KR20240058359A - Photo-induced eco-friendly antimicrobial food package - Google Patents

Photo-induced eco-friendly antimicrobial food package Download PDF

Info

Publication number
KR20240058359A
KR20240058359A KR1020220139008A KR20220139008A KR20240058359A KR 20240058359 A KR20240058359 A KR 20240058359A KR 1020220139008 A KR1020220139008 A KR 1020220139008A KR 20220139008 A KR20220139008 A KR 20220139008A KR 20240058359 A KR20240058359 A KR 20240058359A
Authority
KR
South Korea
Prior art keywords
eco
packaging material
photosensitizer
food packaging
friendly antibacterial
Prior art date
Application number
KR1020220139008A
Other languages
Korean (ko)
Inventor
왕강균
Original Assignee
주식회사 비아이바이오포토닉스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 비아이바이오포토닉스 filed Critical 주식회사 비아이바이오포토닉스
Priority to KR1020220139008A priority Critical patent/KR20240058359A/en
Publication of KR20240058359A publication Critical patent/KR20240058359A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/46Applications of disintegrable, dissolvable or edible materials
    • B65D65/466Bio- or photodegradable packaging materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K11/00Use of ingredients of unknown constitution, e.g. undefined reaction products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

본 출원은 미생물에 의한 생분해가 가능하고, 가시광에 의해 항균 효능이 지속적으로 발현될 수 있는 친환경 항균 식품 포장재 조성물에 관한 것으로서, 보다 상세하게는 광응용에 의한 활성산소에 의해 항균 기능이 발현되어, 그램 음성균 및 그램 양성균은 물론 슈퍼박테리아등에도 매우 높은 항균 효능을 갖으며, 내성균주의 발현이 없고, 생분해성과 생체무해성 감광제를 사용함으로써 환경오염문제를 경감하고 탄소발생을 절감할 수 있는 친환경 항균 식품 포장재 조성물에 관한 것이다.This application relates to an eco-friendly antibacterial food packaging composition that can be biodegraded by microorganisms and whose antibacterial effect can be continuously expressed by visible light. More specifically, the antibacterial function is expressed by active oxygen by light application, It is an eco-friendly antibacterial food that has a very high antibacterial effect against gram-negative and gram-positive bacteria as well as super bacteria, does not develop resistant bacteria, and reduces environmental pollution problems and carbon emissions by using biodegradable and bioharmless photosensitizers. It relates to a packaging composition.

Description

친환경 항균 식품 포장재{PHOTO-INDUCED ECO-FRIENDLY ANTIMICROBIAL FOOD PACKAGE}Eco-friendly antibacterial food packaging material {PHOTO-INDUCED ECO-FRIENDLY ANTIMICROBIAL FOOD PACKAGE}

본 출원은 미생물에 의한 생분해가 가능하고, 가시광에 의해 항균 효능이 지속적으로 발현될 수 있는 친환경 항균 식품 포장재 조성물에 관한 것으로서, 보다 상세하게는 광응용에 의한 활성산소에 의해 항균 기능이 발현되어, 그램 음성균 및 그램 양성균은 물론 슈퍼박테리아등에도 매우 높은 항균 효능을 갖으며, 내성균주의 발현이 없고, 생분해성과 생체무해성 감광제를 사용함으로써 환경오염문제를 경감하고 탄소발생을 절감할 수 있는 친환경 항균 식품 포장재 조성물에 관한 것이다.This application relates to an eco-friendly antibacterial food packaging composition that can be biodegraded by microorganisms and whose antibacterial effect can be continuously expressed by visible light. More specifically, the antibacterial function is expressed by active oxygen by light application, It is an eco-friendly antibacterial food that has a very high antibacterial effect against gram-negative and gram-positive bacteria as well as super bacteria, does not develop resistant bacteria, and reduces environmental pollution problems and carbon emissions by using biodegradable and bioharmless photosensitizers. It relates to a packaging composition.

포장재란 일정시간 동안 육류, 어류, 채소류, 과일류, 가공식품 등의 음식물("식품"으로 표기될 수 있음)의 신선도를 유지하고, 다양한 유해 외부 환경으로부터의 오염을 방지하기 위한 것이다. 식품을 보관할 경우 시간이 경과함에 따라 식품의 신선도가 떨어지고 곰팡이 및 세균의 번식으로 인하여 식품의 부패 상황을 피할 수 없다. 특히 1인 가구 증가 및 외식 문화 발달로 인하여 식품들을 오랜 기간 동안 보관해야 할 경우가 증가하고 이로 인하여 많은 양의 식품들이 부패하여 폐기되고 있는 상황이다.Packaging materials are intended to maintain the freshness of food (which may be labeled as “food”) such as meat, fish, vegetables, fruits, and processed foods for a certain period of time and to prevent contamination from various harmful external environments. When storing food, its freshness deteriorates over time, and food spoilage cannot be avoided due to the growth of mold and bacteria. In particular, due to the increase in single-person households and the development of eating out culture, the number of cases where food needs to be stored for a long period of time is increasing, and as a result, a large amount of food is rotting and being discarded.

식품의 오랜 보존을 위한 방안들은 다양하게 개발되었다. 가장 일반적인 방법으론 냉동, 훈육 건조, 소금 절임, 향식료 첨가 등의 방법들이 있으나 이들은 식품의 맛을 변환시키고 보존을 위한 에너지 소비가 많이 들어간다는 단점이 있다.Various methods for long-term preservation of food have been developed. The most common methods include freezing, drying, salting, and adding flavorings, but these methods have the disadvantage of changing the taste of food and requiring a lot of energy for preservation.

따라서, 식품의 신선도를 장기간 유지시키고 세균 및 곰팡이에 의한 부패를 막는 항균 식품 포장재에 대한 연구 개발이 활발하여 다양한 제품의 항균포장재가 발명되어 왔다.Therefore, research and development on antibacterial food packaging materials that maintain the freshness of food for a long period of time and prevent spoilage by bacteria and mold has been active, and antibacterial packaging materials for various products have been invented.

일반적인 고분자에 광물질인 은, 구리, 아연, 제올라이트 또는 황토가루를 첨가하거나, 제올라이트에 은, 구리 이온들을 함침시킨 가루들을 첨가하여 항균성, 산소투과 방지 기능을 첨가한 고분자 복합소재를 개발하는 것이다. 예컨대, 대한민국공개특허공보 2002-0090657에서는 금속분말을 고온 용융된 고분자에 첨가하여 마스터칩을 만들고 이를 사출성형하는데 사용하는 방법을 개시하고 있다. 두번째 방식은 클로린 다이오사이드, 에탄올, 이산화황, 트리클로산, 와사비 추출물 등 다양한 종류의 유기방부제, 가스첨가제를 사용해 항균포장재를 개발하는 것이다.By adding minerals such as silver, copper, zinc, zeolite, or red clay powder to general polymers, or by adding powders impregnated with silver and copper ions into zeolite, polymer composite materials with antibacterial and oxygen penetration prevention functions are developed. For example, Republic of Korea Patent Publication No. 2002-0090657 discloses a method of adding metal powder to a high-temperature molten polymer to make a master chip and using it for injection molding. The second method is to develop antibacterial packaging materials using various types of organic preservatives and gas additives such as chlorine dioside, ethanol, sulfur dioxide, triclosan, and wasabi extract.

그러나, 고분자에 금속 광물을 첨가하는 종래 방법은 제조 공정이 복잡하여 제조단가가 오르고, 금속 입자 등이 시간 경과 또는 공정상의 문제로 뭉침 현상이 발생하여 제품의 품질 균일도를 떨어뜨리고 공정의 재연성을 확보하지 못하는 단점이 있다. 한편, 유기방부제를 포함하는 포장재의 경우 고온 안정성이 떨어져서 고분자를 이용한 필름 가공시 유기 방부제의 효능이 파괴되고 필름 제조공정에 어려움이 있다. 또한, 화학방부제에 대한 소비자의 거부감이 있고 제작자 입장에서도 항균제 추가로 인한 기존 필름 제조 공정의 변경, 항균제의 분산 문제로 인한 균일하지 못한 항균 효과, 항균성 부여로 인하여 제조 비용 증가 등 해결해야 할 문제가 많다.However, the conventional method of adding metal minerals to polymers has a complicated manufacturing process, which increases manufacturing costs and causes metal particles to agglomerate over time or due to processing problems, which reduces product quality uniformity and ensures repeatability of the process. There is a downside to not being able to do this. Meanwhile, packaging materials containing organic preservatives have poor high-temperature stability, so when processing films using polymers, the effectiveness of the organic preservatives is destroyed and the film manufacturing process is difficult. In addition, there is consumer resistance to chemical preservatives, and from the producer's perspective, there are problems that need to be solved, such as changes to the existing film manufacturing process due to the addition of antibacterial agents, uneven antibacterial effects due to dispersion problems of antibacterial agents, and increased manufacturing costs due to the granting of antibacterial properties. many.

또한, 전통적 방식의 항균 포장 방식은 가열/냉동/냉장 및 소독약 처리 등이며, 이러한 기술의 경우 신선 편이 식품 적용에는 품질의 저하, 제품의 변형, 즉석섭취 문제 등의 한계점을 갖는다.In addition, traditional antibacterial packaging methods include heating/freezing/refrigeration and disinfectant treatment, and these technologies have limitations when applied to fresh food, such as deterioration in quality, deformation of the product, and problems with immediate consumption.

최근 사용되는 가스치환포장(Modified Atmosphere Packaging, MAP), 자외선살균(UV exposure), 고압처리(High Pressure Processing, HPP), 광펄스자기장(Pulsed ElectricField, PEF), 방사선 조사(Irradiation) 기술 포장 등이 적용되는데, 이러한 기술은 장비 도입을 위한 초기 투자비용이 높아 산업현장에서 쉽게 적용할 수 없다는 단점이 있다.Recently used modified atmosphere packaging (MAP), ultraviolet sterilization (UV exposure), high pressure processing (HPP), pulsed electric field (PEF), and irradiation technology packaging, etc. However, this technology has the disadvantage of being difficult to apply in industrial settings due to the high initial investment cost for equipment introduction.

또한, 과실로부터 에틸렌 가스를 직접 제거하기 위한 다공질의 에틸렌 흡착제를 이용한 기능성 포장재의 개발연구가 보고된 바 있으나, 이러한 흡착제는 고온 고습도 등의 외부환경 요건에 따른 활성 저하로 인해 흡착능력이 지속하지 못한다는 단점도 존재한다.In addition, research has been reported on the development of functional packaging materials using porous ethylene adsorbents to directly remove ethylene gas from fruits, but these adsorbents do not maintain their adsorption capacity due to a decrease in activity due to external environmental requirements such as high temperature and high humidity. There are also disadvantages.

더불어, 다양한 유해 미생물 및 변종 박테리아에도 높은 항균 효능과 더불어 품질저하가 없으며 신선과채소의 38% 이상이 즉석 취식 제품임을 감안하여 가공공정은 물론 최종 소비자에게 전달/취식한는 동안에도 항균 효능 지속성을 갖으며, 제품에 의한 환경오염을 경감시키고 기존 식품 포장의 난제, 예를 들어, 소독물질에 의한 상품품질저하, 재세척과정 요구 및 포장에 따른 상품 변형 등을 극복할 수 있는 포장재의 개발이 요구된다.In addition, it has high antibacterial efficacy against various harmful microorganisms and mutant bacteria and does not deteriorate in quality. Considering that more than 38% of fresh fruits and vegetables are ready-to-eat products, the antibacterial effect is maintained not only during the processing process but also during delivery/eating to the end consumer. In addition, there is a need for the development of packaging materials that can reduce environmental pollution caused by products and overcome the difficulties of existing food packaging, such as deterioration of product quality due to disinfectants, requirements for a re-washing process, and product deformation due to packaging. .

본 출원의 일 실시예에 따르면, 생분해성 고분자에 천연물 유래 광감응제를 담지하여, 광유도에 의해 활성산소를 생성하고 생성된 활성산소를 이용하여 유해 미생물을 효과적으로 사멸시키는 기능성을 제공하며, 천연물 유래 광감응제와 생분해성 고분자를 사용함으로써, 포장재로 사용후 자연상태에서 도입된 광감응제 및 플라스틱이 분해되어 환경오염을 방지할 수 있는 친환경 항균 식품 포장재를 제공하고자 한다.According to an embodiment of the present application, a natural product-derived photosensitizer is supported on a biodegradable polymer to generate active oxygen through light induction and provide the functionality of effectively killing harmful microorganisms using the generated active oxygen, and the natural product By using derived photosensitizers and biodegradable polymers, we aim to provide eco-friendly antibacterial food packaging materials that can prevent environmental pollution by decomposing the photosensitizers and plastics introduced in nature after use as packaging materials.

본 출원의 일 측면은 친환경 항균 식품 포장재에 관한 것이다.One aspect of the present application relates to eco-friendly antibacterial food packaging materials.

일 예시에서, 친환경 항균 식품 포장재는 생분해성 고분자; 및 천연물 유래 광감응제를 포함할 수 있다. In one example, the eco-friendly antibacterial food packaging material includes biodegradable polymers; And it may include a photosensitizer derived from natural products.

일 예시에서, 친환경 항균 식품 포장재는 생분해성 고분자에 담지된 천연물 유래 광감응제;를 포함할 수 있다.In one example, the eco-friendly antibacterial food packaging material may include a natural product-derived photosensitizer supported on a biodegradable polymer.

일 예시에서, 생분해성 고분자의 산소 투과도는 500 내지 3000 cc/㎡day일 수 있다.In one example, the oxygen permeability of the biodegradable polymer may be 500 to 3000 cc/m2day.

일 예시에서, 생분해성 고분자는 PLA(polylactic acid), PGA(polyglycolid), TPS(thermoplastic starch), PHA(polyhydroxyalkanoate), AP(hydrophobically associating polymer), PBS(poly(Butylene succinate)), PES(polyether polymer), PBAT(polybutylene adipate terephthalate), PCL(polycaprolactone), Oxo Bio-PP(polypropylene), 및 Oxo Bio-PE(polyethylene)으로 이루어진 그룹으로부터 선택된 적어도 하나를 포함할 수 있다.In one example, the biodegradable polymer includes polylactic acid (PLA), polyglycolid (PGA), thermoplastic starch (TPS), polyhydroxyalkanoate (PHA), hydrophobically associating polymer (AP), poly(butylene succinate) (PBS), and polyether polymer (PES). ), PBAT (polybutylene adipate terephthalate), PCL (polycaprolactone), Oxo Bio-PP (polypropylene), and Oxo Bio-PE (polyethylene).

일 예시에서, 천연물 유래 광감응제는 가시광영역의 빛에 의해 광유도 활성산소를 생성할 수 있는 광감응제일 수 있다.In one example, the natural product-derived photosensitizer may be a photosensitizer that can generate light-induced active oxygen by light in the visible light region.

일 예시에서, 천연물 유래 광감응제는 식물 또는 균주로부터 추출한 천연물 또는 식용색소인 광감응제일 수 있다.In one example, the natural product-derived photosensitizer may be a photosensitizer that is a natural product or edible pigment extracted from plants or strains.

일 예시에서, 천연물 유래 광감응제는 Curcumin, Pterin, Prietin, 알로에에모딘, 플라빈, 리보플라빈, 아크리플라빈, Hypericin, L. racemose, C. odorata, A. procera, 및 식용색소으로 이루어진 그룹으로부터 선택된 적어도 하나를 포함할 수 있다.In one example, the natural product-derived photosensitizer is selected from the group consisting of Curcumin, Pterin, Prietin, Aloemodin, Flavin, Riboflavin, Acriflavin, Hypericin, L. racemose, C. odorata, A. procera, and food coloring. It may include at least one selected.

일 예시에서, 천연물 유래 광감응제는 Monascus purpures일 수 있다.In one example, the natural product-derived photosensitizer may be Monascus purpures.

일 예시에서, Pterin은 이소크산코프테린, 류코프제린, 크산토프테린, 비오프테린 및 네오프테린을 포함할 수 있다.In one example, Pterins may include isoxancopterin, leukopterin, xanthopterin, biopterin, and neopterin.

일 예시에서, 식용색소는 적색 2호, 적색 3호, 적색 40호, 적색 102호, 황색 4호, 황색 5호, 청색 1호, 청색 2호 및 청색 3호로 이루어진 그룹으로부터 선택된 적어도 하나를 포함할 수 있다.In one example, the food coloring includes at least one selected from the group consisting of Red No. 2, Red No. 3, Red No. 40, Red No. 102, Yellow No. 4, Yellow No. 5, Blue No. 1, Blue No. 2, and Blue No. 3. can do.

일 예시에서, 생분해성 고분자 및 천연물 유래 광감응제는 중량비로 60 내지 99 중량부 : 40 내지 1 중량부일 수 있다.In one example, the biodegradable polymer and natural product-derived photosensitizer may be 60 to 99 parts by weight: 40 to 1 part by weight.

일 예시에서, 생분해성 고분자은 PLA 및 Oxo Bio-PE을 포함할 수 있다.In one example, the biodegradable polymer may include PLA and Oxo Bio-PE.

일 예시에서, 생분해성 고분자은 PLA 및 Oxo Bio-PE 을 50 내지 80 중량부 : 50 내지 20 중량부로 포함할 수 있다.In one example, the biodegradable polymer may include 50 to 80 parts by weight of PLA and Oxo Bio-PE: 50 to 20 parts by weight.

본 출원의 일 실시예에 따르면, 친환경 항균 식품 포장재에 제공할 수 있다. According to an embodiment of the present application, it can be provided as an eco-friendly antibacterial food packaging material.

본 출원의 일 실시예에 따르면, 고분자에 SS encapsulation, surface modification, mixed polymerization method 등을 통해 도입된 감광제의 기능이 유지된 친환경 항균 식품 포장재에 제공할 수 있다. According to an embodiment of the present application, an eco-friendly antibacterial food packaging material that maintains the function of the photosensitizer introduced into the polymer through SS encapsulation, surface modification, mixed polymerization method, etc. can be provided.

본 출원의 일 실시예에 따르면, 광반응성 고분자의 활성산소 생성 최적화 제어 기술이 적용된 친환경 항균 식품 포장재에 제공할 수 있다. According to an embodiment of the present application, eco-friendly antibacterial food packaging material applied with optimized control technology for the production of active oxygen in photoreactive polymers can be provided.

본 출원의 일 실시예에 따르면, 유해 미생물 증식억제, 사멸효능 최적화 기술이 적용된 친환경 항균 식품 포장재에 제공할 수 있다.According to an embodiment of the present application, it can be provided in an eco-friendly antibacterial food packaging material to which technology for inhibiting the growth of harmful microorganisms and optimizing killing efficacy has been applied.

본 출원의 일 실시예에 따르면, 천연물 유래 광감응제를 적용하여, 환경 오염 문제나 경제성이 부족한 종래의 광감응제, 광기능성 물질과 달리 환경 친화적이고, 경제성이 우수하며, 탄소 저감 효과를 제공할 수 있다.According to an embodiment of the present application, by applying a photosensitizer derived from natural products, unlike conventional photosensitizers and photofunctional materials that lack environmental pollution problems or economic feasibility, it is environmentally friendly, has excellent economic efficiency, and provides a carbon reduction effect. can do.

본 출원의 일 실시예에 따르면, 안전성이 검증된 식용색소를 신규 화합물질에 대한 생체 바이오적 위험을 배제할 수 있다.According to an embodiment of the present application, the biological risk of new chemical compounds can be excluded from food colorings whose safety has been verified.

본 출원의 일 실시예에 따르면, 생분해성 고분자로서 PLA 및 Oxo Bio-PE을 조합하여 최적의 항균 특성을 갖는 친환경 항균 식품 포장재에 제공할 수 있으며, 특히, PLA 및 Oxo Bio-PE를 중량비로 60 내지 99 : 40 내지 1로 조합하는 경우에는 항균 특성을 크게 향상시킬 수 있다. According to an embodiment of the present application, PLA and Oxo Bio-PE, as biodegradable polymers, can be combined to provide eco-friendly antibacterial food packaging materials with optimal antibacterial properties. In particular, PLA and Oxo Bio-PE can be used in a weight ratio of 60 When combining from 99 to 40 to 1, antibacterial properties can be greatly improved.

도 1은 광경화를 통한 생분해성 고분자의 제조 방법을 설명하는 도면과 제조된 생분해성 고분자에 대한 이미지이다.
도 2는 tymine의 cross linking에 의한 고분자에 대한 정상상태 방출 분광법에 의해 분석한 결과그래프이다.
도 3은 푸리에 변환 적외선 분광법에 의해 분석한 결과그래프이다.
도 4는 Monascus purpures (홍국추출물)에 대한 설명하기 위한 도면이다.
도 5는 적색 3호에 대한 Time -resolved singlet oxygen phosphorescence spectra 그래프이다.
도 6은 실험예 1에서 박테리아 양을 측정한 결과그래프이다.
도 7은 실험예 2에서 박테리아 양을 측정한 결과그래프이다.
도 8은 실험예 3에서 박테리아 양을 측정한 결과그래프이다.
도 9는 실험예 4에서 박테리아 양을 측정한 결과그래프이다.
Figure 1 is a drawing explaining a method of manufacturing a biodegradable polymer through photocuring and an image of the produced biodegradable polymer.
Figure 2 is a graph showing the results of analysis by steady-state emission spectroscopy on a polymer by cross linking of tymine.
Figure 3 is a graph of results analyzed by Fourier transform infrared spectroscopy.
Figure 4 is a diagram for explaining Monascus purpures (red yeast extract).
Figure 5 is a time-resolved singlet oxygen phosphorescence spectra graph for red No. 3.
Figure 6 is a graph showing the results of measuring the amount of bacteria in Experimental Example 1.
Figure 7 is a graph showing the results of measuring the amount of bacteria in Experimental Example 2.
Figure 8 is a graph showing the results of measuring the amount of bacteria in Experimental Example 3.
Figure 9 is a graph showing the results of measuring the amount of bacteria in Experimental Example 4.

본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 구성요소 등이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 구성요소 등이 존재하지 않거나 부가될 수 없음을 의미하는 것은 아니다.The terms used in this application are only used to describe specific embodiments and are not intended to limit the invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. In this application, terms such as “include” or “have” are intended to designate the presence of features, components, etc. described in the specification, but one or more other features or components, etc. may not be present or may be added. That doesn't mean there isn't one.

다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as generally understood by a person of ordinary skill in the technical field to which the present invention pertains. Terms defined in commonly used dictionaries should be interpreted as having meanings consistent with the meanings they have in the context of the related technology, and unless clearly defined in the present application, should not be interpreted in an ideal or excessively formal sense. No.

이하, 첨부된 도면을 참조하여 본 출원의 친환경 항균 식품 포장재를 상세히 설명한다. 다만, 첨부된 도면은 예시적인 것으로, 본 출원의 친환경 항균 식품 포장재의 범위가 첨부된 도면에 의해 제한되는 것은 아니다.Hereinafter, the eco-friendly antibacterial food packaging material of the present application will be described in detail with reference to the attached drawings. However, the attached drawings are illustrative, and the scope of the eco-friendly antibacterial food packaging material of the present application is not limited by the attached drawings.

본 출원의 일 측면은 친환경 항균 식품 포장재에 관한 것이다.One aspect of the present application relates to eco-friendly antibacterial food packaging materials.

종래의 광에너지를 이용한 항균 포장의 경우 자외선 조사를 통해 식품을 멸균처리한 후 유통하는 방식이기 때문에, 자외선 살균 장비가 필요하다. 과도하게 자외선을 조사하는 경우 식품의 품질이 저하되거나 변형되어, 포장 용기의 광부식을 초래하기도 한다. 또한, 일회성 처리로 인해 유통 과정 중에 쉽게 오염될 수 있다.In the case of conventional antibacterial packaging using light energy, food is sterilized through ultraviolet irradiation and then distributed, so ultraviolet sterilization equipment is required. Excessive irradiation of ultraviolet rays may deteriorate or deform the quality of food and cause photocorrosion of packaging containers. Additionally, due to one-time processing, it can easily become contaminated during the distribution process.

또한, 은 나노입자를 도입한 텐키퍼 제품이 대표적인 광촉매에 의한 항균 포장재이나, 적용 대상이 종이 포장재에 한정되고, 제작단가가 고가이며, 은 나노입자에 대한 독성은 여전히 해결해야할 문제이다.In addition, Tenkeeper products incorporating silver nanoparticles are representative antibacterial packaging materials using photocatalysts, but their application is limited to paper packaging materials, the production cost is high, and the toxicity of silver nanoparticles is still a problem that needs to be resolved.

본 출원의 일실시예에 따른 포장재는 가시광 유도에 의해 생성되는 활성산소를 통해 항균 효능을 발현함으로써, 활성산소의 높은 활성화 에너지에 의해 그램음성/양성균은 물론, 슈퍼박테리아 등의 다제 내성에 대해서도 높은 멸균 효능성을 제공한다. The packaging material according to an embodiment of the present application exhibits antibacterial efficacy through active oxygen generated by visible light, and has high resistance against multi-drug resistance such as superbacteria as well as gram-negative/positive bacteria due to the high activation energy of active oxygen. Provides sterilization efficacy.

또한, 본 출원의 일실시예에 따른 포장재는 항균 효능 발현을 위한 빛의 경우 식품 포장 진열대의 광원 및 태양광에 의해서도 각각 99.99%, 99.9% 이상의 멸균 효능성을 나타낸다.In addition, the packaging material according to an embodiment of the present application shows a sterilization efficacy of more than 99.99% and 99.9%, respectively, by the light source of the food packaging display stand and sunlight for the expression of antibacterial efficacy.

또한, 본 출원의 일실시예에 따른 포장재는 식품보존제를 이용한 항균 포장은 대표적으로 유기산류, 염류, 킬레이트제, Imazalil 항곰팡이제, 효소류, 박테리오신류, 정유 및 키틴, 키토산등이 사용된다. 그러나 대상 박테리아에 따라 항균 효능성이 차이가 매우 크다. 예를 들어, 유기산중 sorvic acid 젖산균과 혐기성균에는 항균 효능이 없다. 환경조건에 따라서도 항균 효능이 편차가 매우 크다. 예를 들어, sodium benzonate는 높은 pH에서는 효능이 없다. 또한 특정 환경조건에서 보존제의 변형으로 인한 독성이 발현되기도 한다.In addition, the packaging material according to an embodiment of the present application is an antibacterial packaging using a food preservative, and representative organic acids, salts, chelating agents, Imazalil anti-fungal agent, enzymes, bacteriocins, essential oils, chitin, chitosan, etc. are used. However, the antibacterial efficacy varies greatly depending on the target bacteria. For example, among organic acids, sorbic acid has no antibacterial effect against lactic acid bacteria and anaerobic bacteria. Antibacterial efficacy varies greatly depending on environmental conditions. For example, sodium benzonate is ineffective at high pH. Additionally, toxicity may occur due to modification of preservatives under certain environmental conditions.

또한, 젖산과 구연산이 담지된 항균 포장재의 경우 항균 효능은 검증되었으나, 그 효과가 미비하거나, 특정 박테리아 에만 항균 효능성을 나타낸다.In addition, in the case of antibacterial packaging materials containing lactic acid and citric acid, the antibacterial efficacy has been verified, but the effect is minimal or only shows antibacterial efficacy against specific bacteria.

본 출원의 일실시예에 따른 포장재는 광응용에 의해 생성되는 활성산소를 통해 항균 효능을 발현함으로써, 활성산소 중 단일항 산소(singlet oxygen)의 비선택적 반응성으로 다양한 박테리아에 대해 항균 효능을 발현하고 또한 광에너지가 조사되는 동안 지속적인 활성산소의 생성으로 인해 식품의 포장, 유통 및 취식 중에도 항균 효능이 유지된다.The packaging material according to an embodiment of the present application expresses antibacterial efficacy through active oxygen generated by light application, thereby expressing antibacterial effect against various bacteria through non-selective reactivity of singlet oxygen among active oxygen. In addition, the antibacterial effect is maintained even during packaging, distribution, and eating of food due to the continuous production of active oxygen while light energy is irradiated.

또한, 추가설비가 필요 없으며, 안전한 항균 포장재를 제공할 수 있다. 특히, 기존의 진공 또는 고압 포장시스템과 달리, 추가적 설비가 필요없으며, 생분해성 고분자를 기반으로 하여 환경안전을 담보하고 도입되는 광반응성 기작으로 생체무해성 감광제를 도입할 수 있다.In addition, there is no need for additional equipment, and safe antibacterial packaging materials can be provided. In particular, unlike existing vacuum or high-pressure packaging systems, there is no need for additional equipment, environmental safety is guaranteed based on biodegradable polymers, and a bio-harmless photosensitizer can be introduced through the introduced photoreactive mechanism.

일 예시에서, 친환경 항균 식품 포장재는 생분해성 고분자; 및 천연물 유래 광감응제를 포함할 수 있다. 특히, 친환경 항균 식품 포장재는 생분해성 고분자에 담지된 천연물 유래 광감응제;를 포함할 수 있다.In one example, the eco-friendly antibacterial food packaging material includes biodegradable polymers; And it may include a photosensitizer derived from natural products. In particular, eco-friendly antibacterial food packaging materials may include a natural product-derived photosensitizer supported on a biodegradable polymer.

여기서, "담지"는 고분자내에 천연물 유래 광감응제의 물리적 고정 또는 화학적 결합에 의한 고정을 포함하며, cross linking 또한 포함한다. Here, “support” includes physical fixation or chemical bonding of a natural product-derived photosensitizer within a polymer, and also includes cross linking.

생분해성 고분자는 이용 후에 화학적 분해가 가능한 이산화탄소, 질소, 물, 바이오매스, 무기염류 등의 천연 부산물을 내놓는 고분자 종류의 하나이다. 이러한 고분자들은 자연적으로 발견되거나 혹은 합성과정을 거쳐 만들어지고, 에스테르, 아마이드, 그리고 에테르 기능집단으로 이루어져 있다.Biodegradable polymers are a type of polymer that releases natural by-products such as carbon dioxide, nitrogen, water, biomass, and inorganic salts that can be chemically decomposed after use. These polymers are found naturally or made through synthetic processes, and are composed of ester, amide, and ether functional groups.

도 1은 광경화를 통한 생분해성 고분자의 제조 방법을 설명하는 도면과 제조된 생분해성 고분자에 대한 이미지이다.Figure 1 is a diagram illustrating a method of manufacturing a biodegradable polymer through photocuring and an image of the produced biodegradable polymer.

도 2는 tymine의 cross linking에 의한 고분자에 대한 정상상태 방출 분광법에 의해 분석한 결과그래프이고, 도 3은 푸리에 변환 적외선 분광법에 의해 분석한 결과그래프이다. 구체적으로 연어정자에서 추출한 deoxyribonucleic acid(DNA)에 대해 UV를 조사하여, 고분자 필름을 제조한 샘플에 관한 분석 결과로서. 특히 DNA 내에 있는 thymine의 crosslinking 반응에 의해 고분자가 형성된다. IR을 통해 고분자화 되었음을 확인할 수 있다. Figure 2 is a graph showing the results analyzed by steady-state emission spectroscopy for a polymer by cross linking of tymine, and Figure 3 is a graph showing the results analyzed by Fourier transform infrared spectroscopy. Specifically, as an analysis result of a sample in which a polymer film was manufactured by UV irradiation of deoxyribonucleic acid (DNA) extracted from salmon sperm. In particular, polymers are formed through the crosslinking reaction of thymine in DNA. It can be confirmed that it has been polymerized through IR.

Emission spectrum에서 확인할 수 있는 바와 같이, UV 조사시간이 길어질수록 400nm 영역에서의 peak가 증가하게 되고, FT-IR sepctrum에서 보이는 1086, 962 영역에서의 peak가 감소하는 것을 통해 thymine에 의해 crosslinking이 증가 즉, 고분자화 되었다는 것을 확인할 수 있다.As can be seen in the emission spectrum, as the UV irradiation time increases, the peak in the 400nm region increases, and the peak in the 1086 and 962 regions seen in the FT-IR septrum decreases, indicating an increase in crosslinking by thymine. , it can be confirmed that it has been polymerized.

본 출원의 일 측면에 따르면, 생분해성 고분자의 산소 투과도는 500 내지 3000 cc/㎡day일 수 있다. 500 미만인 경우에는 산소 투과도가 너무 낮아 광조사에 의한 활성산소 생성양이 매우 작아 원하는 효과를 제공할 수 없는 반면에, 산소투과량이 3000cc/㎡day를 초과하는 경우에 산소 투과량이 너무 많은경우 생성되는 활성산소간의 충돌에 의한 소광현상이 발생한다는 문제점이 있다. 다만, 그 하한은 500, 600, 700, 800, 900 또는 1000일 수 있다. 반면에 그 상한은 3000, 2900, 2800, 2700, 2600, 2500,2400, 2300, 2200, 2100 또는 2000일 수 있다.According to one aspect of the present application, the oxygen permeability of the biodegradable polymer may be 500 to 3000 cc/m2day. If the oxygen permeability is less than 500, the oxygen permeability is too low and the amount of active oxygen generated by light irradiation is very small and cannot provide the desired effect. On the other hand, if the oxygen permeability exceeds 3000 cc/㎡day, the oxygen permeability is too high and the amount of oxygen permeable is too high. There is a problem that quenching phenomenon occurs due to collision between active oxygens. However, the lower limit may be 500, 600, 700, 800, 900, or 1000. On the other hand, the upper limit could be 3000, 2900, 2800, 2700, 2600, 2500, 2400, 2300, 2200, 2100 or 2000.

산소 투과도는 일정 온도, 습도 및 산소 농도 조건에서 단위 시간당, 단위 면적에 대해 시편을 투과하는 산소의 양을 나타낸 것이다. 일반적으로 산소투과량이 일정 수치를 초과하는 경우 오히려 생성되는 활성산소의 양이 감소될 수 있다. 또한 이는 고분자의 종류에 따라 최적 조건이 달라질 수 있다.Oxygen permeability represents the amount of oxygen penetrating the specimen per unit time and unit area under certain temperature, humidity, and oxygen concentration conditions. In general, if the oxygen permeation amount exceeds a certain level, the amount of active oxygen generated may actually decrease. Additionally, the optimal conditions may vary depending on the type of polymer.

특히, 이와 같은 고분자 필름 또는 고분자 성형품에 대해서 가시광 영역의 빛이 조사되면 상기 고분자 필름 또는 고분자 성형품에 함유된 광감응제로부터 활성 산소종 또는 자유 라디칼을 발생되는데, 상술한 바와 같이 상기 고분자 필름 또는 고분자 성형품이 상술한 범위의 산소 투과도를 가짐에 따라서, 활성 산소가 보다 효율적으로 생성될 수 있으면서도 활성 산소가 잔류하는 시간이 크게 높아질 수 있다.In particular, when light in the visible light range is irradiated on such a polymer film or polymer molded product, reactive oxygen species or free radicals are generated from the photosensitizer contained in the polymer film or polymer molded product. As described above, the polymer film or polymer molded product generates active oxygen species or free radicals. As the molded article has an oxygen permeability in the above-mentioned range, active oxygen can be generated more efficiently and the remaining time of active oxygen can be greatly increased.

생분해성 고분자는 PLA(polylactic acid), PGA(polyglycolid), TPS(thermoplastic starch), PHA(polyhydroxyalkanoate), AP(hydrophobically associating polymer), PBS(poly(Butylene succinate)), PES(polyether polymer), PBAT(polybutylene adipate terephthalate), PCL(polycaprolactone), Oxo Bio-PP(polypropylene), 및 Oxo Bio-PE(polyethylene)으로 이루어진 그룹으로부터 선택된 적어도 하나를 포함할 수 있으나, 이에 한정되는 것은 아니다.Biodegradable polymers include PLA (polylactic acid), PGA (polyglycolid), TPS (thermoplastic starch), PHA (polyhydroxyalkanoate), AP (hydrophobically associating polymer), PBS (poly(Butylene succinate)), PES (polyether polymer), and PBAT ( It may include, but is not limited to, at least one selected from the group consisting of polybutylene adipate terephthalate (PCL), polycaprolactone (PCL), Oxo Bio-PP (polypropylene), and Oxo Bio-PE (polyethylene).

다만, 생분해성 고분자는 PLA 및 Oxo Bio-PE을 포함한는 것이 바람직하며, 그 함량은 50 내지 80 중량부 : 50 내지 20 중량부로 포함하는 것이 보다 바람직하다.However, the biodegradable polymer preferably includes PLA and Oxo Bio-PE, and the content is more preferably 50 to 80 parts by weight: 50 to 20 parts by weight.

본 출원에서는 두 화합물의 최적의 비율을 찾아 활성 산소를 최대로 공급하여 항균 효과를 최대화할 수 있는 범위를 확인하였다. PLA의 산소투과도는 약 120이고, Oxo Bio-PE의 산소 투과도는 약 3000 이다. Oxo Bio-PE의 함량이 많아 질수록 산소투과도가 높아질 것으로 예측되나, Oxo Bio-PE의 함량이 상대적으로 많은 경우 생체 고분자의 공극 내에서 활성 산소들이 충돌하여 다시 산소가 형성되기 때문에 오히려 산소투과도의 상승이 멈추게 되기 때문에, 전술한 50 내지 80 중량부 : 50 내지 20 중량부의 비율에서 최적의 항균 효과를 나타낸다.In this application, the optimal ratio of the two compounds was found and the range in which active oxygen could be maximized to maximize the antibacterial effect was confirmed. The oxygen permeability of PLA is about 120, and that of Oxo Bio-PE is about 3000. It is predicted that the oxygen permeability will increase as the content of Oxo Bio-PE increases. However, when the content of Oxo Bio-PE is relatively high, oxygen permeability is reduced by collisions between active oxygens within the pores of the biopolymer and oxygen is formed again. Since the rise stops, the optimal antibacterial effect is achieved at the ratio of 50 to 80 parts by weight: 50 to 20 parts by weight.

또한, 본 출원의 일측면에 따른 포장재는 천연물 유래 광감응제를 포함할 수 있다. Additionally, the packaging material according to one aspect of the present application may include a photosensitizer derived from natural products.

광감응제(photosensitizer)는 빛을 흡수하여 활성산소종(ROS)을 생성시키는데, 외부에서 특정파장의 빛을 조사하여 광감응제로부터 활성 산소종 또는 자유 라디칼을 발생시킬 수 있다. 본 출원의 천연물 유래 광감응제로서, 식물 또는 균주로부터 추출한 천연물 또는 식용색소일 수 있다.A photosensitizer absorbs light to generate reactive oxygen species (ROS), and reactive oxygen species or free radicals can be generated from the photosensitizer by irradiating light of a specific wavelength from the outside. The natural product-derived photosensitizer of the present application may be a natural product or food coloring extracted from plants or strains.

특히, 본 출원의 광감응제는 가시광영역의 빛에 의해 광유도 활성산소를 생성할 수 있다.In particular, the photosensitizer of the present application can generate light-induced active oxygen by light in the visible light region.

이러한 천연물 유래 광감응제의 예시로서 Curcumin, Pterin, Prietin, 알로에에모딘, 플라빈, 리보플라빈, 아크리플라빈, Hypericin, L. racemose, C. odorata, A. procera 및 식용색소으로 이루어진 그룹으로부터 선택된 적어도 하나를 포함할 수 있다.Examples of such natural product-derived photosensitizers include at least one selected from the group consisting of Curcumin, Pterin, Prietin, Aloemodin, Flavin, Riboflavin, Acriflavin, Hypericin, L.  racemose, C.  odorata, A.  procera, and food coloring. It can contain one.

또한, 천연물 유래 광감응제는 Monascus purpures일 수 있다.Additionally, the natural product-derived photosensitizer may be Monascus purpures.

도 4는 Monascus purpures (홍국추출물)에 대한 설명하기 위한 도면이다.Figure 4 is a diagram for explaining Monascus purpures (red yeast extract).

홍국(red rice)을 분쇄하고 이를 용매에 분산시킨 후 온도를 올려가며 증류 추출법을 시행하여 compound를 얻을 수 있다. 남아있는 물질은 다시 용매에 녹인후 재결정 (recrystallization)방법을 통해 compound 2를 얻을 수 있다. 얻어진 compound 2를 amination reaction과 reduction reaction을 통해 오렌지, 엘로우, 레드 등을 얻을 수 있다. 이중 오렌지와 레드를 emission, excitation sepctrum 측정을 통해 흡수파장 영역과 발광파장영역을 확인할 수 있다. 또한, 두 시료에 대해 시간분해 단일항산소 인광측정 실험을 통해 두시료에서 단일항 산소가 생성되는 것을 확인할 수 있다.The compound can be obtained by grinding red rice, dispersing it in a solvent, and performing distillation extraction while raising the temperature. The remaining material can be dissolved in a solvent again and then compound 2 can be obtained through recrystallization. Orange, yellow, red, etc. can be obtained from the obtained compound 2 through amination reaction and reduction reaction. Among these, the absorption wavelength area and emission wavelength area can be confirmed by measuring the orange and red emission and excitation sepctrum. In addition, it can be confirmed that singlet oxygen is generated in the two samples through a time-resolved singlet oxygen phosphorescence measurement experiment.

또한, Pterin은 이소크산코프테린, 류코프제린, 크산토프테린, 비오프테린 및 네오프테린을 포함할 수 있다.Additionally, Pterins may include isoxancopterin, leukopterin, xanthopterin, biopterin, and neopterin.

또한, 식용색소는 적색 2호, 적색 3호, 적색 40호, 적색 102호, 황색 4호, 황색 5호, 청색 1호, 청색 2호 및 청색 3호로 이루어진 그룹으로부터 선택된 적어도 하나를 포함할 수 있다.In addition, the food coloring may include at least one selected from the group consisting of Red No. 2, Red No. 3, Red No. 40, Red No. 102, Yellow No. 4, Yellow No. 5, Blue No. 1, Blue No. 2, and Blue No. 3. there is.

도 5는 적색 3호에 대한 Time -resolved singlet oxygen phosphorescence spectra 그래프이다. 활성산소의 한종류인 단일항 산소의 생성유무와 생성양을 확인하는 실험에 관한 것이다. 샘플에 나노초 펄스 레이저 빛을(시료의 흡광스펙트럼에 해당하는 파장) 조사하고 샘플에서 생성되는 단일항 산소의 인광 (1270nm 파장영역)을 측정하였다. 도 5에서 도시한 바와 같이, 생성된 단일항산소의 수명시간은 D2O용매상에서 약 62마이크로초이다. 이를 통해 생성된 단일항 산소의 확산거리를 계산하게 된다. 다만, 포장재의 사용이 D2O가 아닌 대기에서 사용되는 점을 감안하면, 대기상에서의 단일항 산소의 수명시간과 확산거리를 제실할 수 있다. Figure 5 is a time-resolved singlet oxygen phosphorescence spectra graph for red No. 3. It is about an experiment to check whether and how much singlet oxygen, a type of active oxygen, is produced. Nanosecond pulse laser light (wavelength corresponding to the absorption spectrum of the sample) was irradiated to the sample, and the phosphorescence of singlet oxygen generated in the sample (1270 nm wavelength range) was measured. As shown in Figure 5, the lifetime of the produced singlet oxygen is about 62 microseconds in the D2O solvent. Through this, the diffusion distance of the generated singlet oxygen is calculated. However, considering that the packaging material is used in the atmosphere rather than D2O, the life time and diffusion distance of singlet oxygen in the atmosphere can be improved.

일 예시에서, 생분해성 고분자 및 천연물 유래 광감응제은 중량비로 60 내지 99 중량부 : 40 내지 1 중량부일 수 있다.In one example, the biodegradable polymer and the natural product-derived photosensitizer may be 60 to 99 parts by weight: 40 to 1 part by weight.

이하, 실험예를 통하여 본 출원을 보다 상세히 설명한다.Hereinafter, the present application will be described in more detail through experimental examples.

[실험예 1][Experimental Example 1]

본 출원의 포장재(도 1 참조)의 토마토 박테이라에 대한 증식 억제효능을 확인하기 위해 하기와 같은 실험을 수행하였다. The following experiment was performed to confirm the growth inhibitory effect of the packaging material of the present application (see Figure 1) on tomato bacteria.

토마토에 대장균, 포도상구균 carotovora균을 접종하고, 본 출원의 일실시예인 연어 정자 유래 고분자(2021APP-R3PA-1)를 이용하여 제조한 포장재 및 일반포장재에 넣고 3일간 빛을 조사하였다. 대조군으로 본 출원의 포장재에 박테리아를 접종한 토마토를 넣고 암실에서 3일간 보관하였다. 4, 12, 24시간, 2일, 3일 간격으로 시료를 채취하여 박테리아 양을 측정하였다. 그 결과를 도 6에 도시하였다. Tomatoes were inoculated with Escherichia coli and Staphylococcus carotovora, placed in packaging materials and general packaging materials manufactured using salmon sperm-derived polymer (2021APP-R3PA-1), which is an example of this application, and irradiated with light for 3 days. As a control, tomatoes inoculated with bacteria were placed in the packaging material of the present application and stored in a dark room for 3 days. Samples were collected at intervals of 4, 12, 24 hours, 2 days, and 3 days to measure the amount of bacteria. The results are shown in Figure 6.

도 6에 도시한 바와 같이, 본 출원의 포장재에 있는 토마토의 경우 박테리아 수가 감소 또는 유지되는데 반해 나머지 일반포장재에 빛을 조사한 경우, 본 출원의 포장재에 빛을 조사하지 않은 경우 박테리아양이 증가하는 것을 확인할 수 있었다.As shown in Figure 6, in the case of tomatoes in the packaging material of the present application, the number of bacteria is reduced or maintained, whereas when light is irradiated to the remaining general packaging material, the amount of bacteria increases when light is not irradiated to the packaging material of the present application. I was able to confirm.

[실험예 2][Experimental Example 2]

추가로, 본 출원의 연어 정자를 이용하여 제조한 포장재의 박테이라에 대한 증식 억제효능을 확인하기 위해 하기와 같은 실험을 수행하였다. Additionally, the following experiment was performed to confirm the growth inhibition effect of the packaging material manufactured using the salmon sperm of the present application against bacteria.

본 출원의 일실시예인 연어 정자 유래 고분자(2021APP-R3PA-1, 2021APP-R3PA-2, 2021APP-R3PA-8, 여기서, 마지막 숫자 1, 2, 및 8은 감광응제의 함량을 의미함)를 이용하여 제조한 포장재 3종에 대해 박테리아 3종을 접종하고 30분간 빛조사 후 (15mw) 박테리아 양을 측정한 결과를 도 7에 도시한다.Using salmon sperm-derived polymers (2021APP-R3PA-1, 2021APP-R3PA-2, 2021APP-R3PA-8, where the last numbers 1, 2, and 8 indicate the content of the photosensitizer), which is an example of the present application The results of measuring the amount of bacteria after inoculating three types of bacteria into three types of packaging materials manufactured and irradiating light for 30 minutes (15 mw) are shown in Figure 7.

도 7에 도시한 바와 같이, 본 출원에 따른 포장재의 경우 박테리아의 양이 크게 줄어든 것을 확인할 수 있었다. As shown in Figure 7, it was confirmed that the amount of bacteria was greatly reduced in the packaging material according to the present application.

[실험예 3][Experimental Example 3]

또한, PLA와 OXO bio-PE의 최적 함량을 도출하기 위한 실험을 수행하였다. 도 8에 박테리아 양을 측정한 결과를 도시한다. Additionally, experiments were conducted to derive the optimal content of PLA and OXO bio-PE. Figure 8 shows the results of measuring the amount of bacteria.

C는 비교예를 의미하고, S는 실시예를 의미한다. 항균은 생분해성 고분자와 광감응제(식용색소 적색 3호)가 포함된 시료를 의미하고, 일반은 생분해성 고분자만 포함된 시료를 의미한다. 또한, dark는 암조건을 의미하고, light는 명조건을 의미한다. S2 내지 S10에는 OXO bio-PE의 함량이 중량%로 표시되며, 예를 들어, S2의 경우 PLA 99%와 OXO bio-PE 1%를 의미한다.C means comparative example, and S means example. Antibacterial refers to a sample containing biodegradable polymer and a photosensitizer (food coloring red No. 3), and general refers to a sample containing only biodegradable polymer. Additionally, dark refers to dark conditions, and light refers to light conditions. In S2 to S10, the content of OXO bio-PE is expressed in weight%. For example, S2 means 99% PLA and 1% OXO bio-PE.

또한, 타겟 박테리아는 E. coli이었으며, 광원은 화이트 LED(2.5mW/cm2)이고, 광조사는 1시간이었으며, 배양 시간은 24시간이었다.In addition, the target bacteria was E. coli, the light source was a white LED (2.5 mW/cm2), the light irradiation was 1 hour, and the incubation time was 24 hours.

도 8을 참조하면, C2 및 C4의 경우 C1 보다 박테리아 양이 많은 이유는 광조사에 의한 온열효과로 박테리아 증식된 것이다. C3의 경우 산소투과도가 높아서 박테리아 증식이 원활이 일어나 C1보다 박테리아의 양이 증간한 것으로 판단된다.Referring to Figure 8, the reason that the amount of bacteria in C2 and C4 is greater than that of C1 is that the bacteria proliferated due to the thermal effect caused by light irradiation. In the case of C3, it is believed that the amount of bacteria increased compared to C1 because the oxygen permeability was high and bacterial proliferation occurred smoothly.

도 8에 나타난 바와 같이, S5, S6, S7 및 S8의 경우 박테리아 양이 현저히 줄어들었으며, 특히 S7의 경우 OXO bio-PE가 40% 포함되는 시료의 경우 박테리아의 양이 최저임을 확인할 수 있었다. S9 및 S10은 생성된 활성산소가 고분자 내의 기공 안에서 충돌하여 일반산소로 돌아가기 때문에 S7과 비교하여 박테리아 양이 상대적으로 증가한 것으로 판단된다.As shown in Figure 8, in the case of S5, S6, S7 and S8, the amount of bacteria was significantly reduced, and in particular in the case of S7, it was confirmed that the amount of bacteria was the lowest in the sample containing 40% OXO bio-PE. It is believed that the amount of bacteria in S9 and S10 is relatively increased compared to S7 because the generated active oxygen collides within the pores of the polymer and returns to normal oxygen.

[실험예 4][Experimental Example 4]

또한, 광감응제의 최적 함량을 도출하기 위한 실험을 수행하였다. 도 9에 박테리아 양을 측정한 결과를 도시한다. Additionally, an experiment was performed to derive the optimal content of the photosensitizer. Figure 9 shows the results of measuring the amount of bacteria.

C는 비교예를 의미하고, S는 실시예를 의미한다. 항균은 생분해성 고분자(PLA 60 중량부와 OXO bio-PE 40 중량부)와 광감응제(식용색소 적색 3호)가 포함된 시료를 의미하고, 일반은 생분해성 고분자만 포함된 시료를 의미한다. 또한, dark는 암조건을 의미하고, light는 명조건을 의미한다. C1은 PLA 60 중량부와 OXO bio-PE 40 중량부를 포함하는 고분자 50 중량%와 광감응제 50 중량%를 포함하는 시료이다. S1 내지 S12 각각은 광감응제가 0.05 중량% 내지 70 중량%를 포함한다. 예를 들어, S7의 경우 PLA 60 중량부와 OXO bio-PE 40 중량부를 포함하는 고분자 80중량%와 광감응제 20 중량%를 의미한다. C means comparative example, and S means example. Antibacterial refers to a sample containing biodegradable polymer (60 parts by weight of PLA and 40 parts by weight of OXO bio-PE) and a photosensitizer (food coloring red No. 3), and general refers to a sample containing only biodegradable polymer. . Additionally, dark refers to dark conditions, and light refers to light conditions. C1 is a sample containing 50% by weight of a polymer including 60 parts by weight of PLA and 40 parts by weight of OXO bio-PE and 50% by weight of a photosensitizer. Each of S1 to S12 contains 0.05% to 70% by weight of a photosensitizer. For example, in the case of S7, it means 80% by weight of polymer including 60 parts by weight of PLA and 40 parts by weight of OXO bio-PE and 20% by weight of photosensitizer.

또한, 타겟 박테리아는 E. coli이었으며, 광원은 화이트 LED(2.5mW/cm2)이고, 광조사는 1시간이었으며, 배양 시간은 24시간이었다.In addition, the target bacteria was E. coli, the light source was a white LED (2.5 mW/cm2), the light irradiation was 1 hour, and the incubation time was 24 hours.

도 9에 나타난 바와 같이, S4, S5, S6, S7, S8 및 S9의 경우(광감응제 1 내지 40 중량%) 박테리아 양이 현저히 줄어들었으며, 특히 S7의 경우 광감응제가 20% 포함되는 시료의 경우 박테리아의 양이 최저임을 확인할 수 있었다. S10 내지 S12는 생성된 활성산소가 광감응제에 의해 없어져 항균효능이 감소된다.As shown in Figure 9, in the case of S4, S5, S6, S7, S8 and S9 (1 to 40% by weight of photosensitizer), the amount of bacteria was significantly reduced, especially in the case of S7, the amount of bacteria in the sample containing 20% of photosensitizer was reduced. In this case, it was confirmed that the amount of bacteria was the lowest. In S10 to S12, the generated active oxygen is eliminated by the photosensitizer, and the antibacterial effect is reduced.

전술한 포장재는 비조리 섭취 즉석 식품 분야 또는 신선 과채소, 축산물, 수산물 분야에 적용할 수 있다. 본 출원을 통해 개발하는 제품은 광응용, 즉 가시광의 빛을 조사를 통해 활성산소가 지속적으로 생성됨으로써 비조리 즉석식품의 진열대 보관 및 취식 동안에도 지속적으로 박테리아 증식억제를 유도할 수 있다. 또한, 신선 과채소, 축산물, 수산물 분야와 관련하여, 광응용에 의해 활성산소를 발현되고 생성된 활성산소는 대기 및 물에서도 효과적으로 확산됨으로써 신선과채소 및 축산물은 물론 굴등의 어패류의 박테리아 증식억제에도 효과적임. 특히 기체형상의 활성산소는 베이비 브로콜리, 무순등 미세한 기공의 채소를 대상으로도 효과적인 항균효능성을 나타낼 수 있다. 또한 가열/냉동 또는 진공포장이 어려운 다양한 식품군(두부, 샐러드등) 분야 및 꼬치류등 반조리 제품에 대한 포장분야에 적용하고자 할 수 있다. 더불어, 광응용 친환경 항균 포장재는 활성산소를 통해 다양한 박테리아에 대한 비특이적(내성균 발생 없음) 항균효능의 특성을 통해 항균 필름(키오스크, 엘리베이터, 페이스 쉴드등) 분야에 적용할 수 있다.The above-described packaging materials can be applied to the fields of uncooked ready-to-eat foods or fresh fruits and vegetables, livestock products, and marine products. The product developed through this application uses light, that is, by continuously generating active oxygen through irradiation of visible light, it can continuously induce the inhibition of bacterial growth even during shelf storage and eating of uncooked ready-to-eat food. In addition, in relation to the field of fresh fruits and vegetables, livestock products, and marine products, active oxygen is expressed through light application, and the generated active oxygen diffuses effectively in the air and water, thereby suppressing bacterial growth in fresh fruits and vegetables and livestock products as well as fish and shellfish such as oysters. Effective. In particular, active oxygen in the form of gas can show effective antibacterial effect even on vegetables with fine pores such as baby broccoli and radish sprouts. In addition, it can be applied to various food groups (tofu, salad, etc.) that are difficult to heat/freeze or vacuum pack, and to the packaging of semi-cooked products such as skewers. In addition, light-applied eco-friendly antibacterial packaging materials can be applied to antibacterial films (kiosks, elevators, face shields, etc.) through their non-specific antibacterial properties (no resistance to bacteria) against various bacteria through active oxygen.

상기에서는 본 출원의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 출원을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the present application has been described above with reference to preferred embodiments, those skilled in the art may modify and change the present application in various ways without departing from the spirit and scope of the present invention as set forth in the claims below. You will understand that it is possible.

Claims (13)

생분해성 고분자; 및
천연물 유래 광감응제를 포함하는 친환경 항균 식품 포장재.
biodegradable polymer; and
Eco-friendly antibacterial food packaging material containing photosensitizer derived from natural products.
제 1 항에 있어서,
생분해성 고분자에 담지된 천연물 유래 광감응제를 포함하는 친환경 항균 식품 포장재.
According to claim 1,
An eco-friendly antibacterial food packaging material containing a natural product-derived photosensitizer supported on a biodegradable polymer.
제 1 항에 있어서,
생분해성 고분자의 산소 투과도는 500 내지 3000 cc/㎡day인 친환경 항균 식품 포장재.
According to claim 1,
An eco-friendly antibacterial food packaging material whose biodegradable polymer has an oxygen permeability of 500 to 3000 cc/㎡day.
제 1 항에 있어서,
생분해성 고분자는 PLA(polylactic acid), PGA(polyglycolid), TPS(thermoplastic starch), PHA(polyhydroxyalkanoate), AP(hydrophobically associating polymer), PBS(poly(Butylene succinate)), PES(polyether polymer), PBAT(polybutylene adipate terephthalate), PCL(polycaprolactone), Oxo Bio-PP(polypropylene), 및 Oxo Bio-PE(polyethylene)으로 이루어진 그룹으로부터 선택된 적어도 하나를 포함하는 친환경 항균 식품 포장재.
According to claim 1,
Biodegradable polymers include PLA (polylactic acid), PGA (polyglycolid), TPS (thermoplastic starch), PHA (polyhydroxyalkanoate), AP (hydrophobically associating polymer), PBS (poly(Butylene succinate)), PES (polyether polymer), and PBAT ( An eco-friendly antibacterial food packaging material comprising at least one selected from the group consisting of polybutylene adipate terephthalate (PCL), polycaprolactone (PCL), Oxo Bio-PP (polypropylene), and Oxo Bio-PE (polyethylene).
제 1 항에 있어서,
천연물 유래 광감응제는 가시광영역의 빛에 의해 광유도 활성산소를 생성할 수 있는 광감응제인 친환경 항균 식품 포장재.
According to claim 1,
Natural product-derived photosensitizer is an eco-friendly antibacterial food packaging material that is a photosensitizer that can generate light-induced oxygen radicals by light in the visible light range.
제 5 항에 있어서,
천연물 유래 광감응제는 식물 또는 균주로부터 추출한 천연물 또는 식용색소인 광감응제인 친환경 항균 식품 포장재.
According to claim 5,
Natural product-derived photosensitizer is an eco-friendly antibacterial food packaging material that is a photosensitizer that is a natural product or food coloring extracted from plants or strains.
제 5 항에 있어서,
천연물 유래 광감응제는 Curcumin, Pterin, Prietin, 알로에에모딘, 플라빈, 리보플라빈, 아크리플라빈, Hypericin, L. racemose, C. odorata, A. procera, 및 식용색소으로 이루어진 그룹으로부터 선택된 적어도 하나를 포함하는 친환경 항균 식품 포장재.
According to claim 5,
The natural product-derived photosensitizer includes at least one selected from the group consisting of Curcumin, Pterin, Prietin, Aloemodin, Flavin, Riboflavin, Acriflavin, Hypericin, L. racemose, C. odorata, A. procera, and food coloring. Containing eco-friendly antibacterial food packaging materials.
제 5 항에 있어서,
천연물 유래 광감응제는 Monascus purpures인 친환경 항균 식품 포장재.
According to claim 5,
An eco-friendly, antibacterial food packaging material whose natural product-derived photosensitizer is Monascus purpures.
제 7 항에 있어서,
Pterin은 이소크산코프테린, 류코프제린, 크산토프테린, 비오프테린 및 네오프테린을 포함하는 친환경 항균 식품 포장재.
According to claim 7,
Pterin is an eco-friendly antibacterial food packaging material containing isoxancopterin, leukopterin, xanthopterin, biopterin and neopterin.
제 7 항에 있어서,
식용색소는 적색 2호, 적색 3호, 적색 40호, 적색 102호, 황색 4호, 황색 5호, 청색 1호, 청색 2호 및 청색 3호로 이루어진 그룹으로부터 선택된 적어도 하나를 포함하는 친환경 항균 식품 포장재.
According to claim 7,
The food coloring is an eco-friendly antibacterial food containing at least one selected from the group consisting of Red No. 2, Red No. 3, Red No. 40, Red No. 102, Yellow No. 4, Yellow No. 5, Blue No. 1, Blue No. 2, and Blue No. 3. Packaging material.
제 1 항에 있어서,
생분해성 고분자 및 천연물 유래 광감응제는 중량비로 60 내지 99 중량부 : 40 내지 1 중량부인 친환경 항균 식품 포장재.
According to claim 1,
An eco-friendly antibacterial food packaging material containing 60 to 99 parts by weight: 40 to 1 part by weight of biodegradable polymer and natural product-derived photosensitizer.
제 1 항에 있어서,
생분해성 고분자는 PLA 및 Oxo Bio-PE을 포함하는 친환경 항균 식품 포장재.
According to claim 1,
Biodegradable polymers are eco-friendly antibacterial food packaging materials including PLA and Oxo Bio-PE.
제 1 항에 있어서,
생분해성 고분자는 PLA 및 Oxo Bio-PE 을 50 내지 80 중량부 : 50 내지 20 중량부로 포함하는 친환경 항균 식품 포장재.
According to claim 1,
Biodegradable polymer is an eco-friendly antibacterial food packaging material containing 50 to 80 parts by weight of PLA and Oxo Bio-PE: 50 to 20 parts by weight.
KR1020220139008A 2022-10-26 2022-10-26 Photo-induced eco-friendly antimicrobial food package KR20240058359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220139008A KR20240058359A (en) 2022-10-26 2022-10-26 Photo-induced eco-friendly antimicrobial food package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220139008A KR20240058359A (en) 2022-10-26 2022-10-26 Photo-induced eco-friendly antimicrobial food package

Publications (1)

Publication Number Publication Date
KR20240058359A true KR20240058359A (en) 2024-05-03

Family

ID=91077756

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220139008A KR20240058359A (en) 2022-10-26 2022-10-26 Photo-induced eco-friendly antimicrobial food package

Country Status (1)

Country Link
KR (1) KR20240058359A (en)

Similar Documents

Publication Publication Date Title
Al-Tayyar et al. Antimicrobial food packaging based on sustainable Bio-based materials for reducing foodborne Pathogens: A review
Ogunsona et al. Engineered nanomaterials for antimicrobial applications: A review
Ghate et al. Perspectives and trends in the application of photodynamic inactivation for microbiological food safety
Gaikwad et al. Oxygen scavenging films in food packaging
McKeen The effect of sterilization on plastics and elastomers
Zhu et al. Titanium dioxide (TiO2) photocatalysis technology for nonthermal inactivation of microorganisms in foods
Kuswandi Environmental friendly food nano-packaging
Severino et al. Antimicrobial effects of modified chitosan based coating containing nanoemulsion of essential oils, modified atmosphere packaging and gamma irradiation against Escherichia coli O157: H7 and Salmonella Typhimurium on green beans
Su et al. Chitosan-riboflavin composite film based on photodynamic inactivation technology for antibacterial food packaging
Maneerat et al. Antifungal activity of TiO2 photocatalysis against Penicillium expansum in vitro and in fruit tests
Mitoraj et al. Visible light inactivation of bacteria and fungi by modified titanium dioxide
Bodaghi et al. Evaluation of the photocatalytic antimicrobial effects of a TiO2 nanocomposite food packaging film by in vitro and in vivo tests
Mukhopadhyay et al. Effects of UV-C treatment on inactivation of Salmonella enterica and Escherichia coli O157: H7 on grape tomato surface and stem scars, microbial loads, and quality
Zahra et al. Food packaging in perspective of microbial activity: a review.
Yemmireddy et al. Selection of photocatalytic bactericidal titanium dioxide (TiO2) nanoparticles for food safety applications
AU2005279637B2 (en) Process for manufacturing hydrophobic polymers
Jayakumar et al. Titanium dioxide nanoparticles and elderberry extract incorporated starch based polyvinyl alcohol films as active and intelligent food packaging wraps
de Matos Fonseca et al. A review on TiO2-based photocatalytic systems applied in fruit postharvest: Set-ups and perspectives
Priyanka et al. Biocompatible green technology principles for the fabrication of food packaging material with noteworthy mechanical and antimicrobial properties A sustainable developmental goal towards the effective, safe food preservation strategy
González-Ceballos et al. Metal-free organic polymer for the preparation of a reusable antimicrobial material with real-life application as an absorbent food pad
Buchovec et al. Novel approach to control microbial contamination of germinated wheat sprouts: photoactivatedchlorophillin-chitosan complex
KR20240058359A (en) Photo-induced eco-friendly antimicrobial food package
Costa et al. Use of metal nanoparticles for active packaging applications
Lena et al. An overview of the application of blue light-emitting diodes as a non-thermic green technology for microbial inactivation in the food sector
Mukhopadhyay et al. Effects of pulsed light and aerosolized formic acid treatments on inactivation of Salmonella enterica on cherry tomato, reduction of microbial loads, and preservation of fruit quality