메모리 제어부(120)는 사전 데이터 접근 요청이 다음 데이터 접근 요청을 정확히 예측했는지를 결정하도록 구성된다. 인공신경망 메모리 제어부(120)는 사전 데이터 접근 요청과 다음 데이터 접근 요청에 대응되는 토큰이 동일하기 때문에 패턴이 일치한다고 결정할 수 있다.
다시 예를 들면, 프로세서(110)가 토큰 [9]에 대응되는 데이터 접근 요청을 생성하면, 인공신경망 메모리 제어부(120)는 토큰 [1]에 대응되는 사전 데이터 접근 요청을 생성한다. 프로세서(110)는 사전 데이터 접근 요청 생성 후 토큰 [9]에 대응되는 다음 데이터 접근 요청을 생성하였다. 그리고 인공신경망 메모리 제어부(120)는 사전 데이터 접근 요청이 다음 데이터 접근 요청을 정확히 예측했는지를 결정하도록 구성된다. 인공신경망 메모리 제어부(120)는 사전 데이터 접근 요청과 다음 데이터 접근 요청에 대응되는 토큰이 동일하기 때문에 패턴이 일치한다고 결정할 수 있다.
인공신경망 메모리 제어부(120)가 사전 데이터 접근 요청을 생성한 이후, 프로세서(110)가 다음 데이터 접근 요청을 생성할 경우, 인공신경망 메모리 제어부(120)는 사전 데이터 접근 요청과 다음 데이터 접근 요청이 서로 동일한 요청인지를 결정하도록 구성될 수 있다.
상술한 구성에 따르면, 인공신경망 메모리 시스템(100)은 프로세서(110)가 처리하는 인공신경망모델의 인공신경망 데이터 지역성의 변화를 감지할 수 있는 효과가 있다. 따라서, 인공신경망 메모리 제어부(120)는 인공신경망모델이 변하더라도 변경된 인공신경망 데이터 지역성을 분석할 수 있는 효과가 있다.
인공신경망 메모리 제어부(120)가 사전 데이터 접근 요청과 다음 데이터 접근 요청이 동일하다고 결정할 경우, 인공신경망 메모리 제어부(120)는 인공신경망 데이터 지역성 패턴을 유지하도록 구성될 수 있다.
상술한 구성에 따르면, 인공신경망 메모리 시스템(100)은 프로세서(110)가 처리하는 인공신경망모델이 반복 사용되는 것을 감지하여, 프로세서(110)가 요구하는 데이터를 보다 더 빠르게 준비하거나 또는 제공할 수 있는 효과가 있다.
인공신경망 메모리 제어부(120)가 사전 데이터 접근 요청과 다음 데이터 접근 요청이 상이하다고 결정할 경우, 인공신경망 메모리 제어부(120)는 인공신경망 데이터 지역성 패턴을 갱신하거나 또는 신규 인공신경망 데이터 지역성 패턴을 더 생성하도록 구성될 수 있다.
상술한 구성에 따르면, 인공신경망 메모리 시스템(100)은 프로세서(110)가 처리하는 인공신경망모델이 변경된 것을 감지하여, 변경된 인공신경망모델에 대응되는 사전 데이터 접근 요청을 생성할 수 있는 효과가 있다.
몇몇 실시예에서는, 인공신경망 메모리 제어부는 연속된 사전 데이터 접근 요청들을 생성하도록 구성될 수 있다.
예를 들면, 데이터 접근 요청 토큰이 [2] 일 경우, 인공신경망 메모리 제어부가 생성하는 사전 데이터 접근 요청은 토큰[3]에 대응되는 데이터 접근 요청일 수 있다. 단, 이에 제한되지 않으며, 예를 들면, 인공신경망 메모리 제어부가 생성하는 사전 데이터 접근 요청은 토큰[3-4]에 대응되는 복수의 데이터 접근 요청들일 수 있다. 단, 이에 제한되지 않으며, 예를 들면, 인공신경망 메모리 제어부가 생성하는 사전 데이터 접근 요청은 토큰[3-4-5-6]에 대응되는 복수의 데이터 접근 요청들일 수 있다.
상술한 구성에 따르면, 인공신경망 메모리 제어부는 인공신경망 데이터 지역성 패턴에 기초하여, 계속 반복되는 데이터 접근 요청들의 순서를 모두 예측한 사전 데이터 접근 요청을 생성할 수 있는 효과가 있다.
상술한 구성에 따르면, 인공신경망 메모리 제어부는 인공신경망 데이터 지역성 패턴에 기초하여, 적어도 일부의 데이터 접근 요청들의 순서를 사전에 예측한 사전 데이터 접근 요청을 생성할 수 있는 효과가 있다.
도 7은 본 개시의 일 실시예에 따른 인공신경망 메모리 제어부의 동작을 개략적으로 설명하는 순서도이다.
도 7을 참조하면, 인공신경망 연산 처리를 위해서 프로세서(110)는 인공신경망 데이터 지역성에 기초하여 인공신경망모델에 대응되는 데이터 접근 요청을 생성하도록 구성될 수 있다.
인공신경망 메모리 제어부(120)는 프로세서(110)에서 생성된 데이터 접근 요청들을 순차적으로 기록하여 인공신경망 데이터 지역성 패턴을 생성한다(S710).
인공신경망 메모리 제어부(120)는 생성된 인공신경망 데이터 지역성 패턴과 프로세서(110)가 생성하는 데이터 접근 요청을 비교하여 프로세서(110)가 생성할 다음 데이터 접근 요청을 예측한 사전 데이터 접근 요청을 생성하도록 구성될 수 있다.
본 개시의 일 실시예에 따른 인공신경망 메모리 시스템(100)은 인공신경망 연산에 대응되는 데이터 접근 요청을 생성하도록 구성된 적어도 하나의 프로세서(110) 및 데이터 접근 요청을 순차적으로 기록하여 인공신경망 연산의 인공신경망 데이터 지역성 패턴을 생성한다(S720). 메모리 인공신경망 메모리 시스템(100)은 인공신경망 데이터 지역성 패턴에 기초하여 적어도 하나의 프로세서(110)가 생성한 데이터 접근 요청의 다음 데이터 접근 요청을 예측한 사전 데이터 접근 요청을 생성하도록 구성된, 적어도 하나의 인공신경망 메모리 제어부(120)를 포함하도록 구성될 수 있다.
즉, 적어도 하나의 인공신경망 메모리 제어부(120)는 다음 데이터 접근 요청 생성 전에 사전 데이터 접근 요청을 생성한다(S730).
즉, 적어도 하나의 프로세서(110)는 적어도 하나의 인공신경망 메모리 제어부(120)에 데이터 접근 요청을 전송하도록 구성되고, 적어도 하나의 인공신경망 메모리 제어부(120)는 데이터 접근 요청에 대응하여 사전 데이터 접근 요청을 출력하도록 구성될 수 있다.
본 개시의 일 실시예에 따른 인공신경망 메모리 시스템(100)은 인공신경망 연산에 대응되는 데이터 접근 요청을 생성하도록 구성된 적어도 하나의 프로세서(110) 및 적어도 하나의 프로세서(110)가 생성한 데이터 접근 요청을 순차적으로 기록하여 인공신경망 연산의 인공신경망 데이터 지역성 패턴을 생성하도록 구성되고, 인공신경망 데이터 지역성 패턴에 기초하여 적어도 하나의 프로세서(110)가 생성한 데이터 접근 요청의 다음 데이터 접근 요청을 예측한 사전 데이터 접근 요청을 생성하도록 구성된 적어도 하나의 인공신경망 메모리 제어부(120)를 포함하도록 구성될 수 있다.
상술한 구성에 따르면, 인공신경망 메모리 제어부(120)는 인공신경망 데이터 지역성 패턴에 기초하여 프로세서(110)가 처리중인 인공신경망모델이 생성할 다음 데이터 접근 요청을 사전에 예측할 수 있기 때문에, 프로세서(110)가 요청하기 전에 해당 데이터를 사전에 제공할 준비를 할 수 있는 장점이 있다.
인공신경망 메모리 제어부(120)는 생성된 사전 데이터 접근 요청과 사전 데이터 접근 요청 생성 후 프로세서(110)가 생성한 다음 데이터 접근 요청을 비교하여 인공신경망 데이터 지역성 패턴이 매칭되는지를 결정하도록 구성될 수 있다(S740).
상술한 구성에 따르면, 인공신경망 메모리 제어부(120)는 다음 데이터 접근 요청 생성 전에 사전 데이터 접근 요청을 생성하여 사전에 데이터를 제공할 준비를 할 수 있다. 따라서 인공신경망 메모리 제어부(120)는 프로세서(110)에 데이터를 제공할 때 발생될 수 있는 지연시간을 실질적으로 제거하거나 또는 저감할 수 있는 효과가 있다.
도 8은 본 개시의 다른 실시예에 따른 인공신경망 메모리 시스템을 설명하는 개략적인 블록도이다.
도 8을 참조하면, 인공신경망 메모리 시스템(200)은 프로세서(210), 인공신경망 메모리 제어부(220), 및 메모리(230)를 포함하도록 구성될 수 있다.
본 개시의 다른 실시예에 따른 인공신경망 메모리 시스템(200)을 본 개시의 일 실시예에 따른 인공신경망 메모리 시스템(100)과 비교하면, 인공신경망 메모리 시스템(200)이 메모리(230)를 더 포함하는 것을 제외하곤 실질적으로 동일하기 때문에, 이하 단지 설명의 편의를 위해서 중복 설명은 생략할 수 있다.
본 개시의 다른 실시예에 따른 인공신경망 메모리 시스템(200)은 인공신경망 메모리 제어부(220)와 통신하도록 구성된 메모리(230)를 포함하고, 메모리(230)는 인공신경망 메모리 제어부(220)에서 출력되는 메모리 접근 요청에 대응하여 동작하도록 구성될 수 있다.
프로세서(210)는 인공신경망 메모리 제어부(220)와 통신하도록 구성될 수 있다. 프로세서(210)는 인공신경망 메모리 제어부(220)로 송신할 데이터 접근 요청을 생성하도록 구성될 수 있다. 데이터 접근 요청은 처리중인 인공신경망모델의 인공신경망 데이터 지역성에 기초하여 생성될 수 있다. 프로세서(210)는 데이터 접근 요청에 대응되는 데이터를 인공신경망 메모리 제어부(220)로부터 제공받도록 구성된다.
인공신경망 메모리 제어부(220)는 프로세서(210)에서 생성된 데이터 접근 요청을 수신하도록 구성될 수 있다. 인공신경망 메모리 제어부(220)는 프로세서(210)가 처리중인 인공신경망모델의 인공신경망 데이터 지역성을 분석하여 인공신경망 데이터 지역성 패턴을 생성하도록 구성될 수 있다.
인공신경망 메모리 제어부(220)는 메모리 접근 요청을 생성하여 메모리(230)를 제어하도록 구성될 수 있다. 인공신경망 메모리 제어부(220)는 데이터 접근 요청에 대응되는 메모리 접근 요청을 생성하도록 구성될 수 있다. 즉, 인공신경망 메모리 제어부(220)는 프로세서(210)가 생성한 데이터 접근 요청에 대응되는 메모리 접근 요청을 생성하도록 구성될 수 있다. 예를 들면, 인공신경망 메모리 제어부(220)가 인공신경망 데이터 지역성 패턴을 생성하지 않은 경우, 인공신경망 메모리 제어부(220)는 프로세서(210)가 생성한 데이터 접근 요청에 기초하여 메모리 접근 요청을 생성하도록 구성될 수 있다. 이러한 경우 메모리 접근 요청은 데이터 접근 요청에 포함된 식별 정보 중 메모리 주소 값 및 동작 모드 값을 포함하도록 구성될 수 있다.
인공신경망 메모리 제어부(220)는 사전 데이터 접근 요청에 대응되는 메모리 접근 요청을 생성하도록 구성될 수 있다. 즉, 인공신경망 메모리 제어부(220)는 인공신경망 데이터 지역성 패턴에 기초여 생성된 사전 데이터 접근 요청에 기초하여 메모리 접근 요청을 생성하도록 구성될 수 있다. 예를 들면, 인공신경망 메모리 제어부(220)가 인공신경망 데이터 지역성 패턴을 생성한 경우, 인공신경망 메모리 제어부(220)는 사전 데이터 접근 요청에 기초하여 메모리 접근 요청을 생성하도록 구성될 수 있다.
상술한 구성에 따르면, 인공신경망 메모리 제어부(220)는 메모리 접근 요청을 통해서 메모리(220)와 데이터를 주고 받을 수 있으며, 해당 메모리 접근 요청이 사전 데이터 접근 요청에 기초하여 생성될 경우, 인공신경망 메모리 시스템(200)은 프로세서(210)에 데이터를 보다 더 빠르게 제공할 수 있는 효과가 있다.
인공신경망 메모리 제어부(220)는 프로세서(210)가 생성한 데이터 접근 요청 및 인공신경망 메모리 제어부(220)가 생성한 사전 데이터 접근 요청 중 하나에 기초하여 메모리 접근 요청을 생성하도록 구성될 수 있다. 즉, 인공신경망 메모리 제어부(220)가 생성하는 메모리 접근 요청은 데이터 접근 요청 또는 사전 데이터 접근 요청에 기초하여 선택적으로 생성될 수 있다.
인공신경망 메모리 제어부(220)는 데이터 접근 요청 및 사전 데이터 접근 요청에 포함된 식별 정보 중 적어도 일부를 포함하는 메모리 접근 요청을 생성하도록 구성될 수 있다. 예를 들면, 프로세서(210)가 생성한 데이터 접근 요청은 메모리 주소 값 및 동작 모드 값을 포함할 수 있다. 이때, 인공신경망 메모리 제어부(220)가 생성한 메모리 접근 요청은 대응되는 데이터 접근 요청의 메모리 주소 값 및 동작 모드 값을 포함하도록 구성될 수 있다.
즉, 데이터 접근 요청, 사전 데이터 접근 요청 및 메모리 접근 요청 각각은 대응되는 메모리 주소 값 및 동작 모드 값을 각각 포함하도록 구성될 수 있다. 동작 모드는 읽기 모드 및 쓰기 모드를 포함하도록 구성될 수 있다. 예를 들면, 인공신경망 메모리 제어부(220)가 생성하는 메모리 접근 요청은 데이터 접근 요청 또는 사전 데이터 접근 요청과 동일한 구조의 데이터 형태로 구성될 수 있다. 따라서 메모리(230)의 입장에서는 데이터 접근 요청과 사전 데이터 접근 요청을 구분하지 않아도, 인공신경망 메모리 제어부(220)의 지시에 따라서 메모리 접근 요청 업무를 수행할 수 있다.
상술한 구성에 따르면, 메모리(230)는 인공신경망 메모리 제어부(220)가 생성하는 메모리 접근 요청이 데이터 접근 요청에 기초한 것인지 또는 사전 데이터 접근 요청에 기초한 것인지 여부와 상관없이 동작할 수 있는 효과가 있다. 따라서 인공신경망 메모리 제어부(220)는 인공신경망 데이터 지역성에 기초하여 동작하더라도, 다양한 종류의 메모리와 호환되어 동작할 수 있는 효과가 있다.
인공신경망 메모리 제어부(220)는 메모리 접근 요청을 메모리(230)에 전달하고, 메모리(230)는 메모리 접근 요청에 대응되는 메모리 동작을 수행하도록 구성된다.
본 개시의 실시예들에 따른 메모리는 다양한 형태로 구현될 수 있다. 메모리는 휘발성 메모리(volatile memory)와 비휘발성 메모리(non-volatile memory)로 구현될 수 있다.
휘발성 메모리는 DRAM(Dynamic RAM)과 SRAM(Static RAM) 등을 포함할 수 있다. 비휘발성 메모리는 PROM(Programmable ROM), EPROM(Erasable PROM), EEPROM(Electrically EPROM), 플래시 메모리(Flash Memory), 강유전체 램(ferroelectric RAM(FRAM)), 마그네틱 램(magnetic RAM(MRAM)), 및 상 변화 메모리 장치(phase change RAM) 등을 포함할 수 있다. 단, 본 개시는 이에 제한되지 않는다.
메모리(230)는 프로세서(210)가 처리중인 인공신경망모델의 추론 데이터, 가중치 데이터 및 특징맵 데이터 중 적어도 하나를 저장하도록 구성될 수 있다. 추론 데이터는 인공신경망모델의 입력신호일 수 있다.
메모리(230)는 인공신경망 메모리 제어부(220)로부터 메모리 접근 요청을 수신하도록 구성될 수 있다. 메모리(230)는 수신한 메모리 접근 요청에 대응되는 메모리 동작을 수행하도록 구성될 수 있다. 메모리 동작을 제어하는 동작 모드는 읽기 모드 또는 쓰기 모드를 포함할 수 있다.
예를 들면, 수신한 메모리 접근 요청의 동작 모드가 쓰기 모드일 경우, 메모리(230)는 대응되는 메모리 주소 값에 인공신경망 메모리 제어부(220)에서 수신된 데이터를 저장할 수 있다.
예를 들면, 수신한 메모리 접근 요청의 동작 모드가 읽기 모드일 경우, 메모리(230)는 대응되는 메모리 주소 값에 저장된 데이터를 인공신경망 메모리 제어부(220)에 전달할 수 있다. 인공신경망 메모리 제어부(220)는 전달받은 데이터를 프로세서(210)에 다시 전달하도록 구성될 수 있다.
메모리(230)는 지연시간(latency)을 가질 수 있다. 메모리(230)의 지연시간은 인공신경망 메모리 제어부(220)가 메모리 접근 요청을 처리할 때 지연되는 시간을 의미할 수 있다. 즉, 메모리(230)가 인공신경망 메모리 제어부(220)에서 메모리 접근 요청을 수신 하면, 특정 클럭 사이클의 지연시간 이후에 실제로 요구된 데이터가 메모리(230)에서 출력된다.
메모리(230)가 메모리 접근 요청을 처리하기 위해서, 메모리(230)는 메모리 접근 요청에 포함된 메모리 주소 값에 접근할 수 있다. 따라서, 메모리 주소 값에 접근하기 위한 시간이 필요하며, 이런 시간을 메모리 지연시간으로 정의할 수 있다. 예를 들면, DDR4 SDRAM 메모리의 CAS 지연시간은 10ns 정도다. 지연시간이 발생하는 동안 프로세서(210)에 데이터가 공급되지 않을 경우, 프로세서(210)는 대기(IDLE) 상태가 되어 실제 연산을 할 수 없게 될 수 있다.
부연 설명하면, 메모리(230)의 한 종류인 DRAM의 경우, 메모리(230)의 Row 주소에 따라 word line 및 bit line을 활성화하는 데 여러 클럭, Column line을 활성화하는 데 여러 클럭, 데이터를 메모리(230) 외부로 전송하는 경로를 통과하는 데 여러 클럭이 소요되며 NAND Flash의 경우에는 한번에 활성화되는 단위가 커서 그 중에서 필요한 주소의 데이터를 탐색하는 데까지 여러 클럭이 추가로 소요될 수도 있다.
메모리(230)는 대역폭(bandwidth)을 가질 수 있다. 메모리(230)의 데이터 전송률을 메모리 대역폭으로 정의할 수 있다. 예를 들면, DDR4 SDRAM 메모리의 대역폭은 4GBytes/sec 정도다. 메모리 대역폭이 높을수록 메모리(230)는 프로세서(210)에 데이터를 빠르게 전송할 수 있다.
즉, 인공신경망 메모리 시스템(200)의 처리 속도는 프로세서(210)의 처리 성능 보다, 프로세서(210)가 처리할 데이터를 공급할 때 발생되는 지연시간과 메모리(230)의 대역폭 성능이 상대적으로 더 많은 영향을 끼친다.
부연 설명하면, 메모리의 대역폭은 점진적으로 증가되고 있으나, 메모리의 지연시간은 대역폭의 개선 속도에 비해서 상대적으로 개선 속도가 느리다. 특히 메모리 접근 요청이 발생될 때마다, 메모리(230)의 지연시간이 발생되기 때문에, 빈번한 메모리 접근 요청은 인공신경망 처리 속도 저하의 중요한 원인이 될 수 있다.
즉, 프로세서(210)의 연산 처리 속도가 빠르더라도, 연산에 필요한 데이터를 가져올 때 지연이 발생되면, 프로세서(210)는 연산을 하지 않는 대기 상태가 될 수 있으며, 이러한 경우 프로세서(210)의 연산 처리 속도가 저하될 수 있다.
이에 본 개시의 실시예들에 따른 인공신경망 메모리 시스템은 메모리(230)의 대역폭 및/또는 지연시간을 개선하도록 구성될 수 있다.
도 9는 본 개시의 비교예에 따른 메모리 시스템의 동작을 설명하는 개략도이다.
도 9를 참조하면, 프로세서가 데이터 접근 요청을 생성하고, 종래의 메모리 시스템은 데이터 접근 요청에 대응되는 메모리 접근 요청을 메모리에 전달할 수 있다. 이때 메모리는 지연시간을 가지기 때문에, 프로세서는 지연시간 동안 대기한 후 요청한 데이터를 메모리에서 제공받을 수 있다.
예를 들면, 프로세서가 생성한 데이터 접근 요청[1]을 종래의 메모리 시스템이 수신하고, 데이터 접근 요청[1]에 대응되는 메모리 접근 요청[1’]을 메모리에 전달한다. 메모리는 지연시간 이후에 메모리 시스템에 데이터[1’’]를 전달 할 수 있다. 따라서, 프로세서는 하나의 데이터 접근 요청마다 메모리의 지연시간만큼 처리 시간이 지연될 수 있다. 따라서, 인공신경망 추론 연산의 시간이 메모리 지연시간 만큼 느려 질 수 있다. 특히, 프로세서가 데이터 접근 요청을 많이 생성할수록, 종래의 메모리 시스템의 인공신경망 추론 연산 시간이 더욱 더 지연될 수 있다.
도 10은 본 개시의 다른 실시예에 따른 메모리 시스템의 설명하는 개략도이다.
도 10을 참조하면, 프로세서(210)가 데이터 접근 요청[1]을 생성하고, 인공신경망 메모리 제어부(220)는 인공신경망 데이터 지역성 패턴에 기초하여 생성된 사전 데이터 접근 요청에 대응되는 메모리 접근 요청을 메모리(230)에 전달할 수 있다. 이때 메모리(230)가 지연시간을 가지더라도, 프로세서(210)는 사전 데이터 접근 요청에 대응되는 메모리 접근 요청을 생성하였기 때문에, 프로세서(210)가 다음 데이터 접근 요청을 생성할 때 인공신경망 메모리 제어부(220)는 프로세서(210)가 요청한 데이터를 바로 프로세서(210)에 제공할 수 있다.
예를 들면, 프로세서(210)가 생성한 데이터 접근 요청[1]을 인공 신경망 메모리 제어부(220)가 수신하여 사전 데이터 접근 요청[2]을 생성하고, 사전 데이터 접근 요청[2]에 대응되는 메모리 접근 요청[2’]을 메모리(230)에 전달한다. 메모리(230)는 지연시간 이후에 인공신경망 메모리 제어부(220)에 데이터[2’’]를 전달할 수 있다. 하지만, 메모리(230)가 제공한 데이터[2’’]는 사전 데이터 접근 요청[2]에 기초한 메모리 접근 요청[2’]에 대응되는 데이터이다. 따라서 프로세서(210)가 다음 데이터 접근 요청[2]를 생성하면, 인공신경망 메모리 제어부(220)는 프로세서(210)에 데이터[2’’]를 즉각 제공할 수 있다.
만약, 사전 데이터 접근 요청에 기초한 메모리 접근 요청과 다음 데이터 접근 요청 사이의 시간이 메모리(230)의 지연시간 이상일 경우, 인공신경망 메모리 제어부(220)는 프로세서(210)에서 다음 데이터 접근 요청을 수신하자 마자 프로세서(210)에 데이터를 제공할 수 있다. 이러한 경우, 인공신경망 메모리 제어부(220)는 메모리(230)의 지연시간을 실질적으로 제거할 수 있는 효과가 있다.
다르게 설명하면, 사전 데이터 접근 요청에 기초한 메모리 접근 요청이 메모리(230)에 전달될 때, 메모리(230)의 지연시간이 사전 데이터 접근 요청 생성부터 다음 데이터 접근 요청 생성 까지의 시간 이하일 수 있다. 이러한 경우, 인공신경망 메모리 제어부(220)는 프로세서(210)가 다음 데이터 접근 요청을 생성하자 마자 지연시간 없이 데이터를 바로 제공할 수 있는 효과가 있다.
만약, 사전 데이터 접근 요청에 기초한 메모리 접근 요청과 다음 데이터 접근 요청 사이의 시간이 메모리(230)의 지연시간 미만이더라도, 메모리 접근 요청과 다음 데이터 접근 요청 사이의 시간만큼 메모리(230)의 지연시간을 실질적으로 감소시킬 수 있는 효과가 있다.
상술한 구성에 따르면, 인공신경망 메모리 제어부(220)는 프로세서(210)에 제공할 데이터의 지연시간을 실질적으로 제거하거나 또는 저감할 수 있는 효과가 있다.
몇몇 실시예에서는, 인공신경망 메모리 시스템의 인공신경망 메모리 제어부는 메모리의 지연시간을 측정하거나 또는 메모리의 지연시간 값을 메모리로부터 제공받도록 구성될 수 있다.
상술한 구성에 따르면, 인공신경망 메모리 제어부는 메모리의 지연시간에 기초하여 사전 데이터 접근 요청에 기초한 메모리 접근 요청의 생성 시기를 결정하도록 구성될 수 있다. 따라서 인공신경망 메모리 제어부가 메모리의 지연시간을 실질적으로 최소화 시키는 사전 데이터 접근 요청에 기초한 메모리 접근 요청을 생성 할 수 있는 효과가 있다.
몇몇 실시예에서는, 인공신경망 메모리 시스템의 메모리는 메모리 셀의 전압을 갱신할 수 있는 리프레쉬 기능을 포함하도록 구성된 메모리일 수 있다. 인공신경망 메모리 제어부는 사전 데이터 접근 요청에 대응되는 메모리 접근 요청에 대응되는 메모리의 메모리 주소 영역의 리프레쉬를 선택적으로 제어하도록 구성될 수 있다. 예를 들면, 메모리는 리프레쉬 기능을 포함한 DRAM일 수 있다.
DRAM은 메모리 셀의 전압을 리프레쉬하지 않으면 메모리 셀이 서서히 방전되어, 저장된 데이터가 손실될 수 있다. 따라서 특정 주기마다 메모리 셀의 전압이 리프레쉬되어야 한다. 만약 인공신경망 메모리 제어부가 메모리 접근 요청을 할 때와 리프레쉬 타이밍이 겹칠 경우, 인공신경망 메모리 시스템은 메모리 셀의 전압을 리프레쉬하는 타이밍을 앞당기거나, 또는 지연시키도록 구성될 수 있다.
인공신경망 메모리 시스템은 인공신경망 데이터 지역성 패턴을 기초로 메모리 접근 요청의 생성 타이밍을 예측하거나 또는 계산할 수 있다. 따라서, 인공신경망 메모리 시스템은 메모리 접근 요청 동작 시 메모리 셀의 전압 리프레쉬를 제한하도록 구성될 수 있다.
부연 설명하면, 인공신경망 연산의 추론 연산은 정확도 개념으로 동작하기 때문에, 메모리 셀의 전압 리프레쉬가 지연되어 저장된 데이터에 일부 손실이 발생하더라도, 추론 정확도 저하는 실질적으로 무시할 수 있는 수준일 수 있다.
상술한 구성에 따르면, 인공신경망 메모리 시스템은 메모리 셀의 전압 리프레쉬 주기와 조절하여 메모리 접근 요청에 따른 데이터를 메모리로부터 제공 받을 수 있는 효과가 있다. 따라서 인공신경망 메모리 시스템은 추론 정확도가 실질적으로 저하되지 않게 하면서 메모리 셀의 전압 리프레쉬에 따른 인공신경망 연산 속도 저하를 개선할 수 있는 효과가 있다.
몇몇 실시예에서는, 인공신경망 메모리 시스템의 메모리는 메모리의 글로벌 비트라인을 특정 전압으로 충전시킬 수 있는 프리차지(Precharge) 기능을 더 포함하도록 구성될 수 있다. 이때, 인공신경망 메모리 제어부는 사전 데이터 접근 요청에 대응되는 메모리 접근 요청에 대응되는 메모리의 메모리 주소 영역에 프리차지를 선택적으로 제공하도록 구성될 수 있다.
몇몇 실시예에서는, 인공신경망 메모리 제어부는 인공신경망 데이터 지역성 패턴에 기초하여 사전 데이터 접근 요청에 대응되는 메모리 작업을 수행할 메모리의 비트라인을 프리차지 시키거나 또는 지연시키도록 구성될 수 있다.
일반적으로 메모리는 메모리 접근 요청을 입력 받아 읽기 동작 또는 쓰기 동작을 수행하는데 프리차지 동작을 수행한다. 한 번의 메모리 동작이 완료되면, 데이터 읽기 쓰기 동작을 수행한 비트라인 및 각 데이터 입출력 라인에 신호들이 남아 있게 되는데, 이와 같은 라인들을 기 설정된 레벨로 프리차지해야 다음의 메모리 동작을 원활하게 수행할 수 있다. 다만, 프리차지에 소요되는 시간이 상당히 길기 때문에, 메모리 접근 요청 생성 시기와 프리차지 타이밍이 겹칠 경우, 메모리 동작이 프리차지 시간만큼 지연될 수 있다. 따라서 프로세서가 요청한 데이터 접근 요청의 처리 시간이 지연될 수 있다.
인공신경망 메모리 제어부는 인공신경망 데이터 지역성 패턴에 기초하여 특정 순서에 특정 메모리의 비트라인에 메모리 동작이 수행될 것을 예측할 수 있다. 따라서 인공신경망 메모리 제어부는 특정 비트라인에 메모리 동작이 수행될 때와 프리차지 타이밍이 겹치지 않게 프리차지 타이밍을 앞당기거나 또는 지연시킬 수 있다.
부연 설명하면, 인공신경망모델의 추론 연산은 정확도 개념으로 동작하기 때문에, 프리차지가 지연되어 저장된 데이터에 일부 손실이 발생하더라도, 추론 정확도 저하는 실질적으로 무시할 수 있는 수준일 수 있다.
부연 설명하면, 인공신경망은 생물학의 뇌 신경망을 모방하여 모델링한 수학적 모델이다. 뉴런(Neuron)이라 불리는 인간의 신경세포는 시냅스(Synapse)라 불리는 신경세포의 접합부를 통하여 정보를 교환하며 신경세포와 신경세포 간의 정보교환은 매우 단순하지만, 상당한 수의 신경세포가 모여 지능을 만들어 낸다. 이러한 구조는 몇몇의 신경세포가 잘못된 정보를 전달하여도 전체 정보에 큰 영향을 끼치지 않으므로 적은 오류에 매우 강인한 장점을 지닌다. 즉, 상술한 특성 때문에, 인공신경망모델의 데이터를 저장하는 메모리의 프리차지 및 리프레쉬 기능을 선택적으로 제한하더라도 인공신경망모델의 정확도는 실질적으로 문제가 발생하지 않을 수 있으며 프리차지 또는 리프레쉬에 의한 메모리 지연시간을 저감할 수 있는 효과가 있다.
상술한 구성에 따르면, 인공신경망 메모리 시스템은 추론 정확도가 실질적으로 저하되지 않게 하면서 프리차지에 따른 인공신경망 연산 속도 저하를 개선할 수 있는 효과가 있다.
몇몇 실시예에서는, 인공신경망 메모리 제어부는 인공신경망 데이터 지역성 패턴에 기초하여 메모리의 리프레쉬 기능 및 프리차지 기능을 각각 제어하도록 구성될 수 있다.
도 11은 본 개시의 또 다른 실시예에 따른 인공신경망 메모리 시스템을 설명하는 개략적인 블록도이다.
도 11을 참조하면, 인공신경망 메모리 시스템(300)은 프로세서(310), 캐쉬 메모리(322)를 포함하는 인공신경망 메모리 제어부(320), 및 메모리(330)를 포함하도록 구성될 수 있다.
본 개시의 또 다른 실시예에 따른 인공신경망 메모리 시스템(300)을 본 개시의 다른 실시예에 따른 인공신경망 메모리 시스템(200)과 비교하면, 인공신경망 메모리 시스템(300)이 캐쉬 메모리(322)를 더 포함하는 것을 제외하곤 실질적으로 동일하기 때문에, 이하 단지 설명의 편의를 위해서 중복 설명은 생략할 수 있다.
본 개시의 또 다른 실시예에 따른 인공신경망 메모리 시스템(300)은 사전 데이터 접근 요청에 기초한 메모리 접근 요청에 응답하여 메모리(330)가 전송한 데이터를 저장하도록 구성된 캐쉬 메모리(322)를 포함하는 인공신경망 메모리 제어부(320)를 포함하도록 구성될 수 있다.
상술한 구성에 따르면, 인공신경망 메모리 제어부(320)는 사전 데이터 접근 요청에 기초한 메모리 접근 요청에 응답한 데이터를 메모리(330)에서 읽어와서 캐쉬 메모리(322)에 저장할 수 있다. 따라서 프로세서(310)가 다음 데이터 접근 요청 생성 시, 인공신경망 메모리 제어부(320)는 캐쉬 메모리(322)에 저장된 데이터를 프로세서(310)에 바로 제공할 수 있는 효과가 있다.
캐쉬 메모리(322)의 지연시간은 메모리(330)의 지연시간보다 상대적으로 훨씬 짧다. 캐쉬 메모리(322)의 대역폭은 메모리(330)의 대역폭보다 상대적으로 더 높다.
본 개시의 또 다른 실시예에 따른 캐쉬 메모리(322)를 포함한 인공신경망 메모리 시스템(300)의 인공신경망모델 처리 성능은 본 개시의 다른 실시예에 따른 인공신경망 메모리 시스템(200)보다 상대적으로 더 우수할 수 있는 효과가 있다.
다시, 도 3의 인공신경망모델(1300)을 참조하여 본 개시의 또 다른 실시예에 따른 인공신경망 메모리 시스템(300)을 설명한다.
인공신경망모델(1300)은 특정 컴파일러(compiler)에 의해서 컴파일 되어 프로세서(310)에서 연산 될 수도 있다. 컴파일러는 인공신경망 메모리 제어부(320)에 인공신경망 데이터 지역성 패턴을 제공하도록 구성될 수도 있다.
인공신경망모델(1300)을 추론하기 위해서 프로세서(310)는 인공신경망 데이터 지역성에 기초한 순서대로 데이터 접근 요청들을 생성하도록 구성된다. 따라서 인공신경망 메모리 제어부(320)는 데이터 접근 요청들을 모니터링하여 인공신경망 데이터 지역성 패턴(1400)을 생성할 수 있다. 또는, 인공신경망 메모리 제어부(320)는 기 생성된 인공신경망 데이터 지역성 패턴(1400)을 저장하고 있을 수도 있다.
이하 인공신경망 데이터 지역성 패턴(1400)이 생성되지 않은 경우를 설명한다.
먼저 프로세서(310)는 입력 레이어(1310)의 노드 값 읽기에 대응되는 토큰[1]의 데이터 접근 요청을 생성할 수 있다. 따라서, 인공신경망 메모리 제어부(320)는 토큰[1]의 메모리 접근 요청을 생성하여 메모리(330)에서 전달 받은 입력 레이어(1310)의 노드 값을 프로세서(310)에 전달할 수 있다.
이어서, 프로세서(310)는 제1 연결망(1320)의 가중치 값 읽기에 대응되는 토큰[2]의 데이터 접근 요청을 생성할 수 있다. 따라서, 인공신경망 메모리 제어부(320)는 토큰[2]의 메모리 접근 요청을 생성하여 메모리(330)에서 전달 받은 제1 연결망(1320)의 가중치 값을 프로세서(310)에 전달할 수 있다.
이어서, 프로세서(310)는 입력 레이어(1310)의 노드 값과 제1 연결망(1320)의 가중치 값을 전달 받아 제1 은닉 레이어(1330)의 노드 값을 연산할 수 있다. 즉, 프로세서(310)는 제1 은닉 레이어(1330)의 노드 값 쓰기에 대응되는 토큰[3]의 데이터 접근 요청을 생성 할 수 있다. 따라서, 인공신경망 메모리 제어부(320)는 토큰[3]의 메모리 접근 요청을 생성하여 제1 은닉 레이어(1330)의 노드 값을 메모리(330)에 저장할 수 있다.
이어서, 프로세서(310)는 제1 은닉 레이어(1330)의 노드 값 읽기에 대응되는 토큰[4]의 데이터 접근 요청을 생성할 수 있다. 따라서, 인공신경망 메모리 제어부(320)는 토큰[4]의 메모리 접근 요청을 생성하여 메모리(330)에서 전달 받은 제1 은닉 레이어(1330)의 노드 값을 프로세서(310)에 전달할 수 있다.
이어서, 프로세서(310)는 제2 연결망(1340)의 가중치 값 읽기에 대응되는 토큰[5]의 데이터 접근 요청을 생성할 수 있다. 따라서, 인공신경망 메모리 제어부(320)는 토큰[5]의 메모리 접근 요청을 생성하여 메모리(330)에서 전달 받은 제2 연결망(1340)의 가중치 값을 프로세서(310)에 전달할 수 있다.
이어서, 프로세서(310)는 제1 은닉 레이어(1330)의 노드 값과 제2 연결망(1340)의 가중치 값을 전달 받아 제2 은닉 레이어(1350)의 노드 값을 연산할 수 있다. 즉, 프로세서(310)는 제2 은닉 레이어(1350)의 노드 값 쓰기에 대응되는 토큰[6]의 데이터 접근 요청을 생성 할 수 있다. 따라서, 인공신경망 메모리 제어부(320)는 토큰[6]의 메모리 접근 요청을 생성하여 제2 은닉 레이어(1350)의 노드 값을 메모리(330)에 저장할 수 있다.
이어서, 프로세서(310)는 제2 은닉 레이어(1350)의 노드 값 읽기에 대응되는 토큰[7]의 데이터 접근 요청을 생성할 수 있다. 따라서, 인공신경망 메모리 제어부(320)는 토큰[7]의 메모리 접근 요청을 생성하여 메모리(330)에서 전달 받은 제2 은닉 레이어(1350)의 노드 값을 프로세서(310)에 전달할 수 있다.
이어서, 프로세서(310)는 제3 연결망(1360)의 가중치 값 읽기에 대응되는 토큰[8]의 데이터 접근 요청을 생성할 수 있다. 따라서, 인공신경망 메모리 제어부(320)는 토큰[8]의 메모리 접근 요청을 생성하여 메모리(330)에서 전달 받은 제3 연결망(1360)의 가중치 값을 프로세서(310)에 전달할 수 있다.
이어서, 프로세서(310)는 제2 은닉 레이어(1350)의 노드 값과 제3 연결망(1360)의 가중치 값을 전달 받아 출력 레이어(1370)의 노드 값을 연산할 수 있다. 즉, 프로세서(310)는 출력 레이어(1370)의 노드 값 쓰기에 대응되는 토큰[9]의 데이터 접근 요청을 생성 할 수 있다. 따라서, 인공신경망 메모리 제어부(320)는 토큰[9]의 메모리 접근 요청을 생성하여 출력 레이어(1370)의 노드 값을 메모리(330)에 저장할 수 있다.
따라서, 인공신경망 메모리 시스템(300)은 출력 레이어(1370)에 인공신경망모델(1300)의 추론 결과를 저장할 수 있다.
상술한 예시는 인공신경망 메모리 제어부(320)에 인공신경망 데이터 지역성 패턴(1400)이 생성되지 않은 경우이다. 따라서 상술한 예시는 사전 데이터 접근 요청을 생성할 수 없다. 따라서 인공신경망 메모리 제어부(320)가 사전에 데이터를 제공하지 못했기 때문에 각각의 메모리 접근 요청마다 메모리(330)의 지연시간이 발생할 수 있다.
하지만, 인공신경망 메모리 제어부(320)가 데이터 접근 요청들을 기록하였기 때문에 다시 프로세서(310)가 입력 레이어(1310)의 노드 값 읽기에 대응되는 토큰[1]의 데이터 접근 요청을 생성할 경우, 인공신경망 데이터 지역성 패턴(1400)을 생성할 수 있다.
이하에서는 도 4를 다시 참조하여, 인공신경망 데이터 지역성 패턴(1400)이 생성된 경우를 설명한다.
이하의 예시는, 인공신경망 데이터 지역성 패턴(1400)이 생성되고, 프로세서(310)가 인공신경망모델(1300)을 반복 추론 중인 경우일 수 있다. 단, 이에 제한되지 않는다.
프로세서(310)는 반복된 토큰[1]의 데이터 접근 요청을 감지하여 인공신경망 데이터 지역성 패턴(1400)을 생성할 수 있다. 부연 설명하면, 인공신경망 메모리 제어부(320)가 토큰[1] 부터 토큰[9]를 순차적으로 저장하였기 때문에, 인공신경망 메모리 제어부(320)가 토큰[1]을 다시 감지할 때 인공신경망 데이터 지역성을 결정할 수 있다.
다만, 상술하였듯이 본 개시의 실시예들에 따른 인공신경망 메모리 제어부는 토큰에 제한되지 않으며, 토큰은 단지 설명의 편의를 위할 뿐이며, 데이터 접근 요청 및 메모리 접근 요청에 포함된 식별 정보에 의해서 본 개시의 실시예들은 구현될 수 있다.
예를 들면, 프로세서(310)가 토큰[9]의 데이터 접근 요청을 생성하면, 인공신경망 메모리 제어부(320)는 토큰[1]의 사전 데이터 접근 요청을 생성한다. 따라서 인공신경망 메모리 제어부(320)는 토큰[1]의 메모리 접근 요청을 생성하여 입력 레이어(1310)의 노드 값을 사전에 캐쉬 메모리(322)에 저장할 수 있다.
즉, 토큰[9]의 데이터 접근 요청이 인공신경망모델(1300)의 마지막 단계라면, 인공신경망 메모리 제어부(320)는 인공신경망모델(1300)의 시작 단계인 토큰[1]의 데이터 접근 요청이 생성될 것으로 예측할 수 있다.
이어서, 프로세서(310)가 토큰[1]의 데이터 접근 요청을 생성하면, 인공신경망 메모리 제어부(320)는 토큰[1]의 사전 데이터 접근 요청과 토큰[1]의 데이터 접근 요청이 동일한지를 결정한다. 동일하다고 결정된 경우, 캐쉬 메모리(322)에 저장된 입력 레이어(1310)의 노드 값을 프로세서(310)에 바로 제공할 수 있다.
이때, 인공신경망 메모리 제어부(320)는 토큰[2]의 사전 데이터 접근 요청을 생성한다.
따라서, 인공신경망 메모리 제어부(320)는 토큰[2]의 메모리 접근 요청을 생성하여 제1 연결망(1320)의 가중치 값을 사전에 캐쉬 메모리(322)에 저장할 수 있다.
이어서, 프로세서(310)가 토큰[2]의 데이터 접근 요청을 생성하면, 인공신경망 메모리 제어부(320)는 토큰[2]의 사전 데이터 접근 요청과 토큰[2]의 데이터 접근 요청이 동일한지를 결정한다. 동일하다고 결정된 경우, 캐쉬 메모리(322)에 저장된 제1 연결망(1320)의 노드 값을 프로세서(310)에 바로 제공할 수 있다.
이때, 인공신경망 메모리 제어부(320)는 토큰[3]의 사전 데이터 접근 요청을 생성한다.
이어서, 프로세서(310)는 입력 레이어(1310)의 노드 값과 제1 연결망(1320)의 가중치 값을 전달 받아 제1 은닉 레이어(1330)의 노드 값을 연산할 수 있다. 프로세서(310)가 토큰[3]의 데이터 접근 요청을 생성하면, 인공신경망 메모리 제어부(320)는 토큰[3]의 사전 데이터 접근 요청과 토큰[3]의 데이터 접근 요청이 동일한지를 결정한다. 동일하다고 결정된 경우, 연산된 제1 은닉 레이어(1330)의 노드 값이 메모리(330) 및/또는 캐쉬 메모리(322)에 저장될 수 있다.
캐쉬 메모리(322)에 대하여 부연 설명하면, 캐쉬 메모리(322) 없이 동일한 데이터가 토큰[3]의 메모리 접근 요청으로 메모리(330)에 저장되고, 다시 토큰[4]의 메모리 접근 요청으로 메모리(330)에서 읽어 올 경우, 메모리(330)의 지연시간이 2배가 될 수 있다.
이러한 경우, 인공신경망 메모리 제어부(320)는 연속된 토큰들의 메모리 주소 값이 동일하고, 앞선 토큰의 동작 모드는 쓰기 모드이고 다음 토큰의 동작 모드는 읽기 모드인 것을 기초로 연산된 레이어의 노드 값을 저장하고, 해당 노드 값을 다음 레이어의 입력 값으로 사용한다고 결정하도록 구성될 수 있다.
즉, 캐쉬 메모리(322)에 토큰[3]의 데이터가 저장되면, 토큰[3] 및 토큰[4]에 대응되는 데이터 접근 요청이 캐쉬 메모리(322)에서 처리될 수 있다. 따라서 인공신경망 메모리 제어부(320)는 토큰[3]의 데이터 접근 요청과 토큰[4]의 데이터 접근 요청에 대응되는 메모리 접근 요청들을 생성하지 않도록 구성될 수 있다. 상술한 구성에 따르면 토큰[3]의 메모리 접근 요청 및 토큰[4]의 메모리 접근 요청으로 메모리(330)에 의한 메모리(330)의 지연시간을 제거할 수 있는 효과가 있다. 특히 이러한 캐쉬 메모리(322) 운영 정책은 인공신경망 데이터 지역성 패턴(1400)에 기초하여 실행될 수 있다.
이때, 인공신경망 메모리 제어부(320)는 토큰[4]의 사전 데이터 접근 요청을 생성한다.
이어서, 프로세서(310)가 토큰[4]의 데이터 접근 요청을 생성하면, 인공신경망 메모리 제어부(320)는 토큰[4]의 사전 데이터 접근 요청과 토큰[4]의 데이터 접근 요청이 동일한지를 결정한다. 동일하다고 결정된 경우, 캐쉬 메모리(322)에 저장된 제1 은닉 레이어(1330)의 노드 값을 프로세서(310)에 바로 제공할 수 있다.
이때, 인공신경망 메모리 제어부(320)는 토큰[5]의 사전 데이터 접근 요청을 생성한다.
따라서, 인공신경망 메모리 제어부(320)는 토큰[5]의 메모리 접근 요청을 생성하여 제2 연결망(1340)의 가중치 값을 사전에 캐쉬 메모리(322)에 저장할 수 있다.
이어서, 프로세서(310)가 토큰[5]의 데이터 접근 요청을 생성하면, 인공신경망 메모리 제어부(320)는 토큰[5]의 사전 데이터 접근 요청과 토큰[5]의 데이터 접근 요청이 동일한지를 결정한다. 동일하다고 결정된 경우, 캐쉬 메모리(322)에 저장된 제2 연결망(1340)의 가중치 값을 프로세서(310)에 바로 제공할 수 있다.
이때, 인공신경망 메모리 제어부(320)는 토큰[6]의 사전 데이터 접근 요청을 생성한다.
이어서, 프로세서(310)는 제1 은닉 레이어(1330)의 노드 값과 제2 연결망(1340)의 가중치 값을 전달 받아 제2 은닉 레이어(1350)의 노드 값을 연산할 수 있다. 프로세서(310)가 토큰[6]의 데이터 접근 요청을 생성하면, 인공신경망 메모리 제어부(320)는 토큰[6]의 사전 데이터 접근 요청과 토큰[6]의 데이터 접근 요청이 동일한지를 결정한다. 동일하다고 결정된 경우, 연산 된 제2 은닉 레이어(1350)의 노드 값을 메모리(330) 및/또는 캐쉬 메모리(322)에 저장할 수 있다.
이때, 인공신경망 메모리 제어부(320)는 토큰[7]의 사전 데이터 접근 요청을 생성한다.
이어서, 프로세서(310)가 토큰[7]의 데이터 접근 요청을 생성하면, 인공신경망 메모리 제어부(320)는 토큰[7]의 사전 데이터 접근 요청과 토큰[7]의 데이터 접근 요청이 동일한지를 결정한다. 동일하다고 결정된 경우, 캐쉬 메모리(322)에 저장된 제2 은닉 레이어(1350)의 노드 값은 프로세서(310)에 바로 제공될 수 있다.
이때, 인공신경망 메모리 제어부(320)는 토큰[8]의 사전 데이터 접근 요청을 생성한다.
따라서, 인공신경망 메모리 제어부(320)는 토큰[8]의 메모리 접근 요청을 생성하여 제3 연결망(1360)의 가중치 값을 사전에 캐쉬 메모리(322)에 저장할 수 있다.
이어서, 프로세서(310)가 토큰[8]의 데이터 접근 요청을 생성하면, 인공신경망 메모리 제어부(320)는 토큰[8]의 사전 데이터 접근 요청과 토큰[8]의 데이터 접근 요청이 동일한지를 결정한다. 동일하다고 결정된 경우, 캐쉬 메모리(322)에 저장된 제3 연결망(1360)의 가중치 값을 프로세서(310)에 바로 제공할 수 있다.
이때, 인공신경망 메모리 제어부(320)는 토큰[9]의 사전 데이터 접근 요청을 생성한다.
이어서, 프로세서(310)는 제2 은닉 레이어(1350)의 노드 값과 제3 연결망(1360)의 가중치 값을 전달 받아 출력 레이어(1370)의 노드 값을 연산할 수 있다. 프로세서(310)가 토큰[9]의 데이터 접근 요청을 생성하면, 인공신경망 메모리 제어부(320)는 토큰[9]의 사전 데이터 접근 요청과 토큰[9]의 데이터 접근 요청이 동일한지를 결정한다. 동일하다고 결정된 경우, 연산 된 출력 레이어(1370)의 노드 값을 메모리(330) 및/또는 캐쉬 메모리(322)에 저장할 수 있다.
따라서, 인공신경망 메모리 시스템(300)은 출력 레이어(1370)에 인공신경망모델(1300)의 추론 결과를 저장할 수 있다.
인공신경망 메모리 시스템(300)은 인공신경망 데이터 지역성 패턴(1400)에 의해서 인공신경망모델(1300)의 추론이 끝나더라도 다음 추론을 즉각 시작하도록 준비할 수 있는 효과가 있다.
즉, 본 개시의 또 다른 실시예에 따른 인공신경망 메모리 시스템(300)은 인공신경망 데이터 지역성에 기초하여 사전 데이터 접근 요청을 생성하고, 사전 데이터 접근 요청과 실제 데이터 접근 요청이 동일한지 결정하고, 동일할 경우 다음 순서의 사전 데이터 접근 요청을 더 생성하도록 구성될 수 있다. 상술한 구성에 따르면, 인공신경망 메모리 제어부(320)는 각각의 데이터 접근 요청 처리 시 메모리(320)의 지연시간을 제거 또는 저감할 수 있는 효과가 있다.
몇몇 실시예에서는, 인공신경망 메모리 제어부는 사전 데이터 접근 요청을 적어도 하나 이상 생성하여 캐쉬 메모리의 여유 공간을 최소화하도록 동작하도록 구성될 수 있다.
즉, 인공신경망 메모리 제어부는 캐쉬 메모리의 메모리 여유 공간과 저장할 데이터 값의 크기를 비교하여, 캐쉬 메모리의 메모리 여유 공간이 있는 경우, 사전 데이터 접근 요청을 적어도 하나 이상 생성하여 캐쉬 메모리의 여유 공간을 최소화하도록 구성될 수 있다.
즉, 캐쉬 메모리의 용량에 따라 인공신경망 메모리 제어부가 복수개의 사전 데이터 접근 요청들을 생성하도록 구성될 수 있다.
즉, 인공신경망 메모리 제어부는 캐쉬 메모리의 잔여 용량에 기초 하여 메모리 접근 요청을 적어도 하나 이상 순차적으로 생성하여 캐쉬 메모리의 잔여 용량이 최소화되도록 구성될 수 있다.
도 2 내지 도 6을 참조하여 예시를 설명 한다. 프로세서가 토큰[1]의 데이터 접근 요청을 생성하면, 인공신경망 메모리 제어부는 토큰[2]의 사전 데이터 접근 요청을 생성하여 제1 연결망(1320)의 가중치 값을 사전에 캐쉬 메모리에 저장할 수 있다. 이어서, 인공신경망 메모리 제어부는 토큰[3] 및 토큰[4]에 대응되는 제1 은닉 레이어(1330)의 노드 값 연산 처리 결과를 저장하고 읽을 공간을 사전에 캐쉬 메모리에 할당할 수 있다. 이어서 인공신경망 메모리 제어부는 토큰[5]에 대응되는 제2 연결망(1340)의 가중치 값을 사전에 캐쉬 메모리에 저장할 수 있다. 여기서 인공신경망 메모리 제어부는 캐쉬 메모리에 여유가 있을 경우, 인공신경망 데이터 지역성 패턴에 기초하여 사전 데이터 접근 요청을 순차적으로 더 생성하도록 구성될 수 있다. 즉, 캐쉬 메모리에 용량의 여유가 있는 경우, 인공신경망 메모리 제어부는 인공신경망 데이터 지역성 패턴에 기초하여 캐쉬 메모리에 가중치 값들을 미리 저장하거나 인공신경망 연산 결과를 저장할 영역을 사전에 확보하도록 구성될 수 있다.
만약, 캐쉬 메모리의 용량이 충분할 경우, 인공신경망모델(1300)의 모든 연결망들의 가중치 값들을 캐쉬 메모리에 저장하도록 구성될 수 있다. 특히, 학습이 완료된 인공신경망모델의 경우 가중치 값들은 고정된다. 따라서 가중치 값들이 캐쉬 메모리에 상주할 경우, 가중치 값들을 읽기 위한 메모리 접근 요청에 의한 메모리 지연시간을 제거할 수 있는 효과가 있다.
상술한 구성에 따르면, 인공신경망 데이터 지역성을 기초로 캐쉬 메모리에 필요한 데이터를 저장함으로 캐쉬 메모리의 가동 효율을 최적화 하고 인공신경망 메모리 시스템(300)의 처리 속도를 향상시킬 수 있는 효과가 있다.
상술한 구성에 따르면 캐쉬 메모리가 인공신경망 데이터 지역성 패턴 및 캐쉬 메모리의 용량을 모두 고려하여 사전 데이터 접근 요청을 순차적으로 생성하기 때문에, 인공신경망 메모리 시스템의 처리 속도가 향상될 수 있는 효과가 있다.
상술한 구성에 따르면, 프로세서가 인공신경망 데이터 지역성 패턴(1400)에 포함된 특정 데이터 접근 요청을 생성하면 인공신경망 메모리 제어부는 특정 데이터 접근 요청 이후의 데이터 접근 요청들을 적어도 하나 이상 순차적으로 예측할 수 있는 효과가 있다. 예를 들면, 토큰[1]의 데이터 접근 요청을 프로세서가 생성하면, 인공신경망 메모리 제어부는 토큰 [2-3-4-5-6-7-8-9] 순서로 대응되는 데이터 접근 요청들이 생성될 것을 예측할 수 있는 효과가 있다.
상술한 구성에 따르면, 인공신경망 메모리 제어부(320)는 특정 가중치 값들은 캐쉬 메모리에 특정 기간동안 상주 시킬 수 있다. 예를 들어, 프로세서가 초당 30회 속도로 인공신경망모델을 활용해 추론을 할 경우, 특정 레이어의 가중치 값을 캐쉬 메모리에 상주시킬 수 있다. 이러한 경우, 인공신경망 메모리 제어부는 캐쉬 메모리에 저장된 가중치 값을 각각의 추론마다 재활용할 수 있는 효과가 있다. 따라서 대응되는 메모리 접근 요청을 선택적으로 삭제할 수 있는 효과가 있다. 따라서 메모리 접근 요청에 따른 지연시간을 제거할 수 있는 효과가 있다.
몇몇 실시예에서는, 캐쉬 메모리는 계층화 된 복수의 캐쉬 메모리로 구성될 수 있다. 예를 들면, 가중치 값을 저장하도록 구성된 캐쉬 메모리 또는 특징맵을 저장하도록 구성된 캐쉬 메모리 등을 포함할 수 있다.
몇몇 실시예에서는, 인공신경망 데이터 지역성 패턴(1400)이 생성된 경우, 인공신경망 메모리 제어부는 데이터 접근 요청에 포함된 식별 정보에 기초하여 가중치 값, 노드 값을 예측하도록 구성될 수 있다. 따라서 인공신경망 메모리 제어부는 가중치 값에 대응되는 데이터 접근 요청을 식별하도록 구성될 수 있다. 구체적으로 설명하면, 학습이 완료되어 연결망의 가중치 값이 고정되었다고 가정하면, 인공신경망 데이터 지역성 패턴(1400)에서 가중치 값은 읽기 모드로만 동작하도록 구성될 수 있다. 따라서 인공신경망 메모리 제어부는 토큰[2], 토큰[5], 토큰[8]를 가중치 값으로 결정할 수 있다. 부연 설명하면, 토큰[1]은 추론의 시작 단계이기 때문에 입력 노드 값이라고 결정할 수 있다. 부연 설명하면, 토큰[9]는 추론의 마지막 단계이기 때문에 출력 노드 값이라고 결정할 수 있다. 부연 설명하면, 토큰[3][4]는 동일한 메모리 주소 값의 쓰기 모드 및 읽기 모드의 순서를 가지기 때문에 은닉 레이어의 노드 값이라고 결정할 수 있다. 단, 이는 인공신경망모델의 인공신경망 데이터 지역성에 따라 달라질 수 있다.
인공신경망 메모리 제어부는 인공신경망 데이터 지역성 패턴을 분석하여 각각의 데이터 접근 요청이 인공신경망모델의 가중치 값, 커널 윈도우 값, 노드 값, 활성화 맵 값 등인지를 결정하도록 구성될 수 있다.
몇몇 실시예에서는, 인공신경망 메모리 시스템은 인공신경망 연산에 대응되는 데이터 접근 요청을 생성하도록 구성된 프로세서, 컴파일러가 생성한 인공신경망 데이터 지역성 패턴을 저장하도록 구성되고, 인공신경망 데이터 지역성 패턴에 기초하여 프로세서가 생성한 데이터 접근 요청의 다음 데이터 접근 요청을 예측한 사전 데이터 접근 요청을 생성하도록 구성된, 인공신경망 메모리 제어부, 및 인공신경망 메모리 제어부와 통신하도록 구성된 메모리를 포함한다. 메모리는 인공신경망 메모리 제어부에서 출력되는 메모리 접근 요청에 대응하여 동작하도록 구성될 수 있다.
상술한 구성에 따르면, 인공신경망 메모리 제어부는 컴파일러로부터 생성된 인공신경망 데이터 지역성 패턴을 제공받도록 구성될 수 있다. 이러한 경우, 인공신공망 메모리 제어부는 컴파일러가 생성한 인공신경망 데이터 지역성 패턴을 기초로 프로세서가 처리중인 인공신경망모델의 데이터 접근 요청들을 사전에 캐쉬 메모리에 준비시킬 수 있는 효과가 있다. 특히 컴파일러가 생성한 인공신경망 데이터 지역성 패턴은 인공신경망 데이터 지역성을 모니터링하여 생성된 인공신경망 데이터 지역성 패턴보다 더 정확할 수 있는 효과가 있다.
부연 설명하면, 인공신경망 메모리 제어부는 컴파일러에 의해 생성된 인공신경망 데이터 지역성 패턴과 자체적으로 데이터 접근 요청을 모니터링 하여 생성한 인공신경망 데이터 지역성 패턴을 각각 저장하도록 구성될 수 있다.
도 12는 데이터 접근 요청의 예시적인 식별 정보를 설명하는 개략도이다.
본 개시의 실시예들에 따른 프로세서가 생성하는 데이터 접근 요청은 적어도 하나의 추가 식별 정보를 더 포함하도록 구성될 수 있다. 추가 식별 정보는 사이드 밴드 신호 또는 정보로 지칭되는 것도 가능하다.
프로세서가 생성하는 데이터 접근 요청은 특정한 구조의 인터페이스 신호일 수 있다. 즉, 데이터 접근 요청은 프로세서와 인공신경망 메모리 제어부의 통신을 위한 인터페이스 신호일 수 있다. 데이터 접근 요청은 인터페이스 신호에 추가 비트를 더 포함하여 인공신공망 연산에 필요한 식별 정보를 추가적으로 제공하도록 구성될 수 있다. 단, 본 개시는 이에 제한되지 않으며, 다양한 방식으로 추가 식별 정보를 제공하도록 구성될 수 있다.
몇몇 실시예에서는, 인공신경망 메모리 시스템의 데이터 접근 요청은 인공신경망 연산인지 여부를 식별할 수 있는 식별 정보를 더 포함하도록 구성될 수 있다. 단, 본 개시의 실시예들은 이에 제한되지 않는다.
예를 들면, 인공신경망 메모리 시스템은 데이터 접근 요청에 1 비트의 식별 코드를 추가하여 인공신경망 메모리 제어부가 수신한 데이터 접근 요청이 인공신경망 연산과 관련된 데이터 접근 요청인지를 식별하도록 구성될 수 있다. 단 본 개시의 실시예들에 따른 식별 코드의 비트 수는 제한되지 않으며, 식별하고자 하는 대상의 경우의 수에 따라 조절될 수 있다.
예를 들면, 식별 코드가 [0]일 경우, 인공신경망 메모리 제어부는 해당 데이터 접근 요청이 인공신경망 연산과 관련 있다고 결정하도록 구성될 수 있다.
예를 들면, 식별 코드가 [1]일 경우 인공신경망 메모리 제어부는 해당 데이터 접근 요청이 인공신경망 연산과 관련 없다고 결정하도록 구성될 수 있다.
이러한 경우, 인공신경망 메모리 제어부는 데이터 접근 요청에 포함된 식별 정보에 기초하여 인공신경망 연산과 관련된 데이터 접근 요청만 기록하여 인공신경망 데이터 지역성 패턴을 생성하도록 구성될 수 있다. 상술한 구성에 따르면, 인공신경망 메모리 제어부는 인공신경망 연산과 관련 없는 데이터 접근 요청은 기록하지 않을 수 있다. 따라서 데이터 접근 요청들을 기록하여 생성되는 인공신경망 데이터 지역성 패턴의 정확도를 향상시킬 수 있는 효과가 있다. 단, 본 개시의 실시예들은 이에 제한되지 않는다.
몇몇 실시예에서는, 인공신경망 메모리 시스템의 데이터 접근 요청은 인공신경망 연산이 학습을 위한 연산인지 또는 추론을 위한 연산인지 여부를 식별할 수 있는 식별 정보를 더 포함하도록 구성될 수 있다. 단, 본 개시의 실시예들은 이에 제한되지 않는다.
예를 들면, 인공신경망 메모리 시스템은 데이터 접근 요청에 1 비트의 식별 코드를 추가하여 인공신경망 메모리 제어부가 수신한 데이터 접근 요청이 인공신경망모델의 동작 유형이 학습인지 또는 추론인지를 식별하도록 구성될 수 있다. 단 본 개시의 실시예들에 따른 식별 코드의 비트 수는 제한되지 않으며, 식별하고자 하는 대상의 경우의 수에 따라 조절될 수 있다.
예를 들면, 식별 코드가 [0]일 경우, 인공신경망 메모리 제어부는 해당 데이터 접근 요청이 학습 동작으로 결정하도록 구성될 수 있다.
예를 들면, 식별 코드가 [1]일 경우, 인공신경망 메모리 제어부는 해당 데이터 접근 요청이 추론 동작 결정하도록 구성될 수 있다.
이러한 경우, 인공신경망 메모리 제어부는 학습 동작의 데이터 접근 요청과 추론 동작의 데이터 접근 요청을 구분하여 기록하여 인공신경망 데이터 지역성 패턴을 생성하도록 구성될 수 있다. 예를 들면, 학습 모드에선, 인공신경망모델의 각각의 레이어 및/또는 커널 윈도우의 가중치 값들을 갱신할 수 있고, 학습된 인공신경망모델의 추론 정확도를 결정하는 평가 단계가 더 포함될 수 있다. 따라서 인공신경망모델의 구조가 동일하더라도, 프로세서가 처리하는 인공신경망 데이터 지역성은 학습 동작 또는 추론 동작 시 서로 상이할 수 있다.
상술한 구성에 따르면, 인공신경망 메모리 제어부는 특정 인공신경망모델의 학습 모드의 인공신경망 데이터 지역성 패턴과 추론 모드의 인공신경망 데이터 지역성 패턴을 구분하여 생성하도록 구성될 수 있다. 따라서 인공신경망 메모리 제어부가 데이터 접근 요청들을 기록하여 생성한 인공신경망 데이터 지역성 패턴의 정확도를 향상시킬 수 있는 효과가 있다. 단, 본 개시의 실시예들은 이에 제한되지 않는다.
몇몇 실시예에서는, 인공신경망 메모리 시스템의 데이터 접근 요청은 메모리 읽기 동작 및 메모리 쓰기 동작을 식별할 수 있는 식별 정보를 포함하는 동작 모드로 구성될 수 있다. 단, 이에 제한되지 않으며, 인공신경망 메모리 시스템의 데이터 접근 요청은 덮어쓰기 동작 및/또는 보호 동작을 식별할 수 있는 식별 정보를 더 포함하는 동작 모드로 구성될 수 있다. 단, 본 개시의 실시예들은 이에 제한되지 않는다.
예를 들면, 인공신경망 메모리 시스템의 데이터 접근 요청에 1 비트의 식별 코드를 추가하여 읽기 동작과 쓰기 동작을 포함하도록 구성될 수 있다. 또는 인공신경망 메모리 시스템의 데이터 접근 요청에 2 비트의 식별 코드를 추가하여 읽기 동작, 쓰기 동작, 덮어쓰기 동작, 및 보호 동작을 식별하도록 구성될 수 있다. 단 본 개시의 실시예들에 따른 식별 코드의 비트 수는 제한되지 않으며, 식별하고자 하는 대상의 경우의 수에 따라 조절될 수 있다.
부연 설명하면, 인공신경망 메모리 시스템의 동작을 위해서 데이터 접근 요청은 적어도 메모리 주소 값과 읽기 동작 및 쓰기 동작을 식별할 수 있는 식별 정보를 포함해야 한다. 인공신경망 메모리 제어부는 데이터 접근 요청을 수신하여 대응되는 메모리 접근 요청을 생성하여 메모리 동작을 수행하도록 구성될 수 있다.
예를 들면, 식별 코드가 [00]일 경우, 인공신경망 메모리 제어부는 해당 데이터 접근 요청은 읽기 동작으로 결정하도록 구성될 수 있다.
예를 들면, 식별 코드가 [01]일 경우, 인공신경망 메모리 제어부는 해당 데이터 접근 요청은 쓰기 동작으로 결정하도록 구성될 수 있다.
예를 들면, 식별 코드가 [10]일 경우, 인공신경망 메모리 제어부는 해당 데이터 접근 요청은 덮어쓰기 동작으로 결정하도록 구성될 수 있다.
예를 들면, 식별 코드가 [11]일 경우, 인공신경망 메모리 제어부는 해당 데이터 접근 요청은 보호 동작으로 결정하도록 구성될 수 있다.
단, 본 개시의 실시예들은 이에 제한되지 않는다.
상술한 구성에 따르면, 인공신경망 메모리 제어부는 읽기 모드 또는 쓰기 모드에 따라 메모리를 제어하여 인공신경망모델의 다양한 데이터를 메모리로부터 제공받거나 또는 메모리에 저장할 수 있다.
상술한 구성에 따르면, 인공신경망 메모리 제어부는 인공신경망의 학습 동작 시 덮어쓰기 모드에 의해서 특정 레이어의 가중치 값을 갱신할 수 있다. 특히 갱신된 가중치 값은 동일한 메모리 주소 값에 저장되기 때문에 새로운 메모리 주소를 할당하지 않을 수 있다. 따라서 쓰기 모드보다 덮어쓰기 모드가 학습 동작 시 더 효율적일 수 있다.
상술한 구성에 따르면, 인공신경망 메모리 제어부는 보호 모드에 의해서 특정 메모리 주소에 저장된 데이터를 보호할 수 있다. 특히 서버와 같은 다수의 사용자가 접근하는 환경에서 인공신경망모델의 데이터가 임의로 삭제되는 것을 방지할 수 있는 효과가 있다. 또한 학습이 완료된 인공신경망모델의 가중치 값들을 보호 모드로 보호하는 것도 가능하다.
몇몇 실시예에서는, 인공신경망 메모리 시스템의 데이터 접근 요청은 추론 데이터, 가중치, 특징맵, 학습 데이터 세트, 평가 데이터 세트 및 기타 여부를 식별할 수 있는 식별 정보를 더 포함하도록 구성될 수 있다. 단, 본 개시의 실시예들은 이에 제한되지 않는다.
예를 들면, 인공신경망 메모리 시스템은 데이터 접근 요청에 3 비트의 식별 코드를 추가하여 인공신경망 메모리 제어부가 접근할 데이터의 도메인을 식별하도록 구성될 수 있다. 단 본 개시의 실시예들에 따른 식별 코드의 비트 수는 제한되지 않으며, 식별하고자 하는 대상의 경우의 수에 따라 조절될 수 있다.
예를 들면, 식별 코드가 [000]일 경우, 인공신경망 메모리 제어부는 해당 데이터가 인공신경망모델과 관련 없는 데이터로 결정하도록 구성될 수 있다.
예를 들면, 식별 코드가 [001]일 경우, 인공신경망 메모리 제어부는 해당 데이터가 인공신경망모델의 추론 데이터로 결정하도록 구성될 수 있다.
예를 들면, 식별 코드가 [010]일 경우, 인공신경망 메모리 제어부는 해당 데이터가 인공신경망모델의 특징맵으로 결정하도록 구성될 수 있다.
예를 들면, 식별 코드가 [011]일 경우, 인공신경망 메모리 제어부는 해당 데이터가 인공신경망모델의 가중치로 결정하도록 구성될 수 있다.
예를 들면, 식별 코드가 [100]일 경우, 인공신경망 메모리 제어부는 해당 데이터가 인공신경망모델의 학습 데이터 세트로 결정하도록 구성될 수 있다.
예를 들면, 식별 코드가 [101]일 경우, 인공신경망 메모리 제어부는 해당 데이터가 인공신경망모델의 추론 데이터 세트로 결정하도록 구성될 수 있다.
상술한 구성에 따르면, 인공신경망 메모리 제어부는 인공신경망모델의 데이터의 도메인을 식별하고, 각각의 도메인에 해당되는 데이터가 저장되는 메모리의 주소를 할당하도록 구성될 수 있다. 예를 들면, 인공신경망 메모리 제어부는 각각의 도메인에 할당된 메모리 영역의 시작 수조 및 끝 주소를 설정할 수 있다. 상술한 구성에 따르면, 각각의 도메인에 할당된 데이터를 인공신경망 데이터 지역성 패턴의 순서에 대응되도록 저장할 수 있다.
예를 들면, 인공신경망모델의 각각의 도메인의 데이터들은 각각의 도메인에 할당된 메모리 영역에 순차적으로 저장될 수 있다. 이때 해당 메모리는 읽기-버스트(read-burst) 기능을 지원할 수 있는 메모리일 수 있다. 상술한 구성에 따르면, 인공신경망 메모리 제어부가 메모리에서 특정 도메인의 데이터를 읽어올 때, 특정 데이터가 인공신경망 데이터 지역성 패턴에 따라 저장되었기 때문에 읽기-버스트 기능에 최적화 되도록 구성될 수 있다. 즉, 인공신경망 메모리 제어부는, 메모리의 저장 영역을 읽기-버스트 기능을 고려하여 설정하도록 구성될 수 있다.
몇몇 실시예에서는, 메모리는 읽기-버스트 기능을 더 포함하고, 적어도 하나의 인공신경망 메모리 제어부는, 적어도 하나의 메모리의 저장 영역을 읽기-버스트 기능을 고려하여 쓰도록 구성될 수 있다.
몇몇 실시예에서는, 인공신경망 메모리 시스템의 데이터 접근 요청은, 인공신경망모델의 양자화를 식별할 수 있는 식별 정보를 더 포함하도록 구성될 수 있다. 단, 본 개시의 실시예들은 이에 제한되지 않는다.
예를 들면, 인공신경망 메모리 시스템은 데이터 접근 요청에 적어도 메모리 주소 값, 도메인, 및 양자화 식별 정보가 포함할 경우, 해당 도메인의 데이터의 양자화 정보를 식별하도록 구성될 수 있다.
예를 들면, 식별 코드가 [00001]일 경우, 인공신경망 메모리 제어부는 해당 데이터가 1 비트로 양자화된 데이터로 결정하도록 구성될 수 있다.
예를 들면, 식별 코드가 [11111]일 경우, 인공신경망 메모리 제어부는 해당 데이터가 32 비트로 양자화된 데이터로 결정하도록 구성될 수 있다.
몇몇 실시예에서는 데이터 접근 요청에 다양한 식별 정보가 선택적으로 포함될 수 있다.
*상술한 구성에 따르면, 인공신경망 메모리 제어부는 데이터 접근 요청의 식별 코드를 분석하여, 보다 정확한 인공신경망 데이터 지역성 패턴을 생성할 수 있는 효과가 있다. 또한 각각의 식별 정보를 파악함으로 써 메모리의 저장 정책을 선택적으로 제어할 수 있게 하는 효과도 있다.
예를 들면, 학습과 추론을 식별 할 수 있으면, 각각의 인공신경망 데이터 지역성 패턴을 생성할 수 있다.
예를 들면, 데이터의 도메인을 식별할 수 있으면, 인공신경망 데이터 지역성 패턴의 데이터를 특정 메모리 영역에 저장하는 정책을 수립하여, 메모리 동작의 효율성을 향상시킬 수 있는 효과가 있다.
몇몇 실시예에서는, 인공신경망 메모리 시스템이 복수의 인공신경망모델을 처리하도록 구성될 경우, 인공신경망 메모리 제어부는 인공신경망모델의 식별 정보, 예를 들면, 제1 인공신경망모델, 제2 인공신경망모델 등의 추가 식별 정보를 더 생성하도록 구성될 수 있다. 이때, 인공신경망 메모리 제어부는 각각의 인공신경망모델의 인공신경망 데이터 지역성에 기초하여 인공신경망모델을 구분하도록 구성될 수 있다. 단, 이에 제한되지 않는다.
도 13은 인공신경망 메모리 시스템의 단위 동작 당 에너지 소모를 설명하는 개략도이다.
도 13을 참조하면, 인공신경망 메모리 시스템(300)의 단위 동작 당 소비되는 에너지를 개략적으로 설명하는 표이다. 에너지 소모는 메모리 액세스, 덧셈 연산 및 곱셈 연산으로 구분하여 설명할 수 있다.
“8b Add”는 가산기의 8비트 정수 덧셈 연산을 의미한다. 8비트 정수 덧셈 연산은 0.03pj의 에너지를 소비할 수 있다.
“16b Add”는 가산기의 16비트 정수 덧셈 연산을 의미한다. 16비트 정수 덧셈 연산은 0.05pj의 에너지를 소비할 수 있다.
“32b Add”는 가산기의 32비트 정수 덧셈 연산을 의미한다. 32비트 정수 덧셈 연산은 0.1pj의 에너지를 소비할 수 있다.
“16b FP Add”는 가산기의 16비트 부동소수점 덧셈 연산을 의미한다. 16비트 부동소수점 덧셈 연산은 0.4pj의 에너지를 소비할 수 있다.
“32b FP Add”는 가산기의 32비트 부동소수점 덧셈 연산을 의미한다. 32비트 부동소수점 덧셈 연산은 0.9pj의 에너지를 소비할 수 있다.
“8b Mult”는 곱셈기의 8비트 정수 곱셈 연산을 의미한다. 8비트 정수 곱셈 연산은 0.2pj의 에너지를 소비할 수 있다.
“32b Mult”는 곱셈기의 32비트 정수 곱셈 연산을 의미한다. 32비트 정수 곱셈 연산은 3.1pj의 에너지를 소비할 수 있다.
“16b FP Mult”는 곱셈기의 16비트 부동소수점 곱셈 연산을 의미한다. 16비트 부동소수점 곱셈 연산은 1.1pj의 에너지를 소비할 수 있다.
“32b FP Mult”는 곱셈기의 32비트 부동소수점 곱셈 연산을 의미한다. 32비트 부동소수점 곱셈 연산은 3.7pj의 에너지를 소비할 수 있다.
“32b SRAM Read”는 인공신경망 메모리 시스템(300)의 캐쉬 메모리(322)가 SRAM(static random access memory)일 경우, 32비트의 데이터 읽기 액세스를 의미한다. 32비트의 데이터를 캐쉬 메모리(322)에서 프로세서(310)로 읽어오는데 5pj의 에너지를 소비할 수 있다.
“32b DRAM Read”는 인공신경망 메모리 시스템(300)의 메모리(330)가 DRAM일 경우, 32비트의 데이터 읽기 액세스를 의미한다. 32비트 데이터를 메모리(330)에서 프로세서(310)로 읽어오는데 640pj의 에너지를 소비할 수 있다. 에너지 단위는 피코-줄(pj)을 의미한다.
인공신경망 메모리 시스템(300)이 32비트 부동소수점 곱셈을 하는 경우와 8비트 정수 곱셈을 하는 경우를 비교하면, 단위 동작 당 에너지 소모는 대략 18.5배 차이가 난다. DRAM으로 구성된 메모리(330)에서 32비트 데이터를 읽어오는 경우와 SRAM으로 구성된 캐쉬 메모리(322)에서 32비트 데이터를 읽어오는 경우 단위 동작 당 에너지 소모는 대략 128배 차이가 난다.
즉, 소비전력 관점에서, 데이터의 비트 크기가 증가할수록 소비전력이 증가한다. 또한 부동 소수점 연산을 사용하면 정수 연산보다 소비전력이 증가한다. 또한 DRAM에서 데이터를 읽어올 경우 소비전력이 급격히 증가한다.
이에 본 개시의 또 다른 실시예에 따른 인공신경망 메모리 시스템(300)은 캐쉬 메모리(322)의 용량을 인공신경망모델(1300)의 데이터 값을 모두 저장할 수 있는 정도의 용량으로 구성될 수 있다.
본 개시의 실시예들에 따른 캐쉬 메모리는 SRAM에 제한되지 않는다. SRAM과 같은 고속 구동이 가능한 정적 메모리는 SRAM, MRAM, STT-MRAM, eMRAM, 및 OST-MRAM 등이 있다. 더 나아가서, MRAM, STT-MRAM, eMRAM, 및 OST-MRAM은 정적 메모리이면서 비휘발성 특성을 가지고 있다. 따라서, 인공신경망 메모리 시스템(300)의 전원이 차단된 후 다시 부팅될 때 메모리(330)에서 인공신경망모델(1300)을 다시 제공받지 않아도 될 수 있는 효과가 있다. 단, 본 개시에 따른 실시예들은 이에 제한되지 않는다.
상술한 구성에 따르면, 인공신경망 메모리 시스템(300)은 인공신경망 데이터 지역성 패턴(1400)에 기초하여 인공신경망모델(1300)의 추론 연산 시 메모리(330)의 읽기 동작에 의한 소비전력을 대폭 저감할 수 있는 효과가 있다.
도 14는 본 개시의 다양한 실시예들에 따른 인공신경망 메모리 시스템을 설명하는 개략도이다.
이하 도 14를 참조하여 본 개시에 따른 다양한 실시예들에 대해서 설명한다. 도 14는 본 개시에 따른 다양한 실시예들이 실시될 수 있는 다양한 경우의 수를 설명할 수 있다.
본 개시의 다양한 실시예들에 따르면, 인공신경망 메모리 시스템(400)은 적어도 하나의 프로세서, 적어도 하나의 메모리, 및 적어도 하나의 프로세서를 포함하고, 적어도 하나의 프로세서에서 데이터 접근 요청을 수신 받아 적어도 하나의 메모리에게 메모리 접근 요청을 제공하도록 구성된 적어도 하나의 인공신경망 메모리 제어부(ADC)를 포함하도록 구성될 수 있다. 적어도 하나의 인공신경망 메모리 제어부(ADC)는 예시적인 인공신경망 메모리 제어부들(120, 220, 320)과 실질적으로 동일하게 구성될 수 있다. 단, 이에 제한되지 않으며, 인공신경망 메모리 시스템(400)의 하나의 인공신경망 메모리 제어부는 다른 인공신경망 메모리 제어부와 서로 상이하게 구성될 수 있다. 이하 인공신경망 메모리 시스템(400)의 인공신경망 메모리 제어부(411, 412, 413, 414, 415, 416, 417)와 상술한 인공신경망 메모리 제어부들(120, 220, 320)의 중복 설명은 단지 설명의 편의를 위해서 생략할 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 적어도 하나의 프로세서와 적어도 하나의 메모리를 연결하도록 구성된다. 이때, 적어도 하나의 프로세서와 적어도 하나의 메모리 사이의 데이터 이동 경로에는 대응되는 인공신경망 데이터 지역성에 존재할 수 있다. 따라서, 해당 데이터 이동 경로에 위치한 인공신경망 메모리 제어부는 대응되는 인공신경망 데이터 지역성 패턴을 추출하도록 구성될 수 있다.
각각의 인공신경망 메모리 제어부(ADC)는 각각의 데이터 접근 요청을 모니터링해서 각각 인공신경망 데이터 지역성 패턴을 생성하도록 구성될 수 있다.인공신경망 메모리 시스템(400)은 적어도 하나의 프로세서를 포함하도록 구성될 수 있다. 적어도 하나의 프로세서는 인공신경망 연산을 단독으로 또는 다른 프로세서와 협력하여 처리하도록 구성될 수 있다.
인공신경망 메모리 시스템(400)은 적어도 하나의 내부 메모리를 포함하도록 구성될 수 있다. 인공신경망 메모리 시스템(400)은 적어도 하나의 외부 메모리와 연결되도록 구성될 수 있다. 내부 메모리 또는 외부 메모리는 DRAM(Dynamic RAM), HBM(High bandwidth memory), SRAM(Static RAM), PROM(Programmable ROM), EPROM(Erasable PROM), EEPROM(Electrically EPROM), 플래시 메모리(Flash Memory), 강유전체 램(ferroelectric RAM(FRAM)), 플래쉬 메모리(flash memory), 마그네틱 램(magnetic RAM(MRAM)), 하드 디스크, 및 상 변화 메모리 장치(phase change RAM) 등을 포함할 수 있다. 단, 본 개시는 이에 제한되지 않는다.
외부 메모리(External MEM 1, External MEM 2) 또는 내부 메모리(Internal MEM1, Internal MEM2)는 대응되는 메모리 인터페이스(External MEM I/F)를 통해서 인공신경망 메모리 시스템(400)과 통신할 수 있다.
프로세서(Processor 1)는 시스템 버스(system bus)와 통신하는 버스 인터페이스 유닛(BIU)을 포함할 수 있다.
인공신경망 메모리 시스템(400)은 외부 메모리(External MEM)와 연결되는 외부 메모리 인터페이스를 포함할 수 있다. 외부 메모리 인터페이스는 메모리 접근 요청을 인공신경망 메모리 시스템(400)의 적어도 하나의 외부 메모리로 전송하고, 적어도 하나의 외부 메모리로부터 메모리 접근 요청에 응답하는 데이터를 수신할 수 있다. 예시적인 인공신경망 메모리 제어부들(120, 220, 320)에 개시된 구성과 기능은 복수의 인공신경망 메모리 제어부(411, 412, 413, 414, 415, 416, 417)로 분산되어 인공신경망 메모리 시스템(400)의 특정 위치에 배치될 수 있다. 몇몇 실시예에서는, 프로세서는 인공신경망 메모리 제어부를 포함하도록 구성될 수 있다.
몇몇 실시예에서는, 메모리는 DRAM일 수 있으며, 이때 인공신경망 메모리 제어부는 DRAM 내부에 포함되도록 구성될 수 있다.
예를 들면, 인공신경망 메모리 제어부들(411, 412, 413, 414, 415, 416, 417) 중 적어도 하나는 캐쉬 메모리를 내장하도록 구성될 수 있다. 또한, 캐쉬 메모리는 프로세서, 내부 메모리, 및/또는 외부 메모리에 포함되도록 구성될 수 있다.
예를 들면, 인공신경망 메모리 제어부들(411, 412, 413, 414, 415, 416, 417) 중 적어도 하나는 메모리와 프로세서 사이의 데이터의 전송 경로에 분산되어 배치되도록 구성될 수 있다.
예를 들면, 인공신경망 메모리 시스템(400)에 구현될 수 있는 인공신경망 메모리 제어부는 독립된 형태로 구성된 인공신경망 메모리 제어부(411), 시스템버스에 포함된 인공신경망 메모리 제어부(412), 프로세서의 인터페이스로 구성된 인공신경망 메모리 제어부(413), 내부 메모리의 메모리 인터페이스와 시스템버스 사이의 Wrapper Block 내에 포함된 인공신경망 메모리 제어부(414), 내부 메모리의 메모리 인터페이스에 포함된 인공신경망 메모리 제어부, 내부 메모리 내에 포함된 인공신경망 메모리 제어부(415), 외부 메모리에 대응하는 메모리 인터페이스에 포함된 인공신경망 메모리 제어부, 외부 메모리의 메모리 인터페이스와 시스템버스 사이의 Wrapper Block 내에 포함된 인공신경망 메모리 제어부(416), 및/또는 외부 메모리 내에 포함된 인공신경망 메모리 제어부(417) 중 하나로 구성될 수 있다. 단, 본 개시의 실시예들에 따른 인공신경망 메모리 제어부는 이에 제한되지 않는다.
예를 들면, 제1 인공신경망 메모리 제어부(411)와 제2 인공신경망 메모리 제어부(412)가 생성하는 각각의 인공신경망 데이터 지역성 패턴들은 서로 같거나 또는 서로 상이할 수 있다.
부연 설명하면, 제1 인공신경망 메모리 제어부(411)는 시스템 버스(system bus)를 통해서 제1 프로세서(processor 1)와 제1 내부 메모리(internal MEM 1)를 연결하도록 구성될 수 있다. 이때 제1 프로세서(processor 1)와 제1 내부 메모리(internal MEM 1) 사이의 데이터 이동 경로에는 대응되는 제1 인공신경망 데이터 지역성이 존재할 수 있다.
이때, 해당 경로에는 제3 인공신경망 메모리 제어부(413)가 도시되어 있으나, 이는 단지 예시를 위한 것이며, 제3 인공신경망 메모리 제어부(413)가 삭제될 수 있다. 즉, 프로세서와 메모리 사이에 적어도 하나의 인공신경망 메모리 제어부가 배치되면 프로세서가 처리하는 인공신경망모델의 인공신경망 데이터 지역성 패턴을 생성할 수 있다.
부연 설명하면, 제2 인공신경망 메모리 제어부(412)는 제2 프로세서(processor 2)와 제1 외부 메모리(external MEM 1)를 연결하도록 구성될 수 있다. 이때 제2 프로세서(processor 2)와 제1 외부 메모리(external MEM 1) 사이의 데이터 이동 경로에는 대응되는 제2 인공신경망 데이터 지역성이 존재할 수 있다.
예를 들면, 제1 프로세서(processor 1)가 처리하는 제1 인공신경망모델은 객체인식모델일 수 있으며, 제2 프로세서(processor 2)가 처리하는 제2 인공신경망모델은 음성인식모델일 수 있다. 따라서 각각의 인공신경망모델을 서로 상이하고, 대응되는 인공신경망 데이터 지역성 패턴들도 서로 상이할 수 있다.
즉, 인공신경망 메모리 제어부들(411, 412, 413, 414, 415, 416, 417) 각각이 생성하는 인공신경망 데이터 지역성 패턴은 대응되는 프로세서가 생성하는 데이터 접근 요청의 패턴 특징에 따라서 결정될 수 있다.
즉, 인공신경망 메모리 시스템(400)의 인공신경망 메모리 제어부는 임의의 프로세서와 임의의 메모리 사이에 배치되더라도, 해당 위치의 인공신경망 데이터 지역성 패턴을 생성할 수 있는 적응력을 제공할 수 있는 효과가 있다.
부연 설명하면, 하나의 인공신경망모델을 두 개의 프로세서가 협력해서 병렬로 처리 할 경우, 해당 인공신경망모델의 인공신경망 데이터 지역성 패턴은 각각의 프로세서에게 분할되어 할당될 수 있다. 예를 들면, 제1 레이어의 컨벌루션 연산은 제1 프로세서가 처리하고 제2 레이어의 컨벌루션 연산은 제2 프로세서가 처리하여 인공신경망모델의 연산을 분산시킬 수 있다. 이러한 경우, 인공신경망모델이 동일하더라도, 각각의 프로세서가 처리하는 인공신경망모델의 인공신경망 데이터 지역성은 데이터 접근 요청 단위로 재구성될 수 있다. 이러한 경우, 각각의 인공신경망 메모리 제어부는 각각의 인공신경망 메모리 제어부가 처리하는 프로세서의 데이터 접근 요청에 대응되는 인공신경망 데이터 지역성 패턴을 각각 생성하도록 구성될 수 있는 적응력을 제공할 수 있는 효과가 있다.
상술한 구성에 따르면, 복수의 프로세서와 복수의 메모리 사이에 복수의 인공신경망 메모리 제어부가 분산 배치 되더라도, 각각의 상황에 맞게 생성되는 인공신경망 데이터 지역성 패턴들에 의해서 인공신경망 메모리 시스템(400)의 성능이 최적화 될 수 있는 효과가 있다. 즉, 각각의 인공신경망 메모리 제어부는 각자 위치한 자리에서 인공신경망 데이터 지역성을 분석할 수 있기 때문에 가변적으로 실시간으로 처리되는 인공신경망 연산에 최적화 될 수 있는 효과가 있다.
몇몇 실시예에서는, 인공신경망 메모리 제어부들(411, 412, 413, 414, 415, 416, 417) 중 적어도 하나는 메모리 개수, 메모리 종류, 메모리의 실효 대역폭, 메모리의 지연시간, 메모리 크기 중 적어도 하나의 정보를 확인하도록 구성될 수 있다.
몇몇 실시예에서는, 인공신경망 메모리 제어부들(411, 412, 413, 414, 415, 416, 417) 중 적어도 하나는 메모리 접근 요청에 응답하는 메모리의 실효 대역폭을 측정하도록 구성될 수 있다. 여기서 메모리는 적어도 하나 이상일 수 있으며, 각각의 인공신경망 메모리 제어부는 각각의 메모리와 통신하는 채널의 실효 대역폭을 측정할 수 있다. 실효 대역폭은 인공신경망 메모리 제어부가 메모리 접근 요청을 생성하고, 해당 메모리 접근 요청이 완료되는 시간과 데이터 전송 비트 레이트(bit rate)를 측정하여 계산될 수 있다.
몇몇 실시예에서는, 인공신경망 메모리 제어부(411, 412, 413, 414, 415, 416, 417) 중 적어도 하나는 메모리 접근 요청에 응답하는 적어도 하나의 메모리의 필요 대역폭을 정보를 제공받도록 구성될 수 있다.
몇몇 실시예에서는, 인공신경망 메모리 시스템(400)은 복수의 메모리를 포함하고, 적어도 하나의 인공신경망 메모리 제어부는 복수의 메모리의 실효 대역폭을 각각 측정하도록 구성될 수 있다.
몇몇 실시예에서는, 인공신경망 메모리 시스템(400)은 복수의 메모리를 포함하고, 적어도 하나의 인공신경망 메모리 제어부는, 복수의 메모리의 지연시간을 각각 측정하도록 구성될 수 있다.
즉, 적어도 하나의 인공신경망 메모리 제어부는 자신과 연결된 각각의 메모리들을 오토 캘리브레이션(auto-calibration) 하도록 구성될 수 있다. 오토 캘리브레이션은 인공신경망 메모리 시스템이 시작할 때 또는 특정 주기마다 실행되도록 구성될 수 있다. 적어도 하나의 인공신경망 메모리 제어부는 오토 캘리브레이션을 통해서 자신과 연결된 메모리의 개수, 메모리의 종류, 메모리의 실효 대역폭, 메모리의 지연신간, 메모리의 크기 등의 정보를 수집하도록 구성될 수 있다.
상술한 구성에 따르면, 인공신경망 메모리 시스템(400)은 인공신경망 메모리 제어부에 대응되는 메모리의 지연시간 및 실효 대역폭을 알 수 있다.
상술한 구성에 따르면, 독립된 형태의 인공신경망 메모리 제어부를 시스템버스에 연결시키더라도, 프로세서가 처리중인 인공신경망모델의 인공신경망 데이터 지역성을 생성하여 메모리를 제어할 수 있는 효과가 있다.
몇몇 실시예에서는, 인공신경망 메모리 시스템(400)의 적어도 하나의 인공신경망 메모리 제어부는, 인공신경망 데이터 지역성 패턴의 1회 반복에 소요되는 시간 및 데이터 크기를 계산하여 인공신경망 연산이 요구하는 실효 대역폭을 계산하도록 구성될 수 있다. 구체적으로 설명하면, 인공신경망 데이터 지역성 패턴에 포함된 데이터 접근 요청을 모두 처리할 경우, 프로세서가 인공신경망모델의 추론을 완료했다고 결정할 수 있다. 인공신경망 메모리 시스템(400)은 인공신경망 데이터 지역성 패턴에 기초하여 1회 추론에 걸리는 시간을 측정하여 초당 추론 횟수(IPS; inference per second)를 계산하도록 구성될 수 있다. 또한, 인공신경망 메모리 시스템(400)은 목포 초당 추론 횟수 정보를 프로세서로부터 제공 받을 수 있다. 예를 들면, 특정 어플리케이션은 특정 인공신경망모델의 추론 속도를 30 IPS로 요구할 수 있다. 만약 측정된IPS가 목표 IPS보다 낮을 경우, 인공신경망 메모리 제어부(400)는 프로세서의 인공신경망모델 처리 속도를 향상시키기 위해서 동작하도록 구성될 수 있다.
몇몇 실시예에서는, 인공신경망 메모리 시스템(400)은 인공신경망 메모리 제어부, 프로세서, 및 메모리의 통신을 제어하도록 구성된 시스템버스를 포함하도록 구성될 수 있다. 또한, 적어도 하나의 인공신경망 메모리 제어부는 시스템버스의 마스터 권한을 가지도록 구성될 수 있다.
부연 설명하면, 인공신경망 메모리 시스템(400)은 인공신경망 연산을 위한 전용 장치가 아닐 수 있다. 이러한 경우, 인공신경망 메모리 시스템(400)의 시스템버스에는 와이파이, 디스플레이, 카메라, 마이크 등 다양한 주변 장치들이 연결될 수 있다. 이러한 경우, 인공신경망 메모리 시스템(400)은 안정적인 인공신경망 연산을 위해서 시스템버스의 대역폭을 제어하도록 구성될 수 있다.
몇몇 실시예에서는, 적어도 하나의 인공신경망 메모리 제어부는, 메모리 접근 요청의 처리 시간동안 인공신경망 연산을 우선 처리하도록 동작하고, 이외의 시간 동안 인공신경망 연산 이외의 연산을 처리하도록 구성될 수 있다.
몇몇 실시예에서는, 적어도 하나의 인공신경망 메모리 제어부는 적어도 하나의 메모리가 메모리 접근 요청을 완료할 때까지, 시스템버스의 실효 대역폭을 확보하도록 구성될 수 있다.
몇몇 실시예에서는, 적어도 하나의 인공신경망 메모리 제어부는 시스템버스 내부에 배치되고, 시스템버스는 시스템버스 내에서 생성된 인공신경망 데이터 지역성 패턴에 기초하여 시스템버스의 대역폭을 동적으로 가변 하도록 구성될 수 있다.
몇몇 실시예에서는, 적어도 하나의 인공신경망 메모리 제어부는 시스템버스 내에 배치되고, 적어도 하나의 인공신경망 메모리 제어부는 적어도 하나의 메모리가 메모리 접근 요청에 대한 응답을 완료할 때까지, 시스템버스의 제어 권한을 메모리 접근 요청이 없을 때보다 상대적으로 더 높게 증가시키도록 구성될 수 있다.
몇몇 실시예에서는, 적어도 하나의 인공신경망 메모리 제어부는, 복수의 프로세서 중 인공신경망 연산을 처리하는 프로세서의 데이터 접근 요청의 우선 순위를 인공신경망 연산 이외의 연산을 처리하는 프로세서보다 더 높게 설정하도록 구성될 수 있다.
몇몇 실시예에서는, 인공신경망 메모리 제어부가 메모리를 직접 제어하도록 구성될 수 있다.
몇몇 실시예에서는, 메모리에 인공신경망 메모리 제어부가 포함되고, 인공신경망 메모리 제어부는 적어도 하나의 접근 순서(access que)를 생성하도록 구성될 수 있다. 인공신경망 메모리 제어부는 인공신경망 연산 전용 접근 순서를 별도로 생성하도록 구성될 수 있다.
몇몇 실시예에서는, 복수의 메모리 중 적어도 하나는 DRAM일 수 있다. 이러한 경우 적어도 하나의 인공신경망 메모리 제어부는 메모리 접근 요청의 접근 순서를 재조정하도록 구성될 수 있다. 이러한 접근 순서 재조정은 액세스 큐 리오더(access que re-order)일 수 있다.
몇몇 실시예에서는, 인공신경망 메모리 제어부는 복수의 메모리 접근 요청의 접근 순서를 포함하도록 구성될 수 있다. 이러한 경우 제1 접근 순서는 인공신경망 연산 전용 접근 순서일 수 있으며, 제2 접근 순서는 인공신경망 연산 이외의 접근 순서일 수 있다. 인공신경망 메모리 제어부는 우선순위 설정에 따라서 각각의 접근 순서를 선택하여 데이터를 제공하도록 구성될 수 있다.
몇몇 실시예에서는, 적어도 하나의 인공신경망 메모리 제어부는 인공신경망 데이터 지역성 패턴에 기초하여 특정 메모리 접근 요청을 처리하기 위해서 시스템버스에게 요구되는 특정 대역폭을 계산하도록 구성되고, 적어도 하나의 인공신경망 메모리 제어부는 특정 대역폭에 기초하여 시스템버스의 실효 대역폭을 제어하도록 구성될 수 있다.
상술한 구성들에 따르면, 인공신경망 메모리 시스템(400)은 다양한 주변 장치의 메모리 접근 요청들의 우선 순위를 낮추거나 또는 인공신경망 데이터 지역성 패턴에 기초한 사전 데이터 접근 요청의 우선순위를 향상시키도록 구성될 수 있다.
상술한 구성들에 따르면, 인공신경망 메모리 제어부는 시스템버스의 데이터 접근 요청의 처리 순서를 재조정하여 인공신경망 연산이 처리되는 동안에는 시스템버스의 대역폭을 최대한 활용하고, 인공신경망 연산이 없는 경우에는 다른 주변 장치의 데이터를 처리를 위해서 대역폭을 양보할 수 있다.
상술한 구성들에 따르면, 인공신경망 메모리 제어부는 인공신경망 데이터 지역성 패턴에 기초하여 데이터 접근 요청의 우선순위를 재조정할 수 있다. 또한 데이터 접근 요청에 포함된 식별 정보에 기초하여 우선순위를 재조정할 수 있다. 즉, 인공신경망 연산 관점에서 시스템버스의 실효 대역폭이 동적으로 가변 되어 실효 대역폭이 향상 될 수 있다. 따라서 시스템버스의 동작 효율이 향상될 수 있는 효과가 있다. 따라서 인공신경망 메모리 제어부 입장에서 시스템버스의 실효 대역폭이 향상될 수 있는 효과가 있다.
몇몇 실시예에서는, 적어도 하나의 인공신경망 메모리 제어부는 데이터 접근 요청을 기계학습 하도록 구성될 수 있다. 즉, 적어도 하나의 인공신경망 메모리 제어부는 인공신경망 데이터 지역성 패턴을 기계학습 하도록 구성된 인공신경망모델을 더 포함할 수 있다. 즉 인공신경망 데이터 지역성 패턴은 기계학습되기 때문에, 실제 인공신경망 데이터 지역성에 따른 데이터 접근 요청 처리 중간에 다른 데이터 접근 요청이 인터럽트 하는 특이 패턴들도 학습하여 예측하도록 구성될 수 있다.
인공신경망 메모리 제어부에 내장된 인공신경망모델은 사전 데이터 접근 요청이 생성될 경우, 시스템버스의 제어 권한을 사전 데이터 접근 요청들의 생성되지 않을 때보다 상대적으로 더 높게 증가시키도록 기계학습 될 수 있다.
몇몇 실시예에서는, 적어도 하나의 인공신경망 메모리 제어부는, 계층화 된 복수의 캐쉬 메모리를 더 포함하고, 적어도 하나의 인공신경망 메모리 제어부는, 계층화 된 복수의 캐쉬 메모리의 계층간 데이터 접근 요청을 기계학습을 하도록 구성될 수 있다.
몇몇 실시예에서는, 적어도 하나의 인공신경망 메모리 제어부는, 계층화 된 복수의 캐쉬 메모리 각각의 계층의 실효 대역폭, 소비 전력, 및 지연시간 정보 중 적어도 하나를 더 제공 받도록 구성될 수 있다.
상술한 구성에 의하면, 인공신경망 메모리 제어부는 기계학습을 통해서 인공신경망 데이터 지역성 패턴을 생성하도록 구성될 수 있으며, 기계학습 된 인공신경망 데이터 지역성 패턴은 인공신경망 연산과 무관한 다양한 데이터 접근 요청 들이 특정 패턴을 가지고 생성될 때, 이러한 특정 패턴들의 발생 예측 확률을 향상시킬 수 있는 효과가 있다. 또한 강화 학습에 의해서 프로세서가 처리하는 다양한 인공신경망모델 및 다른 연산들의 특성을 예측하여 인공신경망 연산의 효율을 향상시킬 수 있다.
몇몇 실시예에서는, 적어도 하나의 인공신경망 메모리 제어부는, 복수의 메모리 각각의 실효 대역폭 및 지연시간에 기초하여 상기 복수의 메모리에 저장되는 데이터를 분할하여 저장하도록 구성될 수 있다.
예를 들면, 데이터는 L 비트의 비트 그룹으로 구성되고, 복수의 메모리는 제1 메모리 및 제2 메모리를 더 포함하고, 제1 메모리는 제1 실효 대역폭 또는 제1 지연시간에 기초하여 상기 L 비트의 비트 그룹 중 M 비트의 데이터를 분할하여 저장하도록 구성되고, 제2 메모리는 제2 실효 대역폭 또는 제2 지연시간에 기초하여 L 비트의 비트 그룹 중 N 비트의 데이터를 분할하여 저장하도록 구성되고, M 비트와 N 비트의 합은 L 비트와 같거나 또는 작도록 구성될 수 있다. 또한, 복수의 메모리는 제3 메모리를 더 포함하고, 제3 메모리는 제3 실효 대역폭 또는 제3 지연시간에 기초하여 L 비트의 비트 그룹 중 O 비트의 데이터를 저장하도록 구성되고, M 비트, N 비트 및 O 비트의 합은 L 비트와 같도록 구성될 수 있다.
예를 들면, 데이터는 P개의 데이터 묶음으로 구성되고, 복수의 메모리는 제1 메모리 및 제2 메모리를 포함하고, 제1 메모리는 제1 실효 대역폭 또는 제1 지연시간에 기초하여 P개의 데이터 묶음 중 R개의 데이터 묶음을 저장하도록 구성되고, 제2 메모리는 제2 실효 대역폭 또는 제2 지연시간에 기초하여 P개의 데이터 묶음 중 S개의 데이터 묶음을 저장하도록 구성되고, R개와 S개의 합은 상기 P개와 같거나 또는 작도록 구성될 수 있다. 또한 복수의 메모리는 제3 메모리를 더 포함하고, 제3 메모리는 제3 실효 대역폭 또는 제3 지연시간에 기초하여 P개의 데이터 묶음 중 T개의 데이터 묶음을 저장하도록 구성되고, R개, S개 및 T개의 합은 P개와 같도록 구성될 수 있다.
상술한 구성에 따르면, 인공신경망 메모리 제어부는 하나의 메모리의 대역폭이 낮을 때, 복수의 메모리에 데이터를 분산시켜 저장하거나 읽을 수 있기 때문에, 메모리의 실효 대역폭을 향상시킬 수 있는 효과가 있다. 예를 들면, 인공신경망 메모리 제어부는 8비트의 양자화된 가중치 값을 제1 메모리에 4비트 제2 메모리에 4비트씩 분할하여 저장하거나 읽도록 구성될 수 있다. 따라서 인공신경망 메모리 제어부 입장에서 메모리의 실효 대역폭이 향상될 수 있는 효과가 있다.
인공신경망 메모리 제어부는 복수의 메모리에 분할되어 저장된 데이터를 병합하여 저장하도록 구성된 캐쉬 메모리를 더 포함하도록 구성될 수 있다. 즉, 적어도 하나의 인공신경망 메모리 제어부는 캐쉬 메모리를 더 포함하고, 적어도 하나의 인공신경망 메모리 제어부는, 복수의 메모리에 분배되어 저장된 데이터를 병합하여 캐쉬 메모리에 저장하도록 구성될 수 있다. 따라서 프로세서는 병합된 데이터를 제공받을 수 있다.
분할된 데이터를 병합하기 위해서 적어도 하나의 인공신경망 메모리 제어부는 복수의 메모리에 분할되어 저장된 데이터의 분할 정보를 저장하도록 구성될 수 있다.본 계시의 다양한 실시예들은 아래와 같이 설명될 수 있다.
본 개시의 실시예들에 따르면, 인공신경망 메모리 시스템은 인공신경망 연산에 대응되는 데이터 접근 요청을 생성하도록 구성된 적어도 하나의 프로세서 및 데이터 접근 요청을 순차적으로 기록하여 상기 인공신경망 연산의 인공신경망 데이터 지역성 패턴을 생성하도록 구성되고, 인공신경망 데이터 지역성 패턴에 기초하여 적어도 하나의 프로세서가 생성한 데이터 접근 요청의 다음 데이터 접근 요청을 예측한 사전 데이터 접근 요청을 생성하도록 구성된 적어도 하나의 인공신경망 메모리 제어부를 포함하도록 구성될 수 있다. 여기서 인공신경망 데이터 지역성은 프로세서-메모리 레벨에서 재구성된 인공신경망 데이터 지역성일 수 있다.
본 개시의 실시예들에 따르면, 인공신경망 메모리 시스템은 인공신경망모델을 처리하도록 구성된 적어도 하나의 프로세서 및 인공신경망모델의 인공신경망 데이터 지역성 정보를 저장하도록 구성되고 인공신경망 데이터 지역성 정보에 기초하여 적어도 하나의 프로세서가 요청할 데이터를 예측하여 사전 데이터 접근 요청을 생성하도록 구성된 적어도 하나의 인공신경망 메모리 제어부를 포함하도록 구성될 수 있다.
인공신경망 메모리 시스템은 적어도 하나의 메모리 및 인공신경망 메모리 제어부, 적어도 하나의 프로세서, 및 적어도 하나의 메모리의 통신을 제어하도록 구성된 시스템 버스를 더 포함하도록 구성될 수 있다.본 개시의 실시예들에 따르면, 인공신경망 메모리 시스템은 프로세서, 메모리 및 캐쉬 메모리를 포함하고, 인공신경망 데이터 지역성 정보에 기초하여 프로세서가 요청할 데이터를 포함하는 사전 데이터 접근 요청을 생성하도록 구성되고, 그리고 메모리로부터 사전 데이터 접근 요청에 대응되는 데이터를 상기 프로세서가 요청하기 전에 상기 캐쉬 메모리에 저장하도록 구성될 수 있다.
본 개시의 실시예들에 따르면, 인공신경망 메모리 시스템은 인공신경망 데이터 지역성 정보를 제공 받아 동작하도록 구성된 제1 모드 또는 프로세서가 생성하는 데이터 접근 요청들을 관찰하여 인공신경망 데이터 지역성 정보를 예측하여 동작하도록 구성된 제2 모드 중 하나의 모드로 동작하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 인공신경망 데이터 지역성 패턴에 기초하여 사전 데이터 접근 요청을 순차적으로 더 생성하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 다음 데이터 접근 요청 생성 전에 사전 데이터 접근 요청을 생성하도록 구성될 수 있다.
적어도 하나의 프로세서는 적어도 하나의 인공신경망 메모리 제어부에 데이터 접근 요청을 전송하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 데이터 접근 요청에 대응하여 사전 데이터 접근 요청을 출력하도록 구성될 수 있다.
데이터 접근 요청은 메모리 주소를 더 포함하도록 구성될 수 있다.
데이터 접근 요청은 메모리의 시작 주소 및 끝 주소를 더 포함하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 적어도 하나의 프로세서가 생성한 데이터 접근 요청 및 인공신경망 메모리 제어부가 생성한 사전 데이터 접근 요청 중 하나에 기초하여 메모리 접근 요청을 생성하도록 구성될 수 있다.
데이터 접근 요청은 메모리의 시작 주소와 연속되는 데이터 연속 읽기 트리거(trigger)를 더 포함하도록 구성될 수 있다.
데이터 접근 요청은 메모리의 시작 주소와 연속되는 데이터의 개수 정보를 더 포함하도록 구성될 수 있다.
*데이터 접근 요청 및 사전 데이터 접근은 매칭되는 동일한 메모리 주소의 데이터 접근 요청 토큰을 더 포함하도록 구성될 수 있다.
데이터 접근 요청은 메모리 읽기 또는 쓰기 명령 여부를 식별할 수 있는 식별 정보를 더 포함하도록 구성될 수 있다.
데이터 접근 요청은 덮어쓰기 명령 여부를 식별할 수 있는 식별 정보를 더 포함하도록 구성될 수 있다.
데이터 접근 요청은 추론 데이터, 가중치 데이터 및 특징맵 데이터 여부를 식별할 수 있는 식별 정보를 더 포함하도록 구성 될 수 있다.
데이터 접근 요청은 학습 데이터 및 평가 데이터 여부를 식별할 수 있는 식별 정보를 더 포함하도록 구성될 수 있다.
데이터 접근 요청은 인공신경망 연산이 학습을 위한 연산인지 또는 추론을 위한 연산인지 여부를 식별할 수 있는 식별 정보를 더 포함하도록 구성될 수 있다.
적어도 하나의 프로세서가 다음 데이터 접근 요청을 생성할 경우, 적어도 하나의 인공신경망 메모리 제어부는, 사전 데이터 접근 요청과 다음 데이터 접근 요청이 서로 동일한 요청인지를 결정하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 사전 데이터 접근 요청과 다음 데이터 접근 요청이 동일할 경우, 상기 인공신경망 데이터 지역성 패턴을 유지하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 사전 데이터 접근 요청과 다음 데이터 접근 요청이 상이할 경우 인공신경망 데이터 지역성 패턴을 갱신하도록 구성될 수 있다.
인공신경망 데이터 지역성 패턴은 데이터 접근 요청들의 메모리의 주소들을 순차적으로 기록한 데이터를 더 포함하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 데이터 접근 요청에 포함된 메모리 주소의 반복 패턴을 감지하여 인공신경망 데이터 지역성 패턴을 생성하도록 구성될 수 있다.
인공신경망 데이터 지역성 패턴은 반복되는 루프 특성을 가지는 메모리 주소들로 구성될 수 있다.
인공신경망 데이터 지역성 패턴은 인공신경망모델의 연산의 시작과 끝을 식별할 수 있는 식별 정보를 더 포함하도록 구성될 수 있다.
적어도 하나의 프로세서는 데이터 접근 요청에 대응되는 데이터를 인공신경망 메모리 제어부로부터 제공받도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 인공신경망 데이터 지역성 패턴을 기계학습을 하도록 구성된 인공신경망모델을 더 포함하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 인공신경망 데이터 지역성 패턴의 갱신 된 패턴과 이전의 패턴을 저장하여, 인공신경망모델의 변화 여부를 결정하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 데이터 접근 요청들이 하나의 인공신경망모델의 요청들인지 또는 복수의 인공신경망모델들의 요청들이 혼합된 것인지 여부를 결정하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 인공신경망모델의 개수가 복수일 경우, 인공신경망모델의 개수에 대응되는 인공신경망 데이터 지역성 패턴들을 더 생성하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 인공신경망 데이터 지역성 패턴들에 기초하여, 대응되는 사전 데이터 접근 요청들을 각각 생성하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 데이터 접근 요청에 대응되는 메모리 접근 요청을 더 생성하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 사전 데이터 접근 요청에 대응되는 메모리 접근 요청을 더 생성하도록 구성될 수 있다.
데이터 접근 요청, 사전 데이터 접근 요청 및 메모리 접근 요청 각각은 대응되는 메모리 주소 값 및 동작 모드를 각각 포함하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는, 데이터 접근 요청 및 사전 데이터 접근 요청에 포함된 정보 중 적어도 일부를 포함하도록 구성된 메모리 접근 요청을 더 생성하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부와 통신하도록 구성된 적어도 하나의 메모리를 더 포함하고, 적어도 하나의 메모리는 적어도 하나의 인공신경망 메모리 제어부에서 출력되는 메모리 접근 요청에 대응하여 동작하도록 구성될 수 있다.
적어도 하나의 메모리는 추론 데이터, 가중치 데이터 및 특징맵 데이터 중 적어도 하나를 저장하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는, 메모리 접근 요청에 응답하여 적어도 하나의 메모리가 전송한 데이터를 저장하도록 구성된 캐쉬 메모리를 더 포함하도록 구성될 수 있다.
적어도 하나의 프로세서가 다음 데이터 접근 요청을 출력할 경우, 적어도 하나의 인공신경망 메모리 제어부는 사전 데이터 접근 요청과 다음 데이터 접근 요청이 서로 동일한 요청인지를 결정하고, 동일할 경우 적어도 하나의 인공신경망 메모리 제어부는 적어도 하나의 프로세서에 캐쉬 메모리에 저장된 데이터를 제공하도록 구성되고, 동일하지 않은 경우, 적어도 하나의 인공신경망 메모리 제어부는 다음 데이터 접근 요청에 기초하여 신규 메모리 접근 요청을 생성하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 캐쉬 메모리의 잔여 용량에 기초 하여 메모리 접근 요청을 적어도 하나 이상 순차적으로 생성하여 캐쉬 메모리의 상기 잔여 용량이 최소화되도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는, 메모리 접근 요청에 응답하는 적어도 하나의 메모리의 실효 대역폭을 측정하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 메모리 접근 요청에 응답하는 적어도 하나의 메모리의 필요 대역폭을 정보를 제공받도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 인공신경망 데이터 지역성 패턴의 특정 시간 동안의 반복 횟수를 계산하여 상기 인공신경망 연산의 1초당 추론 횟수(IPS)를 측정하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 인공신경망 데이터 지역성 패턴의 1회 반복에 소요되는 시간 및 데이터 크기를 계산하여 인공신경망 연산이 요구하는 실효 대역폭을 계산하도록 구성될 수 있다.
적어도 하나의 메모리는, 메모리의 셀의 전압을 갱신할 수 있는 리프레쉬 기능을 포함하는 디램(DRAM)을 더 포함하고, 적어도 하나의 인공신경망 메모리 제어부는 사전 데이터 접근 요청에 대응되는 메모리 접근 요청에 대응되는 적어도 하나의 메모리의 메모리 주소 영역의 리프레쉬를 선택적으로 제어하도록 구성될 수 있다.
적어도 하나의 메모리는 메모리의 글로벌 비트라인을 특정 전압으로 충전시킬 수 있는 프리차지 기능을 더 포함하고, 적어도 하나의 인공신경망 메모리 제어부는 사전 데이터 접근 요청에 대응되는 메모리 접근 요청에 대응되는 적어도 하나의 메모리의 메모리 주소 영역에 프리차지를 선택적으로 제공하도록 구성될 수 있다.
적어도 하나의 메모리는 복수의 메모리를 더 포함하고 적어도 하나의 인공신경망 메모리 제어부는 복수의 메모리의 실효 대역폭을 각각 측정하도록 구성될 수 있다.
적어도 하나의 메모리는 복수의 메모리를 더 포함하고 적어도 하나의 인공신경망 메모리 제어부는 복수의 메모리의 레이턴시를 각각 측정하도록 구성될 수 있다.
적어도 하나의 메모리는 복수의 메모리를 더 포함하고, 적어도 하나의 인공신경망 메모리 제어부는 복수의 메모리 각각의 실효 대역폭 및 지연시간에 기초하여 복수의 메모리에 저장되는 데이터를 분할하여 저장하도록 구성될 수 있다.
데이터는 L 비트의 비트 그룹으로 구성되고, 복수의 메모리는 제1 메모리 및 제2 메모리를 더 포함하고, 제1 메모리는 제1 실효 대역폭 또는 제1 지연시간에 기초하여 L 비트의 비트 그룹 중 M 비트의 데이터를 분할하여 저장하도록 구성되고, 제2 메모리는 제2 실효 대역폭 또는 제2 지연시간에 기초하여 L 비트의 비트 그룹 중 N 비트의 데이터를 분할하여 저장하도록 구성되고, M 비트와 N 비트의 합은 L 비트와 같거나 또는 작도록 구성될 수 있다
복수의 메모리는 제3 메모리를 더 포함하고, 제3 메모리는 제3 실효 대역폭 또는 제3 지연시간에 기초하여 L 비트의 비트 그룹 중 O 비트의 데이터를 저장하도록 구성되고, M 비트, N 비트 및 O 비트의 합은 L 비트와 같도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는, 복수의 메모리에 분할되어 저장된 데이터를 병합하여 저장하도록 구성된 캐쉬 메모리를 더 포함하도록 구성될 수 있다.
데이터는 P개의 데이터 묶음으로 구성되고, 복수의 메모리는 제1 메모리 및 제2 메모리를 더 포함하고, 제1 메모리는 제1 실효 대역폭 또는 제1 지연시간에 기초하여 P개의 데이터 묶음 중 R개의 데이터 묶음을 저장하도록 구성되고, 제2 메모리는 제2 실효 대역폭 또는 제2 지연시간에 기초하여 상기 P개의 데이터 묶음 중 S개의 데이터 묶음을 저장하도록 구성되고, R개와 상기 S개의 합은 상기 P개와 같거나 또는 작도록 구성될 수 있다.
복수의 메모리는 제3 메모리를 더 포함하고, 제3 메모리는 제3 실효 대역폭 또는 제3 지연시간에 기초하여 P개의 데이터 묶음 중 T개의 데이터 묶음을 저장하도록 구성되고, R개, 상기 S개 및 상기 T개의 합은 상기 P개와 같도록 구성될 수 있다.
적어도 하나의 메모리는 복수의 메모리를 더 포함하고, 적어도 하나의 인공신경망 메모리 제어부는, 캐쉬 메모리를 더 포함하고, 적어도 하나의 인공신경망 메모리 제어부는 복수의 메모리에 분배되어 저장된 데이터를 병합하여 캐쉬 메모리에 저장하도록 구성될 수 있다.
적어도 하나의 메모리는 복수의 메모리를 더 포함하고, 적어도 하나의 인공신경망 메모리 제어부는 복수의 메모리에 분할되어 저장된 데이터의 분할 정보를 저장하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 사전 데이터 접근 요청 및 적어도 하나의 메모리의 레이턴시 값에 기초하여 캐쉬 메모리에 레이턴시 만큼 데이터의 일부를 저장하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 사전 데이터 접근 요청 및 적어도 하나의 메모리의 데이터 대역폭 요구량에 기초하여 캐쉬 메모리에 상기 데이터의 일부를 저장하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 적어도 하나의 프로세서에서 다음 데이터 접근 요청 생성 시, 캐쉬 메모리에 저장된 데이터를 먼저 제공하면서, 데이터의 나머지를 적어도 하나의 메모리로부터 읽기-버스트 모드로 제어하여, 적어도 하나의 메모리의 레이턴시를 저감하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 사전 데이터 접근 요청 및 적어도 하나의 메모리의 레이턴시 값에 기초하여 적어도 하나의 프로세서에서 다음 데이터 접근 요청 생성 시, 레이턴시 값만큼 사전에 적어도 하나의 메모리의 읽기-버스트 모드로 시작하여, 적어도 하나의 메모리의 레이턴시를 저감하도록 구성될 수 있다.
인공신경망 메모리 제어부, 상기 적어도 하나의 프로세서, 및 상기 적어도 하나의 메모리의 통신을 제어하도록 구성된 시스템 버스를 더 포함하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 시스템 버스의 마스터 권한을 가지도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 인공신경망모델을 더 포함하고, 인공신경망모델은 사전 데이터 접근 요청이 생성될 경우, 시스템 버스의 제어 권한을 사전 데이터 접근 요청들의 생성되지 않을 때보다 상대적으로 더 높게 증가시키도록 기계 학습될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 적어도 하나의 메모리가 상기 메모리 접근 요청을 완료할 때까지, 시스템 버스의 실효 대역폭을 확보하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 인공신경망 데이터 지역성 패턴에 기초하여 특정 메모리 접근 요청을 처리하기 위해서 시스템 버스에게 요구되는 특정 대역폭을 계산하고, 적어도 하나의 인공신경망 메모리 제어부는 특정 대역폭에 기초하여 시스템 버스의 실효 대역폭을 제어하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 시스템 버스 내부에 배치되고, 시스템 버스는 시스템 버스 내에서 생성된 인공신경망 데이터 지역성 패턴에 기초하여 시스템 버스의 대역폭을 동적으로 가변 하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 메모리 접근 요청의 처리 시간동안 인공신경망 연산을 우선 처리하도록 동작하고, 이외의 시간 동안 인공신경망 연산 이외의 연산을 처리하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부와 적어도 하나의 프로세서는 직접 통신하도록 구성될 수 있다.
인공신경망 메모리 제어부는 인공신경망 연산 전용 접근 순서인 제1 접근 순서 및 인공신경망 연산 이외의 접근 순서인 제2 접근 순서를 더 포함하고, 인공신경망 메모리 제어부는 우선순위 설정에 따라서 각각의 접근 순서를 선택하여 데이터를 제공하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 계층화 된 복수의 캐쉬 메모리를 더 포함하고 적어도 하나의 인공신경망 메모리 제어부는 계층화 된 복수의 캐쉬 메모리의 계층간 데이터 접근 요청을 기계학습을 하도록 구성된 인공신경망모델을 더 포함하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 계층화 된 복수의 캐쉬 메모리 각각의 계층의 실효 대역폭, 소비 전력, 및 레이턴시 정보 중 적어도 하나를 더 제공 받도록 구성될 수 있다.
인공신경망 연산에 대응되는 데이터 접근 요청을 생성하도록 구성된 적어도 하나의 프로세서 및 컴파일러로부터 생성된 인공신경망 연산의 인공신경망 데이터 지역성 패턴을 저장하도록 구성되고, 인공신경망 데이터 지역성 패턴에 기초하여 적어도 하나의 프로세서가 생성한 데이터 접근 요청의 다음 데이터 접근 요청을 예측한 사전 데이터 접근 요청을 생성하도록 구성된 적어도 하나의 인공신경망 메모리 제어부 및 적어도 하나의 인공신경망 메모리 제어부와 통신하도록 구성된 적어도 하나의 메모리를 포함하고, 적어도 하나의 메모리는 적어도 하나의 인공신경망 메모리 제어부에서 출력되는 메모리 접근 요청에 대응하여 동작하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 시스템은 적어도 하나의 메모리 및 인공신경망 메모리 제어부, 적어도 하나의 프로세서, 및 적어도 하나의 메모리의 통신을 제어하도록 구성된 시스템 버스를 더 포함하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 시스템 버스 내에 배치되고, 적어도 하나의 인공신경망 메모리 제어부는 적어도 하나의 메모리가 메모리 접근 요청에 대한 응답을 완료할 때까지, 상기 시스템 버스의 제어 권한을 상기 메모리 접근 요청이 없을 때보다 상대적으로 더 높게 증가시키도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부의 적어도 일부는 DRAM에 포함되도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부의 적어도 일부는 적어도 하나의 프로세서에 포함되도록 구성될 수 있다.
DRAM을 더 포함하거나 또는 적어도 하나의 메모리는 DRAM이고, 적어도 하나의 인공신경망 메모리 제어부는 메모리 접근 요청의 접근 순서(access que)를 재조정하도록 구성될 수 있다. 즉, DRAM의 메모리 컨트롤러의 리-오더 큐(Reorder cue)를 제어하도록 구성될 수 있다.
인공신경망 메모리 제어부가 메모리의 메모리 컨트롤러에게 제공하는 인공신경망 연산 관련 메모리 접근 요청에 메모리의 메모리 컨트롤러가 해석할 수 있는 우선순위 정보를 더 포함하도록 구성될 수 있다.
상술한 구성에 따르면, 메모리의 메모리 컨트롤러는 해당 메모리 접근 요청이 인공신경망 연산과 관련된 것인지 여부와 상관없이 인공신경망 메모리 제어부가 생성한 메모리 접근 요청이 포함하는 우선순위 정보에 기초하여 메모리 컨트롤러 내부의 메모리 접근 순서를 재조정(re-order)하도록 구성될 수 있다. 따라서 인공신경망 연산 처리를 위한 메모리 접근 요청의 접근 순서가 다른 종류의 메모리 접근 요청의 접근 순서에 비해 먼저 처리될 수 있다. 따라서 인공신경망 메모리 제어부는 대응되는 메모리의 실효 대역폭을 상승시킬 수 있는 효과가 있다.
DRAM의 메모리 컨트롤러가 결정한 메모리 접근 요청 처리 순서를 인공신경망 메모리 제어부가 제공하는 우선순위 정보에 의해서 재조정하도록 구성될 수 있다.
예를 들면, 인공신경망 메모리 제어부가 생성한 메모리 접근 요청의 우선순위를 긴급으로 설정하면, DRAM의 메모리 컨트롤러는 해당 메모리 접근 요청의 처리 순서를 제1 순위로 변경할 수도 있다.
인공신경망 메모리 제어부는 적어도 하나의 접근 순서를 생성하도록 구성될 수 있다.
적어도 하나의 메모리에 인공신경망 메모리 제어부가 포함되고, 인공신경망 메모리 제어부는 인공신경망 연산 전용 접근 순서를 별도로 생성하도록 구성될 수 있다.
적어도 하나의 인공신경망 메모리 제어부는 메모리 접근 요청의 접근 순서를 재조정하도록 구성될 수 있다.
적어도 하나의 메모리는 읽기-버스트 기능을 더 포함하고, 적어도 하나의 인공신경망 메모리 제어부는 적어도 하나의 메모리의 저장 영역을 읽기-버스트 기능을 고려하여 설정하도록 구성될 수 있다.
적어도 하나의 메모리는 읽기-버스트 기능을 더 포함하고, 적어도 하나의 인공신경망 메모리 제어부는 적어도 하나의 메모리의 저장 영역을 읽기-버스트 기능을 고려하여 쓰기 동작을 처리 하도록 구성될 수 있다.
적어도 하나의 프로세서는 복수의 프로세서를 더 포함하고, 적어도 하나의 인공신경망 메모리 제어부는 복수의 프로세서 중 인공신경망 연산을 처리하는 프로세서의 데이터 접근 요청의 우선 순위를 인공신경망 연산 이외의 연산을 처리하는 프로세서보다 더 높게 설정하도록 구성될 수 있다.
본 개시에 따른 인공 신경망 연산 시스템은인공신경망 연산에 사용되는 데이터에 대하여 데이터 접근 요청을 생성하도록 구성된 적어도 하나의 프로세서, 인공신경망 연산에 사용되는 데이터가 저장된 적어도 하나의 메모리, 데이터 접근 요청에 대응되는 사전 데이터 접근 요청을 생성하여, 상기 적어도 하나의 프로세서가 상기 데이터 접근 요청을 생성하자 마자 상기 적어도 하나의 메모리에 저장된 인공신경망 연산에 사용되는 데이터를 지연없이 상기 적어도 하나의 프로세서에 제공하는 적어도 하나의 메모리 제어부를 포함할 수 있다.
적어도 하나의 메모리에서 상기 데이터 접근 요청에 대한 지연 시간이 발생하고, 적어도 하나의 메모리 제어부는, 지연 시간을 상기 적어도 하나의 메모리로부터 제공받거나 측정할 수 있다.
적어도 하나의 메모리 제어부는, 적어도 하나의 메모리의 데이터 전송 속도에 관련되는 실효 대역폭 정보를 상기 적어도 하나의 메모리로부터 제공받거나 또는 직접 측정할 수 있다.
상기 적어도 하나의 메모리는, 메모리의 셀의 전압을 갱신할 수 있는 리프레쉬 기능을 포함하는 디램(DRAM)이고, 상기 적어도 하나의 메모리 제어부는 상기 적어도 하나의 메모리의 종류 및 개수 정보를 파악할 수 있다.
상기 적어도 하나의 메모리 제어부는 상기 적어도 하나의 메모리의 실효 대역폭 및 지연 시간을 고려하여, 상기 적어도 하나의 메모리에 데이터를 분할하여 저장할 수 있다.
상기 적어도 하나의 메모리 제어부는, 상기 인공신경망 연산에 사용되는 데이터가 반복 사용되는 것을 감지하여 인공 신경망 데이터 지역성 패턴을 생성하고, 상기 인공 신경망 데이터 지역성 패턴을 사용하여 상기 사전 데이터 접근 요청을 생성할 수 있다.
상기 적어도 하나의 메모리 제어부는, 인공신경망 연산에 사용되는 데이터가 반복 사용되는 것을 감지하여 인공 신경망 데이터 지역성 패턴을 생성하고, 인공 신경망 데이터 지역성 패턴을 사용하여 상기 사전 데이터 접근 요청을 생성하고, 사전 데이터 접근 요청과 상기 데이터 접근 요청이 상이하다고 판단될 경우, 상기 인공 신경망 데이터 지역성 패턴을 갱신할 수 있다.
상기 적어도 하나의 메모리 제어부는, 인공신경망 연산에 사용되는 데이터가 반복 사용되는 것을 감지하여 인공 신경망 데이터 지역성 패턴을 생성하고, 인공 신경망 데이터 지역성 패턴을 사용하여 상기 적어도 하나의 프로세서가 처리 중인 연산이 상기 인공신경망 연산인지 여부를 결정할 수 있다.
상기 적어도 하나의 메모리 제어부는, 상기 데이터 접근 요청이 반복 사용되는 것을 감지하여, 상기 적어도 하나의 프로세서가 처리 중인 연산이 상기 인공신경망 연산인지 여부를 결정할 수 있다.
상기 데이터 접근 요청은 식별 정보를 통해 구별되며, 식별 정보는 상기 데이터 접근 요청에 대응되는 데이터가 저장된 상기 적어도 하나의 메모리의 주소 값일 수 있다.
상기 데이터 접근 요청은 대응되는 데이터가 저장된 적어도 하나의 메모리 주소의 시작 값 과 끝 값 사이의 정보를 포함할 수 있다.
상기 데이터 접근 요청은 대응되는 데이터가 저장된 적어도 하나의 메모리 주소의 시작 값 과 연속 읽기 트리거 값의 정보를 포함할 수 있다.
상기 적어도 하나의 메모리 제어부는, 데이터 접근 요청의 반복 패턴에 해당하는 인공신경망 데이터 정보를 저장하는 특수 기능 레지스터를 포함할 수 있다.
상기 적어도 하나의 메모리 제어부는, 사전 데이터 접근 요청에 대응되는 데이터를 저장하는 캐쉬 메모리를 포함할 수 있다.
상기 적어도 하나의 메모리 제어부는, 적어도 하나의 메모리에 분배되어 저장된 데이터를 병합하여 저장하는 캐쉬 메모리를 포함할 수 있다.
상기 적어도 하나의 메모리 제어부는, 상기 데이터 접근 요청을 로그 파일, 테이블, 리스트등의 형태로 저장할 수 있다.
상기 인공신경망 연산에 사용되는 인공신경망 모델은 인공신경망 연산 시스템의 구동 특성에 따라 컴파일러에 의해 컴파일 될 수 있다.
상기 적어도 하나의 메모리는 읽기-버스트 기능을 수행하고, 상기 적어도 하나의 메모리 어부는, 상기 적어도 하나의 메모리의 저장 영역을 상기 읽기-버스트 기능을 고려하여 설정하도록 구성될 수 있다.
상기 적어도 하나의 메모리 제어부는, 상기 데이터 접근 요청 생성 시, 캐쉬 메모리에 저장된 데이터를 먼저 제공하면서, 데이터의 나머지를 적어도 하나의 메모리로부터 읽기-버스트 모드로 제어하여 제공할 수 있다.
상기 적어도 하나의 메모리 제어부는, 데이터 접근 요청 동안 상기 인공신경망 연산을 우선 처리하도록 동작할 수 있다.
이상에서 실시예들에 설명된 특징, 구조, 효과 등은 본 개시의 하나의 실시예에 포함되며, 반드시 하나의 실시예에만 한정되는 것은 아니다. 나아가, 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의해 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 개시의 범위에 포함되는 것으로 해석되어야 할 것이다.
또한, 이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 개시가 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
인공신경망 메모리 시스템: 100, 200, 300, 400
프로세서: 110, 210, 310, 410
인공신경망 메모리 제어부: 120, 220, 320, 411, 412, 413, 414, 415, 416, 417
메모리: 330
캐쉬 메모리: 322
[이 발명을 지원한 국가연구개발사업]
[과제고유번호]1711193247
[과제번호]2022-0-00248-002
[부처명]과학기술정보통신부
[과제관리(전문)기관명]정보통신기획평가원
[연구사업명]PIM인공지능반도체핵심기술개발(설계)
[연구과제명]메모리 일관성을 고려한 다중 DRAM 모듈용 CXL 기반 PIM 반도체 기술 개발
[기여율]1/1
[과제수행기관명]주식회사 딥엑스
[연구기간]2020.04.01 ~ 2020.12.31

Claims (20)

  1. 인공신경망 연산에 사용되는 데이터에 대하여 데이터 접근 요청을 생성하도록 구성된, 적어도 하나의 프로세서;
    인공신경망 연산에 사용되는 데이터가 저장된 적어도 하나의 메모리;
    상기 데이터 접근 요청에 대응되는 사전 데이터 접근 요청을 생성하여, 상기 적어도 하나의 프로세서가 상기 데이터 접근 요청을 생성하자 마자 상기 적어도 하나의 메모리에 저장된 인공신경망 연산에 사용되는 데이터를 지연없이 상기 적어도 하나의 프로세서에 제공하는 적어도 하나의 메모리 제어부;를 포함하는, 인공신경망 연산 시스템.
  2. 제 1 항에 있어서,
    상기 적어도 하나의 메모리에서 상기 데이터 접근 요청에 대한 지연 시간이 발생하고,
    상기 적어도 하나의 메모리 제어부는,
    상기 지연 시간을 상기 적어도 하나의 메모리로부터 제공받거나 측정하는, 인공신경망 연산 시스템.
  3. 제 1 항에 있어서,
    상기 적어도 하나의 메모리 제어부는,
    상기 적어도 하나의 메모리의 데이터 전송 속도에 관련되는 실효 대역폭 정보를 상기 적어도 하나의 메모리로부터 제공받거나 또는 직접 측정하는, 인공신경망 연산 시스템.
  4. 제 1 항에 있어서,
    상기 적어도 하나의 메모리는, 메모리의 셀의 전압을 갱신할 수 있는 리프레쉬 기능을 포함하는 디램(DRAM)이고,
    상기 적어도 하나의 메모리 제어부는 상기 적어도 하나의 메모리의 종류 및 개수 정보를 파악하는, 인공신경망 연산 시스템.
  5. 제 1 항에 있어서,
    상기 적어도 하나의 메모리 제어부는 상기 적어도 하나의 메모리의 실효 대역폭 및 지연 시간을 고려하여, 상기 적어도 하나의 메모리에 데이터를 분할하여 저장하는, 인공신경망 연산 시스템.
  6. 제 1 항에 있어서,
    상기 적어도 하나의 메모리 제어부는,
    상기 인공신경망 연산에 사용되는 데이터가 반복 사용되는 것을 감지하여 인공 신경망 데이터 지역성 패턴을 생성하고,
    상기 인공 신경망 데이터 지역성 패턴을 사용하여 상기 사전 데이터 접근 요청을 생성하는, 인공신경망 연산 시스템.
  7. 제 1 항에 있어서,
    상기 적어도 하나의 메모리 제어부는,
    상기 인공신경망 연산에 사용되는 데이터가 반복 사용되는 것을 감지하여 인공 신경망 데이터 지역성 패턴을 생성하고,
    상기 인공 신경망 데이터 지역성 패턴을 사용하여 상기 사전 데이터 접근 요청을 생성하고,
    상기 사전 데이터 접근 요청과 상기 데이터 접근 요청이 상이하다고 판단될 경우, 상기 인공 신경망 데이터 지역성 패턴을 갱신하는, 인공신경망 연산 시스템.
  8. 제 1 항에 있어서,
    상기 적어도 하나의 메모리 제어부는,
    상기 인공신경망 연산에 사용되는 데이터가 반복 사용되는 것을 감지하여 인공 신경망 데이터 지역성 패턴을 생성하고,
    상기 인공 신경망 데이터 지역성 패턴을 사용하여 상기 적어도 하나의 프로세서가 처리 중인 연산이 상기 인공신경망 연산인지 여부를 결정하는, 인공신경망 연산 시스템.
  9. 제 1 항에 있어서,
    상기 적어도 하나의 메모리 제어부는,
    상기 데이터 접근 요청이 반복 사용되는 것을 감지하여,
    상기 적어도 하나의 프로세서가 처리 중인 연산이 상기 인공신경망 연산인지 여부를 결정하는, 인공신경망 연산 시스템.
  10. 제 1 항에 있어서,
    상기 데이터 접근 요청은 식별 정보를 통해 구별되며,
    상기 식별 정보는 상기 데이터 접근 요청에 대응되는 데이터가 저장된 상기 적어도 하나의 메모리의 주소 값인, 인공신경망 연산 시스템.
  11. 제 1 항에 있어서,
    상기 데이터 접근 요청은 대응되는 데이터가 저장된 적어도 하나의 메모리 주소의 시작 값 과 끝 값 사이의 정보를 포함하는, 인공신경망 연산 시스템.
  12. 제 1 항에 있어서,
    상기 데이터 접근 요청은 대응되는 데이터가 저장된 적어도 하나의 메모리 주소의 시작 값 과 연속 읽기 트리거 값의 정보를 포함하는, 인공신경망 연산 시스템.
  13. 제 1 항에 있어서,
    상기 적어도 하나의 메모리 제어부는,
    상기 데이터 접근 요청의 반복 패턴에 해당하는 인공신경망 데이터 정보를 저장하는 특수 기능 레지스터를 포함하는, 인공신경망 연산 시스템.
  14. 제 1 항에 있어서,
    상기 적어도 하나의 메모리 제어부는,
    상기 사전 데이터 접근 요청에 대응되는 데이터를 저장하는 캐쉬 메모리를 포함하는, 인공신경망 연산 시스템.
  15. 제 1 항에 있어서,
    상기 적어도 하나의 메모리 제어부는,
    상기 적어도 하나의 메모리에 분배되어 저장된 데이터를 병합하여 저장하는 캐쉬 메모리를 포함하는, 인공신경망 연산 시스템.
  16. 제 1 항에 있어서,
    상기 적어도 하나의 메모리 제어부는,
    상기 데이터 접근 요청을 로그 파일, 테이블, 리스트등의 형태로 저장하는, 인공신경망 연산 시스템.
  17. 제 1 항에 있어서,
    상기 인공신경망 연산에 사용되는 인공신경망 모델은 인공신경망 연산 시스템의 구동 특성에 따라 컴파일러에 의해 컴파일 되는, 인공신경망 연산 시스템.
  18. 제 1 항에 있어서,
    상기 적어도 하나의 메모리는 읽기-버스트 기능을 수행하고,
    상기 적어도 하나의 메모리 어부는, 상기 적어도 하나의 메모리의 저장 영역을 상기 읽기-버스트 기능을 고려하여 설정하도록 구성된, 인공신경망 연산 시스템.
  19. 제 1 항에 있어서,
    상기 적어도 하나의 메모리 제어부는,
    상기 데이터 접근 요청 생성 시, 캐쉬 메모리에 저장된 데이터를 먼저 제공하면서, 데이터의 나머지를 적어도 하나의 메모리로부터 읽기-버스트 모드
    로 제어하여 제공하는, 인공신경망 연산 시스템.
  20. 제 1 항에 있어서,
    상기 적어도 하나의 메모리 제어부는,
    상기 데이터 접근 요청 동안 상기 인공신경망 연산을 우선 처리하도록 동작하는, 인공신경망 연산 시스템.
KR1020247013493A 2020-11-02 2020-12-03 데이터 지연시간을 최소화시킨 인공신경망 연산 시스템 KR20240059638A (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200144308 2020-11-02
KR1020200144308 2020-11-02
KR1020217024935A KR102661710B1 (ko) 2020-11-02 2020-12-03 인공신경망 데이터 지역성에 기초한 인공 신경망 메모리 시스템
PCT/KR2020/017576 WO2022092416A1 (ko) 2020-11-02 2020-12-03 인공신경망 데이터 지역성에 기초한 인공 신경망 메모리 시스템

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020217024935A Division KR102661710B1 (ko) 2020-11-02 2020-12-03 인공신경망 데이터 지역성에 기초한 인공 신경망 메모리 시스템

Publications (1)

Publication Number Publication Date
KR20240059638A true KR20240059638A (ko) 2024-05-07

Family

ID=81382805

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020217024935A KR102661710B1 (ko) 2020-11-02 2020-12-03 인공신경망 데이터 지역성에 기초한 인공 신경망 메모리 시스템
KR1020247013493A KR20240059638A (ko) 2020-11-02 2020-12-03 데이터 지연시간을 최소화시킨 인공신경망 연산 시스템
KR1020237037033A KR20230152186A (ko) 2020-11-02 2020-12-03 인공신경망모델을 기초로 메인 메모리의 데이터 이동을 제어하는 메모리 컨트롤러

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020217024935A KR102661710B1 (ko) 2020-11-02 2020-12-03 인공신경망 데이터 지역성에 기초한 인공 신경망 메모리 시스템

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020237037033A KR20230152186A (ko) 2020-11-02 2020-12-03 인공신경망모델을 기초로 메인 메모리의 데이터 이동을 제어하는 메모리 컨트롤러

Country Status (4)

Country Link
US (1) US20230297519A1 (ko)
KR (3) KR102661710B1 (ko)
CN (1) CN114761972A (ko)
WO (1) WO2022092416A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240104361A1 (en) * 2022-09-19 2024-03-28 Texas Instruments Incorporated Neural network processor
KR20240102147A (ko) * 2022-12-26 2024-07-03 주식회사 모빌린트 딥러닝 추론을 위한 컴퓨팅 시스템, 하드웨어 가속기 장치 및 방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102023487B1 (ko) * 2012-09-17 2019-09-20 삼성전자주식회사 오토 리프레쉬 커맨드를 사용하지 않고 리프레쉬를 수행할 수 있는 반도체 메모리 장치 및 이를 포함하는 메모리 시스템
US9959498B1 (en) * 2016-10-27 2018-05-01 Google Llc Neural network instruction set architecture
KR102656190B1 (ko) * 2016-11-24 2024-04-11 삼성전자주식회사 불휘발성 메모리 장치를 포함하는 스토리지 장치 및 불휘발성 메모리 장치의 액세스 방법
AU2017279610A1 (en) * 2017-12-19 2019-07-04 Canon Kabushiki Kaisha Memory access optimisation using per-layer computational mapping and memory allocation for CNN application
US10437718B1 (en) * 2018-04-27 2019-10-08 International Business Machines Corporation Computerized methods for prefetching data based on machine learned sequences of memory addresses
KR102382186B1 (ko) * 2018-10-10 2022-04-05 삼성전자주식회사 딥 러닝을 위한 고성능 컴퓨팅 시스템

Also Published As

Publication number Publication date
CN114761972A (zh) 2022-07-15
US20230297519A1 (en) 2023-09-21
KR102661710B1 (ko) 2024-04-29
WO2022092416A1 (ko) 2022-05-05
KR20220059934A (ko) 2022-05-10
KR20230152186A (ko) 2023-11-02

Similar Documents

Publication Publication Date Title
KR102596405B1 (ko) 버스트-모드의 인공신경망 메모리 시스템
US11405051B2 (en) Enhancing processing performance of artificial intelligence/machine hardware by data sharing and distribution as well as reuse of data in neuron buffer/line buffer
US11972137B2 (en) System and memory for artificial neural network (ANN) optimization using ANN data locality
KR102661710B1 (ko) 인공신경망 데이터 지역성에 기초한 인공 신경망 메모리 시스템
US20240231681A1 (en) Memory controller, processor and system for artificial neural network
EP3973401B1 (en) Interleaving memory requests to accelerate memory accesses
US11487342B2 (en) Reducing power consumption in a neural network environment using data management
KR20200139620A (ko) 인공신경망의 데이터 로컬리티 기반의 데이터 캐슁을 이용하여 고속의 인공신경망 오퍼레이션을 지원하는 데이터 관리 장치
KR102192325B1 (ko) 인공신경망의 데이터 로컬리티 기반의 데이터 캐슁을 이용하여 고속의 인공신경망 오퍼레이션을 지원하는 데이터 관리 장치
KR102706330B1 (ko) 인공신경망을 위한 메모리 제어부, 프로세서 및 시스템
US11733763B2 (en) Intelligent low power modes for deep learning accelerator and random access memory
US10978134B1 (en) Method and device for refreshing memory
KR20220059409A (ko) 인공신경망을 위한 메모리 장치
KR20220059410A (ko) 인공신경망을 위한 시스템 및 메모리
US20220114015A1 (en) Electronic device and method with scheduling
US20220044101A1 (en) Collaborative sensor data processing by deep learning accelerators with integrated random access memory
US20220137866A1 (en) Memory device for an artificial neural network
WO2023142091A1 (zh) 计算任务调度装置、计算装置、计算任务调度方法和计算方法
US20230229493A1 (en) Electronic system, operating method thereof, and operating method of memory device

Legal Events

Date Code Title Description
A107 Divisional application of patent