KR20240057823A - Manufacturing method of reduced graphene oxide having aqueous dispersable, redispersable and hybridable with heteromaterial - Google Patents

Manufacturing method of reduced graphene oxide having aqueous dispersable, redispersable and hybridable with heteromaterial Download PDF

Info

Publication number
KR20240057823A
KR20240057823A KR1020220138506A KR20220138506A KR20240057823A KR 20240057823 A KR20240057823 A KR 20240057823A KR 1020220138506 A KR1020220138506 A KR 1020220138506A KR 20220138506 A KR20220138506 A KR 20220138506A KR 20240057823 A KR20240057823 A KR 20240057823A
Authority
KR
South Korea
Prior art keywords
reduced graphene
graphene
metal complex
producing modified
paragraph
Prior art date
Application number
KR1020220138506A
Other languages
Korean (ko)
Inventor
이학민
최소연
Original Assignee
주식회사 제이앤씨머트리얼즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 제이앤씨머트리얼즈 filed Critical 주식회사 제이앤씨머트리얼즈
Priority to KR1020220138506A priority Critical patent/KR20240057823A/en
Priority to PCT/KR2023/012198 priority patent/WO2024090757A1/en
Publication of KR20240057823A publication Critical patent/KR20240057823A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/002Compounds containing, besides titanium, two or more other elements, with the exception of oxygen or hydrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명은 수분산성 및 재 분산성을 갖고 이종재료와 복합화할 수 있는 환원그래핀 제조방법에 관한 것으로서, 보다 상세하게는 산화흑연을 박리하여 산화그래핀을 제조하는 단계; 박리된 산화흑연을 환원하여 환원그래핀을 제조하는 단계; 상기 환원그래핀을 용매에 분산시키는 단계; 및 분산된 환원그래핀 분산액에 이종의 관능기를 갖는 금속복합물을 첨가하여 환원그래핀의 층내 혹은 엣지(edge)의 결함부분과 개질반응시켜 환원그래핀을 개질하는 단계;를 포함하며, 상기 단계를 통하여 환원그래핀의 수분산성 및 재 분산성을 향상시키고 이종재료와 화학적으로 결합시켜 복합화할 수 있는 것을 특징으로 하는 개질된 환원그래핀을 제조하는 방법을 제공한다.The present invention relates to a method for producing reduced graphene, which has water dispersibility and redispersibility and can be composited with heterogeneous materials. More specifically, it relates to a method for producing graphene oxide by exfoliating graphite oxide; Reducing the exfoliated graphite oxide to produce reduced graphene; Dispersing the reduced graphene in a solvent; And a step of modifying the reduced graphene by adding a metal complex having a different functional group to the dispersed reduced graphene dispersion and performing a reforming reaction with the defective portion within the layer or at the edge of the reduced graphene. A method of producing modified reduced graphene is provided, which improves the water dispersibility and redispersibility of reduced graphene and allows it to be complexed by chemically bonding with dissimilar materials.

Description

수분산성 및 재 분산성을 갖고 이종재료와 복합화할 수 있는 환원그래핀 제조방법{Manufacturing method of reduced graphene oxide having aqueous dispersable, redispersable and hybridable with heteromaterial}Manufacturing method of reduced graphene oxide having aqueous dispersable, redispersable and hybridable with heteromaterial}

본 발명은 환원그래핀(reduced graphene oxide, rGO) 제조 후, 이종(異種)의 관능기(functional group)를 갖는 금속복합물을 환원그래핀의 층내(層內) 혹은 엣지(edge)에 도입함으로써 2차원 구조를 갖는 환원그래핀이 2차인력에 의해 응집하여 침전되어도 전단력이 주어지면 용이하게 재 분산되고 이종재료와 화학반응도 가능하여 용이하게 복합화할 수 있도록 한 것이다.The present invention manufactures reduced graphene (rGO) and then introduces a metal complex with a different functional group into the layer or edge of the reduced graphene to produce two-dimensional graphene. Even if reduced graphene with a structure aggregates and precipitates due to secondary attraction, it is easily redispersed when shear force is applied and chemical reactions with heterogeneous materials are also possible, making it easy to composite.

그래핀은 탄소단원자층이 벌집구조를 갖고 두께가 0.3㎚(1층)~1.5㎚(5층) 정도인 2차원 탄소소재로 우수한 물리, 화학적 특성을 갖는 소재이나 환원정도에 따라 물성 변화가 심하며 환원도가 높아지면 2차원 구조가 치밀해짐에 따라 층간 반더발스 (Van der Waals) 인력이 증가하여 재 응집되어 재차 흑연(graphite)화 된다.Graphene is a two-dimensional carbon material with a honeycomb structure of carbon single atomic layers and a thickness of about 0.3 nm (1 layer) to 1.5 nm (5 layers). It is a material with excellent physical and chemical properties, but its physical properties change significantly depending on the degree of reduction. As the degree of reduction increases, the two-dimensional structure becomes more dense, and the interlayer Van der Waals attraction increases, causing re-agglomeration to become graphite again.

환원그래핀이 재 흑연화되면 강한 전단력을 가하여도 재 박리 혹은 재 분산되지 않고 파쇄되어 평균입경만 작아지므로 그래핀으로서의 우수한 물리, 화학적 특성을 활용할 수 없는 문제점이 있다.When reduced graphene is re-graphitized, it is crushed without being re-exfoliated or re-dispersed even when a strong shear force is applied, and only the average particle size becomes small, so there is a problem in that the excellent physical and chemical properties of graphene cannot be utilized.

따라서, 우수한 환원그래핀의 물리. 화학적 특성을 활용하기 위해선 액상에서의 분산성뿐만 아니라 고형화 후 액상에 재 분산시킬 경우에도 분산성을 유지할 수 있어야 하며 환원그래핀을 여러 재료 및 응용분야에 활용하기 위해서는 이종재료와의 복합화 또한 필요한 실정이다.Therefore, the excellent physics of reduced graphene. In order to utilize its chemical properties, it must not only be dispersible in the liquid phase, but also maintain its dispersibility even when redispersed in the liquid phase after solidification. In order to utilize reduced graphene in various materials and applications, it is also necessary to composite it with heterogeneous materials. am.

이러한 목적을 달성하기 위해 대한민국등록특허 제10-1590683호에서는 일 말단에 아민(amine)기를 갖고 타 말단에 카르복실산염(carboxylate) 혹은 술폰산염(sulfonate)을 갖는 화합물을 이용하여 아민(amine)기와 환원그래핀의 결함으로 존재하는 에폭시(epoxy)기를 반응시켜 화학결합시키고 타 말단에 존재하는 카르복실산염 혹은 술폰산염의 음이온이 수분산성을 갖도록 개질한 기술을 개시하고 있는데, 이 경우 환원그래핀의 수분산성은 우수하나 타방의 음이온은 유기물과의 반응만 가능하여 이종재료와의 복합화는 불가능하다.To achieve this purpose, Republic of Korea Patent No. 10-1590683 uses a compound having an amine group at one end and a carboxylate or sulfonate at the other end. A technology is disclosed in which the epoxy group present due to defects in reduced graphene is reacted to form a chemical bond, and the anion of carboxylate or sulfonate present at the other end is modified to have water dispersibility. In this case, the moisture of reduced graphene is disclosed. Although it has excellent acidity, the other anion can only react with organic substances, making complexation with heterogeneous materials impossible.

또한, 대한민국등록특허 제10-1605245호에서는 N-메틸모포린-N-옥사이드(N-methylmorpholine-N-oxide)와 같은 N-옥사이드(N-oxide) 화합물을 환원그래핀에 첨가하여 수분산성을 향상시킨 기술을 개시하고 있는데, 이 또한 이종재료와의 복합화는 불가능하다.In addition, in Republic of Korea Patent No. 10-1605245, N-oxide compounds such as N-methylmorpholine-N-oxide are added to reduced graphene to improve water dispersibility. An improved technology is being developed, but it is also impossible to combine it with dissimilar materials.

본 발명은 전술한 바와 같은 종래 기술의 문제점을 해결하기 위하여 안출된 것으로서, 본 발명은 2종 이상의 관능기를 갖는 금속복합물을 환원그래핀 제조 시 환원완료단계에서 첨가하여 환원그래핀의 층내 혹은 엣지(edge)의 결함부분과 공유결합시켜 환원그래핀 분자 내에 복수 개 혹은 이종의 관능기를 개제시킴으로써 친수성관능기에 의한 수분산성 혹은 재 분산성을 갖는 개질된 환원그래핀을 제조할 수 있는 방법을 제공함을 목적으로 한다.The present invention was developed to solve the problems of the prior art as described above, and the present invention is to add a metal complex having two or more functional groups at the completion stage of reducing graphene to form a metal complex within the layer or edge of reduced graphene ( The purpose is to provide a method for producing modified reduced graphene that has water dispersibility or redispersibility due to hydrophilic functional groups by covalently bonding to the defective portion of the reduced graphene molecule to introduce multiple or heterogeneous functional groups in the reduced graphene molecule. Do it as

또한, 본 발명은 이종재료와 화학적으로 결합하여 복합화할 수 있는 환원그래핀을 제조할 수 있는 방법을 제공하는 것을 다른 목적으로 한다Another purpose of the present invention is to provide a method for producing reduced graphene that can be chemically combined with dissimilar materials to form a composite.

본 발명은 전술한 목적을 달성하기 위하여, 산화흑연을 박리하여 산화그래핀을 제조하는 단계; 박리된 산화흑연을 환원하여 환원그래핀을 제조하는 단계; 상기 환원그래핀을 용매에 분산시키는 단계; 및 분산된 환원그래핀 분산액에 이종의 관능기를 갖는 금속복합물을 첨가하여 환원그래핀의 층내 혹은 엣지(edge)의 결함부분과 개질반응시켜 환원그래핀을 개질하는 단계;를 포함하며, 상기 단계를 통하여 환원그래핀의 수분산성 및 재 분산성을 향상시키고 이종재료와 화학적으로 결합시켜 복합화할 수 있는 것을 특징으로 하는 개질된 환원그래핀을 제조하는 방법을 제공한다.In order to achieve the above-mentioned object, the present invention includes the steps of manufacturing graphene oxide by exfoliating graphite oxide; Reducing the exfoliated graphite oxide to produce reduced graphene; Dispersing the reduced graphene in a solvent; And a step of modifying the reduced graphene by adding a metal complex having a different functional group to the dispersed reduced graphene dispersion and performing a reforming reaction with the defective portion within the layer or at the edge of the reduced graphene. A method for producing modified reduced graphene is provided, which improves the water dispersibility and redispersibility of reduced graphene and allows it to be complexed by chemically bonding with dissimilar materials.

상기 이종의 관능기를 갖는 금속복합물은 하기 화학식 1 내지 화학식 2의 구조를 갖는 것이 바람직하다.The metal complex having the heterogeneous functional group preferably has the structure of the following formulas 1 to 2.

화학식 1Formula 1

(R1O)n-M-(X-R2-Y)4-n (R 1 O) n -M-(XR 2 -Y) 4-n

여기서, here,

R1 : C1~C4의 알킬(alkyl), C2~C4의 알케닐(alkenyl) 혹은 C3~C4의 이소알킬(isoalkyl)R 1 : C 1 ~ C 4 alkyl, C 2 ~ C 4 alkenyl or C 3 ~ C 4 isoalkyl

R2 : C1~C18의 알킬(alkyl), C3~C18의 이소알킬(isoalkyl), C2~C18의 알케닐(alkenyl) 혹은 C4~C18의 이소알케닐(isoalkenyl)R 2 : C 1 ~ C 18 alkyl, C 3 ~ C 18 isoalkyl, C 2 ~ C 18 alkenyl or C 4 ~ C 18 isoalkenyl

M : 티탄(taitanium) 혹은 지르코늄(zirconium)M: titanium or zirconium

X : 카르복실레이트(carboxylate), 술포네이트(sulfonate) , 포스페이트(phosphate) 혹은 피로포스페이트(pyrophosphate) X: carboxylate, sulfonate, phosphate or pyrophosphate

Y : 아민(amine), 히드록시(hydroxyl), 에폭시(epoxy), 혹은 에이시드(acid)Y: amine, hydroxyl, epoxy, or acid

화학식 2Formula 2

(R1O)n-M-(O-R2-Y)4-n (R 1 O) n -M-(OR 2 -Y) 4-n

여기서, here,

R1 : C1~C4의 알킬(alkyl), C2~C4의 알케닐(alkenyl) 혹은 C3~C4의 이소알킬(isoalkyl)R 1 : C 1 ~ C 4 alkyl, C 2 ~ C 4 alkenyl or C 3 ~ C 4 isoalkyl

R2 : C1~C18의 알킬(alkyl), C3~C18의 이소알킬(isoalkyl), C2~C18의 알케닐(alkenyl) 혹은 C4~C18의 이소알케닐(isoalkenyl)R 2 : C 1 ~ C 18 alkyl, C 3 ~ C 18 isoalkyl, C 2 ~ C 18 alkenyl or C 4 ~ C 18 isoalkenyl

M : 티탄(taitanium) 혹은 지르코늄(zirconium)M: titanium or zirconium

Y : 아민(amine), 히드록시(hydroxyl), 에폭시(epoxy) 혹은 에이시드(acid)Y: amine, hydroxyl, epoxy or acid

상기 환원그래핀의 환원도가 X선광전자분광법상 C1s/O1s의 비율이 10 이상 100이하일 때, 개질반응을 수행하는 것이 바람직하다.It is preferable to perform a reforming reaction when the reduction degree of the reduced graphene has a C 1s / O 1s ratio of 10 to 100 as determined by X-ray photoelectron spectroscopy.

상기 이종의 관능기를 갖는 금속복합물의 첨가량이 환원그래핀 대비 0.1중량% 내지 50중량%인 것이 바람직하다.It is preferable that the amount of the metal complex having the different functional groups added is 0.1% to 50% by weight relative to the reduced graphene.

수소이온농도가 6 내지 10의 범위에서 개질반응을 수행하는 것이 바람직하다.It is preferable to carry out the reforming reaction at a hydrogen ion concentration in the range of 6 to 10.

반응온도가 30℃ 이상 100℃ 이하에서 개질반응을 수행하는 것이 바람직하다.It is preferable to carry out the reforming reaction at a reaction temperature of 30°C or more and 100°C or less.

이상과 같은 본 발명에 따르면, 환원그래핀 제조 후 금속복합물을 첨가하여 환원그래핀의 층내 혹은 엣지(edge)의 결함부분과 공유결합시켜 환원그래핀 분자 내에 복수 개 혹은 이종의 관능기를 개재시키면 환원그래핀에 개제된 친수성기에 의해 개질된 환원그래핀은 수분산성 혹은 재 분산성을 갖고 이종재료와 화학적으로 결합시켜 복합화할 수 있다.According to the present invention as described above, after producing reduced graphene, a metal complex is added and covalently bonded to the defective portion within the layer or at the edge of the reduced graphene, thereby inserting a plurality of or different functional groups within the reduced graphene molecule, resulting in reduction. Reduced graphene modified by hydrophilic groups introduced into graphene has water dispersibility or redispersibility and can be chemically combined with dissimilar materials to form a complex.

도 1은 환원그래핀 층내의 (a) 결함부분인 에폭시와 화학식 1의 아민기 (b) 프로톤(proton)과 화학식 1의 알콕시기가 반응한 모식도(schematic diagram)이다.
도 2는 환원그래핀 층내의 (a) 결함부분인 에폭시와 화학식 2의 아민기 (b) 프로톤(proton)과 화학식 2의 알콕시기가 반응한 모식도이다.
도 3은 환원 후 환원그래핀의 환원정도를 확인한 대표적인 X선광전자분광법 결과이다.
도 4는 환원그래핀의 수분산성 및 재 분산성을 확인하기 위해 자외선-가시광선분광기(UV-Visible spectrometer)를 이용하여 분산액의 흡광도를 측정한 결과이다. 도 4a는 통상의 화학적방법으로 산화/환원한 환원그래핀의 수분산성 및 재 분산성이고, 도 4b는 환원그래핀 제조 후 화학식 1의 금속복합물로 반응시킨 개질된 환원그래핀의 수분산성 및 재 분산성이며, 도 4c는 환원그래핀 제조 후 화학식 2의 금속복합물로 반응시킨 개질된 환원그래핀의 수분산성 및 재 분산성을 나타낸 것이다.
도 5는 환원그래핀 및 재 분산시킨 환원그래핀의 두께를 측정한 원자힘현미경(atomic force microscopy, AFM) 사진이다. 도 5a는 환원그래핀 및 재 분산시킨 환원그래핀이고, 도 5b는 화학식 1의 금속복합물로 반응시킨 개질된 환원그래핀 및 재 분산시킨 개질된 환원그래핀이며, 도 5c는 화학식 2의 금속복합물로 반응시킨 개질된 환원그래핀 및 재 분산시킨 개질된 환원그래핀이다.
Figure 1 is a schematic diagram of the reaction between (a) the defective epoxy and (b) the proton of Formula 1 and the alkoxy group of Formula 1 in the reduced graphene layer.
Figure 2 is a schematic diagram of the reaction between (a) the defective epoxy and the amine group of Chemical Formula 2 (b) the proton and the alkoxy group of Chemical Formula 2 in the reduced graphene layer.
Figure 3 is a representative X-ray photoelectron spectroscopy result confirming the degree of reduction of reduced graphene after reduction.
Figure 4 shows the results of measuring the absorbance of the dispersion using an ultraviolet-visible spectrometer to confirm the water dispersibility and redispersibility of reduced graphene. Figure 4a shows the water dispersibility and re-dispersibility of reduced graphene oxidized/reduced by a common chemical method, and Figure 4b shows the water dispersibility and re-dispersibility of modified reduced graphene reacted with the metal complex of Chemical Formula 1 after producing reduced graphene. It is dispersible, and Figure 4c shows the water dispersibility and redispersibility of modified reduced graphene reacted with the metal complex of Chemical Formula 2 after producing reduced graphene.
Figure 5 is an atomic force microscope (AFM) photograph measuring the thickness of reduced graphene and redispersed reduced graphene. Figure 5a shows reduced graphene and redispersed reduced graphene, Figure 5b shows modified reduced graphene reacted with the metal complex of Chemical Formula 1 and modified reduced graphene redispersed, and Figure 5c shows the metal complex of Chemical Formula 2. It is modified reduced graphene reacted with and modified reduced graphene re-dispersed.

이하에서는 첨부된 도면과 바람직한 실시예를 기초로 본 발명을 보다 상세히 설명하기로 한다.Hereinafter, the present invention will be described in more detail based on the attached drawings and preferred embodiments.

본 발명에서는 브로디(Brodie) 혹은 허머스(Hummers)법으로 산화그래파이트(graphite oxide, GPO, 산화흑연)를 제조하고, 상기 산화그래파이트에 전단력을 가해 박리하여 산화그래핀(graphene oxide, GO)을 제조하며, 상기 산화그래핀에 요오드화수소산(hydroiodic acid, HI)과 같은 환원제를 첨가하여 환원그래핀을 제조하도록 하였다. 이와 같이 환원그래핀을 제조할 수 있으나, 산화흑연을 박리 후 환원시켜 제조한 환원그래핀도 가능하며, 환원그래핀의 제조방법은 특별히 제한되지 않는다. In the present invention, graphite oxide (GPO, graphite oxide) is manufactured by the Brodie or Hummers method, and shear force is applied to the graphite oxide to exfoliate to produce graphene oxide (GO). In addition, a reducing agent such as hydroiodic acid (HI) was added to the graphene oxide to produce reduced graphene. Reduced graphene can be produced in this way, but reduced graphene produced by exfoliating and reducing graphite oxide is also possible, and the method of producing reduced graphene is not particularly limited.

상기 제조된 수분산상 환원그래핀에 하기 화학식 1 혹은 화학식 2와 같은 금속복합물을 첨가하여 환원그래핀의 층내 혹은 엣지(edge)의 결함부분과 공유결합시켜 환원그래핀 분자 내에 복수 개 혹은 이종의 관능기를 개제시킴으로써, 상기 개질된 환원그래핀에 개제된 친수성기에 의해 수분산성 혹은 재 분산성을 갖고 이종재료와 화학결합시켜 복합화할 수 있는 개질된 환원그래핀의 제조방법을 제공한다.A metal complex such as the following Chemical Formula 1 or Chemical Formula 2 is added to the water-dispersed reduced graphene prepared above and covalently bonded to the defective portion within the layer or at the edge of the reduced graphene to form multiple or different functional groups within the reduced graphene molecule. By providing a method for producing modified reduced graphene that has water dispersibility or redispersibility due to the hydrophilic group introduced in the modified reduced graphene and can be complexed by chemical bonding with dissimilar materials.

화학식 1Formula 1

(R1O)n-M-(X-R2-Y)4-n (R 1 O) n -M-(XR 2 -Y) 4-n

여기서, here,

R1 : C1~C4의 알킬(alkyl), C2~C4의 알케닐(alkenyl) 혹은 C3~C4의 이소알킬(isoalkyl)R 1 : C 1 ~ C 4 alkyl, C 2 ~ C 4 alkenyl or C 3 ~ C 4 isoalkyl

R2 : C1~C18의 알킬(alkyl), C3~C18의 이소알킬(isoalkyl), C2~C18의 알케닐(alkenyl) 혹은 C4~C18의 이소알케닐(isoalkenyl)R 2 : C 1 ~ C 18 alkyl, C 3 ~ C 18 isoalkyl, C 2 ~ C 18 alkenyl or C 4 ~ C 18 isoalkenyl

M : 티탄(taitanium) 혹은 지르코늄(zirconium)M: titanium or zirconium

X : 카르복실레이트(carboxylate), 술포네이트(sulfonate) , 포스페이트(phosphate) 혹은 피로포스페이트(pyrophosphate) X: carboxylate, sulfonate, phosphate or pyrophosphate

Y : 아민(amine), 히드록시(hydroxyl), 에폭시(epoxy), 혹은 에이시드(acid)Y: amine, hydroxyl, epoxy, or acid

화학식 2Formula 2

(R1O)n-M-(O-R2-Y)4-n (R 1 O) n -M-(OR 2 -Y) 4-n

여기서, here,

R1 : C1~C4의 알킬(alkyl), C2~C4의 알케닐(alkenyl) 혹은 C3~C4의 이소알킬(isoalkyl)R 1 : C 1 ~ C 4 alkyl, C 2 ~ C 4 alkenyl or C 3 ~ C 4 isoalkyl

R2 : C1~C18의 알킬(alkyl), C3~C18의 이소알킬(isoalkyl), C2~C18의 알케닐(alkenyl) 혹은 C4~C18의 이소알케닐(isoalkenyl)R 2 : C 1 ~ C 18 alkyl, C 3 ~ C 18 isoalkyl, C 2 ~ C 18 alkenyl or C 4 ~ C 18 isoalkenyl

M : 티탄(taitanium) 혹은 지르코늄(zirconium)M: titanium or zirconium

Y : 아민(amine), 히드록시(hydroxyl), 에폭시(epoxy) 혹은 에이시드(acid)Y: amine, hydroxyl, epoxy or acid

통상의 환원그래핀 제조방법이란 현존하는 물리 혹은 화학적 환원그래핀의 제조방법을 포함하며, X선광전자분광법상 C1s/O1s의 비율이 10이상 100이하로 제조된 환원그래핀이면 제조방법에 무관하게 본 발명에 적용할 수 있다. 본 발명에서, X선광전자분광법상 C1s/O1s의 비율이 10미만이면 환원그래핀의 층내 혹은 엣지(edge)의 결함부분이 많아지며 이로 인해 화학식 1 혹은 화학식 2의 복수개의 Y관능기가 환원그래핀의 분자 내 반응으로만 한정되지 않고 분자 간 화학결합이 증가하여 응집성이 커지므로 수분산성 혹은 재 분산성이란 목적을 달성할 수 없게 되며 C1s/O1s의 비율이 100이상이면 그래핀의 환원정도가 높아 환원그래핀의 층내 혹은 엣지(edge)의 결함이 미미하여 화학식 1 혹은 화학식 2의 Y관능기와의 반응 보다 알콕시가 환원그래핀의 층내에 존재하는 프로톤과의 반응이 주가 되어 이종재료와 복합화시킬 관능기가 소모되는 바, 복합화를 기대할 수 없게 되므로 X선광전자분광법상 C1s/O1s의 비율은 위 범위에서 임계적 의의가 있다.Conventional reduced graphene manufacturing methods include existing physical or chemical reduced graphene manufacturing methods, and if reduced graphene is manufactured with a C 1s / O 1s ratio of 10 to 100 according to X-ray photoelectron spectroscopy, the manufacturing method It can be applied to the present invention regardless. In the present invention, when the ratio of C 1s / O 1s in X-ray photoelectron spectroscopy is less than 10, the number of defects in the layer or at the edge of the reduced graphene increases, and this causes a plurality of Y functional groups of Formula 1 or Formula 2 to be reduced. It is not limited to the intramolecular reaction of graphene, but the chemical bonds between molecules increase and cohesion increases, so the purpose of water dispersibility or redispersibility cannot be achieved. If the ratio of C 1s /O 1s is more than 100, the Because the degree of reduction is high, defects within the layer or at the edge of the reduced graphene are minimal, so the alkoxy reaction with the proton present in the layer of the reduced graphene is the main reaction rather than the reaction with the Y functional group of Chemical Formula 1 or Chemical Formula 2. Since the functional group to be complexed is consumed, complexation cannot be expected, so the ratio of C 1s /O 1s in X-ray photoelectron spectroscopy has critical significance in the above range.

상기 금속복합물의 첨가량은 환원그래핀의 비표면적(BET surface area)에 따라 비례적으로 첨가하는 것이 바람직하며 본 발명의 경우, 비표면적이 100m2/g 이하이고 X선광전자분광법상 C1s/O1s의 비율이 10이상 100이하인 비교적 환원도가 높은 환원그래핀에 적용하므로 환원그래핀의 층내 혹은 엣지(edge)의 결함이 적어 환원그래핀 대비 0.1중량% 내지 50중량% 이내가 바람직하다. 상기 금속복합물의 첨가량이 0.1중량% 이하이면 개질된 환원그래핀의 층내 혹은 엣지(edge)의 개재되어 있는 친수성기에 의한 반발력이 환원그래핀 간에 발생하는 반더발스힘 보다 약하여 층간 응집이 발생하여 침전과 동시에 재 분산성이 저하되는 문제가 있다. 또한 상기 금속복합물의 첨가량이 50중량% 이상이면 환원그래핀의 층내 혹은 엣지(edge)의 결함부분과 반응하고 남은 여분의 금속복합물이 환원그래핀의 층간 반응하여 응집이 발생하므로 수분산성 및 재 분산성에 문제가 발생하므로 금속복합물의 첨가량은 위 범위에서 임계적 의의가 있다.The amount of the metal complex added is preferably proportional to the specific surface area (BET surface area) of reduced graphene. In the case of the present invention, the specific surface area is 100 m 2 /g or less and C 1s /O according to X-ray photoelectron spectroscopy. Since it is applied to reduced graphene with a relatively high degree of reduction where the ratio of 1s is 10 to 100, defects within the layer or at the edges of the reduced graphene are small, so the amount is preferably within 0.1% by weight to 50% by weight compared to the reduced graphene. If the amount of the metal complex added is 0.1% by weight or less, the repulsive force due to the hydrophilic groups within the layer or at the edge of the modified reduced graphene is weaker than the Vander Waals force that occurs between reduced graphene, resulting in interlayer cohesion, causing precipitation and At the same time, there is a problem of reduced redispersibility. In addition, if the amount of the metal composite added is more than 50% by weight, the excess metal composite remaining after reacting with the defective portion within the layer or at the edge of the reduced graphene reacts between the layers of the reduced graphene, causing agglomeration, resulting in water dispersion and redispersion. Since problems arise in terms of stability, the amount of metal complex added is of critical significance within the above range.

상기 금속복합물을 첨가하여 환원그래핀의 층내 혹은 엣지(edge)의 결함부분과 공유결합시키는 개질반응의 수소이온농도(pH)는 6 내지 10의 범위에서 수행하는 것이 바람직하다. 상기한 개질반응을 수소이온 농도가 6미만의 약산성 내지 강산성에서 수행하면 복수개의 알콕시(alkoxy)가 가수분해되어 금속수산화물(metal hydroxide)이 되므로 이종재료와 화학결합시켜 복합화할 수 있는 대상이 금속수산화물 상호간의 탈수반응(dehydration)으로 한정되어 복합화 대상이 제한될 뿐만 아니라 화학식 1의 X로 표시된 카르복실레이트 등이 가수분해 되어 금속복합물에서 분리되므로 환원그래핀에 수분산성 혹은 재 분산성을 부여할 수 없을 뿐만 아니라 복합화시킬 관능기가 없으므로 복합화시킬 수 없는 단점이 있다. 또한 개질반응의 수소이온 농도가 10이상일 경우, 금속복합물의 관능기가 환원그래핀의 층내 혹은 엣지(edge)의 결함부분과 반응하기 보다 자체 축합반응하여 고분자화하는 경향이 강해져 환원그래핀에 수분산성 혹은 재 분산성을 부여할 수 없을 뿐만 아니라 복합화시키려는 당초의 목적을 달성할 수 없는 단점이 있어 개질반응의 수소이온 농도는 위 범위에서 임계적 의의가 있다..It is preferable that the hydrogen ion concentration (pH) of the reforming reaction in which the metal complex is added and covalently bonded to the defective portion within the layer or at the edge of the reduced graphene is carried out in the range of 6 to 10. When the above-described reforming reaction is performed in a weakly to strongly acidic condition with a hydrogen ion concentration of less than 6, a plurality of alkoxy groups are hydrolyzed to form metal hydroxide, so the metal hydroxide can be complexed by chemical bonding with dissimilar materials. Not only is the target for complexation limited due to mutual dehydration, but also the carboxylate indicated by Not only is there no functional group to complex, but it has the disadvantage of not being able to be complexed. In addition, when the hydrogen ion concentration of the reforming reaction is more than 10, the functional group of the metal complex has a strong tendency to polymerize through self-condensation reaction rather than reacting with defects in the layer or edge of the reduced graphene, resulting in water dispersibility in the reduced graphene. Alternatively, it has the disadvantage of not only being unable to provide redispersibility but also failing to achieve the original purpose of complexation, so the hydrogen ion concentration in the reforming reaction is of critical significance in the above range.

또한 상기 금속복합물을 첨가하여 환원그래핀의 층내 혹은 엣지(edge)의 결함부분과 공유결합시키는 반응온도는 30℃ 내지 100℃에서 수행하는 것이 바람직하다. 개질반응온도가 30℃ 이하일 경우 금속복합물 중 화학식 1 내지 화학식 2의 Y로 표시된 관능기와 환원그래핀의 층내 혹은 엣지(edge)의 결함부분의 대부분을 이루고 있는 에폭시와의 반응속도가 늦어짐에 따라 부반응으로 알콕시 및 화학식 1 내지 화학식 2의 X로 표시된 부분이 일부 가수분해되어 수분산 및 재 분산성이 저하되는 단점이 있다. 개질반응온도가 100℃ 이상일 경우 금속복합물 중 화학식 1 내지 화학식 2의 Y로 표시된 관능기와 환원그래핀의 층내 혹은 엣지(edge)의 결함부분의 대부분을 이루고 있는 에폭시와의 반응뿐만 아니라 금속복합물 중 알콕시와 환원그래핀의 층내에 존재하는 프로톤과의 반응이 경쟁적으로 일어나 개질된 환원그래핀의 층내에 금속복합물의 농도가 증가하여 이종재료와 복합화시킬 관능기가 소모되어 복합화를 기대할 수 없게 되므로 개질반응온도는 위 범위에서 임계적 의의가 있다.In addition, the reaction temperature for adding the metal complex and covalently bonding it to the defective portion within the layer or at the edge of the reduced graphene is preferably carried out at 30°C to 100°C. When the reforming reaction temperature is 30°C or lower, side reactions occur as the reaction rate between the functional group represented by Y in Chemical Formulas 1 and 2 of the metal complex and epoxy, which forms most of the defects in the layer or edge of the reduced graphene, slows down. There is a disadvantage in that the alkoxy and the portion indicated by When the reforming reaction temperature is 100°C or higher, not only the reaction between the functional group represented by Y in Formula 1 and Formula 2 in the metal complex and epoxy, which forms most of the defects in the layer or edge of the reduced graphene, but also the alkoxy in the metal complex As the reaction with the proton present in the layer of reduced graphene occurs competitively, the concentration of the metal complex increases in the layer of the modified reduced graphene, and the functional group for complexing with the heterogeneous material is consumed, so complexation cannot be expected, so the modification reaction temperature has critical significance in the above range.

이하에서는 본 발명에 첨부되는 도면과 실시예를 기초로 상세하게 설명하기로 한다. 본 발명은 여러 가지 상이한 형태로 구현할 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, the present invention will be described in detail based on the accompanying drawings and examples. The present invention can be implemented in many different forms and is not limited to the embodiments described herein.

환원그래핀의 제조Manufacturing of reduced graphene

교반기와 온도계가 부착된 자켓(jacket)형 0.5리터반응조에 평균입경 8㎛의 흑연 10g, 발연질산 200㎖를 투입하고 25℃로 유지하면서, 질소기류 하에서 교반하면서 산화제로 염소산나트륨 60g을 3회에 나누어 15분 간격으로 분할 투입한 뒤 2시간 산화시켰다. 상기 산화흑연을 여과하여 농질산을 제거하고 추가 산화를 억제하기 위해 증류수 200㎖에 과산화수소 20㎖을 추가하여 세척한 후 증류수로 여액의 수소이온농도가 6이 될 때까지 세척하였다. 상기와 같이 제조한 산화흑연을 동결건조기를 이용하여 -40℃에서 24시간 동안 건조하였다.10 g of graphite with an average particle diameter of 8 ㎛ and 200 ml of fuming nitric acid were added to a jacket-type 0.5 liter reaction tank equipped with a stirrer and thermometer, maintained at 25°C, and 60 g of sodium chlorate as an oxidizing agent was added three times while stirring under a nitrogen stream. It was divided and added at 15-minute intervals and then oxidized for 2 hours. The oxidized graphite was filtered to remove concentrated nitric acid, and to inhibit further oxidation, it was washed by adding 20 ml of hydrogen peroxide to 200 ml of distilled water, and then washed with distilled water until the hydrogen ion concentration of the filtrate reached 6. The graphite oxide prepared as above was dried at -40°C for 24 hours using a freeze dryer.

교반기와 온도계가 부착된 자켓형 1리터반응조에 증류수 500㎖와 상기와 같이 제조된 산화흑연 1g을 투입한 후 호모게나이저(homogenizer)를 이용하여 6,000rpm에서 2시간 동안 박리하여 산화그래핀을 제조하고 여기에 요오드화수소산 10㎖을 투입하여 70℃에서 교반하면서 7시간 동안 환원시켜 환원그래핀을 제조하였다. 상기 방법으로 제조한 환원그래핀을 증류수로 세척하고 원심분리기로 분리하여 여액의 수소이온농도가 6이 될 때까지 정제하여 개질할 환원그래핀을 제조하였다.500 ml of distilled water and 1 g of graphite oxide prepared as above were added to a 1-liter jacketed reaction tank equipped with a stirrer and thermometer, and then exfoliated at 6,000 rpm for 2 hours using a homogenizer to produce graphene oxide. Then, 10 ml of hydroiodic acid was added thereto and reduced for 7 hours while stirring at 70°C to prepare reduced graphene. The reduced graphene prepared by the above method was washed with distilled water, separated by a centrifuge, and purified until the hydrogen ion concentration of the filtrate reached 6 to prepare reduced graphene to be modified.

[실시예 1] 화학식 1로 개질한 환원그래핀[Example 1] Reduced graphene modified with Chemical Formula 1

상기 환원그래핀 제조방법으로 제조한 환원그래핀 분산액 500㎖에 수소이온농도가 9가 될 때까지 수산화리튬을 첨가하고 교반하면서 반응온도가 70℃가 되도록 승온하였다. 여기에 Titanium IV (4-amino)benzene sulfonate-O, bis(dodecyl)benzene sulfonate-O, 2-propanolato 100㎎을 첨가하고 2시간동안 반응시킨 후 상온으로 냉각시켜 수분산 및 재 분산이 가능한 개질된 환원그래핀을 제조하였다. 화학식 1에 의한 환원그래핀과의 반응은 도 1에서 나타낸 바와 같다.Lithium hydroxide was added to 500 ml of the reduced graphene dispersion prepared by the above reduced graphene production method until the hydrogen ion concentration reached 9, and the reaction temperature was raised to 70°C while stirring. Add 100 mg of Titanium IV (4-amino)benzene sulfonate-O, bis(dodecyl)benzene sulfonate-O, and 2-propanolato, react for 2 hours, and cool to room temperature to obtain a modified product that can be dispersed in water and redispersed. Reduced graphene was prepared. The reaction with reduced graphene according to Chemical Formula 1 is as shown in Figure 1.

[실시예 2] 화학식 2로 개질한 환원그래핀[Example 2] Reduced graphene modified with Chemical Formula 2

상기 환원그래핀 제조방법으로 제조한 환원그래핀 분산액 500㎖에 수소이온농도가 9가 될 때까지 수산화리튬을 첨가하고 교반하면서 반응온도가 70℃가 되도록 승온하였다. 여기에 Titanium IV 2-propanolato, tris(3,6-diaza)hexanolato 100㎎을 첨가하고 2시간동안 반응시킨 후 상온으로 냉각시켜 수분산 및 재 분산이 가능한 개질된 환원그래핀을 제조하였다. 화학식 2에 의한 환원그래핀과의 반응은 도 2에서 나타낸 바와 같다.Lithium hydroxide was added to 500 ml of the reduced graphene dispersion prepared by the above reduced graphene production method until the hydrogen ion concentration reached 9, and the reaction temperature was raised to 70°C while stirring. 100 mg of Titanium IV 2-propanolato and tris(3,6-diaza)hexanolato were added here, reacted for 2 hours, and then cooled to room temperature to prepare modified reduced graphene capable of water dispersion and re-dispersion. The reaction with reduced graphene according to Formula 2 is as shown in FIG. 2.

[비교예] 개질하지 않은 환원그래핀[Comparative example] Reduced graphene without modification

상기 환원그래핀 제조방법으로 제조한 환원그래핀 분산액을 그대로 사용하였다.The reduced graphene dispersion prepared by the above reduced graphene production method was used as is.

[평가예][Evaluation example]

수분산성 측정방법Water dispersibility measurement method

환원그래핀 0.1중량% 용액을 상온에서 1시간 방치한 후 자외선-가시광선분광기를 사용하여 400㎚에서 700㎚까지의 흡광도를 주사(scan)한 후 600㎚에서의 흡광도를 측정하여 비교하였다.After leaving the 0.1% by weight solution of reduced graphene at room temperature for 1 hour, the absorbance was scanned from 400 nm to 700 nm using an ultraviolet-visible spectrometer, and the absorbance at 600 nm was measured and compared.

재 분산성 측정방법Redispersibility measurement method

상기 수분산성 측정용액을 10,000 G-force에서 10분간 원심분리한 후 주파수 40㎑, 출력 400W 초음파로 10분간 재 분산시켜 수분산성 측정방법과 동일한 방법으로 흡광도를 측정하여 비교하였으며 재 분산성은 하기 식으로 계산하였다.The water dispersibility measurement solution was centrifuged at 10,000 G-force for 10 minutes, then redispersed for 10 minutes with ultrasound at a frequency of 40 kHz and an output of 400 W. The absorbance was measured and compared using the same method as the water dispersibility measurement method, and the redispersibility was calculated using the formula below. Calculated.

재 분산성(%) = (A1/A0) x 100 Redispersibility (%) = (A 1 /A 0 ) x 100

여기서,here,

A0 : 원심분리 전 시료의 흡광도A 0 : Absorbance of sample before centrifugation

A1 : 원심분리 후 재 분산시킨 시료의 흡광도A 1 : Absorbance of sample re-dispersed after centrifugation

결과값이 100에 가까울수록 재 분산성이 좋음The closer the result is to 100, the better the redispersibility.

수분산성 및 재 분산성 평가결과Water dispersibility and redispersibility evaluation results 구분division 실시예 1Example 1 실시예 2Example 2 비교예Comparative example A0 A 0 1.6151.615 1.6041.604 1.5261.526 A1 A 1 1.5351.535 1.5351.535 0.1910.191 재 분산성 (%)Redispersibility (%) 95.0595.05 95.7095.70 12.5212.52 비고note 도 4bFigure 4b 도 4cFigure 4c 도 4aFigure 4a

상기 표 1 및 도 4a ~ 4c에서 보듯이 금속복합물의 종류와 무관하게 금속복합물로 개질 하면 수분산성 및 재 분산성이 처리하지 않은 경우 12.52%인 것에 반해 95% 이상으로 재 분산성이 개선됨을 알 수 있다.As shown in Table 1 and Figures 4a to 4c, regardless of the type of metal composite, when modified with a metal composite, water dispersibility and redispersibility are improved to more than 95%, compared to 12.52% when not treated. You can.

또한 도 3의 X선광전자분광법 결과에서 보듯이 C1s/O1s의 비율이 18로 양호한 환원도를 보이는 것으로 보아 수분산성 및 재 분산성은 환원그래핀의 층내 혹은 엣지(edge)의 결함부분인 산소화합물에 의한 것이 아니고 개질된 환원그래핀의 특성임을 알 수 있다.In addition , as shown in the It can be seen that it is not caused by a compound but is a characteristic of modified reduced graphene.

또한 도 5의 원자힘현미경 결과에서 보듯이 환원그래핀은 침전 후 재 분산시킬 경우 원래의 두께로 재 분산되지 않는 반면(도 5a, Rq값 1.025㎚→20.405㎚) 화학식1 및 화학식2로 개질된 환원그래핀은 재 분산 후에도 침전 전 두께와 유사한 값(도 5b, Rq값 1.142㎚→1.383㎚, 도 5c, Rq값 1.066㎚→1.454㎚)을 갖는 것으로 보아 자외선-가시광선분광기 결과와 함께 미루어 볼 때 재 분산성이 월등히 개선됨을 알 수 있다.In addition, as shown in the atomic force microscope results of Figure 5, reduced graphene is not redispersed to its original thickness when redispersed after precipitation (Figure 5a, Rq value 1.025 nm → 20.405 nm), whereas reduced graphene modified with Formula 1 and Formula 2 It can be seen from the results of ultraviolet-visible spectroscopy that reduced graphene has a thickness similar to that before precipitation even after redispersion (Figure 5b, Rq value 1.142 nm → 1.383 nm, Figure 5c, Rq value 1.066 nm → 1.454 nm). It can be seen that redispersibility is significantly improved.

하기 표 2와 3은 도 5a의 히스토그램에 따른 통계수치로서, (a)초기, (b)재분산 후를 각각 나타낸 것이며, 표 4와 5는 도 5b의 히스토그램에 따른 통계수치로서, (a)초기, (b)재분산 후를 각각 나타낸 것이고, 표 6과 7은 도 5c의 히스토그램에 따른 통계수치로서, (a)초기, (b)재분산 후를 각각 나타낸 것이다.Tables 2 and 3 below show statistical values according to the histogram of Figure 5a, (a) initial and (b) after redistribution, respectively, and Tables 4 and 5 show statistical values according to the histogram of Figure 5b, (a) Initial and (b) after redistribution, respectively, and Tables 6 and 7 are statistical values according to the histogram of Figure 5c, showing (a) initial and (b) after redistribution, respectively.

이상에서 실시예를 들어 본 발명을 더욱 상세하게 설명하였으나, 본 발명은 반드시 이러한 실시예로 국한되는 것이 아니고 본 발명의 기술 사상을 벗어나지 않는 범위 내에서 다양하게 변형 실시될 수 있다. 따라서 본 발명에 개시된 실시예는 본 발명의 기술사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.Although the present invention has been described in more detail by way of examples above, the present invention is not necessarily limited to these examples and may be modified and implemented in various ways without departing from the technical spirit of the present invention. Accordingly, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but are for explanation, and the scope of the technical idea of the present invention is not limited by these examples. The scope of protection of the present invention shall be interpreted in accordance with the claims below, and all technical ideas within the equivalent scope shall be construed as being included in the scope of rights of the present invention.

Claims (6)

산화흑연을 박리하여 산화그래핀을 제조하는 단계;
박리된 산화흑연을 환원하여 환원그래핀을 제조하는 단계;
상기 환원그래핀을 용매에 분산시키는 단계; 및
분산된 환원그래핀 분산액에 이종의 관능기를 갖는 금속복합물을 첨가하여 환원그래핀의 층내 혹은 엣지(edge)의 결함부분과 개질반응시켜 환원그래핀을 개질하는 단계;를 포함하며,
상기 단계를 통하여 환원그래핀의 수분산성 및 재 분산성을 향상시키고 이종재료와 화학적으로 결합시켜 복합화할 수 있는 것을 특징으로 하는 개질된 환원그래핀을 제조하는 방법.
Exfoliating graphite oxide to produce graphene oxide;
Reducing the exfoliated graphite oxide to produce reduced graphene;
Dispersing the reduced graphene in a solvent; and
It includes the step of modifying the reduced graphene by adding a metal complex having a different functional group to the dispersed reduced graphene dispersion and causing a reforming reaction with the defective portion within the layer or at the edge of the reduced graphene,
A method of producing modified reduced graphene, characterized in that it improves the water dispersibility and redispersibility of reduced graphene through the above steps and can be complexed by chemically bonding with dissimilar materials.
제1항에 있어서,
상기 이종의 관능기를 갖는 금속복합물은 하기 화학식 1 내지 화학식 2의 구조를 갖는 것을 특징으로 하는 개질된 환원그래핀을 제조하는 방법.
화학식 1
(R1O)n-M-(X-R2-Y)4-n
여기서,
R1 : C1~C4의 알킬(alkyl), C2~C4의 알케닐(alkenyl) 혹은 C3~C4의 이소알킬(isoalkyl)
R2 : C1~C18의 알킬(alkyl), C3~C18의 이소알킬(isoalkyl), C2~C18의 알케닐(alkenyl) 혹은 C4~C18의 이소알케닐(isoalkenyl)
M : 티탄(taitanium) 혹은 지르코늄(zirconium)
X : 카르복실레이트(carboxylate), 술포네이트(sulfonate) , 포스페이트(phosphate) 혹은 피로포스페이트(pyrophosphate)
Y : 아민(amine), 히드록시(hydroxyl), 에폭시(epoxy), 혹은 에이시드(acid)
화학식 2
(R1O)n-M-(O-R2-Y)4-n
여기서,
R1 : C1~C4의 알킬(alkyl), C2~C4의 알케닐(alkenyl) 혹은 C3~C4의 이소알킬(isoalkyl)
R2 : C1~C18의 알킬(alkyl), C3~C18의 이소알킬(isoalkyl), C2~C18의 알케닐(alkenyl) 혹은 C4~C18의 이소알케닐(isoalkenyl)
M : 티탄(taitanium) 혹은 지르코늄(zirconium)
Y : 아민(amine), 히드록시(hydroxyl), 에폭시(epoxy) 혹은 에이시드(acid)
According to paragraph 1,
A method of producing modified reduced graphene, characterized in that the metal complex having the heterogeneous functional group has the structure of the following Chemical Formula 1 to Chemical Formula 2.
Formula 1
(R 1 O) n -M-(XR 2 -Y) 4-n
here,
R 1 : C 1 ~ C 4 alkyl, C 2 ~ C 4 alkenyl or C 3 ~ C 4 isoalkyl
R 2 : C 1 ~ C 18 alkyl, C 3 ~ C 18 isoalkyl, C 2 ~ C 18 alkenyl or C 4 ~ C 18 isoalkenyl
M: titanium or zirconium
X: carboxylate, sulfonate, phosphate or pyrophosphate
Y: amine, hydroxyl, epoxy, or acid
Formula 2
(R 1 O) n -M-(OR 2 -Y) 4-n
here,
R 1 : C 1 ~ C 4 alkyl, C 2 ~ C 4 alkenyl or C 3 ~ C 4 isoalkyl
R 2 : C 1 ~ C 18 alkyl, C 3 ~ C 18 isoalkyl, C 2 ~ C 18 alkenyl or C 4 ~ C 18 isoalkenyl
M: titanium or zirconium
Y: amine, hydroxyl, epoxy or acid
제1항에 있어서,
상기 환원그래핀의 환원도가 X선광전자분광법상 C1s/O1s의 비율이 10 이상 100이하일 때, 개질반응을 수행하는 것을 특징으로 하는 개질된 환원그래핀을 제조하는 방법.
According to paragraph 1,
A method of producing modified reduced graphene, characterized in that a modification reaction is performed when the degree of reduction of the reduced graphene is at a ratio of 10 to 100 of C 1s /O 1s as determined by X-ray photoelectron spectroscopy.
제1항에 있어서,
상기 이종의 관능기를 갖는 금속복합물의 첨가량이 환원그래핀 대비 0.1중량% 내지 50중량%인 것을 특징으로 하는 개질된 환원그래핀을 제조하는 방법.
According to paragraph 1,
A method for producing modified reduced graphene, characterized in that the amount of the metal complex having the heterogeneous functional group added is 0.1% to 50% by weight relative to the reduced graphene.
제1항에 있어서,
수소이온농도가 6 내지 10의 범위에서 개질반응을 수행하는 것을 특징으로 하는 개질된 환원그래핀을 제조하는 방법.
According to paragraph 1,
A method of producing modified reduced graphene, characterized in that the reforming reaction is performed at a hydrogen ion concentration in the range of 6 to 10.
제1항에 있어서,
반응온도가 30℃ 이상 100℃ 이하에서 개질반응을 수행하는 것을 특징으로 하는 개질된 환원그래핀을 제조하는 방법.
According to paragraph 1,
A method of producing modified reduced graphene, characterized in that the reforming reaction is performed at a reaction temperature of 30°C or more and 100°C or less.
KR1020220138506A 2022-10-25 2022-10-25 Manufacturing method of reduced graphene oxide having aqueous dispersable, redispersable and hybridable with heteromaterial KR20240057823A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020220138506A KR20240057823A (en) 2022-10-25 2022-10-25 Manufacturing method of reduced graphene oxide having aqueous dispersable, redispersable and hybridable with heteromaterial
PCT/KR2023/012198 WO2024090757A1 (en) 2022-10-25 2023-08-17 Method for preparing reduced graphene oxide that has water dispersibility and redispersibility and can be mixed with dissimilar material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220138506A KR20240057823A (en) 2022-10-25 2022-10-25 Manufacturing method of reduced graphene oxide having aqueous dispersable, redispersable and hybridable with heteromaterial

Publications (1)

Publication Number Publication Date
KR20240057823A true KR20240057823A (en) 2024-05-03

Family

ID=90831197

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220138506A KR20240057823A (en) 2022-10-25 2022-10-25 Manufacturing method of reduced graphene oxide having aqueous dispersable, redispersable and hybridable with heteromaterial

Country Status (2)

Country Link
KR (1) KR20240057823A (en)
WO (1) WO2024090757A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101590683B1 (en) * 2013-12-17 2016-02-02 울산대학교 산학협력단 Method for preparing water-dispersible graphene
KR101576896B1 (en) * 2014-04-07 2015-12-14 인하대학교 산학협력단 -FeOOH- -FeOOH- Method of preparing iron oxide-graphene composites and the iron oxide-FeOOH-graphene composites prepared by the same method
KR101705714B1 (en) * 2015-07-31 2017-02-22 인하대학교 산학협력단 Preparation Method of graphene composites in combination with iridium and chloride and graphene composites thereby
CN112430450B (en) * 2020-11-11 2022-10-14 哈尔滨工业大学(威海) Modified graphene nanosheet composite powder and preparation method thereof
CN115074566B (en) * 2022-07-07 2023-04-18 西北有色金属研究院 Method for improving performance of titanium-based composite material through modified and dispersed oxygen-containing graphene

Also Published As

Publication number Publication date
WO2024090757A1 (en) 2024-05-02

Similar Documents

Publication Publication Date Title
EP3056469B1 (en) Production method for graphene
EP3056468B1 (en) Graphene production method
US9598445B2 (en) Methods for producing functionalized graphenes
CN107108226B (en) Method for preparing graphene by utilizing high-speed homogenization pretreatment and high-pressure homogenization
Poh et al. Concurrent phosphorus doping and reduction of graphene oxide
JP2012527396A (en) Highly oxidized graphene oxides and methods for their production
KR101716883B1 (en) Graphene quantum dot with controllable size and preparing method of the same
EP2526057A1 (en) Method for producing phyllosilicate discs having a high aspect ratio
JP2012153590A (en) Aggregate, and dispersion liquid made by dispersing the aggregate in solvent
CN106583750A (en) Preparation method for boron nitride nanosheet/metal nanoparticle composite
JP4961323B2 (en) Carbon nanotubes having a surface coated with a surfactant and method for producing the same
KR20240057823A (en) Manufacturing method of reduced graphene oxide having aqueous dispersable, redispersable and hybridable with heteromaterial
AU2017304275B2 (en) An improved method for the synthesis of graphene oxide
Nakagaki et al. A cationic iron (III) porphyrin encapsulated between the layered structure of MoS2. A new approach to the synthesis of an Fe Mo S system
WO2018143698A1 (en) Graphene and preparation method therefor
KR20150116021A (en) Polyaniline-graphene nonocompisites and menufacturing method thereof
US11795347B2 (en) Polishing slurry and method of manufacturing semiconductor device
Tejani et al. Controlled synthesis and characterization of lanthanum nanorods
KR20120031624A (en) Method for reforming the surface of carbon nanotube by oxidizing agent
KR102086764B1 (en) Method for preparation of graphene
KR102550123B1 (en) Method for low defective graphene oxide using antioxidant and graphene oxide thereby
CN113260692A (en) Preparation method of graphene quantum dots
KR20210047085A (en) A purifying method of boron nitride nanotubes
KR20210128177A (en) Method for Preparing Graphene
WO2006077890A1 (en) Process for producing monodispersed fine spherical metal oxide particles and fine metal oxide particles