KR20240051496A - 비파괴분석법을 이용한 와이드밴드갭 소재의 결함 평가방법 - Google Patents
비파괴분석법을 이용한 와이드밴드갭 소재의 결함 평가방법 Download PDFInfo
- Publication number
- KR20240051496A KR20240051496A KR1020220131225A KR20220131225A KR20240051496A KR 20240051496 A KR20240051496 A KR 20240051496A KR 1020220131225 A KR1020220131225 A KR 1020220131225A KR 20220131225 A KR20220131225 A KR 20220131225A KR 20240051496 A KR20240051496 A KR 20240051496A
- Authority
- KR
- South Korea
- Prior art keywords
- dislocation
- vector
- band gap
- wide band
- diffraction image
- Prior art date
Links
- 230000007547 defect Effects 0.000 title claims abstract description 39
- 239000000463 material Substances 0.000 title claims abstract description 33
- 238000004458 analytical method Methods 0.000 title claims abstract description 15
- 230000001066 destructive effect Effects 0.000 title claims abstract description 14
- 238000011156 evaluation Methods 0.000 title claims description 12
- 238000004854 X-ray topography Methods 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims abstract description 10
- 239000013598 vector Substances 0.000 claims description 43
- 239000013078 crystal Substances 0.000 claims description 37
- 229910003460 diamond Inorganic materials 0.000 claims description 14
- 239000010432 diamond Substances 0.000 claims description 14
- 238000005229 chemical vapour deposition Methods 0.000 claims description 10
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 5
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 4
- 229910002601 GaN Inorganic materials 0.000 claims description 3
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 abstract description 8
- 230000008901 benefit Effects 0.000 abstract description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 239000004065 semiconductor Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910001195 gallium oxide Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/20—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
- G01N23/207—Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/04—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
- G01N23/046—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/05—Investigating materials by wave or particle radiation by diffraction, scatter or reflection
- G01N2223/056—Investigating materials by wave or particle radiation by diffraction, scatter or reflection diffraction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/10—Different kinds of radiation or particles
- G01N2223/101—Different kinds of radiation or particles electromagnetic radiation
- G01N2223/1016—X-ray
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/40—Imaging
- G01N2223/419—Imaging computed tomograph
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/60—Specific applications or type of materials
- G01N2223/646—Specific applications or type of materials flaws, defects
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Pathology (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Pulmonology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Radiology & Medical Imaging (AREA)
- Crystallography & Structural Chemistry (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
본 발명은 비파괴분석법을 이용한 와이드밴드갭(WBG) 소재의 결함 평가방법에 관한 것으로서, X-ray topography(이하 'XRT')로 X-ray 입사방향 , , 또는 444 로 와이드밴드갭(WBG) 소재를 검사하여 회절이미지를 획득하는 단계; 상기 회절이미지에서 획득한 전위에서, X-ray 입사방향과 평행한 전위와 평행하지 않는 전위를 구분하는 단계; 상기 평행한 전위를 스레딩 전위(threading 전위(dislocation) : TD)로 식별하고, 평행하지 않는 전위를 경사전위로 평가하는 단계;를 포함하여 이루어지는 것을 특징으로 한다.
본 발명에 의하여, 비파괴분석법을 이용하여 와이드밴드갭 소재 내의 결함의 특성을 파악하고 이를 통해 성장기술에 반영되게 함으로써 소자 제작에 활용될 수 있는 비파괴분석법을 이용한 와이드밴드갭 소재의 결함 평가방법이 제공되는 이점이 있다.
본 발명에 의하여, 비파괴분석법을 이용하여 와이드밴드갭 소재 내의 결함의 특성을 파악하고 이를 통해 성장기술에 반영되게 함으로써 소자 제작에 활용될 수 있는 비파괴분석법을 이용한 와이드밴드갭 소재의 결함 평가방법이 제공되는 이점이 있다.
Description
본 발명은 비파괴분석법을 이용한 와이드밴드갭 소재의 결함 평가방법에 관한 것으로서, 와이드밴드갭 단결정 소재의 회절 이미지를 XRT를 이용하여 획득하고 분석하여 스레드 전위와 스레드 전위가 아닌 경사전위를 식별하고, 경사전위의 결함도를 평가할 수 있는 기술에 관한 것이다.
전력반도체는 전력이 필요한 곳이면 필수적으로 사용되는 산업의 중요 부품으로, 전류 방향을 조절하고 전력 변환을 제어하는 역할을 한다.
전력반도체는 전기자동차 및 신재생에너지 등 친환경 산업을 이루는 첨단 소자이자, 5G 통신망 등 디지털 기반의 4차 산업을 이끄는 핵심 기술로 손꼽힌다.
특히 전기자동차에서 배터리와 전기모터를 연결하는 고성능 인버터에 필수적인 부품으로 활용되면서 최근 많은 주목을 받고 있다.
전력반도체는 고온, 고압, 대전류의 극한 환경에서도 에너지 손실이 적고 안정적인 특성을 유지해야 하므로 와이드 밴드갭 소재를 활용한 전력 반도체가 많은 주목을 받고 있다.
대표적인 와이드밴드갭 소재로는 탄화규소, 질화갈륨, 다이아몬드가 있다.
그 중 다이아몬드는 밴드갭 에너지가 5.47 eV 이며, 기존 반도체소재로 활용이 많이 되어온 실리콘 대비 18배 높은 절연 파괴 특성과 13배 높은 열전도도 등, 우수한 물리적 특성을 가지고 있다.
하지만 다이아몬드의 특성상 고온, 고압의 환경에서 성장되므로 성장 기술의 난이도가 높으며, 성장 중 다양한 결정 결함이 발생한다.
다이아몬드 단결정에 존재하는 결정 결함은 전력 소자의 전기적 특성을 저하시키는 원인으로 작용하기 때문에 결함 특성을 이해하고 성장 중 제어되어야 한다.
또한, 소자를 제작해야하며 웨이퍼 스케일의 넓은 영역 분석이 필요하기 때문에 비파괴로 대면적을 분석하는 것이 필요하다.
한편, 단결정의 결정 결함은 단결정 성장시 단결정 성장방향으로 함께 성장하여 단결정 성장 벡터와 동일 벡터를 가지는 스레드 전위와 단결정 성장 벡터와 방향이 다른 벡터를 가지는 벡터(이하 이를 '경사 벡터'로 정의 함.)로 구분할 수 있는데, 이러한 경사 벡터는 단결정의 전기적 응답 특성을 손상시키므로 단결정 성장시 이를 관찰하는 것은 매우 중요한 문제라 할 수 있다.
본 발명은 상기 문제에 주목하여, 비파괴분석법을 이용하여 와이드밴드갭 소재 내의 결함의 특성을 파악하고 이를 통해 성장기술에 반영함으로써 소자 제작에 활용될 수 있는 비파괴분석법을 이용한 와이드밴드갭 소재의 결함 평가방법을 제공하는 것을 목적으로 한다.
상기한 목적을 달성하기 위하여 본 발명은 X-ray topography(이하 'XRT')로 X-ray 입사방향 , , 또는 444 로 와이드밴드갭(WBG) 소재를 검사하여 회절이미지를 획득하는 단계; 상기 회절이미지에서 획득한 전위에서, X-ray 입사방향과 평행한 전위와 평행하지 않는 전위를 구분하는 단계; 상기 평행한 전위를 스레딩 전위(threading 전위(dislocation) : TD)로 식별하고, 평행하지 않는 전위를 경사전위로 평가하는 단계;를 포함하여 이루어지는 것을 특징으로 하는 비파괴분석법을 이용한 와이드밴드갭(WBG) 소재의 결함 평가방법을 기술적 요지로 한다.
여기서, 상기 경사전위의 결함지수는 상기 스레딩 전위에 대한 경사각으로 평가하는 것을 특징으로 하는 와이드밴드갭(WBG) 소재의 결함 평가방법으로 되는 것이 바람직하다.
또한, 상기 스레딩 전위의 기울기 벡터가 [001]일 때, 상기 X-ray 입사방향 g = 444 에서 획득한 회절 이미지에서 경사전위 벡터와 상기 스레딩 전위 벡터와의 경사각 α는 수학식 1에 의해서 획득되는 것을 특징으로 하는 와이드밴드갭(WBG) 소재의 결함 평가방법으로 되는 것이 바람직하다.
또한, 상기 와이드밴드갭(WBG) 소재는 탄화규소, 질화갈륨, 다이아몬드에서 선택되는 것을 특징으로 하는 와이드밴드갭(WBG) 소재의 결함 평가방법으로 되는 것이 바람직하다.
또한, 상기 다이아몬드는 CVD(chemical vapor deposition)로 성장시킨 단결정인 것을 특징으로 하는 와이드밴드갭(WBG) 소재의 결함 평가방법으로 되는 것이 바람직하다.
상기한 본 발명에 의하여, 비파괴분석법을 이용하여 와이드밴드갭 소재 내의 결함의 특성을 파악하고 이를 통해 성장기술에 반영되게 함으로써 소자 제작에 활용될 수 있는 비파괴분석법을 이용한 와이드밴드갭 소재의 결함 평가방법이 제공되는 이점이 있다.
도 1은 본 발명의 원리를 설명하기 위한 경사전위 단결정 회절 이미지 구조도
도 2는 도 1의 b 부분 확대도
도 3은 도 1은 본 발명의 원리를 설명하기 위한 스레딩 전위 단결정 회절 이미지 구조도
도 4는 X-ray 입사방향에 따른 경사 전위 회절 이미지 구조도
도 5는 전위 결함이 투영 표시된 단결정 사시도
도 6은 실제 획득한 단결정 회절 이미지
도 2는 도 1의 b 부분 확대도
도 3은 도 1은 본 발명의 원리를 설명하기 위한 스레딩 전위 단결정 회절 이미지 구조도
도 4는 X-ray 입사방향에 따른 경사 전위 회절 이미지 구조도
도 5는 전위 결함이 투영 표시된 단결정 사시도
도 6은 실제 획득한 단결정 회절 이미지
이하 도면을 참조하여 본 발명에 관하여 살펴보기로 하며, 본 발명을 설명함에 있어서 관련된 공지기술 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다.
그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있으므로 그 정의는 본 발명을 설명하는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
이하의 도 1은 본 발명의 원리를 설명하기 위한 경사전위 단결정 회절 이미지 구조도이며, 도 2는 도 1의 b 부분 확대도이며, 도 3은 도 1은 본 발명의 원리를 설명하기 위한 스레딩 전위 단결정 회절 이미지 구조도이며, 도 4는 X-ray 입사방향에 따른 경사 전위 회절 이미지 구조도이며, 도 5는 전위 결함이 투영 표시된 단결정 사시도이며, 도 6은 실제 획득한 단결정 회절 이미지이다.
본 발명은 비파괴분석법을 이용한 와이드밴드갭(WBG) 소재의 결함 평가방법에 관한 것으로서, 이를 위하여 X-ray topography(이하 'XRT')로 X-ray 입사방향 , , 또는 444 로 와이드밴드갭(WBG) 소재를 검사하여 회절이미지를 획득하는 단계를 선행한다.
상기 와이드 밴드갭 소재는 실리콘(Si)보다 큰 밴드갭을 갖는 반도체 단결정을 말하며, 파워 반도체 등의 차세대 재료로서 기대되고 있는 탄화규소(SiC), 질화갈륨(GaN), 산화갈륨(Ga2O3), 질화알루미늄(AlN), 다이아몬드 등이 알려져 있다.
이하, 본 발명은 CVD(chemical vapor deposition)로 성장시킨 다이아몬드 단결정을 실시예로 설명하기로 한다.
본 발명은 상기 회절이미지 획득 후, 회절이미지에서 전위 이미지를 식별해내고, X-ray 입사방향과 평행한 전위와 평행하지 않는 전위를 구분하는 단계와 상기 평행한 전위를 스레딩 전위(threading 전위(dislocation) : TD)로 식별하고, 평행하지 않는 전위를 경사전위로 평가하는 단계를 진행한다.
상기한 단계에 의하여 본 발명은 X-ray topography(XRT)를 이용하여 CVD(chemical vapor deposition)로 성장시킨 단결정 다이아몬드 내부에 존재하는 스레딩 전위(TD : threading dislocation)를 분석하고 있다.
CVD 다이아몬드의 전위(dislocation)는 성장 방향을 따라 [001] 라인 벡터를 가지는 스레딩 전위로 존재한다고 알려져 있다.
즉, 상기 스레딩 전위(dislocation)는 단결정 성장방향과 동일하게 형성되므로, 상기 스레딩 전위의 라인 벡터가 [001]이라면, XRT 회절 이미지에서 나타나는 선 형태는 도 3에서 보여지는 바와 같이 모두 X-ray의 입사 방향과 평행하게 관찰되어야 한다.
그런데, 도 6의 실험 결과를 살펴보면, 회절 이미지에서 전위(dislocation)는 X-ray 입사 방향에 대하여 평행한 선과 기울진 선으로 관찰되고 있다.
본 발명은 이 중에서 기울진 전위(dislocation)는 스레딩 전위와 다른 벡터를 가지는 것으로 평가하고 이를 경사전위로 정의한다.
상기 경사전위는 벡터의 방향이 불규칙적이고 다양하게 발생되어 단결정의 전기적 응답 특성을 예측하기 힘들게 하므로, 이를 단결정 결함으로 평가할 수 있다.
본 발명은 이와 같이 회절 이미지에서 경사전위를 식별해 내고, 스레딩 전위 벡터 [001] 방향으로부터 기울어진 정도를 분석하여 결합 정도를 평가할 수 있으며, 그에 따라 단결정 성장 중에 결함이 휘어지게 하는 원인을 찾아내는 동기를 제공할 수 있다.
이하, 이에 대하여 좀 더 상세하게 살펴보면, 도 3에서 보여지는 바와 같이 상기 'XRT'의 X-ray 입사방향 , , 또는 444 는 모두 스레딩 전위 벡터 [001]에 대하여 평행한 방향이 되므로, X-ray 입사방향에 평행한 스레딩 전위 이미지를 획득할 수 있음을 알 수 있다.
한편, 도 4는 스레딩 전위 벡터에 평행하지 않는 4 종류의 전위 벡터를 'XRT'의 X-ray 입사방향 , , , 444 에서 획득한 회절 이미지 형태로서, 도 4에서 보여지는 바와 같이 스레딩 전위 벡터에 평행하지 않는 경사 전위 벡터는 각 방향에서 X-ray 입사방향과 다른 경사를 가지는 이미지로 획득됨을 알 수 있다.
도 4에서 보여지는 바와 같이 경사 전위는 상기 X-ray 입사방향 전부에 대해서 구하여 비교 관찰할 수 있으나, 이 중 하나에 의해서도 경사 전위를 충분히 관찰할 수 있으므로, 이하 g=444에서 획득한 회절 이미지를 실시예로 하여 설명하기로 한다.
본 발명은 상기 경사전위의 결함을 평가할 수 있는 결함지수를 상기 스레딩 전위에 대한 경사각으로 정할 수 있는 특징이 있다.
본 발명은 이와 같이 경사전위의 특성을 수치로 평가하는 방법을 제공함으로써 추후 경사전위에 의해 발생되는 물리적 특징을 분류할 수 있는 기준을 제공한다.
이에 대하여 좀 더 상세히 살펴보면, 도 1에서 보여지는 바와 같이 상기 스레딩 전위의 기울기 벡터가 [001]일 때, 상기 X-ray 입사방향 g = 444 에서 획득한 회절 이미지에서 경사전위 벡터와 상기 스레딩 전위 벡터와의 경사각 α는 수학식 1에 의해서 획득될 수 있다.
따라서, 본 발명을 CVD 성장시킨 축상 단결정 자립 다이아몬드에 적용하는 경우, 경사전위 경사각은
가 되어 경사전위를 정량적으로 평가할 수 있는 지수로 사용할 수 있다.
이와 같은 원리를 이용하면, 도 6과 같이 획득되는 평면 회절 이미지에 경사전위 경사각을 추가시키는 것만으로도, 도 5와 같이 입체적으로 전위 결함을 예측할 수 있게 한다.
이상 설명한 본 발명에 따르면, X-ray 회절이미지를 획득하는 것만으로, 스레딩 전위와 경사전위를 직관적으로 판단할 수 있는 이점이 있다.
이와 같은 원래를 확장하면, 이미지 프로세싱을 이용하여 X-ray 입사 방향에 평행한 결함과 그렇지 않은 결함을 식별해 내고, 스레딩 전위와 경사전위의 비율을 연산할 수 있으며, 경사전위의 경사각을 자동 식별하여 표시하고, 경사각을 연산함으로써, 단결정의 상태 평가를 정량적으로 평가할 수 있는 이점이 있다.
따라서, 본 발명에 의하면 비파괴분석법을 이용하여 와이드밴드갭 소재 내의 결함의 특성을 직관적으로 확인할 수 있을 뿐만 아니라 정량적으로 평가하고 이를 성장기술에 반영되게 하여 소자 제작 방법을 개선시킬 수 있는 비파괴분석법이 제공될 수 있다.
이상 본 발명의 설명을 위하여 도시된 도면은 본 발명이 구체화되는 하나의 실시예로서 도면에 도시된 바와 같이 본 발명의 요지가 실현되기 위하여 다양한 형태의 조합이 가능함을 알 수 있다.
따라서 본 발명은 상기한 실시예에 한정되지 않고, 이하의 특허청구범위에서 청구하는 바와 같이 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변경실시가 가능한 범위까지 본 발명의 기술적 정신이 있다고 할 것이다.
Claims (5)
- X-ray topography(이하 'XRT')로 X-ray 입사방향 , , 또는 444 로 와이드밴드갭(WBG) 소재를 검사하여 회절이미지를 획득하는 단계;
상기 회절이미지에서 획득한 전위에서, X-ray 입사방향과 평행한 전위와 평행하지 않는 전위를 구분하는 단계;
상기 평행한 전위를 스레딩 전위(threading 전위(dislocation) : TD)로 식별하고, 평행하지 않는 전위를 경사전위로 평가하는 단계;
를 포함하여 이루어지는 것을 특징으로 하는 비파괴분석법을 이용한 와이드밴드갭(WBG) 소재의 결함 평가방법.
- 제1항에 있어서
상기 경사전위의 결함지수는 상기 스레딩 전위에 대한 경사각으로 평가하는 것을 특징으로 하는 와이드밴드갭(WBG) 소재의 결함 평가방법.
- 제1항에 있어서 상기 와이드밴드갭(WBG) 소재는
탄화규소, 질화갈륨, 다이아몬드에서 선택되는 것을 특징으로 하는 와이드밴드갭(WBG) 소재의 결함 평가방법.
- 제3항에 있어서 상기 다이아몬드는
CVD(chemical vapor deposition)로 성장시킨 단결정인 것을 특징으로 하는 와이드밴드갭(WBG) 소재의 결함 평가방법.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220131225A KR20240051496A (ko) | 2022-10-13 | 2022-10-13 | 비파괴분석법을 이용한 와이드밴드갭 소재의 결함 평가방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220131225A KR20240051496A (ko) | 2022-10-13 | 2022-10-13 | 비파괴분석법을 이용한 와이드밴드갭 소재의 결함 평가방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20240051496A true KR20240051496A (ko) | 2024-04-22 |
Family
ID=90881400
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020220131225A KR20240051496A (ko) | 2022-10-13 | 2022-10-13 | 비파괴분석법을 이용한 와이드밴드갭 소재의 결함 평가방법 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20240051496A (ko) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102012809B1 (ko) | 2019-04-05 | 2019-08-21 | 충남대학교산학협력단 | 쌍정결함밀도의 평가방법 |
KR102255421B1 (ko) | 2020-08-11 | 2021-05-24 | 충남대학교산학협력단 | 단결정 산화갈륨의 결함 평가방법 |
KR20210130172A (ko) | 2019-02-22 | 2021-10-29 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 금속 산화물막, 반도체 장치, 및 금속 산화물막의 평가 방법 |
-
2022
- 2022-10-13 KR KR1020220131225A patent/KR20240051496A/ko unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210130172A (ko) | 2019-02-22 | 2021-10-29 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 금속 산화물막, 반도체 장치, 및 금속 산화물막의 평가 방법 |
KR102012809B1 (ko) | 2019-04-05 | 2019-08-21 | 충남대학교산학협력단 | 쌍정결함밀도의 평가방법 |
KR102255421B1 (ko) | 2020-08-11 | 2021-05-24 | 충남대학교산학협력단 | 단결정 산화갈륨의 결함 평가방법 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Foronda et al. | Curvature and bow of bulk GaN substrates | |
US7854804B2 (en) | Nitride crystal, nitride crystal substrate, epilayer-containing nitride crystal substrate, semiconductor device and method of manufacturing the same | |
Follstaedt et al. | Relaxation of compressively-strained AlGaN by inclined threading dislocations | |
Chen et al. | Defect inspection techniques in SiC | |
US10283351B2 (en) | Single-crystal silicon carbide substrate, method for producing single-crystal silicon carbide substrate, and method for inspecting single-crystal silicon carbide substrate | |
Pezzotti et al. | Raman tensor elements for wurtzitic GaN and their application to assess crystallographic orientation at film/substrate interfaces | |
JP2010180111A (ja) | 自立基板、およびその製造方法 | |
Selvaraj et al. | Influence of deep-pits on the device characteristics of metal-organic chemical vapor deposition grown AlGaN/GaN high-electron mobility transistors on silicon substrate | |
Cao et al. | Dislocation structure of GaN films grown on planar and nano-patterned sapphire | |
Saha et al. | Investigation of cross-hatch in In0. 3Ga0. 7As pseudo-substrates | |
Yao et al. | Correlation between structural properties and nonradiative recombination behaviors of threading dislocations in freestanding GaN substrates grown by hydride vapor phase epitaxy | |
Tangi et al. | Bandgap measurements and the peculiar splitting of E2H phonon modes of InxAl1-xN nanowires grown by plasma assisted molecular beam epitaxy | |
Ju et al. | Role of threading dislocations in strain relaxation during GaInN growth monitored by real-time X-ray reflectivity | |
Kushimoto et al. | Local stress control to suppress dislocation generation for pseudomorphically grown AlGaN UV-C laser diodes | |
Routh et al. | Device quality templates of InxGa1− xN (x< 0.1) with defect densities comparable to GaN | |
Harada et al. | Automatic detection of basal plane dislocations in a 150-mm SiC epitaxial wafer by photoluminescence imaging and template-matching algorithm | |
Aouassa et al. | Ultra-thin planar fully relaxed Ge pseudo-substrate on compliant porous silicon template layer | |
Nishio et al. | Informative Aspects of Molten KOH Etch Pits Formed at Basal Plane Dislocations on the Surface of 4H‐SiC | |
Shen et al. | Role of an ultra-thin AlN/GaN superlattice interlayer on the strain engineering of GaN films grown on Si (110) and Si (111) substrates by plasma-assisted molecular beam epitaxy | |
KR20240051496A (ko) | 비파괴분석법을 이용한 와이드밴드갭 소재의 결함 평가방법 | |
Bobea et al. | X-ray characterization techniques for the assessment of surface damage in crystalline wafers: A model study in AlN | |
Faleev et al. | Depth dependence of defect density and stress in GaN grown on SiC | |
Mishra et al. | Controlling the surface roughness of epitaxial SiC on silicon | |
Ansah Antwi et al. | Crystallographically tilted and partially strain relaxed GaN grown on inclined {111} facets etched on Si (100) substrate | |
Schroeder et al. | Structure and thickness-dependent lattice parameters of ultrathin epitaxial Pr2O3 films on Si (001) |